
Password-Protected Secret Sharing

Ali Bagherzandi
Dept. of Computer Science

University of California, Irvine
zandi@ics.uci.edu

Stanisław Jarecki
Dept. of Computer Science

University of California, Irvine
stasio@ics.uci.edu

Nitesh Saxena
Computer and Information

Sciences
University of Alabama,

Birmingham
saxena@cis.uab.edu

Yanbin Lu
Dept. of Computer Science

University of California, Irvine
yanbinl@ics.uci.edu

ABSTRACT
We revisit the problem of protecting user’s private data against ad-
versarial compromise of user’s device(s) which store this data. We
formalize the solution we propose as Password-Protected Secret-
Sharing (PPSS), which allows a user to secret-share her data among
n trustees in such a way that (1) the user can retrieve the shared se-
cret upon entering a correct password into a reconstruction proto-
col, which succeeds as long as at least t+1 uncorrupted trustees are
accessible, and (2) the shared data remains secret even if the adver-
sary which corrupts t trustees, with the level of protection expected
of password-authentication, i.e. the probability that the adversary
learns anything useful about the secret is at most q/|D| where q
is the number of reconstruction protocol the adversary manages to
trigger and |D| is the size of the password dictionary.

We propose an efficient PPSS protocol in the PKI model, secure
under the DDH assumption, using non-interactive zero-knowledge
proofs with efficient instantiations in the Random Oracle Model.
Our protocol is practical, with fewer than 16 exponentiations per
trustee and 8t+ 17 exponentiations per user, with O(1) bandwidth
between the user and each trustee, and only three message flows,
implying a single round of interaction in the on-line phase. As a
side benefit our PPSS protocol yields a new Threshold Password
Authenticated Key Exchange (T-PAKE) protocol in the PKI model
with significantly lower message, communication, and server com-
putation complexities than existing T-PAKE’s.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic Controls; D.4.6
[Security and Protection]: Authentication

General Terms
Security, Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

Keywords
Secret Sharing, Intrusion Tolerance, Password Authentication

1. INTRODUCTION
A user of computing technology, let’s call her Alice, needs to

store her valuable private data, e.g. texts, images, passwords, or
keys, on her computer or any other electronic device. Alice’s de-
vice, however, can fall prey to viruses or any other type of malware
which could expose her data. Moreover, Alice’s device could get
lost or stolen and thus fall under control of someone whom Alice
does not trust. On the other hand, Alice might want to have access
to her private data on more than one device, and she would like her
data protected from loss due to device failures.

Consider the general problem of protecting Alice’s secret data,
let’s call it s, in the event of the compromise or failure of the de-
vice(s) on which s could be stored. Storing an encryption of s
using a key derived from Alice’s password is vulnerable to an of-
fline password dictionary attack once the device is corrupted, and it
is also not robust to device failure. Without specialized hardware,
Alice could instead outsource s to some trusted remote server, and
authenticate to this server whenever she needs to retrieve s. Note
that Alice cannot store any authentication token on her device, or
otherwise the adversary who corrupts the device can still recover
s by using this token to authenticate to the server. If we want a
software-only solution, Alice could only use a human-memorable
password for authentication to the server. Still, she would be plac-
ing all her trust in a single server.
Password-Protected Secret Sharing. To eliminate the bottleneck
of a single trusted server we could secret-share s among a set of
n trustees so that only a compromise of more than some thresh-
old of trustees would disable the system or leak s. However, se-
cret sharing by itself is not enough because Alice still needs some
way to authenticate to these trustees to trigger the secret reconstruc-
tion protocol, and since she can only use human-memorable pass-
words, a black-box combination of password authentication and
secret-sharing leaves us with two bad choices: Alice can use n in-
dependently chosen passwords, one for each trustee, which is im-
practical, or she can use the same password with all trustees, but
this would eliminate all the benefits of secret-sharing, because a
single corrupt trustee could recover this password via an off-line
dictionary attack and use it to recover s by authenticating to the
other trustees. This motivates the question of how to distribute Al-
ice’s data among n trustees so that: (1) Alice can retrieve her data
by triggering a reconstruction protocol using only her password,

and the reconstruction is guaranteed as long as at least t + 1 hon-
est trustees are available; and (2) Alice’s data remains secret even
when t trustees are corrupted, and the level of this protection is as
expected of password-authenticated protocol, i.e. if Alice chooses
her password uniformly in set D then the probability that adver-
sary learns anything about Alice’s data after triggering q instances
of the reconstruction protocol is at most q/|D| plus some negligi-
ble quantity. We call a protocol that satisfies these two properties a
(t, n) Password-Protected Secret Sharing (PPSS).
Two Implementation Settings. There are two basic implementa-
tion settings for a PPSS scheme. In the roaming user setting im-
plicitly assumed above, Alice’s device does not have any private
storage, and the n trustees are implemented by n separate physical
entities. This setting is highly robust, because the adversary can
destroy Alice’s data only by corrupting n−t trustees, and it is easy
to extend to multiple user devices, since a user device needs no pri-
vate information. As for security, the loss of Alice’s device(s) gives
no information to the adversary, and Alice’s data is secure even if
the adversary corrupts t out of n trustees. However, Alice’s data
is vulnerable to on-line dictionary attacks against the trustees, and
the adversary corrupting t+1 trustees recovers both Alice’s data
and her password, possibly after an off-line dictionary attack.

In a private storage setting, Alice can trade robustness for in-
creased security by initializing an (n, 2n−t) PPSS scheme, dis-
tributing n shares among the n trustees, and storing the remaining
n−t shares locally on her device. During reconstruction this de-
vice will use its shares to play the part of n−t virtual trustees. The
resulting system is less robust because Alice’s data is lost after cor-
ruption of either n−t trustees or of Alice’s device. However, the
system is more secure because an adversary learns Alice’s data only
after corrupting both t+1 trustees and Alice’s device. Moreover, a
network attacker can no longer stage an on-line dictionary attack,
because the n−t virtual trustees implemented by Alice’s device do
not need to respond to network requests.
Applications. A PPSS scheme can be implemented by a dedicated
service provider as service to individual users, or it can be admin-
istered by users themselves, exploiting their real-world trust rela-
tionships, e.g. from on-line social networks such as Facebook. For
example, using the PPSS scheme in a private storage setting Alice
can improve the security of her data compared compared to local
storage, at the price of risking data loss if n−t out of n of her
trustees become unavailable. The role of the trustees can also be
played by different devices belonging to Alice herself. For exam-
ple, Alice can use PPSS to off-load sensitive data from her mobile
phone so that the adversary can gain control of this data only by
stealing the phone together with t out of n of her additional devices,
e.g. her home computer, her work computer, or even her Bluetooth-
connected watch. Various types of trustees could be mixed, so the
pool of Alice’s own n devices can extend to computers of Alice’s
Facebook friends and to dedicated service providers. Moreover,
each logical trustee can be assigned a different weight by playing
the role of k>1 virtual trustees. In the PPSS protocol we propose
this would increase trustee’s computational cost only by replacing
one exponentiation with one multi-exponentiation on k bases.

A PPSS scheme can be used to protect any sensitive data, in-
cluding user’s cryptographic keys, e.g. for decryption, signing, au-
thentication, etc. One variant of such application is a password
management, where Alice’s data protected by a PPSS scheme are
her passwords to various on-line services. Apart of convenience
of having to remember only one “master password”, used by the
PPSS to recover all the other passwords, such scheme can improve
security of password authentication because it allows Alice to use
independent random keys instead of all her passwords except the

Scheme MSJ06 [19] RG06 [7] Ours
Client Computation O(1) O(1) O(n)

Server Computation O(n) O(n2) O(1)

Total Bandwidth O(n2) O(n3) O(n)
Client/Server Messages 7 ≥12 3

Figure 1: Previous TPAKE’s versus our PPSS/TPAKE.
master password. Currently several entities offer such password
management service, e.g. LastPass [17] and Mozilla Weave Sync
[20], but these are centralized solutions.

Related Work. The idea of password-authenticated recovery of
secret-shared data was to the best of our knowledge proposed by
Ford and Kaliski [11]. As pointed out by a subsequent paper by
Jablon [14], the Ford-Kaliski protocol implicitly assumes a public
key infrastructure (PKI) model, while the improvement given by
[14] removed the need for trusted public keys, but both protocol
handles only the t = n case of secret-sharing, and neither paper
clearly specified the security properties of such scheme nor did they
formally argue the security of the protocols they proposed.

The notion of PPSS is closely related to Threshold Password Au-
thenticated Key Exchange (T-PAKE) defined by MacKenzie et al.
[19], who followed up on the work of [11, 14], in particular by
defining a more general primitive than password-authenticated re-
covery of secret-shared data, namely a password-authenticated key
exchange between a client and n servers. Indeed, any T-PAKE
scheme can be used to implement a PPSS scheme at negligible ex-
tra cost: The client authenticates to the n trustees with a T-PAKE
instance, and the trustees use the keys established by this instance
to encrypt and authenticate their shares of Alice’s secret. As we
show in this paper, in the PKI model the implication works also
in the opposite direction, i.e. a PPSS implies a T-PAKE with little
extra costs: Alice picks a public key encryption key pair and shares
the decryption key using a PPSS scheme. A T-PAKE protocol con-
sists of a PPSS reconstruction followed by each server encrypting
a fresh session key under Alice’s public key. Alice decrypts these
keys using the decryption key recovered in the PPSS instance. For
server-to-client authentication each server signs its encrypted ses-
sion key. In spite of this equivalence between PPSS and T-PAKE
in the PKI model, it is productive to formally introduce PPSS as a
separate notion, firstly because it is a natural functionality, a pro-
tocol that reconstructs a (long) secret if and only if supplied with
a correct (short) password, but also because it is simpler than T-
PAKE, since only the client has any output, and this output can be
dependent across protocol sessions.

Specifically, MacKenzie et al. [19] showed a T-PAKE proto-
col in the PKI model secure under the Decisional Diffie-Hellman
(DDH) assumption in the Random Oracle Model (ROM), while
Di Raimondo and Gennaro [7] showed a T-PAKE without rely-
ing on ROM and trusted public keys, based on the PAKE of Katz-
Ostrovsky-Yung [16]. The drawback of both T-PAKE’s is several
rounds of server-to-server communication, which is feasible if the
servers communicate over a LAN network, as could be the case
in fault-tolerant distribution of an authentication server which mo-
tivated the T-PAKE’s of [19, 7], but the PPSS applications that
motivate our work are user-centric and can involve highly hetero-
geneous trustees, in which case it would be preferable that each
trustee communicates only with the user device. In such user-
centric communication model, the T-PAKE of [19] requires ex-
change of 9 messages between the user and each trustee, withO(n)
bandwidth, and the costs of T-PAKE of [7] are even higher (see Ta-
ble 1 below). For the special case of 2 servers these results were
improved upon by Brainard et al. [3] in the PKI model, and by Katz
et al. [15] in the model without trusted public keys, but even these

2-server T-PAKE’s require, respectively, 7 and 5 messages in the
user-centric communication model, assuming ROM.

MacKenzie and Reiter’s “Capture-Resilient Device” protocols
[18] considered essentially the same goals as a PPSS scheme cast
in the private storage setting, but in a less general setting where
the trust threshold is fixed at t = 1, i.e. where a single trustee, in
addition to the client’s device, is needed to reconstruct user’s data.
Their schemes considered not only password-protected storage of
user’s data, but also password-protected computation of RSA sig-
natures and ElGamal decryption. Note that any T-PAKE protocol,
including one implied by a PPSS scheme, can be used to imple-
ment such password-protected computation given a non-interactive
threshold protocol for the respective computation. The servers sim-
ply encrypt the messages of the threshold function-computation
protocol under the session keys generated by a T-PAKE instance.
Thus the 2-party password-protected signature/decryption compu-
tation of [18] can be generalized to any (t, n) threshold using our
PPSS and non-interactive threshold RSA signature of [24] and non-
interactive threshold ElGamal decryption of [6]. (We note, how-
ever, that the protocols of [18] for the t = 1 case use only 2 mes-
sages, while those built using our PPSS scheme would take 3 mes-
sages.) Xu and Sandhu [26] consider the same notion of password-
authenticated threshold signature computation called TPAKE-TSig,
except that they consider it in the roaming user setting. Since their
construction is exactly the composition of a T-PAKE and a thresh-
old signature sketched above, their TPAKE-Sig protocol can only
be as fast as a T-PAKE.

PPSS is remotely related to the “key-insulated” and “intrusion-
resilient” cryptosystems introduced in [9, 8], which also concern
protecting user’s data against device corruption via secret-sharing
user’s private key among semi-trusted entities. However, they con-
sider only embedded entities like smartcards or co-processors, to
whom the user does not need to authenticate remotely.

Our Contributions. We present a practical PPSS scheme in the
PKI model, where the client trusts some public key(s), provably
secure under the DDH assumption, assuming non-interactive zero-
knowledge proofs which can be efficiently instantiated in ROM.
Our scheme requires fewer than 16 exponentiations per trustee and
8t + 17 exponentiations per user, with O(1) bandwidth between
the user and each trustee, and only three message flows, implying
a single round of interaction if trustees’ first messages are precom-
puted. We also show that a PPSS implies a T-PAKE with very little
computation and communication overhead, and no additional com-
munication rounds. Thus our scheme implies a T-PAKE with fewer
communication rounds, less bandwidth, and less server computa-
tion than existing T-PAKE’s of [19, 7]. The exact cost compari-
son in the user-mediated communication model is shown in Table
1. For the special case of n = 2, our scheme has lower message
complexity and server computation costs than even the 2-party T-
PAKE’s of Brainard et al. [3] and Katz et al. [15]. However, in the
private storage setting and threshold t set at 1, our scheme is beaten
by those of [18].

2. PPSS DEFINITION
A Password-Protected Secret Sharing (PPSS) scheme is a proto-

col involving n + 1 parties, a user U, and n servers P1, ...,Pn.
A PPSS scheme for secret space S and dictionary D is a tuple
(Init,User, Server), where Init(p, s) is an initialization algorithm
which on inputs a secret s ∈ S and password p ∈ D generates
st = (st0, st1,, stn) where st0 are public parameters and sti
is the private state of server Pi; User(p̃, st0) is an interactive al-
gorithm followed by U on its password p̃ (presumably equal to p)

and parameters st0; and Server(sti) is an interactive algorithm fol-
lowed by Pi on input sti. The Server algorithm has no local output,
while the User algorithm has a local output which is either some
bitstring s′ or a special rejection symbol ⊥. We require a PPSS
protocol to be complete in the sense that if PPSS(p, st) is a ran-
dom variable defined as the local output of algorithm User(p, st0)
after an interaction with oracles Server(st1), ..., Server(stn) then
PPSS(p, Init(p, s)) = s for any (s, p) ∈ S × D. To model con-
current execution of several PPSS protocol instances we denote by
User�(p, st0) an oracle which allows the caller to interact with any
number of User(p, st0) instances. Importantly, the caller sees only
protocol messages output by each User instance it interacts with,
and not the local output of any of these instances, although this view
is crucially amended in the strong security notion below. Similarly,
for any set B we denote by Server�(stB) an oracle which allows
the caller to interact with any number of Server(sti) instances for
any i in B , {1, ..., n} \ B. We say that probabilistic algorithm A
interacts with at most qU user sessions if in any of its executions
A initializes at most qU instances of User(p, st0) algorithm when
interacting with oracle User�(p, st0), and we say that A interacts
with at most qS server sessions if in any execution of A we have∑
i∈B qi ≤ qS where qi is the number of Server(sti) instances A

initializes when interacting with oracle Server�(stB).
We define security of a PPSS scheme in terms of advantage in

distinguishing between PPSS instances initialized with two differ-
ent secrets, where the adversary sees the public parameters st0, the
private states stB , {sti}i∈B of corrupted servers {Pi}i∈B, and has
concurrent oracle access to instances of the user and server algo-
rithms executing on inputs defined by the initialization procedure.
Note that this defines a PPSS scheme in the PKI model, because
the user algorithm is assumed to execute only on the st0 parame-
ters generated by Init(p, s), and this st0 could be certified under a
trusted public key instead of being stored locally. We call an (t, n)-
threshold PPSS scheme secure if this advantage is bounded by 1

|D| ,
the probability of guessing the password, times b qS

t−t′+1
c where

t′ ≤ t is the number of servers an adversary corrupts, plus at most
a negligible amount. The last factor corresponds to the probability
of success of an on-line dictionary attack in a threshold setting: An
adversary who learns the shares of t′ ≤ t servers can test any pass-
word p̃ in D by executing User(p̃, st0) and interacting with any
subset of t− t′ + 1 uncorrupted servers. To the best of our knowl-
edge all previous works on T-PAKE’s bound attackers’ success by
qS
|D| , which is higher than the above bound, except if the adversary
corrupts the maximum threshold of servers, t′ = t. In particular, if
each server locally bounds the number of sessions it performs with
the same user to k, such definition bounds the number of passwords
which a network attacker can test to n∗k passwords, instead of the
optimal number of bn∗k

t+1
c passwords.

Formally, we call a PPSS scheme on dictionary D and secret
space S is (n, t, T, qU , qS , ε)-secure if for any s0, s1 ∈ S, any set
B s.t. t′ , |B| satisfies t′ ≤ t, and any algorithm A with running
time T , we have

|p0 − p1| ≤
⌊

qS
t− t′ + 1

⌋
∗ 1

|D| + ε

where pb is the probability thatA(s0, s1, st0, stB) outputs 1 on ac-
cess to qU sessions with oracle User�(p, st0) and qS sessions with
oracle Server�(stB), for st output by Init(p, sb) on p chosen at ran-
dom in D, with probability taken over all random processes.

To make a PPSS scheme easier to use as a building block, e.g. in
a construction of a T-PAKE protocol in Section 4, the above secu-
rity definition needs to be strengthened by allowing the adversary

to learn whether honest user sessions output some reconstructed
secret or reject. Intuitively, whenever any application employs a
PPSS scheme to reconstruct a secret, it uses this reconstructed se-
cret in some higher-level protocol, e.g. in the case of a T-PAKE to
authenticate a key exchange, thus allowing a network adversary to
learn whether the PPSS subprotocol accepted or rejected, as in the
latter case the protocol built on top of PPSS will visibly diverge
from its usual course. Formally, a PPSS scheme on dictionary D
and secret space S is (n, t, T, qU , qS , ε)-strongly secure if it satis-
fies the (n, t, T, qU , qS , ε)-security definition above with the user
oracle User� modified so that for every User(p, st0) instance the
adversary learns a bit which indicates whether this instance accepts,
i.e. outputs some s′ 6=⊥, or rejects, i.e. outputs ⊥.

A practical PPSS scheme should satisfy two further properties,
namely robustness and soundness. Robustness requires that a user
communicating with n servers recovers the shared secret as long as
at least t + 1 of these servers follow the protocol. Soundness re-
quires that even n corrupt servers cannot cause a user using the pre-
scribed public parameters st0 to recover a secret which is different
from the one which was initially shared. We differentiate between
weak soundness, where this is required only for a user entering the
correct password, and strong soundness, where this is required for
any password the user enters, including incorrect ones. Formally a
PPSS scheme on dictionaryD and secret space S is (T, ε)-robust if
for any (s, p) ∈ S×D, any B s.t. n−|B| ≥ t+1, and any algorithm
A with running time T , the probability that s′ 6= s where st is out-
put by Init(p, s) and s′ is output by User(p, st0) interacting with
A(s, p, stB) and Server�(stB), is bounded by ε. To formally define
soundness we say that a PPSS scheme on dictionary D and secret
space S is (T, ε)-sound if for any (s, p, p̃) ∈ S ×D ×D and any
algorithm A with running time T , the probability that s′ 6∈ {s,⊥}
where st is output by Init(p, s) and s′ is output by User(p̃, st0)
interacting with A(s, p, p̃, st), is bounded by ε. We define weak
soundness in the same way but restricting p̃ to p̃ = p.

3. PPSS PROTOCOL SECURE UNDER DDH
We describe the protocol for password protected secret sharing.

We start by introducing the basic idea of our scheme, which can
use any threshold homomorphic encryption. We then explain how
to reduce the round complexity of this basic protocol using special
properties of ElGamal. The resulting protocol involves only three
message flows between the user and each server (and one round
of interaction in an on-line phase), each message involving con-
stant number of group elements. For exposition’s sake, we first
show this protocol secure only against honest-but-curious players,
assuming secure channels (PPSS1 in Figure 2), and then proceed
to explain how we can address active threats and achieve security
against malicious adversaries (PPSS2 in Figure 3).
Basic PPSS Protocol. Our protocol can use any homomorphic
encryption with a threshold decryption protocol, but for the sake
of subsequent modifications we describe it instantiated with El-
Gamal. Let g be a generator of group G of prime order q. Take
dictionary D = Zq and message space S = G. Note that any
other dictionary can be hashed into Zq using a collision-resistant
hash, and as we discuss later message space G can be easily ex-
tended to a standard message space of fixed-length bitstrings. For
(p, s) ∈ Zq × G, procedure Init(p, s) picks an ElGamal key-pair
(x, y = gx), secret-shares x among servers using a (t, n) secret
sharing [23] (i.e. stj = xj = f(j) where f is a random t-degree
polynomial over Zq s.t. f(0) = x), and outputs public parameter
st0 which consists of public key y, a “shifted” ElGamal encryption
of password p, (cp, dp) = (grp , yrpgp), and a textbook ElGamal
encryption of secret s, (cs, ds) = (grs , yrss), for random rp, rs

in Zq . The PPSS protocol between the user U on input p̃ and the
servers {Pj}nj=1 on inputs stj proceeds as follows:

1. U sends an encryption of p̃, (cp̃, dp̃) = (grp̃ , yrp̃gp̃), to each
Serverj . Note that for a legitimate user, p̃ = p.

2. Pj’s randomize (cδ, dδ) = (cp/cp̃, , dp/dp̃) by each Pj re-
turning (cβj , dβj) = ((cδ)

tj , (dδ)
tj) for tj

r← Zq .

3. U sends (cβ , dβ) = (
∏n
i=1 cβi ,

∏n
1=1 dβi) to each Pj . Note

that (cβ , dβ) is an ElGamal encryption of gβ where β =∑n
i=1 βi = δp ·

∑n
i=1 ti and δp = p− p̃.

4. Pj’s threshold-decrypt (cα, dα) = (cs · cβ , ds · dβ) [6], i.e.
each Pj returns zj = (cα)xj and U interpolates any t+ 1 of
these zj’s to z = (cα)x and outputs α = dα · (z)−1.

Note that α = s · g
∑

i βi = s · g(p−p̃)
∑

i ti . Hence, α = s if
p̃ = p; but α is random in G if p̃ 6= p and

∑
i ti is random in Zq .

This basic PPSS protocol is secure in the honest-but-curious set-
ting under the DDH assumption on G. Moreover we have to as-
sume secure channels between U and each Pj because α = s
can be decrypted from the values (cβ , dβ) and zj exchanged in
the last two messages of this protocol. However, in the presence
of malicious parties, and without secure channels, a whole range
of issues needs to be addressed: For example, since the protocol
relies on the homomorphic property of ElGamal encryption, a ma-
licious user can recover s by setting (cp̃, dp̃) as a randomization of
(cp, dp), thus ensuring that p̃ = p without the knowledge of p. In
another example, a single malicious server can cancel out all other
servers’ contributions (cβj , dβj) to (cβ , dβ) so that the sum

∑
i ti

hits some adversarially chosen value t. (The malicious server sets
its (cβj , dβj) as an encryption of gt divided by the product of all
other (cβj , dβj)’s.) This way the “ciphertext randomization” step
(2) above fails its purpose of providing a random mask for s in the
case p̃ 6= p, and the value α = s · gt(p̃−p) which the user outputs
allows the adversary to recover s in an off-line dictionary attack.

On-Line Non-Interactive PPSS Protocol. Before addressing the
active threats, we observe that relying on specific properties of El-
Gamal Encryption, we can shave off one communication round in
the above protocol, by combining the distributed ciphertext ran-
domization step (i .e. step 2) and the threshold decryption step (i .e.
step 4), given some precomputation from the Servers. The result-
ing protocol (Figure 2 below) involves only three communication
flows, with the on-line phase, i.e. between User contributing its
password p̃ and recovering the secret s, taking only two communi-
cation flows (hence the term non-interactive on-line).

Note that values z and dβ which the user needs to decrypt s
in the basic PPSS protocol above are formed as z = (cα)x =

(cs · cβ)x = (grs+δr
∑

i ti)x = yrsyδr
∑

i ti , where δr , rp − rp̃,
and dβ =

∏
i dβi = yδr

∑
i tigδp

∑
i ti , where δp , p − p̃. The

decryption works because if δp = 0 then dβ = yδr
∑

i ti and s =
ds ·dβ ·(z)−1. At first it would seem that the randomization process
which creates (cβ , dβ) in steps (2-3) must precede the threshold-
decryption step (4), where z is distributively computed as (cα)x =
(cs ·cβ)x. To see how to combine these two steps, first observe that
if the protocol is executed not by all n servers but by a subset V of
t + 1 servers, in particular if (cβ , dβ) = (

∏
i∈V cβi ,

∏
i∈V dβi),

and if each Pj in V computes

zj = dβj · (cs · cβ)−λjxj (1)

where λj is a coefficient s.t. x =
∑
j∈V λjxj , then U can still re-

cover s as s = ds ·
∏
j∈V zj = ds ·dβ ·(cs ·cβ)−x. Note that Pj can

Init(p, s) (on public parameters g, q, n, t)

x
r← Zq , y ← gx,{xi}ni=1

(n,t)←− SS(x), h r← G, (rp, rs)
r← (Zq)2, (cp, dp)← (grp , yrphp), (cs, ds)← (grs , yrss)

st0 ← (g, y, h, (cp, dp), (cs, ds)), {sti ← xi}ni=1

User(st0, p̃)
 (Server1(st0, st1), · · · ,Servern(st0, stn))

S1 (Serverj) : Pick tj
r← Zq . Compute (aj , bj)← (gtj , (cp)

tj). Send (aj , bj) to User.

U1 (User) : Pick a set V of t+ 1 servers. Pick rp̃
r← Zq . Compute {ej ← (aj)

rp̃}j∈V and (cp̃, dp̃)← (grp̃ , yrp̃hp̃).
Compute cβ ←

∏
j∈V (bj/ej). For all j∈V , send (V, cβ , (cp̃, dp̃)) to Serverj .

S2 (Serverj) : Compute λj ←
∏

i∈V/{j}(−i)∏
i∈V/{j}(j−i)

mod q, wj ← (cs · cβ)λj ·xj , dβ,j ← (dp/dp̃)
tj , and zj ← dβ,j/wj .

Send zj to User.

U2 (User) : Output s← ds ·
∏
j∈V zj .

Figure 2: PPSS1: Password-Protected Secret-Sharing secure against Honest-but-Curious Adversaries assuming Secure Channels

compute dβj = (dp/dp̃)
tj using dp̃ sent produced by U, but since

cβ = gδr
∑

j∈V tj involves randomization factors {tj}j∈V from
all servers in V , computing cβ seems to require the three commu-
nication rounds of steps (1-3) above. However, it can be done in
two rounds instead if each Pj first sends to U a pair of “randomiza-
tion commitment” values, (aj , bj) = (gtj , (cp)

tj) = (gtj , grptj),
which allows U to return to all Pj’s the cβ value computed as:

cβ =
∏
j∈V

(bj · (aj)−rp̃) (2)

This re-organization leads us to the PPSS1 protocol shown in
Figure 2: Each Pj computes its (gtj , (cp)

tj) randomization com-
mitment in step S1. In step U1 U chooses a set V of t + 1 servers
and sends to each server in V the cβ value computed as in equa-
tion 2 together with an encryption of p̃ (technically only sending
the dp̃ part of this ciphertext is necessary). In step S2 each server
computes its response zj as in equation 1, and U in step U2 de-
crypts s as s = ds ·

∏
j∈V zj . The PPSS1 protocol in Figure 2

diverges in just one aspect from the above sketch: Namely, the base
used in the shifted ElGamal encryption of the password is changed
from g to a different random base h. This change is crucial to pre-
vent an off-line dictionary attack that otherwise would be possible
since in PPSS1, unlike the basic PPSS protocol above, the user
learns a =

∏
ai = g

∑
i ti . This value, together with user’s output

α = s · g(p−p̃)
∑

i ti computed for an arbitrary p̃, allows an off-line
dictionary attack, where each candidate password p′ can be tested
by checking if s′ = α · (a)p̃−p

′
looks like a valid plaintext. On

the other hand, if the shifted ElGamal encryption encrypts hp in-
stead of gp then α = s · h(p−p̃)

∑
i ti is a one-time pad encryption

of s because under the DDH assumption h
∑

i ti is a pseudorandom
value, and hence so is hδp

∑
i ti for any δp , (p − p̃), even given

ai = g
∑

i ti , if
∑
i ti is random in Zq .

Security against Malicious Adversaries. Somewhat surprisingly,
combining the randomization step with threshold decryption step
helps achieve security against malicious adversaries -albeit with
additional modifications discussed below. The reason why this col-
lapse of two computation steps makes security argument (and the
necessary modifications to the protocol) easier, is that now the con-
tribution of each Pj to threshold-decryption of α = s · hδp

∑
i ti ,

technically value wj = (cα)λjxj = (cs · cβ)λjxj computed in step
S2, is output “masked” with Pj’s contribution to the “randomiza-
tion” of the encryption (cp/cp̃, dp/dp̃) of δp = p− p̃, i.e. with the
value dβ,j = (dp/dp̃)

tj = yδrtjhδptj . Intuitively, if δp 6= 0, then
variable hδptj in dβ,j acts like a pseudorandom mask (assuming
DDH) even given values (aj , bj) = (gtj , grptj). This allows us to

argue that servers’ responses zj are indistinguishable from random
group elements values on sessions where δp 6= 0, and thus we are
left only with the information released in sessions where p̃ = p, i.e.
where the adversary guesses the correct password.

It might seem that there is nothing to argue for sessions on which
p̃ = p, but this is not the case: In a standard password-authenticated
protocol (PAKE), the attackers indeed win if they guess the pass-
word on any session. However, we have n servers, and an adver-
sary who corrupts t′ ≤ t of them needs to use the correct pass-
word on t − t′ + 1 sessions with distinct uncorrupted servers in
order to break the scheme. Thus the messages output by the first
t− t′ sessions where adversary uses the correct password must still
look indistinguishable from sessions with wrong passwords. Our
scheme achieves this property for the following reasons. Firstly
we are helped by the properties of Shamir secret-sharing of the de-
cryption key x: If the only sessions on which the servers threshold
decryption shares wj = (cα)λjxj are not masked with pseudoran-
dom values are those where p̃ = p then, by the properties of Shamir
secret sharing, the first t − t′ such shares produced by the uncor-
rupted servers, even given the t′ shares xj of corrupted servers,
are still statistically independent of the decryption key x. Conse-
quently, as long as p̃ = p on sessions with no more than t − t′

uncorrupted servers, adversary’s interaction with the scheme effec-
tively never uses the real decryption key x. Therefore in particular,
until that point we can look at tuple (g, y, gtj , ytj) for each uncor-
rupted Pj as a DDH tuple, in which case even if δp = 0, the value
dβ,j = yδrtjhδptj = yδrtj = y(rp−rp̃)tj still acts like a pseu-
dorandom one-time pad masking the partial decryption wj , even
given (aj , bj) = (gtj , grptj), provided that rp̃ 6= rp (which is
easy to prevent, see below). Here we list the remaining differences
between the resulting protocol, PPSS2 in Figure 3, and PPSS1 in
Figure 2:

(1) A syntactic change is that in Figure 3 we use Serverj to de-
note the j-th session of the Server algorithm, i.e. j ∈ {1, ..., qS},
and we use IDj to denote the ID of the Server who executes this
session, i.e. IDj ∈ {1, ..., n}. This notation makes it clearer how
the protocol executes in the concurrent setting, where each server
runs many sessions of the Server algorithm.

(2) Another minor change is that the user pre-computes the λj
coefficient for each server session in V . This is to keep the size
of user’s message constant. (The user could also compute Qj =
(cs · cβ)λj in step S1 and send it instead of (λj , cβ), then Serverj
would compute wj ← (Qj)

xIDj and both parties would use Qj in
the proof π3j . This change would have no effect on security and it
would shift one exponentiation from the server to the user.)

(3) In PPSS1 the server’s responses zi are sent back in cleartext,

Init(p, s) (on public parameters g, q, n, t)

x
r← Zq , y ← gx, {xi}ni=1

(n,t)←− SS(x), (h, ĝ, ĥ, ŷ, ḡ)
r← (G)4, (rp, rs)

r← (Zq)2,(cp, dp)← (grp , yrphp), (cs, ds)← (grs , yrss)

{ri ← Zq; yi ← gxihri}ni=1, st0 ← (g, h, y, {yi}ni=1, ĝ, ĥ, ŷ, ḡ, (cp, dp), (cs, ds)), {sti ← (xi, ri)}ni=1

User(st0, p̃)
 {Serverj(st0, stIDj)}nj=1 (IDj denotes Server ID of j-th Server session, IDj ∈ {1, ..., n}.)
S1 (Serverj) : Pick tj

r← Zq . Compute (aj , bj , āj)← (gtj , (cp)
tj , (ḡ)tj), and π1j ← P[Lst0

S1]((aj , bj , āj), tj).
Send (IDj , aj , bj , āj , π1j) to User.

U1 (User) : Pick set V of t+ 1 sessions {Serverj}j∈V run by distinct servers s.t. {V[Lst0
S]((aj , bj , āj), π1j) = 1}j∈V .

Pick rp̃
r← Zq .

Compute: {ej ← (aj)
rp̃}j∈V , cβ ←

∏
j∈V (bj/ej), (cp̃, dp̃, ĉp̃, d̂p̃)← (grp̃ , yrp̃hp̃, (ĝ)rp̃ , (ŷ)rp̃(ĥ)p̃)

{λj ←
∏

i∈V/{j}(−IDi)∏
i∈V/{j}(IDj−IDi)

mod q, π2j ← P[Lst0
U]((aj , ej , cp̃, dp̃, ĉp̃, d̂p̃), (rp̃, p̃))}j∈V

Send (λj , cβ , ej , (cp̃, dp̃), (ĉp̃, d̂p̃), π2j) to Serverj .

S2 (Serverj) : Stop if V[Lst0
U]((aj , ej , cp̃, dp̃, ĉp̃, d̂p̃), π2j) = 0. Pick rzj ← Zq .

Compute: wj ← (cs · cβ)
λj ·xIDj , dβ,j ← (dp/dp̃)

tj , zj ← dβ,j/wj , (czj , dzj)← (g
rzj , (cp̃)

rzj · zj)
π3j ← P[Lst0,IDj

S2]((czj , dzj , cp̃, aj , dp/dp̃, (cs · cβ)λj), (rzj , tj , xIDj , rIDj))

Send ((czj , dzj), π3j) to User.

U2 (User) : Stop if ∃j∈V , s.t. V[Lst0,IDj

S2]((czj , dzj , cp̃, aj , dp/dp̃, (cs · cβ)λj), π3j) = 0.
Output s← ds · (

∏
j∈V dzj)/(

∏
j∈V czj)rp̃ .

Figure 3: PPSS2: Password-Protected Secret-Sharing Protocol Secure against Malicious Adversaries

hence the protocol is insecure even with a passive eavesdropper on
the channels between the user and the servers. To counter such
eavesdropping attack, each server encrypts its response zj in step
S2 using ElGamal encryption with user’s value cp̃ = grp̃ sent in
step U1 serving as an ElGamal public key, and the user will use rp̃
to decrypt these ciphertexts in step U2. Even though cp̃ is used as
first part of user’s ElGamal ciphertext (cp̃, dp̃) encrypting p̃, it turns
out that we can re-use it for encrypting information from servers to
the user. As for preventing more sophisticated man-in-the-middle
attacks, both the user’s and the servers’ messages are accompanied
by simulation-sound zero-knowledge proofs of well-formedness,
and one consequence of these proofs is that they make it difficult
for the man-in-the-middle adversary to re-use the messages from
the honest parties.

(4) To enable efficient simulation of the honest parties in the pro-
tocol (and thus show that an attacker learns no useful information
in an interaction with these parties), we could amend each protocol
message with a proof of knowledge of the randomness used to cre-
ate it (e.g. tj in server’s message S1 or rp̃ in user’s message U1), but
this would require concurrently extractable zero-knowledge proofs
of knowledge, and even the most efficient such proofs, e.g. [10],
would make the protocol significantly more expensive. However,
the simulator turns out to need to compute only values which in-
clude adversarial players’ randomness in the exponent, i.e. values
of the form zw wherew is the randomness of the adversarially con-
trolled party, and z is some group element known to the simulator.
Therefore we can avoid the need for proofs of knowledge with a
technique used before e.g. by Gennaro and Shoup [25]: If the sim-
ulator needs a value of the form zw in computing a (simulated) re-
sponse to some message, we extend that message by a value of the
form (g′)w where g′ is an additional random group element in the
parameter string, and include a zero-knowledge (and simulation-
sound) proof that the message is formed using consistent random-
ness w. The simulator will then compute zw by embedding z into
g′. Such proofs, as opposed to concurrent proofs of knowledge, are

inexpensive, and they can be made non-interactive in the Random
Oracle Model. This is why we extend server’s message S1 with
value āj = (ḡ)tj , and user’s message U1 with value ĉp̃ = (ĝ)rp̃ .
(This is also why the secondary encryption of p̃ we discuss in the
next item uses a new base ĥ instead of h.)

(5) It seems difficult to simulate this protocol efficiently unless
the simulator can test whether the user’s ciphertext encrypts the cor-
rect password, e.g. because the simulator can replace the servers’
responses by random values, as argued above, only if the user en-
crypts an incorrect password. However, since the adversary’s view
includes an encryption of the correct password, the DDH reduc-
tion which shows that this encryption is semantically secure cannot
know the corresponding decryption key, and thus cannot perform
such test. We overcome this quandary using the twin encryption
paradigm used in the design of CCA-secure encryption or CMA-
secure signatures starting with [21, 13]. Namely, we extend the
user’s message by a “secondary” encryption of p̃, under an inde-
pendent ElGamal public key ŷ. For technical reasons it turns out
that this encryption can re-use the same randomness rp̃ used in the
“primary” ciphertext (cp̃, dp̃), and so it suffices to extend the U1
message by just one value d̂p̃ = (ŷ)rp̃(ĥ)p̃. The simulator can now
test whether (cp̃, dp̃) encrypts p̃ = p by decrypting (ĉp̃, d̂p̃) – since
by the soundness of the user’s proof these two ciphertexts encrypt
the same plaintext – using a trapdoor key x̂ = DL(ĝ, ŷ) which is
independent of x = DL(g, y). In this way the simulator can test
for password correctness even as it embeds a DDH challenge into
the primary key y and the public ciphertexts (cp, dp) and (cs, ds).

(6) For verifiability of Serverj’s computation of the (encrypted)
response zj in step S2, we amend the public parameters with the
set of Pedersen commitments {yi = gxihri}ni=1 to the server’s
shares {xi}ni=1 of the decryption key. Note that the Serverj ses-
sions where the adversary guesses the correct password effectively
implement an exponentiation oracle zz = Fj(m) = m

xIDj , e.g.
setting cβ = m1/λj/cs. Therefore the adversary who happens

to guess the password can adaptively choose t servers to query
in this way (assume for simplicity that no servers are corrupted).
This presents a problem which arises in adaptively secure thresh-
old cryptosystems, e.g. [5]. Namely, if the simulator had to com-
mit itself to n uncorrupted shares using a simpler perfectly binding
commitment scheme, yi = gxi , then it could consistently respond
to such queries only by guessing at the beginning of the interaction
the set of t servers which the adversary later chooses to query in
this way. (Note that the simulator has to answer such queries cor-
rectly, as the adversary could test if Fj(ga) = (yIDj)a.) This is
why we use Pedersen commitments instead.

Non-Interactive Simulation-Sound Zero-Knowledge Proofs. To
assure that protocol messages are well-formed we use simulation-
sound non-interactive zero-knowledge (SS-NIZK) proofs [22], a
slightly weaker notion than non-malleable NIZK’s. Our protocols
could also use interactive version of such proofs, which can be re-
alized with comparable efficiency without Random Oracles – see
e.g. [12], but using non-interactive proofs enables best round com-
plexity and keeps a protocol write-up simple. Since these are stan-
dard notions, we recall only briefly that a NIZK proof system for
language L is a triple of algorithms, prover P which produces a
proof π on input a statement instance x and witness w, verifier V
which accepts or rejects on input (x, π), and a simulator S which
outputs a (simulated) proof on just the input x, using some trap-
doors embedded in public parameters (or intercepting honest play-
ers’ interaction with a hash function in ROM). We will use an exact
security version of the SS-NIZK notion, calling such proof sys-
tem (TS , qP , εZK , εSS) simulation-sound zero-knowledge (SSZK)
if there is a simulator algorithm S running in time TS which an-
swers up to qP prover queries with simulated proofs on adaptively
chosen statements of adversary’s choice (which can include false
statements) s.t. (1) the statistical difference between the view of an
interaction with S and an interaction with the real prover is at most
εZK , and (2) the probability that any adversary interacting with S
outputs a correct proof on a new false statement, i.e. a different
from those for which it receives a simulated proof from S, is at
most εSS . We need such proofs for three languages corresponding
to the three protocol messages, all parameterized by public param-
eters st0 = (g, h, y, {yi}ni=1, ĝ, ĥ, ŷ, ḡ, (cp, dp), (cs, ds)):

Lst0
S1 ={(a, b, ā) ∈ (G)3 | ∃ t ∈ Zq s.t.

(a, b, ā) = (gt, (cp)
t, (ḡ)t)}

Lst0
U ={(a, e, cp̃, dp̃, ĉp̃, d̂p) ∈ (G)6 | ∃ (rp̃, p̃) ∈ (Zq)2 s.t.

(e, cp̃, dp̃, ĉp̃, d̂p̃) = (arp̃ , grp̃ , yrp̃hp̃, (ĝ)rp̃ , (ŷ)rp̃(ĥ)p̃)}

Lst0,i
S2 ={(cz, dz, cp̃, a,∆, P) ∈ (G)6 | ∃ (rz, t, x, r) ∈ (Zq)3 s.t.

(yi, a, cz, dz) = (gxhr, gt, grz , (cp̃)
rz∆tP−x)}

These languages involve equality relations on representations of
some group elements in bases defined by other group elements.
Well-known simulation-sound NIZKs for such relations in ROM
are generalizations of Schnorr’s proof of discrete logarithm knowl-
edge and Chaum’s proof of discrete logarithm equality, using the
Fiat-Shamir heuristic, see e.g. [4]. The prover and the verifier in
these proofs perform as many (multi)-exponentiations as are used
to define the corresponding language, e.g. three for Lst0

S1, five for
Lst0
U , and four for Lst0,i

S2 . (The verifier’s computation can be re-
duced further using the techniques of batch verification of discrete-
log based signatures, e.g. [2].) These proof systems achieve simula-
tion sound zero knowledge with error bounds εZK = (qP · qH)/q
and εSS = qH/q, where qH is the upper bound on adversary’s

hash function queries, with the simulators whose running time is
the same as that of the corresponding provers.

Efficiency, Standard Message Spaces, Soundness, Robustness.
Efficiency: For efficiency estimates we assume that the SS-NIZK
proofs are implemented in ROM, with proof verification imple-
mented using multi-exponentiation and randomization of each veri-
fication equation, as in signature batch-verification of [2]. (This in-
creases the soundness errors of these proofs by negligible amounts.)
We count multi-exponentiations involving up to 5 bases as single
“multiexp” operations, e.g. we estimate the verification costs of
proofs π1j , π2j , π3j as 2, 4, and 3 multiexp’s, respectively. To re-
duce user’s costs we also arrange the t+ 1 proofs π2j into a single
proof showing consistency of (cp̃, dp̃, ĉp̃, d̂p̃) ciphertexts and t+ 1
proofs of consistency of each (aj , ej) pair with cp̃. Under these as-
sumptions the protocol costs 8t+17 multiexp’s for the user and 16
for each server. Using precomputation we can reduce the on-line
cost to 7t+ 8 multiexp’s for the user and 6 for each server.

Message Space: Protocol PPSS2 works on a non-standard mes-
sage space, i.e. s must be an element of group G, but this can be
easily changed to standard message spaces: Let l be a keylength
of semantically secure symmetric encryption, and let G be a DDH
group of order q where |q| = 3l. The public parameters string st0 is
amended by a random key k of a universal hash function Hk map-
ping elements of G onto l-bit bitstrings s.t. Hk(x) is statistically
indistinguishable from random 160-bit string if x is random in G.
A modified PPSS protocol on password p and secret m, which is
now any bitstring, runs the PPSS2 protocol of Figure 3 on a ran-
dom element s in G, and attaches to the public parameters st0 the
hash key k and a symmetric encryption of m under key Hk(s). In
the recovery protocol the user hashes the recovered value s to de-
crypt the shared secret m. Note that we can encrypt directly under
H(s) with a subgroup of size |q| = max(l, 160) assuming either a
“Hashed Diffie-Hellman” assumption [1] or just DDH but model-
ing H as a random oracle.

Soundness: The PPSS protocol of Figure 3 satisfies only weak
soundness, i.e. even malicious servers cannot make the user who
runs on the correct password recover any other secret except of
that which was initially shared. This follows from soundness of
the SS-NIZK proof systems used in servers’ messages, since these
proofs effectively force the servers to perform the prescribed proto-
col. One easy way to extend this to strong soundness is to include
a public key pk of an existentially unforgeable signature scheme in
st0, use the corresponding signature key to sign secret s, and run
the PPSS algorithm as modified above on a concatenation of s with
this signature. The protocol then proceeds as above except that at
the end the user parses the recovered secret as s|σ and outputs s
only if σ is a valid signature on s under the key pk in st0.

Robustness: Note that the PPSS protocol of Figure 3 does not
satisfy robustness, because the user outputs ⊥ if some server ses-
sions in set V fail to send back correct responses in step S2. How-
ever, robustness can be achieved by modifying the PPSS2 protocol
as follows: If some sessions in V fail in step S2, the user marks
the servers executing them as “dishonest” and restarts the proto-
col using a fresh set of t + 1 server sessions, executed by servers
which have not been marked. In the presence of r ≤ n − (t + 1)
active faults, this can take up to r rounds of interaction before all
server sessions the user chooses are with non-faulty servers, which
guarantees recovery of s. In practice such active attacks should be
extremely rare because the attack reveals the servers corrupted by
the adversary, in which case the user should eliminate, or clean-up,
the attacked server(s) and re-initialize the protocol. Hence the ad-
versary would achieve only a momentary slowdown of the secret-

reconstruction protocol at a price of expulsion from the servers it
has managed to corrupt. Random network errors are of greater con-
cern, but in practice the user should ping each server before includ-
ing its session in set V in step U1. Note that the user could compute
its U1 messages for n instead of t+1 distinct servers and only then
settle on the set V , and the server’s response S2 involves only three
multi-exponentiations computed on-line, namely dzj , verification
of π2j , and the fourth element of π3j , which involves a flexible
base. Thus at the price of increasing U1’s cost by a factor of n

t+1
we can reduce the computational cost contributing to the delay be-
tween the user’s ping of the servers in step U1 and receiving their
responses, to three on-line multiexp’s needed in step S2.

THEOREM 1. Let G be a group of prime order q where the
DDH problem is (Tddh, εddh)-hard, let texp be the time of full
(multi)-exponentiation in G, let Π[Lst0

U], Π[Lst0
S1], and Π[Lst0,i

S2]
be (TS , qP , εZK , εSS)-SSZK proof systems. Protocol PPSS2 is a
(n, t, T, qU , qS , ε) strongly secure PPSS scheme on message space
G and dictionary D ⊆ Zq , as long as max(qU , n · qS) ≤ qP and

T ≤ Tddh − 3TS − (10 + n+ (8t+ 12)qU + 10nqS) · te
ε ≤ 6εZK + (5qU + 3nqS + 4)(εddh + εSS)

PROOF. Let A be an algorithm followed by an adversary at-
tacking the PPSS2 scheme, running in time T , accessing at most
qU user and qS server sessions, and corrupting servers {Pi}i∈B
for some set B s.t. |B| = t′ ≤ t. Figure 4 describes a series of
games, G0, ...,G8, all initialized on secret s, where G0 models the
interaction ofA with the PPSS2 scheme, with slight modifications
explained below, while games G1, ...,G8 are modifications of G0

used in the security argument below. We first explain how the game
G0 models the interaction of A with the PPSS2 scheme. The Init�

procedure treats threshold (t, n) and the set of corrupted players
B as parameters. Note that adversary A can engage in at most
qS sessions but it is up to A to decide which servers will be in-
volved in these sessions. We handle this in the security game by
creating qS distinct sessions for each server, thus n · qS total ses-
sions, even though a qS-limited adversary will utilize only qS of
them. We denote the identity of the server executing the j-th ses-
sion, where j = 1, .., n · qS , as IDj , which can be set w.l.o.g. as
IDj = (j mod n) + 1. Procedure Init� on input s picks p r← D
and follows the real initialization procedure Init(p, s) in generating
the vector of initial states st, including the parameters st0 and the
states sti for each server Pi. Init� also executes the first step S1
for all server sessions, and hands off to A the parameters st0, the
shares of corrupted servers stB = {xi}i∈B , and the first message
on all nqS sessions {Serverj}nqSj=1 . ThenA can make qU queries to
the User� oracle, which models execution of step U1 of procedure
User(st0, p), and qS queries to the execution of step S2 of the j-th
sesssion of the Server procedure. Note that the inputs A provides
to these oracles must syntactically conform to, respectively, a set of
S1 messages from some t+1 servers for the User� oracle, and user
U1 message in the case of the Server�j oracle, but the adversary can
choose these values at wish, in particular they do not have to equal
to the corresponding variables produced by the oracles simulating
the honest players.

Proof Roadmap. We will use the following notation: By Fi,s we
denote event F defined in Figure 4 happening in the interaction be-
tween A and game Gi initialized on secret s, writing Fi if s is not
even present in that game. By pi(s) we denote Pr[1 ← (A

Gi(s))]. Since G0 differs from the real interaction, we denote the
corresponding probability in the real interaction as p̄0(s). The intu-
ition for the security proof is that the event F roughly corresponds
to an adversary sending an encryption of the correct password on

at least t− t′ + 1 sessions run by distinct servers, in which case A
could indeed learn s. The goal of the security argument is to show
that for qS , qU , T satisfying the bounds in the theorem claim, and
any s, s′, it holds that

|p̄0(s)− p̄0(s′)| ≤ b qS
t− t′ + 1

c ∗ 1

|D| + ε′ (3)

where ε′ = 6εZK + (5qU + 3nqS + 4)(εddh + εSS) This would
follow if we showed that |p̄0(s1) − p̄0(s0)| ≤ Pr[F8] + ε′ and
Pr[F8] ≤ b qS

t−t′+1
c ∗ 1

|D| , and below we show this by showing
indistinguishability of adversarial views each consecutive games,
with the last game, G8, releasing no information about either p or
s, implying the above probability bound on F8.

Let p¬Fi (s) denotes the joint probability Pr[1← (A
 Gi(s))∧
¬Fi,s]; let te be a time of a single (multi)-exponentiation in G;
let the DDH problem be (Tddh, εddh)-hard in group G; and let
proof systems Π[Lst0

U], Π[Lst0
S1] and Π[Lst0

S1] be (TS , qP , εZK , εSS)
simulation-sound zero-knowledge. Denote Tred = (10+n+(8t+
12)qU + 10nqS) · te: This is the maximum computational cost, in
addition to simulating the ZK proofs, encountered by any of our
reductions below. Assume that the bounds on qU , qS , T are satis-
fied as in the theorem claim, namely max(qU , n · qS) ≤ qP and
T + (Tred + 3TS) ≤ Tddh. We will show the following four
facts, for any s, s′, for ε0,3 = 3εZK + (2qU + nqS)(εddh + εSS),
ε4,5 = εddh, and ε4,8 = (qU + nqS + 2)(εddh + εSS).

CLAIM 1. |p̄0(s)− p3(s)| ≤ ε0,3

CLAIM 2. |p3(s)− p3(s′)| ≤ |p¬F4 (s)− p¬F4 (s′)|
+ max(Pr[F4,s],Pr[F4,s′])

CLAIM 3. Pr[F4,s] ≤ b qS
t−t′+1

c ∗ 1
|D| + ε4,8

CLAIM 4. |p¬F4 (s)− p¬F4 (s′)| ≤ 2ε4,5

Summing these up we obtain that |p̄0(s) − p̄0(s′)| ≤ 2(ε0,3 +
ε4,5) + ε4,8 + b qS

t−t′+1
c ∗ 1
|D| , which implies inequality 3, because

2(ε0,3 + ε4,5) + ε4,8 ≤ ε′. Now, claim 1 follows from claims
5-7 below, because ε0,3 is the sum of the upper bounds on the dis-
tances |pi−1(s) − pi(s)| for i = 1, 2, 3 in claims 5-7 below, and
|p̄0(s)− p0(s)|, which is bounded by 3εZK . Claim 2 follows from
claim 8 below: Note that |p3(s)− p3(s′)| = |(p¬F3 (s) + pF3(s))−
(p¬F3 (s′) + pF3(s′))| is upper bounded by |p¬F3 (s) − p¬F3 (s′)| +
max(Pr[F3,s],Pr[F3,s′]); and moreover by claim 8, it follows that
p¬F3 (s) = p¬F4 (s) and Pr[F3,s] = Pr[F4,s] for all s. Claim 3 fol-
lows from claims 9-12 below, because (1) ε4,8 is the sum of the
upper bounds on the distances |Pr[Fi−1,s] − Pr[Fi,s]| shown for
i = 5, 6, 7, 8 in claims 9-12, and (2) Pr[F8,s] ≤ b qS

t−t′+1
c ∗ 1

|D|
because G8 releases no information about p. Claim 4 follows from
claim 9 below because game G5 is independent of secret s, and
therefore for every s, s′ we have that p¬F5 (s) = p¬F5 (s′).

CLAIM 5. Games G0 and G1 are indistinguishable under DDH.
Concretely, |p0(s)− p1(s)| ≤ qU (εddh + εSS).

PROOF. To show that G0 and G1 are indistinguishable, we make
a hybrid argument over qU user sessions. We define a series of
intermediary games Gi0, between G0 and G1, where Gi0 follows G1

in the User� oracle calls on the first i user sessions, i .e. it picks
d̂p̃

r← G, and then follows G0 on the remaining sessions. Clearly,
G0

0 ≡ G0 and GqU0 ≡ G1. Let pi0 = Pr[1 ← (A
 Gi0)]. For
each i > 0 we construct reduction Ri0,1 which on input a DDH
challenge (A,B,C) = (ga, gb, gc) follows G0 during Init� except

Init�(on input s)

x
r← Zq, y ← gx, {xi}ni=1

(n,t)←− SS(x) y
r← G, {xi}ni=1

(n,t)←− SS(0) G4

(h, ĝ, ĥ, ḡ)
r← (G)3

ŷ
r← G x̂

r← Zq, ŷ ← (ĝ)x̂ G3

rs
r← Zq , (cs, ds)← (grs , yrss) (cs, ds)

r← (G)2 G5

p← D, rp
r← Zq , (cp, dp)← (grp , yrphp) (cp, dp)

r← (G)2 G8

idSet← {},CpSet← {},F← false

{ tj
r← Zq, (aj , bj , āj)← (gtj , (cp)

tj , ḡtj), π1j ← S[Lst0
S1](aj , bj , āj) }n·qSj=1

{ ri
r← Zq, sti ← (xi, ri), yi ← gxihri }ni=1

st0 ← (g, h, y, {yi}ni=1, ĝ, ĥ, ŷ, ḡ, (cp, dp), (cs, ds)), Ret(st0, {sti}i∈B, {aj , bj , āj , π1j}n·qSj=1)

User�({IDj , aj , bj , āj , π1j}t+1
j=1)

If (∃j∈{1,..,t+1} st V[Lst0
S1]((aj , bj , āj), π1j) = 0) then ABORT this session.

rp̃
r← Zq , (cp̃, ĉp̃)← (grp̃ , (ĝ)rp̃), CpSet← CpSet ∪ {cp̃}, {ej ← (aj)

rp̃}t+1
j=1

dp̃ ← yrp̃hp dp̃
r← G G7

d̂p̃ ← ŷrp̃(ĥ)p d̂p̃
r← G G1

{π2j ← S[Lst0
U](aj , ej , cp̃, dp̃, ĉp̃, d̂p̃)}t+1

j=1, Ret({ej}t+1
j=1, (cp̃, dp̃), (ĉp̃, d̂p̃), {π2j}t+1

j=1)

Server�j (λj , cβ , ej , cp̃, dp̃, ĉp̃, d̂p̃, π2j)

If (V[Lst0
U]((aj , ej , cp̃, dp̃, ĉp̃, d̂p̃), π2j) = 0) then ABORT this session.

If (d̂p̃/(ĉp̃)x̂ = (ĥ)p) then idSet← idSet ∪ {IDj}; If |idSet| > t− t′ then set F← true; wj ← (cs · cβ)
λj ·xIDj

dβ,j ← (dp/dp̃)
tj If (d̂p̃/(ĉp̃)x̂ = (ĥ)p) then dβ,j ← (dp/dp̃)

tj else dβ,j
r← G G3 dβ,j

r← G G6

zj ← dβ,j · (wj)−1 If (cp̃ ∈ CpSet) then zj
r← G else zj ← dβ,j · (wj)−1 G2

rzj
r← Zq , (czj , dzj)← (g

rzj , (cp̃)
rzj · zj), π3j ← S[Lst0,IDj

S2](czj , dzj , cp̃, aj , dp/dp̃, (cs · cβ)λj), Ret((czj , dzj), π3j)

Figure 4: Games G0,G1,...,G8 used in the security proof of the PPSS protocol

In Figure 4, all games follow the code in boxes that span the width of the figure. However, if a line has two boxes, an unmarked one on the
left and one marked “Gi” for some i on the right, then game Gj follows the box on the left for j < i and the box on the right for j ≥ i. In
other words, the boxes on the right mark the differences from G0 introduced in some game, which are then adhered to in each subsequent
game. A special case is the second row of boxes in the code of oracle Server�j , which contain three boxes: Games G0 − G2 follow the
unmarked left-most box, games G3 − G5 follow the middle box marked “G3”, and games G6 − G8 follow the right-most marked “G6”.

Game G0 portrayed in Figure 4 differs from A’s view of the real protocol in three ways: (1) Figure 4 does not include the interaction
corresponding to step U2 of the User� oracle. Recall that in the strong security notion the adversary receives a bit indicating whether the
User protocol instance accepts or rejects its protocol session. However, in PPSS2 this bit is determined by whether this User instance receives
t+ 1 messages corresponding to server’s steps S1 and S2 accompanied by proofs {π1j , π3j}t+1

j=1 which pass the corresponding verification,
hence this bit is publicly computable from the adversary’s actions; (2) The User� oracle simulating step U1 of the User algorithm does not
return values λj and cβ , but these values are publicly computable from the inputs {IDj , bj}t+1

j=1 sent by A to this User session and from
its outputs {ej}t+1

j=1; (3) In G0 all oracles output simulated proofs, while in the real interactions these proofs are output by respective prover
algorithms on corresponding witnesses.

that it computes ĝ ← gr0 and ḡ ← Ar1 for r0, r1
r← Zq and

embeds ŷ ← B. ThenRi0,1 follows G0 in all Server� calls, but for
User sessions it follows G1 on all sessions prior to the i-th session,
and G0 on all sessions from i+ 1 on, but on the i-th session it sets
{ej ← (āj)

1/(r0r1)}tj=1, cp̃ ← A1/r0 , dp̃ ← Ax/r0hp, ĉp̃ ← A,
and d̂p̃ ← C1/r0(ĥ)p. If (A,B,C) is a DDH tuple (ga, gb, gab)
thenRi0,1(A,B,C) ≡ Gi−1

0 because for the i-th session the user’s
output is computed as in G0, with rp̃ = a/r0 and x̂ = DL(ĝ, ŷ) =
b/r0. However if (A,B,C) is a random tuple then d̄p̃ is a random
group element, as in G1, and so Ri0,1(A,B,C) ≡ Gi0. It follows
that |pi0−pi+1

0 | ≤ εddh+εSS , since we have to add the probability
εSS that all proofs π1,j verify while some (aj , āj) sent to the i-th
user session is not of the form (gtj , (ḡ)tj) for some tj .

CLAIM 6. Games G1 and G2 are indistinguishable under DDH.
Concretely, |p1(s)− p2(s)| ≤ qU (εddh + εSS).

PROOF. We use a hybrid argument over qU user sessions. For
each i ∈ [0, qU], we define an intermediate game Gi1 which follows
G2 except that in Server� oracle responses Gi1 decides whether zj
should be real or random based on whether cp̃ ∈ CpSet[1, i], the
set of cp̃’s output by the first i User� oracle sessions. Note that
G0

1 ≡ G1 and GqU1 ≡ G2. Let pi1 = Pr[1 ← (A
 Gi1)]. For
each i ∈ [1, qU] we show reduction Ri1,2 which reduces break-
ing DDH to distinguishing between Gi−1

1 and Gi1. Let the DDH
challenge be (A,B,C) = (ga, gb, gc). The reduction follows the
Init� procedure as in game G1 except that it picks r0, r1, x̂

r← Zq
and sets ĝ ← gr0 , ḡ ← Ar1 , and ŷ ← (ĝ)x̂. For the user ses-
sions, the reduction follows the code of G1 except for i-th ses-
sion, where it embeds cp̃ ← A and computes ĉp̃ ← (cp̃)

r0 ,
dp̃ ← (cp̃)

x · hp, d̂p̃ ← (ĉp̃)
x̂ · (ĥ)p, and ej ← (āj)

1/r1 for
all j. For the server sessions, the reduction Ri1,2 follows the code
for Gi−1

1 except for the sessions where cp̃ is passed as input; where
it computes (czj , dzj) ← (B

rzj , C
rzj · zj) where zj = dβ,j/wj .

Thus reduction Ri1,2 hits Gi−1
1 on a DDH tuple and it hits Gi1 on

a random tuple. The reduction relies on the correctness of server’s
messages sent to user’s i-th session; but since the event that these
are incorrect while servers’ proofs verify is bounded by εSS , this
yields |pi1 − pi+1

1 | ≤ εddh + εSS , and the claim follows.

CLAIM 7. Games G2 and G3 are indistinguishable under DDH.
Concretely, |p2(s)− p3(s)| ≤ (n · qS)(εddh + εSS).

PROOF. We use a hybrid argument over nqS server sessions to
argue that G2 and G3 are indistinguishable. For each i ∈ [0, nqS],
we define an intermediate game Gi2 which follows G3 on calls to
Server�j for j ≤ i and follows G2 on calls to Server�j for j > i.
Note that G0

2 ≡ G2 and GnqS2 ≡ G3. Let pi2 = Pr[1 ← (A

Gi2)]. For each i ∈ [1, nqS] we show reduction Ri2,3 which re-
duces breaking DDH assumption to distinguishing between Gi−1

2

and Gi2. Let the DDH challenge be (A,B,C) = (ga, gb, gc). The
reduction follows the Init� procedure as in game G3 except that it
sets (h, ĥ, ḡ) ← (B,Cr0 , gr1) where r0, r1

r← Zq . Also, Ri2,3
computes (aj , bj , āj) for all j ∈ [nqS] as in the protocol, except
for j = i where it sets (ai, bi, āi) ← (A,Arp , Ar1). The re-
duction responds to Server� queries for sessions j < i as in G3,
for sessions j > i as in G2, while on the i-th session it computes
dβ,i ← (bi/ei)

x · Cp · (d̂p̃/(ĉp̃)x̂)−1/r0 . If (A,B,C) is a DDH
tuple, and the oracle inputs are formed correctly, i.e. proof π2i

holds on the correct statement (ai, ei, cp̃, dp̃, ĉp̃, d̂p̃), then dβ,i =

y(rp−rp̃)tih(p−p̃)ti as in Gi−1
2 , where ti = a, because in that case

C = hti . Otherwise, if (A,B,C) is a random tuple, then dβ,j
is random as in Gi2. Since the views are correct except for proba-

bility εSS , we get that |pi2 − pi−1
2 | ≤ εddh + εSS , and the claim

follows.
CLAIM 8. For any s, p¬F3 (s) = p¬F4 (s) and Pr[F3,s] = Pr[F4,s].
PROOF. We argue that under condition that event F does not

happen the adversarial views in games G3 and G4 are identical.
This immediately implies that (1) Pr[F3,s] = Pr[F4,s], and (2)
that the conditional probabilities Pr[1 ← (A
 G3(s)) | ¬F3,s]
and Pr[1 ← (A
 G4(s)) | ¬F4,s] are the same, and hence the
claim follows, because p¬Fi (s) = Pr[1 ← (A
 Gi(s)) | ¬Fi,s] ∗
Pr[Fi,s] To argue this, note that the only difference between G3

and G4 is that in G3, xi’s are (n, t)-secret-sharing of a random
value whereas in G4 xi’s are (n, t)-secret-sharing of zero. There-
fore unless adversary knows t + 1 shares of xi’s, the view of the
adversary in G3 is identical to its view in G4. Now, adversary gets
to know t′ < t shares of x simply by corrupting t′ servers. How-
ever server queries could possibly leak information about xi’s as
in wj value. But in any server query, if adversary does not use the
legitimate password, wj is masked with a random value in both G3

and G4; otherwise if adversary uses the legitimate password, un-
less event F happens, the number of distinct servers which adver-
sary contacts is bounded by t − t′. Thus, unless event F happens,
the maximum number of xi shares that is effectively used in either
game is bounded by t.

CLAIM 9. Games G4 and G5 are indistinguishable under DDH,
i.e. |p¬F4 (s)− p¬F5 (s)| ≤ εddh and |Pr[F4,s]− Pr[F5,s]| ≤ εddh.

PROOF. The proof goes via an easy reduction from DDH which
embeds the DDH challenge (A,B,C) by setting (y, cs, ds) ←
(A,B,C · s). Note that neither game G4 nor G5 needs to know
values x and rs corresponding to (y, cs, ds).

CLAIM 10. Games G5 and G6 are indistinguishable under DDH,
i.e. |p5(s) − p6(s)| ≤ (n · qS)(εddh + εSS) and |Pr[F5,s] −
Pr[F6,s]| ≤ (n · qS)(εddh + εSS).

PROOF. As in the proof of Claim 7, we use a hybrid argument
over nqS server sessions. For i ∈ [0, nqS] we define game Gi5
which follows G6 on Server�j calls for j ≤ i and G5 on Server�j
calls for j > i. Note that G0

5 ≡ G5 and GnqS5 ≡ G6. Let pi5 =
Pr[1 ← (A
 Gi5)] and let Fi5 denote event F in Gi5. For each
i ∈ [1, nqS] we show a DDH reductionRi2,3 which on input a tuple
(A,B,C) = (ga, gb, gc) follows the Init� procedure as in game
G5 except that it sets (y, h, ĝ, ĥ, barg)← (B, gr0 , Cr3 , Ar1 , gr2)

where r0, r1, r2, r3
r← Zq . Ri2,3 computes all (aj , bj , āj) as in the

protocol except for j = iwhere it sets (ai, bi, āi)← (A,Arp , Ar2).
The reduction responds to Server� queries for sessions j < i as
in G6, for sessions j > i as in G5, while on the i-th session it
computes dβ,i ← Crp · Ap·r0 · (d̂p̃/(ĉp̃)x̂)−r0/r1 · (ĉp̃)−1/r3 If
(A,B,C) is a DDH tuple, and proof π2i holds on the correct state-
ment (ai, ei, cp̃, dp̃, ĉp̃, d̂p̃), then dβ,i = gx(rp−rp̃)tih(p−p̃)ti as in
Gi−1

5 , where ti = a and x = b, because in that case C = gx·ti .
Otherwise dβ,j is random, as in Gi5. Since the views are correct
except for probability εSS , we get both |pi5 − pi−1

5 | ≤ εddh + εSS
and |Pr[Fi5]−Pr[F

i−1
5 | ≤ εddh+ εSS , and the claim follows.

CLAIM 11. Games G6 and G7 are indistinguishable under DDH,
i.e. |Pr[F6,s]− Pr[F7,s]| ≤ qU (εddh + εSS).

PROOF. The proof goes via a hybrid reduction from DDH over
the User� oracle sessions, for i = 1, .., qU , and it is very similar to
the reduction in the proof of Claim 5. The reduction picks (ĝ, ḡ)←
(gr0 , gr1) for random r0, r1 and ŷ = (ĝ)x̂ for random x̂, and em-
beds the DDH challenge (A,B,C) by setting y ← B, and then in
the i-th User� session it assigns cp̃ ← A, dp̃ ← C ·hp, ĉp̃ ← Ar0 ,
d̂p̃ ← (ĉp̃)

x̂(ĥ)p, and sets each ej as ej ← (āj)
1/r0 .

Init(p) (on public parameters κ, n, t)

(pk, sk)← EKg, {(sski, vki)← SKg}ni=1,
(˜st0, ˜st0, ..., ˜stn)← PPSS.Init(p, sk)

st0 ← (˜st0, pk, {vki}ni=0), {sti ← (s̃ti, sski)}ni=1

Client(st0, p̃, uId)
 (Server(st0, st1), · · · ,Server(st0, stn))

C1 (Client) Pick sId r← {0, 1}κ;
Send (uId, sId) to each Server;
Run PPSS.User(s̃t0, p̃) with the Servers.

S1 (Serverj) Run PPSS.Serverj(˜st0, ˜stj) with the Client;
On abort, assign kj ←⊥ on session sId and stop.
Otherwise pick kj

r← {0, 1}κ;
Compute σj ← Sign(sskIdj , (uId, sId, kj))
Compute ej ← Enc(pk, (kj , σj));
Send ej to Client.

C2 (Client) Let ŝk be the output of the PPSS instance.
If ŝk =⊥ then set kj ←⊥ for all j and stop.
Let (k̂j , σ̂j)← Dec(ŝk, ej) for all Serverj ;
For each j, if Vrfy(vkIdj , σ̂j , (uId, sId, k̂j)) = 1

then set kj ← k̂j on session sId with Serverj ;
o/w set kj ← ⊥ on this session.

Figure 5: TPAKE from PPSS
CLAIM 12. Games G7 and G8 are indistinguishable under DDH,

e.g. |Pr[F7,s]− Pr[F8,s]| ≤ εddh.

PROOF. The proof goes via an easy reduction from DDH which
embeds the DDH challenge (A,B,C) by setting (y, cp, dp) ←
(A,B,C · hp). Note that neither game G7 nor G8 needs to know
values x and rp corresponding to (y, cp, dp).

4. EFFICIENT T-PAKE FROM PPSS
A password protected secret sharing (PPSS) scheme can be used

as a black box to achieve a threshold password authenticated key
exchange (T-PAKE) protocol (in the public key model) at very little
additional cost. In particular, the round complexity of the resulting
T-PAKE is the same as the PPSS because all the T-PAKE messages
can be piggybacked onto the PPSS protocol flows. Figure 5 shows
a secure T-PAKE protocol assuming that E = (EKg,Enc,Dec)
is a chosen ciphertext attack secure public key encryption, S =
(SKg,Sign,Vrfy) is a signature scheme which is existentially un-
forgeable under chosen message attack, and PPSS is a strongly se-
cure password protected secret sharing protocol. For lack of space
we omit the formal proof that this construction satisfies T-PAKE se-
curity, but, very briefly, the signatures and CCA encryption scheme
ensure that the network adversary cannot re-route messages from
a session in which honest players are involved, or modify them in
any way, and hence in particular all User sessions are independent
of each other. Then by the security of the PPSS scheme, except for
bqS/(t− t′ + 1)c · (1/|D|) probability, the view of the PPSS pro-
tocol initialized with the real decryption key sk is indistinguishable
from a view where sk is replaced by an independent key, in which
case CCA security of encryption ensures that A gets no informa-
tion about any unrevealed session keys even given a capability to
reveal any other session keys (handled by decryption queries in a
reduction to CCA encryption security).

5. REFERENCES
[1] M. Abdalla, M. Bellare, and P. Rogaway. The oracle diffie-hellman

assumptions and an analysis of DHIES. In D. Naccache, editor,
CT-RSA, volume 2020 of Lecture Notes in Computer Science, pages
143–158. Springer, 2001.

[2] M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for
modular exponentiation and digital signatures. In EUROCRYPT,
pages 236–255, 1998.

[3] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. Nightingale: A new
two-server approach for authentication with short secrets. In 12th
USENIX Security Symp, pages 201–213. IEEE Comp. Soc. 2003.

[4] J. Camenisch and M. Michels. Proving in Zero-Knowledge that a
Number Is the Product of Two Safe Primes. In EUROCRYPT’99,
volume 1592 of LNCS, pages 107–122, 1999.

[5] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin.
Adaptive security for threshold cryptosystems. In CRYPTO’99,
volume 1666 of LNCS, pages 98–115, 1999.

[6] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In CRYPTO
’89, volume 435 of LNCS, pages 307–315, 1990.

[7] M. Di Raimondo and R. Gennaro. Provably secure threshold
password-authenticated key exchange. J. Comput. Syst. Sci.,
72(6):978–1001, 2006.

[8] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung.
Intrusion-resilient public-key encryption. In CT-RSA, pages 19–32,
2003.

[9] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key
cryptosystems. In L. R. Knudsen, editor, EUROCRYPT, volume 2332
of Lecture Notes in Computer Science, pages 65–82. Springer, 2002.

[10] M. Fischlin. Communication-efficient non-interactive proofs of
knowledge with online extractors. In Crypto’05, 2005.

[11] W. Ford and B. S. K. Jr. Server-assisted generation of a strong secret
from a password. In WETICE, pages 176–180, 2000.

[12] J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening
zero-knowledge protocols using signatures. In E. Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science,
pages 177–194. Springer, 2003.

[13] S. Goldwasser, S. Micali, and R. L. Rivest. A “paradoxical” solution
to the signature problem. In IEEE Annual Symposium of Foundations
of Computer Science (FOCS’84), pages 441–448, 1984.

[14] D. Jablon. Password authentication using multiple servers. In
CT-RSA’01: RSA Cryptographers’ Track, pages 344–360.
Springer-Verlag, 2001.

[15] J. Katz, P. Mackenzie, G. Taban, and V. Gligor. Two-server
password-only authenticated key exchange. In Proc. Applied
Cryptography and Network Security ACNSĄÂŠ05, 2005.

[16] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated
key exchange using human-memorable passwords. In Advances in
Cryptology - EUROCRYPT 2001, International Conference on the
Theory and Application of Cryptographic Techniques, 2001.

[17] LastPass. Lastpass password manager, 2009. Available at
https://lastpass.com.

[18] P. D. MacKenzie and M. K. Reiter. Networked cryptographic devices
resilient to capture. Int. J. Inf. Sec., 2(1):1–20, 2003.

[19] P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold
password-authenticated key exchange. J. Cryptology, 19(1):27–66,
2006.

[20] Mozilla Labs. Weave sync, 2009. Available at
http://labs.mozilla.com/projects/weave.

[21] M. Naor and M. Yung. Public-key cryptosystems provably secure
against chosen ciph. attacks. In STOC, pages 427–437. ACM, 1990.

[22] A. Sahai. Non-malleable non-interactive zero knowledge and
adaptive chosen-ciphertext security. In FOCS, pages 543–553, 1999.

[23] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613,
Nov. 1979.

[24] V. Shoup. Practical Threshold Signatures. In EUROCRYPT’00,
volume 1807 of LNCS, pages 207–220, 2000.

[25] V. Shoup and R. Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. J. Cryptology, 15(2):75–96, 2002.

[26] S. Xu and R. S. Sandhu. Two efficient and provably secure schemes
for server-assisted threshold signatures. In CT-RSA, 2003.

