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Abstract. Tapping-based rhythmic passwords have recently been proposed for
the purpose of user authentication and device pairing. They offer a usability ad-
vantage over traditional passwords in that memorizing and recalling rhythms is
believed to be an easier task for human users. Such passwords might also be
harder to guess, thus possibly providing higher security.
Given these potentially unique advantages, we set out to closely investigate the se-
curity of tapping-based rhythmic passwords. Specifically, we show that rhythmic
passwords are susceptible to observation attacks based on acoustic side channels
– an attacker in close physical proximity of the user can eavesdrop and extract
the password being entered based on the tapping sounds. We develop and eval-
uate our attacks employing human users (human attack) as well as off-the-shelf
signal processing techniques (automated attack), and demonstrate their feasibil-
ity. Further, we propose a defense based on sound masking aimed to cloak the
acoustic side channels. We evaluate our proposed defense system against both
human attacks and automated attacks, and show that it can be effective depend-
ing upon the type of masking sounds.

1 Introduction
Many online and offline services rely upon user authentication to protect users’ data,
credentials and other sensitive information, such as when used to logging into websites
or devices, or to “pair” the devices [11]. Passwords and PINs represent the most dom-
inant means of authentication deployed today. However, traditional passwords suffer
from a number of well-known security and usability problems [1, 14, 18]. Specifically,
passwords are often only weak, low-entropy secrets due to the user-memorability re-
quirement. As such they can be easy to guess, enabling online brute-forcing attacks and
offline dictionary attacks. Moreover, authentication and pairing mechanisms on con-
strained devices (e.g., headsets or access points) can be a challenging task due to lack
of a proper input interface. Typing passwords or PINs requires a keyboard (physical or
virtual) to enter the text. However, most of the constrained devices have either only a
button or a microphone for input.

Tap-based rhythmic passwords [12, 16] have been proposed as an alternative to tra-
ditional text based passwords as they can be unique to an individual and are much
harder to replicate. Wobbrock’s TapSongs [16] is a tapping-based authentication mech-
anism for devices having a single binary sensor. In this method, the user is required to
tap a rhythm, for example a song, using the binary sensor, which can be a button or a



switch. Matching the tapping pattern entered by the user with a previously stored pat-
tern achieves the authentication. The key idea behind this mechanism is the assumption
that every individual has a unique tapping pattern for a given rhythm that can serve
the same purpose as other authentication modalities like signatures, fingerprints or reti-
nal patterns. They also offer a usability advantage over traditional passwords in that
perceiving, memorizing and performing rhythms is an easier task for human users, as
demonstrated by music psychologists [6, 7, 17].

Lin et al.’s RhythmLink [12] extends the TapSongs work by using tap intervals
extracted from the tapping pattern for “pairing” two devices. The peripheral device that
is to be paired sends the tapping model to the user’s phone that stores the timing model
for authentication. Euclidean distance is used for as a heuristic for matching the received
pattern with the stored pattern. Similar to TapSongs [16], if the two patterns are within
a certain threshold, a successful match is determined.

Our Contributions: Given the unique security and usability advantages of tap-based
rhythmic passwords, we set out to closely investigate their security. Specifically, we
show that these passwords are susceptible to observation attacks based on acoustic side
channels – an attacker in close physical proximity of the user can eavesdrop and ex-
tract the password being entered based on the tapping sounds. We develop and evalu-
ate our attacks employing human users (human attack) as well as off-the-shelf signal
processing techniques (automated attack), and demonstrate their feasibility in realistic
scenarios. Our results show that the automated attack is highly successful with an aver-
age accuracy of more than 85%. The human attack is less successful, but still succeeds
with an accuracy of 6% for short passwords (less than 10 taps) and about 21% for long
passwords (greater than 10 taps).

Going further, we propose a simple defense mechanism based on sound masking
aimed to cloak the acoustic side channels. The idea is that the authentication terminal
itself inserts acoustic noise while the user inputs the tap-based rhythmic password. We
evaluate the proposed defense system against both the human attack and the automated
attack. The results show that, depending upon the type of noise inserted, both automated
and human attacks could be undermined effectively.

Our work highlights a practical vulnerability of a potentially attractive form of au-
thentication and proposes a viable defense that may help mitigate this vulnerability.

Related Work: Acoustic Side Channel Attacks: Acoustic eavesdropping was first
studied as a side channel attack, applicable to traditional passwords, by Asonov and
Agrawal [2], where they showed that it was possible to distinguish between different
keys pressed on a keyboard by the sound emanated by them. They used Fast Fourier
Transform (FFT) features of press segments of keystrokes to train a neural network for
identification of individual keys. Zhuang et al. [19] improved upon the work of Asonov
and Agrawal by using Mel Frequency Cepstrum Coefficient (MFCC) for feature ex-
traction from keystroke emanations that would yield better accuracy results. Halevi and
Saxena [9] further improved upon the accuracy of such class of attacks using time-
frequency decoding of the acoustic signal.

In another work, Halevi and Saxena [10] extended the acoustic side channel attacks
to device pairing. They demonstrated that it is possible to recover the exchanged secret
during device pairing using acoustic emanations. Recent work by Shamir and Tromer
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[8] has shown that it is possible to extract an RSA decryption key using the sound
emitted by the CPU during the decryption phase of some chosen ciphertexts. Acoustic
side channel attacks have also been used against dot matrix printers by Backes et al. [4]
to recognize the text being printed.

Compared to the above prior research, our work investigates the feasibility of acous-
tic emanations attacks against tap-based rhythmic passwords unlike traditional pass-
words, typed input or cryptographic secrets. In addition to automated attacks, we inves-
tigate and demonstrate the feasibility of human-based acoustic eavesdropping attacks
against rhythmic passwords. It is noteworthy that the traditional passwords do not seem
vulnerable to such human attacks given that it may be impossible for a human attacker
to infer the key pressed based on the key-press sound (all keys may sound alike).

2 Background
2.1 System Model
The authentication system proposed by TapSongs [16] defines the following conditions
to be satisfied for successful authentication of an input tap pattern. Our implementation
of TapSongs, as our target system, therefore uses the exact same conditions.

– The number of taps should be same in the input pattern and the user’s tap pattern
stored in the system for authentication.

– The total time duration of the input pattern should be within a third of the time
duration of the stored pattern for the user.

– Every time interval between consecutive tap events in the input pattern should be
within three standard deviations from the corresponding time intervals in the stored
tap pattern for the user.

2.2 Threat Model and Attack Phases
The threat model of our attack consists of three distinct phases: Snooping and Record-
ing, Processing and Password Reconstruction, as described below.
Phase I: Snooping and Recording: This is the initial phase, where the adversary at-
tempts to listen to the users’ tapping. In the user study reported in the TapSongs work
[16], it was found that, for a human attacker eavesdropping from a distance of 3 feet,
while the victim user inputs the tap pattern, the mean login success rate is very low
(10.7%). The reason attributed to the low success rate is the unfamiliarity of the human
attacker with the tap rhythm being used. Hence, while the attacker could infer the cor-
rect number of taps with a high probability (77.4%), unfamiliarity with the rhythm made
it almost impossible to imitate the tapping pattern in real-time during eavesdropping.

We modify the attack model used by Wobbrock [16] to increase the capability of
the adversary. Our attack model is very similar to the one considered by prior research
on keyboard acoustic emanations [2, 19]. We assume that the adversary has installed
a hidden audio listening device very close to the input device or interface being used
for the tap input. A covert wireless “bug”, a PC microphone (perhaps a compromised
microphone belonging to the host device itself) or a mobile phone microphone are ex-
amples of such a listening device. The listening device can be programmed to record
the acoustic emanations as the user taps in the rhythm, and transmit the recordings to
another computer controlled by the attacker.
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Thus, unlike [16], the attacker does not need to reconstruct the tap-based password
in real-time, but rather the attacker can record the typed password for later offline pro-
cessing (possibly involving training) and reconstruction. Moreover, given the recording
capability, we extend the threat model of [16] to incorporate automated attacks besides
human attacks.

Phase II: Processing: This phase uses the recorded audio from the earlier phase to
extract the desired spectral features of the tapping pattern. The naive way to extract
this information is to familiarize the attacker with the tap rhythm (human attack). The
attacker can accurately know the number of taps in the pattern and to some extent,
an approximation to the time interval between the taps. A potentially more accurate
method is to use signal processing techniques in order to extract the relevant features
from the recordings (automated attack).

Phase III: Password Reconstruction: Once the adversary has learned the tapping pat-
terns’ characteristics, it can imitate the tapping pattern to try to break the authentication
functionality provided by tap-based password. If the adversary has physical access to
the machine (e.g., lunch-time access to the authentication terminal or when working
with a stolen terminal), the tap patterns can be entered directly to the input interface
either manually or using a mechanical/robotic finger pre-programmed with the tapping
pattern. In contrast, if the tap-based password is being used for remote authentication
(e.g., web site login), the attacker can simply reconstruct the password using its own
machine. In this case, the attacker can install an automated program (e.g., a Java robot)
on its machine that will simply input the reconstructed password to the web site so as
to impersonate the victim user.

3 Attack Overview and Scenarios
We classify our attack into two categories: automated attacks and human attacks.

3.1 Automated Attacks
The automated attack deploys a recording device to eavesdrop upon the taps entered
by the user. The tapping-based schemes require the user to tap a rhythm on a binary
sensor like a button or any sensor which can be binarized to serve the purpose, like
microphones or touchscreens. An attacker, who is in vicinity of the victim, records the
sound generated from the tapping action and uses the recorded tapping pattern to re-
construct an approximation to the tapping pattern of the victim. As discussed in Section
2.2, the attack consists of three phases, each of which can be automated. We begin with
the Snooping and Recording phase, where the attacker is recording the tapping pattern
using a recorder. There can be three most likely cases, described below, based on the
positioning of the input sensor used by the victim to enter the taps, the device used by
the attacker and the environment in which the attack takes place.

S1: Key Tapping; Recording Device on Surface: In this scenario (Figure 1a), the
user uses a button or a key on her device for tapping a rhythm. This tapping pattern is
matched against the stored pattern and success or failure is determined during authenti-
cation. When a key or button is pressed by the user, it produces a sound corresponding
to key press followed by a softer sound produced due to key/button release that can be
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(a) Tap performed using a key or a button, and
the recording device is placed on the same
surface as the input device

(b) Tap performed using a key or a button,
and the recording device is hand-held

Fig. 1: Attack scenarios against rhythmic passwords (the circled device represents the
audio recording device used by the attacker)

recorded by an adversary during the input. Later, the adversary can extract relevant fea-
tures from the victim’s tapping pattern stored in the recording. The recording itself can
be done inconspicuously. Any device with a microphone, for example a smartphone or a
USB recorder, can be used for recording that makes it hard to distinguish the adversary
from non-malicious entity.

In order for an accurate recording of the clicks, the recording device should be as
near to the victim as possible while the adversary need not be physically present during
the attack. A possible setup could be hiding a microphone under the table or placing
the smartphone or the USB recorder on the table, which are tuned for recording while
giving no clue about their malicious intent.
S2: Key Tapping; Recording Device Hand-Held: In this scenario (Figure 1b), the
tapping pattern is being input via a button or a key on the device while the adversary
records the clicks, standing close to the victim. This scenario is analogous to shoulder
surfing where the adversary is recording the sound clicks while standing behind the
victim, who is unaware of her input being recorded. Since, the adversary is standing
behind the victim, the input device and the recording device are not in proximity of each
other. Hence, the recording will be fainter than the previous scenario, if the recording
device remains unchanged. Also, the air gap between the two devices dampens the audio
signal, unlike in previous scenario, where the table surface allowed the sound to travel
unimpeded.

3.2 Human Attacks
In the human attacks against tap-based passwords, unlike the automated attacks, the
adversary himself manually tries to replicate the tapping pattern based on the recorded
audio. Adversary listens to the tapping rhythm and tries to reproduce it. There are two
possible human attack scenarios. In the first scenario, the adversary aurally eavesdrops
while the victim is tapping the rhythmic password in real time, memorizes the tapping
and tries to replicate it. As mentioned previously, this is the scenario proposed and
studied by Wobbrock [16]. However, in this scenario, the adversary can not perfectly
reproduce the tapping by just listening it once in real-time, but it may be possible to
estimate the tapping rhythm to a certain degree of accuracy.
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In the second human attack scenario, which is what we propose and investigate in
this paper, we assume that an adversary installs an audio listening device near the victim
device and records, while the victim is tapping. This enables the adversary to obtain a
recording of tapping and listen to it multiple times. The adversary can make an estimate
of the tap counts more accurately. Moreover, adversary can now train himself and can
possibly replicate the tapping with better accuracy. The recording scenarios are similar
to the scenarios S1 and S2 applicable to the automated attacks.

4 Attack Design and Implementation
4.1 Automated Attack
To extract the relevant features from the eavesdropped signal, we apply signal process-
ing algorithms using MATLAB software. We begin by detecting the number of taps in
the eavesdropped signal. Previous works [2, 5, 9, 19] each have used different features
to detect keystrokes from acoustic emanations. The commonly used features in these
works have been Fast Fourier Transformation (FFT), Mel Frequency Cepstrum Coeffi-
cients (MFCC), Cross Correlation and Time-Frequency classifications. Since, there is
no need to classify the taps, we can just use the FFT features to estimate the energy
levels in the signal. A significant peak in the energy level in the frequency spectrum
would indicate a possible tap.
Signal Processing Algorithm: We record the signal with a sampling frequency of 44.1
kHz, which is sufficient for reconstruction of our original signal. The processing of the
recorded signal begins by converting the digital signal from time domain to frequency
domain for identifying the frequency range of the tapping sound. This is achieved by
calculating the Fast Fourier transformation (FFT) of the signal. We use a window of
size 440 which provides a frequency resolution of roughly 100 Hz. A brief glance at
the spectrogram (Figure 2) of the signal reveals the taps, which are characterized by the
sharp horizontal power peaks covering the spectrum.

Fig. 2: Spectrogram of a
sample tapping pattern

We use the sum of FFT coefficients to identify the be-
ginning of a tap. For minimizing the noise interference,
we only use the samples in the frequency range of 2.5-7.5
kHz. The sumFFT (sum of FFT coefficients for the fre-
quency range) graph and sumPower (sum of Power for the
frequency range) graph are depicted in Appendix Figure
3).

A threshold is used for discovering the start of a tap
event. Initially, the threshold is set as the maximum value
of the sum of FFT coefficients and decremented by 10%
after every failed authentication for each such iteration till
the signal is authenticated successfully(Sec. 2.1) or the threshold reaches the minimum
FFT coefficient sum. Here we assume that the time interval between two consecutive
taps will not be less than 100 ms. Next, we compared the key press as a tap event and
the mean of press and release as a tap event and found out that authentication accuracy
was similar so we proceeded with key press. However, if the tap duration is also made
a part of authentication, the mean of key press and release would be a better indicator
of the tap event.
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Once we obtained the number of taps and time interval between each tap event,
we need to authenticate it against the model proposed by Wobbrock’s TapSongs [16]
for verification. In this Password Reconstruction phase, the attack can occur locally by
tapping on the input sensor (local terminal authentication) or remotely by launching an
application that emulates the tap event (remote authentication).

For an automated attack to be launched locally, we would need a mechanical de-
vice to be programmed such that it taps on the input sensor according to the features
extracted during the Processing phase. Simple “Lego” robots can be used for this pur-
pose (more sophisticated Lego robots against various touchscreen gestures have already
been developed in prior research [15]). To launch our attack remotely, we designed a
Java code using the Robot class, which simulates key press events at intervals specified
by the extracted features.

4.2 Human Attack
Processing and Password Reconstruction in the human attack are rather straight-forward.
This attack requires no external processing as the attacker trains on the eavesdropped
tap signal by repeatedly listening to it so as to discern the number of taps and the time
interval between each taps. However, Password Reconstruction has to be executed soon
after training is performed, otherwise the attacker may forget the tapping pattern and
may have to train again.

5 Attack Experiments and Evaluation
5.1 Automated Attack

For evaluating our automated attack, we have to create a user base, who would au-
thenticate against the tapping based authentication mechanism. They would later be
eavesdropped and have their authentication compromised by the attacker. For this pur-
pose, we conducted a user study with ten individuals (ages 24-35, 7 males; 3 females)
studying Computer Science at our University, recruited by word of mouth. The study
was approved by our University’s IRB. The participation in the study was consent-based
and strictly voluntary. The participants were told to tap out a rhythm of their choice on
a MacBook Air keyboard for number of taps not exceeding 20, for creating a timing
model of the expected input. Then, they were asked to authenticate against the system
for a few times so as to get comfortable with the design.

The experiment was performed under two scenarios. In the first scenario (Figure
1a), the participants were asked to make an authentication attempt by tapping out their
rhythm on a single key of the keyboard, while a smartphone (Nokia Lumia 800) placed
beside the keyboard, was setup for recording. The whole setup was placed at an office
desk in a quiet lab environment. The recordings were taken at different distances not ex-
ceeding 1 meter. For the second setup (Figure 1b), the smartphone was handheld by an
attacker, who was standing behind the subject while they were tapping. The recording
was done using a free voice recorder application.

Out of the ten participants, six chose a rhythm of less than 10 taps (short taps) and
four chose a rhythm of tap length between 10–20 (long taps). We observed that the
participants preferred to tap short tunes but it also made easier to discern the tapping

7



Attack Scenarios Length of the
Tap Pattern Accuracy

S1 Short 96.3%
S2 Short 92.8%
S1 Long 87.5%
S2 Long 87.5%

Table 1: Performance of the automated
attack

Length
of the
Tap

Pattern

Correct Tap
Count Accuracy

Avg. number
of attempts
for the first
success (out

of 5 attempts)
Short 94.4% 66.0% 1.9
Long 95.3% 21.3% 3.4

Table 2: Performance of the human attack

pattern. As the tap length increases, the degree of error in the recording may increase.
This may happen due to noise interference or due to soft taps by the user, which is
natural while attempting to tap a long rhythm. On the other hand, for a longer tapping
pattern, the user is more prone to missing out a few taps at random. Once the record-
ings were done, we processed the eavesdropped samples according to our algorithm
described in Section 4.1. Once we got the time duration between each tap event and the
number of tap events in the eavesdropped sample, we fed this information to a simple
java application that used the java.awt.Robot class to recreate the tapping pattern by
simulating keypress events at the given time intervals.

The results corresponding to our different testing set-ups are provided in Table 1.
The detection rate for the tapping pattern is quite high, ranging from 87.5 – 96.3%,
highlighting the vulnerability of tap-based rhythmic passwords. As conjectured before,
the attack accuracy decreases with increase in the number of taps. Another observation
is that shoulder surfing is slightly less accurate than placing the recording bug on the
same surface as the input device.

5.2 Human Attack
In our human attack user study, we recruited 10 users who served the role of the at-
tackers. Participants were mostly Computer Science students (ages 25-35, 7 males; 3
females) recruited by word of mouth. Four users could play a musical instrument. The
study was approved by our University’s IRB. The participation in the study was consent-
based and strictly voluntary.

As in the automated attack, we considered two types of tap rhythms – short tap
rhythm and long tap rhythm. We used 5 short taps and 3 long taps. They were collected
during the automated attack experiment by placing an audio listening device approxi-
mately 2 feet from the tapping device.

In the study, the participants’ goal was to replicate the victim’s tap-based password
based on audio clips. Prior to the study, we told the participants that the purpose of
the study was to collect information on how well they can replicate the tapping rhythm
based on audio recordings. We purposefully did not disclose the true (security) purpose
of the study so as not to bias the participants’ behavior in the experiment. We explicitly
informed the participants that the tapping rhythm has to matched in its entirety for a
successful replication. In real world scenario, most authentication terminals or online
services block the user after 3-5 unsuccessful attempts. To simulate this, the participants
in the study were instructed to replicate each of the rhythm 5 times, and as in a real
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world scenario, the participants would be notified of a successful or a failed attempt
immediately. If they failed, they could practice more and retry in the next trials.

The human attack experiment comprised of two phases: (1) training, and (2) testing.
In the training phase, each participant was asked to listen to each of the clips through
a headset carefully up to a maximum of 15 times, and practice as per their comfort
level by tapping either on a table nearby or keyboard without using our authentication
system. In the testing phase, they were asked to replicate the tapping rhythm of the
original audio clip (challenge) using our authentication system. After each unsuccessful
attempt, they were instructed to listen to the audio clip carefully and practice again.

We collected 80 samples over 10 sessions with our participants. Each session in-
volved a participant performing the attack (testing) against 5 short and 3 long tapping
patterns. The experimental results are depicted in Table 2. We can see that about 94%
of the short tap entries had the correct tap count, and the average login success rate was
66%. In contrast, even if 95% of the long tap entries had the correct tap count, the aver-
age login success rate for long tap was only 21.3%. The average number of attempts to
achieve the first successful login was nearly 2 for short taps and 4 for long taps.

The results show that the login success rate was greater for short taps than long taps.
This is intuitive as greater the length of taps, the harder it is to replicate the pattern. Al-
though the success rate of our human attack is lower compared to that of our automated
attack, it is still quite high, especially for short taps, and much higher compared to the
success rate of the human attack reported in [16]. The ability to record and train on
previously eavesdropped samples seems to have significantly improved the human ca-
pability to replicate the tapping pattern in our attack, rather than attempting to replicate
the pattern in real-time as done in [16].

6 Defense: Masking the Audio Channel
6.1 Background
Various defense mechanisms have been proposed to safeguard against acoustic eaves-
dropping. Asonov et al. [2] proposed the use of silent keyboards to hide the acoustic
emanations. Acoustic shielding, another defense mechanism, involves sound proofing
the system by reducing the signal to noise ratio. Another approach is to deliberately
insert noise within the audio signal that makes identifying the desired features, a hard
task. This general idea represents an active defense mechanism and is the focus of this
work in order to defeat the acoustic eavesdropping attacks explicitly against tap-based
passwords. Zhuang et al. [19] briefly suggested a similar approach, but no practical
mechanism was discussed.

There are many challenges that need to be met in realizing the above active defense
based on masking sounds. The main criterion for this defense to be effective is that the
noise spectrum should be similar to the signal spectrum with sufficient energy so as to
completely blanket the acoustic signal being eavesdropped.

Another important criterion is the timing of the masking signal when it is played in
parallel with the original acoustic signal. If the masking signal is continuous in nature
having uniform features then the timing is of no concern. However, if the masking
signal consists of discrete sounds, we need to ensure that these sounds occur at the
same time as the actual sounds events in the signal we are trying to mask so that they
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overlap thereby hiding the features of the original sound spectrum. The last criterion
is the usability of the masking signal. It should not be distracting to the user otherwise
users may be hesitant to use it in real-life.

6.2 Our Defense Model
We now present an active sound masking defense mechanism to defeat the acoustic
eavesdropping attacks described in previous sections of this paper. There is no extra
hardware cost associated with this approach as it only requires an audio transmitter,
which most devices are already equipped with.

The choice of an appropriate masking signal plays a vital role in the efficiency of
the defense system. We experimented with four classes of sounds that could be used as
the masking signal. The first class of masking sounds is the white noise. White noise
has often been used as a soothing sound, hence it would pose no distraction to the user.
The second class of masking sound is music, which again is user-friendly and pleasing.

The third class of masking sound would be random samples of the tap sound itself
(fake taps). This sound is the natural candidate for being as similar to the actual audio
signal we are trying to hide. In the context of human voices, we can use human chatter
from a busy coffee shop or other public places to hide the actual conversation. In case
of keystrokes, we can use random keystrokes different from the actual keystrokes for
masking. For our purpose, we use the tapping sounds from the same input interface used
for tapping. If the tapping device is a keyboard, we make use of random keystrokes, and
if it is a button, we use button clicks (fake clicks) as the masking signal. The last class of
masking sound is created by summing up all the above three classes into one signal. This
layered approach combines the different masking capabilities from the three classes of
masking signals discussed above.

In the attacks we have presented in this paper, a valid tap event is detected by having
energy above a certain threshold. If we want our masking signal to be similar to the taps,
we need the energy of the masking signal to be almost equal or higher than that of the
taps.

6.3 Defense Experiments
For our experiment to evaluate our defense mechanism, we chose the tapping sound
from a keyboard as the input device emanations, and audio recordings of the above-
mentioned four classes of noises as the sound masking signals. We selected few samples
of white noise and music from the Internet. To create the fake taps, we asked one of the
users from our study group to randomly generate keystrokes while we recorded the
produced sound that would be used as fake taps.

Next, we performed the authentication step (password entry) repeatedly with each
type of masking signal playing in the background, while the attacker is eavesdropping.
The control condition for this experiment was a similar setting with no masking sounds,
simulating the original tap-based password entry without our defense mechanism.
Evaluation against Automated Attacks: We evaluated our defense model against the
automated attacks that use signal processing algorithms to detect tap events by extract-
ing FFT features. We chose one of the users from our user study, who tapped his tap
pattern in presence of each of the above described masking signals playing in the back-
ground. The number of taps present in the users’ tapping pattern was 5.
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Our experiments indicate that while the white noise affects the spectrum as a whole
(Appendix Figure 4(a)), it does not offer much resistance against the automated attacks,
as depicted by the FFT plot of the eavesdropped signal shown in Appendix Figure 5(a).
Similarly, music is also insufficient against the automated attacks because it is unable
to shield the tap sounds completely, as shown in the spectrogram in Figure 4(b). The
FFT plot in Figure 5(b) also indicates that music can be easily excluded from taps based
on its frequency distribution. Since, we summed up the frequencies between 2.5kHz-
7.5kHz, any musical notes that have frequencies outside this range are filtered out.

We next tested the feasibility of sound masking with fake taps, and with a combina-
tion of white noise, music and fake taps. While both fake taps and the combined signal
alone were able to mask the signal, the combined signal emerged as the preferred choice
as it covered a larger area of the spectrum (Figure 4(d)), and we believe that it would be
less distracting to the users than the fake tap sounds alone due to music and white noise
accompanying the signal. Figure 5(c) and Figure 5(d) show the FFT vs Time plot for the
user’s taps when the masking signal is fake taps and the combined signal, respectively.
As observed from the figures, it is hard to chose a threshold value that could accurately
detect the tap events without including any fake taps.

Evaluation against Human Attacks: For the evaluation of our defense against human
attacks, we chose the same four different types of masking sounds as in our automated
attack experiment: (1) white noise, (2) music, (3) fake taps, and (4) white noise, music
and fake taps combined. We then conducted our human attack experiment against all
the above “noisy” rhythms with one of the researcher of our team playing the role of a
well-trained adversary (thus representing a potentially powerful attacker). We tested all
the samples that we used in our original human attack experiment (discussed in previous
section) but in the presence of each of the four class of noises. As in our original human
attack experiment, adversary went through training and testing phases against each of
the 8 tapping samples (5 short and 3 long tapping patterns).

Table 3: Performance of the human
attack with and without our defense

Masking
signal

Correct tap
count Accuracy

Avg. number
of attempts

for the
first success

(out of 5
attempts)

Short Taps
none 96.0% 84.0% 1.4

white noise 100.0% 80.0% 1.0
music 96.0% 80.0% 1.4

fake taps 52.0% 16.0% 3.4

combined 4.0% 0.0% Failed in
all attempts

Long Taps
none 100.0% 26.7% 1.3

white noise 100.0% 26.7% 3.0
music 93.3% 33.4% 3.7

fake taps 46.7% 0.0% Failed in
all attempts

combined 6.7% 0.0% Failed in
all attempts

Table 3 summarizes the attacker’s perfor-
mance replicating the tap rhythms with and with-
out noises. It shows that the tap rhythm with
white noise or music as the masking signal did
not affect the performance by much across both
long and short rhythms. However, the addition
of fake taps and combined signals greatly re-
duced the attacker’s performance. With addition
of fake taps, the attacker was somehow able to es-
timate the tap length (around 50%) in both short
and long rhythms but was not able to replicate
them successfully. Addition of fake taps on short
rhythm greatly reduced the attacker’s accuracy of
replicating the rhythm down to 16%, while addi-
tion of combined signals completely reduced the
accuracy to 0%. In case of long tap rhythm, addi-
tion of both fake taps and combined signal com-
pletely also reduced the accuracy to 0%.
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These results show that the masking sounds consisting of fake taps and combined
noises may effectively defeat a human attacker’s capability to replicate a tapping pat-
tern. Such sounds, especially the combined signal, earlier also proved effective against
the automated attacks, and could therefore be a viable means to cloak the acoustic side
channels underlying rhythmic passwords.

7 Discussion and Future Work

Other Rhythmic Passwords Schemes and Input Mechanisms: Several other authen-
tication schemes have been proposed, which are based on TapSongs [16]. Marqueus et
al. [13] built upon TapSongs to develop a scheme that provides inconspicuous authen-
tication to smartphone users. Tap-based rhythmic passwords also provide an alternative
to traditional authentication methods for the visually impaired mobile device users.
Azenkot et al. [3] presented Passchords, a scheme that uses multiple finger taps as an
authentication mechanism. They concluded that using multiple fingers in place of a
single finger tap or a single button increases the entropy of the system.

Both the above schemes may also be vulnerable to acoustic eavesdropping attacks.
Eavesdropping the taps on smartphone touch screen might be harder due to the low
intensity of tapping sounds. The impact of observing taps against visually-impaired
users may be higher given these users may not be able to detect the presence of should-
surfing around them. Further work is necessary to evaluate these contexts.

In our experiments, we used a keyboard but the attack can be extended to a but-
ton using the same attack principle. Halevi and Saxena [10] have already showed that
button press is also susceptible to similar acoustic eavesdropping attack though the am-
plitude of the signal would be considerably lower and some attack parameters need to
be adjusted accordingly.

Comparing with Traditional Passwords: In light of the attacks presented in our pa-
per, it appears that rhythmic passwords are more vulnerable to acoustic emanations
compared to traditional passwords. This is natural given that eavesdropping over tradi-
tional passwords requires the attacker to infer “what keys are being pressed” (a harder
task), whereas eavesdropping over rhythmic passwords only requires the attacker to
learn “when the taps are being made” (an easier task). The accuracies of detecting tra-
ditional passwords based on acoustic emanations reported in previous work [9] seem
lower than the accuracies of our automated attacks against rhythmic passwords. Tra-
ditional passwords do not seem vulnerable to human attacks as it may be impossible
for human users to distinguish between the sounds of different keys, while rhythmic
passwords are prone to such attacks too as our work demonstrated.

Usability of Our Defense: Adding the masking signal, which is comparable to the
acoustic leakage in its frequency band, helps hiding the acoustic leakage in case of
rhythmic passwords. We chose our masking signals based on the intuition that the us-
ability of rhythmic password entry would not be degraded by much. However, it might
not always be the most practical solution and may confuse the user possibly leading to
increase in failure rate of authentication. A future user study to determine the level of
distraction and confidence of the user with the masking signal may be able to determine
a good choice of the masking signal.
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8 Conclusion
In this paper, we evaluated the security of tap-based rhythmic authentication schemes
against acoustic side channel attacks. We demonstrated that these schemes are vulnera-
ble to such attacks and can be effectively compromised especially using automated off-
the-shelf techniques. The automated attack requires minimal computational power and
can be performed inconspicuously. The length of the rhythmic passwords also consti-
tutes a security vulnerability as shorter taps are easier to perform and memorize, but are
more susceptible to attacks, even those relying solely on human processing. Since rhyth-
mic passwords provide a potentially attractive alternative to traditional authentication
mechanisms, we studied how to enhance the security of these passwords against acous-
tic side channel attacks. Our proposed defense attempts to cloak the acoustic channel
by deliberately inducing noise, and seems effective against both automated and human
attacks, especially when a combination of multiple noises are used including previously
recorded tap sounds.
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Appendix: Additional Figures

 

(a) Sum (FFT coefficients) vs Time
 

(b) Sum (Power) vs Time

Fig. 3: Signal Characeristics based on FFT

(a) white noise (b) music

(c) fake taps (d) combined

Fig. 4: Spectrographs (Time vs. Frequency plots) of tapping in presence of each type of
masking sound
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(a) white noise
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(b) music
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(c) fake taps
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(d) combined

Fig. 5: FFT vs Time plot of tapping in presence of each type of masking sound
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