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Abstract. Several researchers have proposed the use of threshold cryp-
tographic model to enable secure communication in ad hoc networks
without the need of a trusted center. In this model, the system remains
secure even in the presence of a certain threshold t of corrupted/malicious
nodes.

In this paper, we show how to perform necessary public key operations
without node-specific certificates in ad hoc networks. These operations
include pair-wise key establishment, signing, and encryption. We achieve
this by using Feldman’s verifiable polynomial secret sharing (VSS) as
a key distribution scheme and treating the secret shares as the private
keys. Unlike in the standard public key cryptography, where entities have
independent private/public key pairs, in the proposed scheme the private
keys are related (they are points on a polynomial of degree t) and each
public key can be computed from the public VSS information and node
identifier. We show that such related keys can still be securely used
for standard signature and encryption operations (using resp. Schnorr
signatures and ElGamal encryption) and for pairwise key establishment,
as long as there are no more that t collusions/corruptions in the system.

The proposed usage of shares as private keys can also be viewed as a
threshold-tolerant identity-based cryptosystem under standard (discrete
logarithm based) assumptions.

1 Introduction

Securing communication in so-called ad hoc networks, such as mobile ad hoc net-
works and sensor networks, is a challenging problem due to the lack of a trusted
centralized authority. Starting with the seminal proposal by Zhou and Haas [1],
several researchers have proposed the use of a threshold cryptographic model
to distribute trust among the nodes of the network (see [2, 3, 4, 5, 6, 7, 8, 9]),
towards solving this problem. Such a model tolerates a threshold t of corrup-
tions/collusions in the network, and at the same time, allows any set of t+1 nodes
to make distributed decisions (for example, regarding admission of new nodes
to the network). This is achieved by (t, n) polynomial secret sharing scheme of
Shamir [10] that splits up the network-wide secret among n nodes using a poly-
nomial of degree t. More specifically, if p, q be large primes s.t. q divides p − 1
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then each player/node Pi receives a secret share xi equal to a value f(i) mod q
of some t-degree polynomial f . In order to ensure the robustness of the secret
sharing and secret reconstruction protocols in the presence of malicious nodes,
Feldman’s verifiable secret sharing (VSS) [11] is employed. Additionally, Feld-
man’s VSS creates an O(t ∗ |p|)-size public file (which is nothing but the com-
mitments to the polynomial coefficients) from which everyone can compute and
verify yi = gxi mod p for every i = 1, . . . , n.

The above-mentioned proposals on ad hoc network security required that each
node be issued a certificate and also a secret share in a distributed manner. Most
recently, [12] shows that as long as each node is able to obtain an updated VSS
information, there is no need for node-specific certificates. However, [12] focuses
mainly on how to efficiently admit new nodes, i.e., how to create new secret
shares in a distributed manner. In this work, we are concerned with the problem
of how to enable secure communication among the nodes once they have been
admitted. In particular, we show that the secret shares created by Feldman’s VSS
can be securely and efficiently used as private keys in many standard discrete-
log based public-key cryptosystems, namely in a Schnorr signature scheme, in
an ElGamal encryption, and in a non-interactive version of the Diffie-Hellman
pairwise key establishment protocol. Note that if the VSS share xi is treated
as Pi’s private key, the Feldman’s VSS public information allows everyone to
compute the corresponding public key yi.

Motivation. The motivation for establishing pairwise keys is straight-forward –
it is needed to secure communication between any pair of nodes, e.g., as required
in various secure routing protocols, such as Ariadne [13]. Signing is required in
cases when non-repudiation is needed, e.g., as in ARAN secure routing protocol
[14]. Encryption is suitable for scenarios where an authorized node outside the
network needs to send a private query to a node inside. An example scenario is
in a wireless sensor network, where a base station sends a maintenance query to
a particular sensor node (e.g., to obtain its reading of nuclear activity in the en-
vironment). However, sending the query in clear would leak critical information
to an adversary who might be interested in knowing what the sensor network is
installed for (e.g., for detecting a nuclear attack [15]).

Related vs. Independent Keys. It is not obvious whether the proposed usage of
secret shares as private keys is safe. The reason is simple – unlike in the stan-
dard public-key cryptosystems where every user gets an independently created
private/public key pair, here the private keys of all parties are related by being
values of a t-degree polynomial (Note, for example, that any set of t + 1 such
values determines all the others). Recall, for example, that the “text-book RSA”
is not secure when public keys of two users are related [16].

Our Contributions. We show that indeed such use of the secret shares as private
keys is just as secure as the standard discrete-log based signatures, encryption,
and key establishment, as long as no more than t of the players in the group
collude or are corrupted by an attacker. Note that this is the best that one can
hope for because if the private keys are shares in a secret sharing with t-degree
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privacy threshold, any collection of t + 1 such keys enables reconstruction of
the whole secret-sharing and hence also all the other private keys. Our proposal
renders necessary public key operations efficiently feasible in ad hoc networks,
without the need of certificates.

Threshold-tolerant ID-based Cryptography. The proposed scheme is essentially
equivalent to an identity-based cryptosystem that tolerates upto a threshold of
corruptions/collusions. However, as compared to well-known ID-based crypto-
graphic mechanisms, such as IBE [17] and other related schemes, our approach
is more efficient and is also based on standard cryptographic assumptions.

Paper Organization. Section 2 describes some preliminaries followed by Section
3, which presents our new scheme. Finally, in Section 4, we compare our proposal
to prior identity-based cryptosystems. In the rest of the paper, we use the terms
group/network/system and member/node/player/user interchangeably.

2 Preliminaries

2.1 Computation, Communication and Adversarial Model

We work in the standard model of threshold cryptography and distributed
algorithms known as synchronous, reliable broadcast, static adversary model.
This model involves nodes equipped with synchronized clocks. We assume some
nomenclature system that provides each node in the network with a unique
identifier, and also that it’s computationally hard for an adversary to forge
identities.

We assume the existence of an on-line trusted public repository where the
network-wide or group public key is published. The nodes (both within and out-
side the network) are connected by weakly synchronous communication network
offering point-to-point channels and a reliable broadcast. To interact with a node
in the network, an outsider must first be able to retrieve the group public key
from the repository.

We consider the presence of the so-called “static” adversary, modeled by a
probabilistic polynomial time algorithm, who can statically, i.e., at the beginning
of the life time of the scheme, schedule up to t < n/2 arbitrarily malicious faults
among n users in the group. Such an adversary is said to break our scheme if
it is able to break the underlying key establishment, signature and encryption
schemes against the standard notions of security.

2.2 Discrete Logarithm Setting and Underlying Assumptions

In this paper, we work in the standard discrete logarithm setting: p, q are large
primes s.t. q divides p − 1 and g denotes a generator of subgroup Gq of order
q in Z

∗
p. For definitional convenience we’ll denote by DL-INST (k) any set of

instances of this discrete-log setting, i.e. of triples (p, q, g) which satisfy the above
constraints, but where q is a k-bit prime and p is poly(k)-bit prime, long enough
to fend off known attacks on the discrete logarithm.
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We call function f negligible if for every polynomial P (.), f(k) ≤ 1/P (k)
for all sufficiently large k. We say that some event occurs with a negligible
probability if the probability of this event is a negligible function of the security
parameter k.

Assumption 1 (Discrete Logarithm (DL) Assumption). For every prob-
abilistic polynomial time algorithm I, for every (p, q, g) in DL-INST (k), prob-
ability Pr[x ← Zq; I(p, q, g, gx) = x] is negligible.

Assumption 2 (Computational Diffie-Hellman (CDH) Assumption).
For every probabilistic polynomial time algorithm I, for every (p, q, g) in
DL-INST (k), probability Pr[x ← Zq; y ← Zq; I(p, q, g, gx, gy) = gxy] is
negligible.

Assumption 3 (Square Computational Diffie-Hellman (SCDH) As-
sumption). For every probabilistic polynomial time algorithm I, for every
(p, q, g) in DL-INST (k), probability Pr[x ← Zq; I(p, q, g, gx) = gx2

] is
negligible.

2.3 Random Oracle Model (ROM)

Our proofs of security are in the so-called Random Oracle Model [19], i.e. we
model hash functions like MD5 or SHA1 as ideal random oracles. Doing secu-
rity analysis in the ROM model effectively means that our proofs will consider
only such attacks on the cryptographic schemes we propose whose success does
not change if the fixed hash function like MD5 or SHA in these schemes are
replaced with truly random functions. Of course, since functions like MD5 or
SHA are not truly random functions, the security analysis in the ROM model
provides only a heuristic argument for the security of the actual scheme. How-
ever, such heuristic seems the best we can currently hope for. Indeed, the ROM
heuristic arguments are currently the only security arguments for most prac-
tical cryptographic schemes including OAEP RSA encryption [19] and full-
domain hash RSA signatures [20], as well as the two fundamental discrete-log-
based cryptosystems, the hashed ElGamal encryption [21] and Schnorr signature
scheme [22, 23], the two schemes which we extend to a threshold setting in this
paper.

2.4 Feldman’s Verifiable Secret Sharing (VSS)

The idea of secret sharing [16] is to divide a secret x into pieces or shares which
are distributed among n players such that pooled shares of a threshold t + 1
number players allow reconstruction of the secret x. We use Shamir’s secret
sharing scheme [10] which is based on polynomial interpolation. To distribute
shares among n users, a trusted dealer chooses a large prime q, and selects a
polynomial f(z) over Zq of degree t such that f(0) = x. The dealer computes
each user’s share xi such that xi = f(idi) mod q, and securely transfers xi to
user Mi. Then, any group G of t + 1 players who have their shares can recover
the secret using the Lagrange interpolation formula:
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x =
∑

i∈G

xi lGi (0) (mod q)

where lGi (0) =
∏

j∈G,j �=i
−j
i−j (mod q).

Feldman’s Verifiable Secret Sharing (VSS) [11] allows players to validate the
correctness of the received shares. VSS setup involves two large primes p and q,
and an element g ∈ Z

∗
p chosen in a way that q divides p − 1 and g is an element

of Z
∗
p which has order q. The dealer computes commitment to the coefficients

ai (i = 0, · · · , t) of the secret sharing polynomial in the form of witnesses wi

(i = 0, · · · , t), such that wi = gai (mod p), and publishes these wi-s in some
public domain (e.g., a directory server). The secret share xi can be validated by
checking that

gxi
?=

t∏

j=0

(wj)idi
j

(mod p)

2.5 Schnorr’s Signature

The private key is x, chosen at random in Zq. The public key is y = gx (mod p).
A Schnorr’s signature [22] on message m is computed as follows. The signer
picks a one-time secret k at random in Zq, and computes the signature on m
as a pair (c, s) where s = k + cx (mod q), c = H(m, r), and r = gk (mod p).
Signature (c, s) can be publicly verified by computing r = gsy−c (mod p) and
then checking if c = H(m, r). The Schnorr’s signature scheme is proven secure
against chosen message attack [24, 25] in ROM [23].

2.6 ElGamal Encryption

We use a variant of ElGamal Encryption scheme, called Hashed ElGamal [21],
which is semantically secure under the CDH assumption in ROM. For a private
key, public key pair (x, y = gx), the encryptor chooses a random r ∈ Zq and
computes the ciphertext (c1, c2) where c1 = gr (mod p) a c2 = m ⊕ H(yi

r) (⊕
denotes the bit-wise XOR operator). The plaintext can be obtained by computing
c2 ⊕ H(cxi

1 ) from the ciphertext (c1, c2).

3 Our Proposal: “Secret-Shares-as-Private-Keys”

In this section we present our proposal on using secret VSS shares as private
keys that renders public key operations efficiently feasible in ad hoc networks.
We begin by providing a brief overview of the scheme.

3.1 Overview

The idea of the scheme is very simple. Basically, we use Feldman’s VSS ( summa-
rized in Section 2.4), to build our scheme. A dealer (or a set of founding nodes in
an ad hoc network) chooses a secret sharing polynomial f(z) = a0+a1z+· · ·atz

t
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in Zq, where a0 (also denoted as x) is the group secret key. The dealer also pub-
lishes commitments to the coefficients of the polynomial, as wi = gai (mod p),
for i = 0, · · · , t. These witnesses constitute the public key of the group. To join
the group, a user Mi with a unique identifier (such as an email address) idi,
receives from the dealer (or a set of t + 1 or more nodes distributedly [12]) a
secret share xi = f(idi) (mod q) over a secure channel. The public key yi = gxi

(mod p) of Mi can be computed using the public key of the group and its iden-
tifier idi as

yi =
t∏

j=0

(wj)idi
j

(mod p)

Now, any user (within or outside) the group, can send encrypted messages
to Mi using its public key yi, which Mi can decrypt using its secret key xi.
Similarly, Mi can use xi to sign messages, which can be publicly verified using
yi. Moreover, any two users Mi and Mj can establish pairwise keys in a non-
interactive manner: Mi and Mj compute kij = (yj)xi (mod p), and kji = yi

xj

(mod p), respectively. Since Kij = kij = kji, a hash of Kij can be used as session
keys for secure communication between Mi and Mj .

We call these secret sharing based pairwise key establishment, signature and en-
cryption procedures as SS-KE, SS-Sig and SS-Enc, respectively. SS-Sig is realized
using the Schnorr’s signature scheme, and SS-Enc using ElGamal encryption.

3.2 Setup and Joining

In order to setup the system, a dealer (or a set of co-founding members) first
chooses appropriate parameters (p, q, g) for the group, and selects a polynomial
f(z) = a0 + a1z + · · · + atz

t in Zq, where a0 (also denoted as x) is the group
secret. The dealer keeps the polynomial secret and publishes commitments to
the coefficients of the polynomial, as wi = gai (mod p), for i = 0, · · · , t. These
witnesses constitute the public key of the group.

To join the group, a user Mi sends its unique identifier idi to the dealer, who
issues it its secret share xi = f(idi) (mod q). (We assume there exists some
kind of a unique nomenclature system for the users in the group, and that its
computationally hard for anyone to forge the identities.) In an ad hoc network,
the setup and joining are performed in a distributed manner. Refer to [12] for
these decentralized setup and admission processes.

3.3 SS-KE: Secret Sharing Based Pairwise Key Establishment

Any pair of users Mi and Mj in the group can establish shared keys with each
other using their secret keys and the group public key. Mi computes the public
key yj of Mj (knowing its identifier idj only) as

yj =
t∏

i=0

(wi)idj
i

(mod p)
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Mi then exponentiates yj to its own secret key xi, to get kij = yj
xi = gxjxi

(mod p). Similarly, Mj computes public key yi of Mi as

yi =
t∏

j=0

(wj)idi
j

(mod p),

and exponentiates it to its own secret key xj , to get kji = yi
xj = gxixj (mod p).

Since, kij equals kji, Mi and Mj can use Kij = H(kij) = H(kji), as a session
key for secure communication with each other.

Computational Complexity. Each party needs to compute the other party’s pub-
lic key via interpolation, and one exponentiation only. Using the well-known
scheme of multi-exponentiation (or Shamir’s trick) [26], the cost of interpola-
tion is O(log(nt)) squarings and O(log(nt)) multiplications, where n denotes the
total number of parties. For reasonable threshold values and network sizes, the
interpolation is fairly efficient.

Next, we present the security argument for the above SS-KE procedure. Basi-
cally we show that an adversary, who corrupts t users, can not distinguish a key
KIJ for some uncorrupted user pair (MI , MJ) from random even if he learns all
other session keys Kij for (i, j) �= (I, J).

Theorem 1 (Security of SS-KE). Under the CDH Assumption in ROM,
there exists no probabilistic polynomial time adversary A, which on inputs of
secret keys of t corrupted users, and shared keys Kij between every user pair
except KIJ {(i, j) �= (I, J)}, is able to distinguish with a non-negligible probability
KIJ from a random value.

Proof. We prove the above claim by contradiction, i.e, we prove that if a polyno-
mial time adversarial algorithm A, which on inputs of secret keys of t corrupted
users, and shared keys Kij between every user pair except KIJ {(i, j) �= (I, J)},
is able to distinguish with a non-negligible probability KIJ from a random value,
then there exists a polynomial time algorithm B, which is able to break the CDH
assumption in the random oracle model.

In order to construct the algorithm B which breaks the CDH assumption, we
first construct a polynomial time algorithm C, which breaks the SCDH assump-
tion. The algorithm C runs on input of an SCDH instance y = gx (mod p), and
would translate the adversarial algorithm A into outputting gx2

(mod p).
Without loss of generality, we first assume that the adversary A corrupts t

players denoted by M1, M2, · · · , Mt. Now, the algorithm C runs as follows:
As in the simulation of Feldman’s VSS, C picks x1, x2, · · · , xt values corre-

sponding to the secret keys of corrupted users, uniformly at random from Zq.
It then sets xi = F (idi), and employs appropriate Lagrange interpolation coef-
ficients in the exponent to compute the public witnesses gA1 , · · · , gAt (mod p),
where F (z) = x + A1z + · · · + Atz

t (mod q).
Corresponding to the shared keys Kij between every user pair, C picks a

random value Rij , and runs the algorithm A on x1, · · · , xt and Ri,j values. Note
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that the values x1, · · · , xt and the witnesses have an identical distribution to
an actual run of the Feldman’s secret sharing protocol, and therefore A can not
see the difference between C’s inputs and actual protocol run. Also, since the
Kij values for (i, j) �= (I, J) are obtained by hashing gxixj , the only way A can
tell the difference, except with negligible probability, between Ki,j and Ri,j for
(i, j) �= (I, J), is by querying the random oracle on at least one appropriate
gxixj value. If A does tell the difference, then C records R = gxixj , and use the
following equations to compute gx2

,

x =
t∑

k=1

xklik + xil
i
i (mod q)

x =
t∑

k=1

xkljk + xj l
j
j (mod q)

(lik denotes the lagrange coefficient lGk (0), where G = {1, · · · , t, i}).
Multiplying above two equations, we get

x2 = (
t∑

k=1

xklik)(
t∑

k=1

xkljk) + xixj l
i
il

j
j (mod q)

This implies,

gx2
= g(

∑ t
k=1 xklik)(

∑ t
k=1 xkljk)Rliil

j
j (mod p)

If A doesn’t tell the difference between Ki,j and Ri,j for (i, j) �= (I, J), then it
must tell the difference between KI,J and RI,J . However, as above, this is only
possible, except with negligible probability, if A queries gxIxJ to the random
oracle. Them C records this value (say K) and computes gx2

similarly as above,
using the following equation

gx2
= g(

∑ t
k=1 xklIk)(

∑ t
k=1 xklJk )K lII lJJ (mod p)

Now, we will use C to construct B to break a CDH instance (gu, gv). This is
very simple as outlined in [27]: B runs C on input gu, then on gv, and finally on
gu+v = gugv, and receives gu2

, gv2
, g(u+v)2 , respectively. Now, since (u + v)2 =

u2 + v2 + 2uv (mod q), B can easily compute guv from the outputs of C.
Clearly, Pr(B) = Pr(C)3, where Pr(B), P r(C), denote the probabilities of

success of B and C respectively.

3.4 SS-Sig: Secret Sharing Based Signatures

As mentioned previously, we realize SS-Sig using the Schnorr’s signature scheme.

Signing. To sign a message m , Mi (having secret key xi), picks a random secret
k ∈ Zq and computes r = gk (mod p). It then outputs the signature as a pair
(c, s), where c = H(m, r) and s = k + rxi (mod q).
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Verification. In order to verify the above signature (c, s), a recipient first com-
putes the public key yi of the signer Mi using its identity idi as yi =

∏t
j=0(wj)idi

j

(mod p), and then verifies whether c = H(m, r), where r = gsyi
−c (mod p).

Computational Complexity. The signer needs to compute only one exponentia-
tion, while the verifier requires one interpolation operation, two exponentiations
and and two multiplications.

In the following theorem, we argue the security of SS-Sig. More precisely,
we argue that SS-Sig remains secure against existential forgery under chosen
message attack (CMA) [24] in ROM as long as the discrete logarithm assumption
holds. Notice that SS-Sig is different from regular signatures in the sense that
the users generate signatures with related (and not independent) secret keys,
and the adversary knows at most t of these secret keys.

For clarity of our argument, we first recall the argument for security of the
underlying Schnorr’s signature scheme against CMA attack in ROM and discrete
logarithm assumption; the simulator algorithm, on input y = gx, can produce
Schnorr’s signatures on any m by picking s and c at random in Zq, computing r =
gsy−c (mod p) and setting H(m, r) = c. This simulator can also translate the
adversary’s forgery into computing dloggy as follows. It runs the adversary until
the adversary outputs a forgery (c, s) on some message m. Note that because H
is a random function, except for negligible probability, the adversary must ask to
H a query (m, r) where r = gsy−c (mod p), because otherwise it could not have
guessed the value of c = H(m, r). The simulator then rewinds the adversary, runs
it again by giving the same answers to queries to H until the query (m, r), which
it now answers with new randomness c′. If the adversary forges a signature on m
in this run, then, except for negligible probability, it produces s′ s.t. r = gs′

y−c′

(mod p), and hence the simulator can now compute dloggy = (s − s′)/(c′ − c)
(mod q). One can show that if the adversary’s probability of forgery is ε, this
simulation succeeds with probability ε2/4q: O(ε) probability that the adversary
forges in the first run times the O(ε/qH) probability that it will forge on the
second run and that it will choose to forge on the same (m, r) query out of its q
queries to H. We refer to [23] for the full proof.

Theorem 2 (Security of SS-Sig). Under the DL assumption in ROM, as
long as the adversary corrupts no more than t users, SS-Sig is secure against the
chosen-message attack for every remaining uncorrupted user

Proof. We prove the following claim: if there exists a polynomial time algorithm
A, which on inputs the secret keys of t corrupted users, is able to create an
existential forgery in CMA model corresponding to an uncorrupted user, then
there exists a polynomial time algorithm B, which can break the DL assumption
in ROM.

We construct an algorithm B, which runs on input of a DL instance y = gx

(mod p), and would translate the adversarial algorithm A into outputting x. We
first assume that the adversary A corrupts t players denoted by M1, M2, · · · , Mt,
w.l.o.g.
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Note that in our multiple user scenario, the adversary A can request the
signature oracle to sign chosen messages corresponding to any honest player. In
other words, when A sends (m, idi) to the signature oracle, the oracle responds
with a signature on message m signed with xi.

B picks x1, x2, · · · , xt values corresponding to the secret keys of corrupted
users, uniformly at random from Zq. It then sets xi = F (idi), and employs appro-
priate Lagrange interpolation coefficients in the exponent to compute the public
witnesses gA1 , · · · , gAt (mod p), where F (z) = x + A1z + · · · + Atz

t (mod q).
Since, x =

∑t
k=1 xklik + xil

i
i (mod q), B can compute the public key yi, corre-

sponding to an honest player Mi (i ≥ t + 1) as

yi = (y/g
∑ t

k=1 xklik)1/lii (mod p) (1)

B now runs A on inputs x1, x2, · · · , xt and simulates the signature oracle on
A’s query (m, idi), by picking s and c at random in Zq, computing r = gsyi

−c

(mod p) and setting H(m, r) = c. A then outputs a forgery (C, S) on some
message M corresponding to user Mi. Note that because H is a random function,
except for negligible probability, A must have asked to H a query (M, R) where
R = gSyi

−C (mod p), because otherwise it could not have guessed the value of
C = H(M, R). B then reruns A by giving the same answers to queries to H until
the query (M, R), which it now answers with new randomness C′. If A outputs
the forgery on the same message M , but this time for a different user Mj (i �= j)
then, except for negligible probability, it produces S′ s.t. R = gS′

yj
−C′

(mod p).
B can now (using equation 1) compute

x = (S − S′ + (C/lii)
t∑

k=1

xklik − (C′/ljj)
t∑

k=1

xkljk)/(C/lii − C′/ljj) (mod q)

As in the security proof of Schnorr’s Signatures, the probability of success of
B would be ε2/4q, where ε represents the success probability of A and q is the
total number of queries to H().

3.5 SS-Enc: Secret Sharing Based Encryption

We use Hashed ElGamal encryption scheme in the SS-Enc procedure.

Encryption. In order to encrypt a message m for a user Mi in the group, the
encryptor computes the public key of Mi as yi =

∏t
j=0(wj)idi

j

(mod p), chooses
a random r ∈ Zq and then sends a pair (c1, c2) to Mi, where c1 = gr (mod p)
and c2 = m ⊕ H(yi

r) (⊕ denotes the bit-wise XOR operator).

Decryption. Mi recovers the message by computing c2 ⊕H(cxi
1 ) from the cipher-

text (c1, c2).

Computational Complexity. In the above procedure, the encryptor performs one
interpolation and two exponentiation. The decryptor, on the other hand, needs
to compute only a single exponentiation.
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Before presenting the security argument for SS-Enc, we briefly discuss the
indistinguishability notion [28]. Indistinguishability is defined as the following
game: the adversary is first run on input of the public key and outputs two
messages to be challenged upon. Next, one of these messages is encrypted and
given to the adversary. The adversary is said to win this game if he can out-
put which message was encrypted with non-negligible probability greater than
half.

The above notion of indistinguishability was designed for a single user sce-
nario, where multiple messages are being encrypted for one user. However, to
capture the security of SS-Enc, where there are multiple users in the group and
the messages are encrypted using related keys, we adopt the multi-user indistin-
guishability notion of Baudron et al. [29] and Bellare et al. [30]. In this notion,
the adversarial game is as follows: first the adversary is given as input n public
keys (pk1, · · · , pkn) of all the users. The adversary then outputs two vectors of
n messages M0 = {m01, · · · , m0n} and M1 = {m11, · · · , m1n}, which might be
related or same, to be challenged upon. One of the message vectors Mb (b is 0 or
1) is then encrypted with n public keys (the order of the encryption is preserved,
i.e., mbi is encrypted with pki). The adversary is said to win the game if he can,
with probability non-negligibly greater than half, output which message was en-
crypted. It has been shown in [30, 29] that an encryption scheme secure in the
sense of single-user indistinguishabilty is also secure in the sense of multi-user
indistinguishability.

Following is the security argument for SS-Enc based on a slightly modified
multi-user indistinguishability notion, as described above (Basically, the adver-
sary is only challenged for the encryptions of n − t honest users in the group).

Theorem 3 (Security of SS-Enc). Under the CDH assumption in ROM, as
long as the adversary corrupts no more than t users, SS-Enc is secure in the
sense of multi-user indistinguishability notion.

Proof. As usual, the proof goes by contradiction, i.e., we proof that if there exists
a polynomial time algorithm A, which on inputs the secret keys of t corrupted
users, is able to break the multi-user indistinguishability notion, then there ex-
ists a polynomial time algorithm B, which can break the CDH assumption in
ROM.

We construct an algorithm B, which running on input of a CDH instance
U = gu, V = gv, translates the algorithm A into outputting guv. As usual, we
first assume that the adversary A corrupts t players denoted by M1, M2, · · · , Mt,
w.l.o.g.

As in the security proof of SS-Sig, B picks x1, x2, · · · , xt values correspond-
ing to the secret keys of corrupted users, uniformly at random from Zq. It then
sets xi = F (idi), and employs appropriate Lagrange interpolation coefficients
in the exponent to compute the public witnesses gA1 , · · · , gAt (mod p), where
F (z) = u + A1z + · · · + Atz

t (mod q). Since, u =
∑t

k=1 xklik + xil
i
i (mod q), B

can compute the public key yi, corresponding to an honest player Mi (i ≥ t+1)
using Equation 1.
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To help the reader understand the construction of our translator algorithm
B, we first recall the how the translator works in the security proof (under
CDH and ROM) of single-user hashed ElGamal. The translator works as fol-
lows: on input of a CDH instance (U = gu, V = gv), it first runs the adver-
sary on input gu. The adversary outputs two messages m0, m1. The transla-
tor picks one message mb (b = 0 or 1) at random, and sends the encryption
(c1, c2) to the adversary, where c1 = V ∗ gr (mod p) and c2 = R (r is a ran-
dom value in Zq and R is a random pad of same length as the message). In
the random oracle model, the only way the adversary can distinguish this en-
cryption is by querying the random oracle on value O = cu

1 = U r+v, which will
be recorded by the translator, and used to compute guv = OU−r. If there are
a total of q queries being made to the oracle, this means that the probability
of success of translator would be 1/q times the probability of success of the
adversary.

Now, we are ready to describe the translation based on our multi-user setting: B
runs A on inputs the secret keys x1, · · · , xt corresponding to the corrupted users,
and the public keys yt+1, · · · , yn of all honest ones. A outputs two vectors of n − t
messages M0 = {m0i} and M1 = {m1i}, where i = t + 1, · · · , n, to be challenged
upon. B then picks Mb (b is 0 or 1) and sends toA the vector {(V ∗gri, Ri)}, where ri

is a random value in Zq, andRi is a randompad equally long as the messagembi, for
i = t+1, · · · , n. The only possibility for A to win this game, is by querying the ran-
dom oracle on at least one of the value O = (V ∗grj)xj , for some j ∈ {t+1, · · · , n}.
B records this value, and assuming that it corresponds to Mj , it computes guv as
follows:

u =
t∑

k=1

xkljk + xj l
j
j (mod q)

This implies that

guv = gv
∑ t

k=1 xkljkgvxjljj (mod q)

and
guv = V

∑ t
k=1 xkljkV xj ljj (mod p)

Since, O = (V ∗ grj )xj , this means V xj = Oyj
−rj , and therefore,

guv = V
∑ t

k=1 xkljkOyj
−rjljj (mod p)

Given that there are a total of q queries to the random oracle, the probability
of success of B would be probability of success of A times 1/q(n − t), as only
one query will yield correct guv value and each query might correspond to one
j value in {t + 1, n}.

Remark: Extension to Chosen Ciphertext Security. The hybrid encryption tech-
niques for extending standard hashed ElGamal to chosen ciphertext security (re-
fer to [31], [32]) can be used to achieve chosen ciphertext security for the SS-Enc
scheme.
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4 Comparison with ID-Based Cryptography

As previously pointed out in the introduction section, our proposed scheme can
be viewed as an identity-based cryptosystem based on threshold assumption.
Basically, a trusted center provides each user with a secret value (VSS share
in our case) derived from the unique identifier of the user, and publishes the
VSS information as its public key. Knowing the identifier of a particular user
and also the public key of the trusted center, one can send encrypted messages
and verify signatures. This is equivalent to IBE [17], and ID-based signatures
[33], apart from the fact that our scheme becomes insecure if there are more
than a threshold of collusions or corruptions. However, unlike other ID-based
schemes, our proposal is based on standard (discrete logarithm) assumptions.
Moreover, for reasonable group sizes and threshold values, our scheme is much
more efficient than these prior ID-based schemes, which require costly computa-
tions (such as scalar point multiplications, map-to-point operations and bilinear
mappings [17]) in elliptic-curves. For example, for a group size of around 100,
and threshold of 10 (10% of group size), the encryption in our scheme would
require less than 70 squarings, less than 70 modular multiplications, and only 2
modular exponentiations. The decryption would just require 1 exponentiation.
On the other hand, IBE requires 1 map-to-point operation, 2 scalar point mul-
tiplications, and 1 bilinear mapping, for encryption, and 1 bilinear mapping for
decryption. It is well-known that for appropriate security parameters, the IBE
computations are extremely costly (e.g., a bilinear mapping takes around 80ms,
scalar point multiplication costs around 30 ms, while a single modular exponen-
tiation is only a few milliseconds on fast processors). Refer to, e.g., [8] for details
regarding these cost comparisons.
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