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Abstract

Pairwise key establishment in mobile ad hoc networks allows any pair of nodes to agree upon a shared key. This is an
important security service needed to secure routing protocols, and in general to facilitate secure communication among the
nodes of the network.

We present two self-keying mechanisms for pairwise key establishment in mobile ad hoc networks which do not require
any centralized support. The mechanisms are built using the well-known technique of threshold secret sharing, and are
robust and secure against a collusion of up to a certain number of nodes. We evaluate and compare the performance
of both the mechanisms in terms of the node admission and pairwise key establishment.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Mobile ad hoc networks (MANETs) are, by their
very nature, vulnerable to many types of attacks.
The security of MANETs is often predicated on
the availability of efficient key management tech-
niques. However, the usual features of: (1) lack of
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a centralized authority and (2) dynamic nature of
MANETs, represent major obstacles to providing
secure, effective and efficient key management.
What further complicates the issue is that, in many
applications (such as secure routing [9,8,21]) crypto-
graphic keys need to be established prior to commu-
nication. As a result, standard key exchange
solutions, e.g., Station-to-Station protocol [17], are
not appropriate since: (1) they require the nodes
to interact and (2) they rely on some form of a Pub-
lic Key Infrastructure (PKI) which is not usually
available in MANETs. Related to the latter is the
underlying use of public key cryptography which
is too expensive for some mobile devices.
.
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Contributions: This paper proposes two efficient,
fully distributed and secure key management mech-
anisms for MANETs. The so called self-keying

mechanisms allow nodes in a MANET to establish
pairwise keys without communicating and without
the need of a PKI. The first mechanism, called
matrix based self-keying (MSK), results from the
blending of two well-known techniques: Blom’s
key pre-distribution [2,13] and threshold secret shar-
ing [25], and the second mechanism, referred to as
polynomial based self-keying (PSK), employs thres-
hold secret sharing using a polynomial. In both
MSK and PSK, a node joins a MANET by receiving
a secret token from t different nodes, where t is a
security parameter. The schemes are auto-configura-

ble in the sense that there is no centralized sup-
port required and a node becomes a member only
if it is approved by at least t member nodes. Once
a node becomes member, it can compute a secret
key with any other member without interaction.
The proposed schemes are secure against collusion
of up to a certain number (t � 1) of compromised
nodes.

The contribution of this paper is not limited to
just the design of secure and efficient key distribu-
tion schemes. We also demonstrate our claims of
efficiency via extensive analysis and experiments.
The schemes have been implemented and tested in
a real MANET setting and their performance is
compared and analyzed in detail.

Organization: The rest of this paper is organized
as follows: Section 2 overviews the related work. Sec-
tion 3 provides some background on necessary cryp-
tographic building blocks. Sections 5 and 6 present
our self-keying mechanisms MSK and PSK respec-
tively. We discuss some security and other relevant
issues of the proposed schemes in Section 7. Finally,
in Section 8, we describe the implementation and the
performance of our schemes.

2. Related work

Key distribution can be easily achieved if we
assume the existence of a PKI. However, this
assumption is not realistic in many MANET envi-
ronments. Zhou and Haas [26] proposed to distrib-
ute a Certification Authority (CA) service among
several nodes of the network. Although attractive,
this idea is not applicable to MANETs. Their
approach is hierarchical: only selected nodes can
serve as part of the certification authority and thus
take part in admission decisions. Moreover, contact-
ing the distributed CA nodes in a MANET setting
is difficult since such nodes might be many hops
away.

In a related result, Kong et al. [12] developed an
interesting Threshold-RSA (TS-RSA) scheme spe-
cifically geared for MANETs. Unfortunately, as
pointed out in [19,11], TS-RSA is neither verifi-
able nor secure. An alternative Threshold-DSA
(TS-DSA) scheme [19] provides verifiability and,
hence, tolerates malicious insiders. However, TS-
DSA requires 2t � 1 signers to issue certificates, is
heavily interactive and thus become quite inefficient
in MANET settings. Moreover, all these solutions
require a pair of nodes to perform key exchange
protocol to establish shared keys.

Recently, Zhu et al. [27] proposed a pairwise key
distribution scheme based on the combination of
probabilistic key sharing and threshold secret shar-
ing. However, it is assumed that the nodes are
pre-configured with some secrets before deployment
which is not realistic in a typical MANET environ-
ment. Furthermore, two nodes need to communi-
cate over several distinct paths to establish a
shared key. In contrast, we do not assume any such
pre-configuration and do not require nodes to com-
municate when establishing a secret key.

Ćapkun et al. proposed a security association
establishment protocol that makes use of the mobil-
ity of users [5]. Two nodes establish a security asso-
ciation when they are near each other, by using
secure channels. As a node moves around, it estab-
lishes more and more security associations. When a
node needs to establish a secret with another node,
there are two possibilities: (1) they already have a
security association, or (2) they have no security
association and must use the help of ‘‘friends’’ to
establish one. Despite the simplicity and elegance
of this approach, it is mainly geared for highly
mobile MANETs. Furthermore, key derivation
among two nodes that do not have a prior security
association requires some communication, which is
not always practical or even possible.

More closely related results [7,14] present key pre-
distribution schemes based on the schemes by Blom
[2] and Blundo et al. [3], respectively. These schemes,
unlike the one we propose in this paper, are designed
for sensor networks and require a trusted centralized
authority for key distribution. Similarly, the trivial
solution that consists of configuring each node with
pairwise keys, i.e., where a node stores n � 1 keys,
one each it shares with every other node, is not
appropriate in MANETs, since (1) this requires a
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centralized trusted party to compute and distribute
the pairwise keys and (2) every time a new node joins
the network, all the current nodes need to be
updated. This is clearly not acceptable in a dynamic
and volatile environment, like a MANET.

3. Building blocks

This section describes the main techniques used
in our proposal, namely threshold secret sharing
and Blom key pre-distribution schemes.

Following is the notation used in the rest of this
paper:
Mi member i.e., network node i

t node admission threshold
k number of private keys that Mi must

store
N maximum size of network nodes
NID network identity
idi crypto-based identifier of Mi

Kij secret key shared between Mi and Mj

ri(A) row of matrix A for Mi

ssi(x) secret share of value x for Mi

pssi
jðxÞ partial secret share of x for Mi by Mj

SLi sponsor list for Mi to reconstruct
a secret

H(x) hash value on input x

Ek(x) encryption with a key k on input x

MAC(k,x) message authentication code with
key k on input x
3.1. Threshold secret sharing

A (t,n) threshold cryptography allows n parties to
share the ability to perform a cryptographic opera-
tion in a way that any t parties can perform this oper-
ation jointly, whereas no coalition of up to t � 1
parties can do so. We use Shamir’s secret sharing
scheme [25] which is based on polynomial interpola-
tion. To distribute shares among n users, a trusted
dealer TD chooses a large prime q, and selects a poly-
nomial f(x) = S + a1x + � � � + at�1xt�1 over Zq of
degree t � 1 such that f(0) = S, where S is the group
secret. The TD computes each user’s share ssi such
that ssi = f(idi) (mod q), and securely transfers ssi to
user Mi. Then, any group of t members who have their
shares can recover the secret using the Lagrange
interpolation formula: f ð0Þ ¼

Pt
i¼1ssi lið0Þ ðmod qÞ,

where liðxÞ ¼
Qt

j¼1;j 6¼i
x�idj

idi�idj
ðmod qÞ. To enable the
verification of the secret shares, TD publishes a com-
mitment to the polynomial as in Verifiable Secret

Sharing (VSS) [24]. VSS setup involves a large prime
p such that q divides p � 1 and a generator g which is
an element of Z�p of order q. TD computes Wi

(i = 0, . . . , t � 1), called the witness, such that
W i ¼ gai ðmod pÞ and publishes these Wi’s in some
public domain (e.g., a directory server). On receiving

the secret share ssi from Mi, Mj verifies the correctness

of ssi by checking gssi ¼
Qt�1

k¼0ðW kÞid
k
i ðmod pÞ.

3.2. Blom’s key pre-distribution

Blom proposed a key pre-distribution scheme
that allows any pair of users in a group to compute
a pairwise key without communicating [2]. This
scheme is secure unless k users collude (the parame-
ter k will be defined later). If less than k users
collude, then it is proven that the system is
completely secure i.e., the colluding nodes cannot
compute any pairwise keys other than their own.
However, if k or more users collude, the whole
group is compromised and the colluding users can
compute the pairwise keys of all other members.

In Blom’s proposal, a trusted dealer TD

computes a k · N matrix B over Zq, where N is
the maximum size of the group, q is a prime, and
q > N.

One example of such a matrix is a Vandermonde
matrix whose element bij = (gj)i (mod q) as seen
below, where g is the primitive element of Z�q.

B ¼ bij ¼ ðgjÞi ðmod qÞ
� �

for i; j ¼ 1; . . . ; k:

Note that this construction requires that Nk < /
(q) i.e., Nk < q � 1.

Since B is a Vandermonde matrix, it can be
shown that any k columns are linearly independent
when g,g2,g3, . . . ,gN are all distinct [15]. The TD

then creates a random k · k symmetric matrix D

over Zq, and computes an N · k matrix
A = (DB)T, where T indicates a transposition of
the matrix.

The matrix B is published while the matrix D is
kept secret by the TD. Since D is symmetric, the
key matrix K = AB is also symmetric

K ¼ ðDBÞTB ¼ BTDTB ¼ BTDB ¼ ðABÞT ¼ KT:

This shows that K is also a symmetric matrix.
We assume that each user, Mi, is defined by an

identifier, idi, such that 0 < i < N. The TD then
sends, over a secret channel, to each user Mi, the
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Fig. 1. Abstract Admission Protocol.
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ith row of the matrix A, denoted as ri(A), i.e.,
ri(A) = [aij] for j = 1, . . . ,k.

A user Mi can then compute its key with user Mj

as follows: ½Kij ¼
Pk

b¼1aib � bbj�, where bbj is the ele-
ment of B at row b and column j.

This key can be computed without communica-
tion since bbj = (gj)b (mod q). Similarly, user Mj

can then compute its key with user Mi as follows:
½Kji ¼

Pk
b¼1ajb � bbi�. Since K is symmetric we have

Kij = Kji, i.e., users Mi and Mj share a secret
key. Note that each node does not have to store
the whole matrix B only if he knows the public para-
meter g.

Since each pairwise key is represented by an ele-
ment in Zq, q must be selected as the smallest prime
number larger than 2l, where l is the size in bits of
the pairwise keys, for example 64.

4. Generic self-keying mechanism

A self-keying mechanism for mobile ad hoc net-
works consists of various steps. We summarize these
steps for a generic mechanism as follows:

1. Bootstrapping: The network is bootstrapped by
either one single founding member or a set of
founding members. The founding member(s) ini-
tialize the network by computing the private and
corresponding public parameters. The private
parameters are secret shared among the founding
member(s) in such a way that any set of t mem-
bers can reconstruct these parameters. The share
of the private parameters possessed by each
member is referred to as its secret credential.

2. Member admission: A prospective member Mnew

who wishes to join the network must be issued
its secret credential by the existing member nodes
(see Fig. 1). Mnew initiates the admission protocol
by sending a JOIN_REQ message to the network.
A member node, that receives this JOIN_REQ
message and approves the admission of Mnew,
replies, over a secure channel (refer to Section
7), with a partial secret credential (derived from
its secret credential) for Mnew. Once Mnew receives
partial secret credentials from at least t different
nodes, it uses them to compute it secret credential.

3. Robustness via verifiability and traceability: A
malicious node can easily launch a denial-of-ser-
vice (DoS) attack toward a candidate node by
inserting incorrect secret shares. This attack
would actually deny or disrupt the service to
legitimate nodes. To deal with this important
problem a node must be able to verify the validity
of its reconstructed secret credential before using
them. This is what we call verifiability in the rest
of the paper.Also, when the node detects that its
secret credential is not valid, it must be able to
trace the bogus shares in order to replace them
and/or revoke the malicious participants. This
functionality is provided by the traceability pro-
cedures. Note that verifying the shares’ origin,
for example via signatures, is not enough to pro-
vide traceability since it does not protect against
compromised nodes that would signed correctly
but send bogus shares. Instead, traceability must
allow to verify the validity of the shares them-
selves.Note that verifiability is always required.
Traceability is only necessary when a node
detects (from the verifiability service) that its
reconstructed secrets are not valid.

4. Secret key computation: Each node can use its
secret credential and/or the public parameters
of the network to compute pairwise keys with
other nodes. This allows nodes to securely com-
municate with other.
5. MSK: matrix based self-keying

In this section we describe the MSK scheme,
which is based on Blom’s key pre-distribution
described in Section 3.2.

5.1. Bootstrapping

In MSK scheme, a network can be boot-
strapped (i.e., initialized) by one node (centralized
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bootstrapping) or a set of t or more nodes (distrib-
uted bootstrapping).

Centralized bootstrapping. The centralized boot-
strapping proceeds as follows. First, a founding
member FM generates the network parameters,
namely N, k, t, q, p, g, and the matrices D = [dij]
and B = [bij], where N is the maximum numbers of
nodes in the network, (k,q,p,g) are the security
parameters, B is k · N public matrix such that
bij = (gj)i (mod q) for i, j 2 [1,k], and D is k · k sym-
metric matrix of secrets.

Next, the FM publishes (N,k, t,q,p,g,B) in some
public directory, but keeps D secret. It then com-
putes the matrix A such that A = (DB)T and sends
a share of the whole matrix A to each node.

To compute the share ssv(D) for member Mv, FM

selects polynomials for each element dij of k · k
matrix D. Each polynomial is defined as follows;
fdijðxÞ ¼

Pt�1
a¼0d

ðaÞ
ij � xa ðmod qÞ such that dð0Þij ¼ dij.

The share of matrix D is made up of shares of its ele-
ments ssv(dij). In other words, ssvðDÞ ¼ ½ssvðdijÞ� ¼
½fdijðvÞ� for i, j = 1, . . . ,k.

As for rv(A) such that rv(A) = [avj] for j = 1, . . . ,k,
each element of rv(A) is simply computed by FM

since it knows the secret matrix D. That is,
avj ¼

Pk
b¼1djb � bbv ðmod qÞ. Then FM distributes

ssv(D) and rv(A) to each Mv.
In addition, FM computes VSS witness (which will

be used in the traceability procedures defined in
Section 5.3.2), W ðaÞ

ij , as follows: W ðaÞ
ij ¼ gdðaÞij ðmod pÞ

for i, j 2 [1,k], a 2 [0, t � 1].
Distributed bootstrapping. The network can alter-

natively be bootstrapped by a set of t founding
members. The secret matrix D can be generated in
fully distributed manner. Note that in the central-
ized mode, single FM is similar to a trusted third
party and is, therefore, a single point of failure. In
this proposal, a group of members (the founding
members in our scenario) collectively compute
shares corresponding to Shamir secret sharing of a
random value without a centralized trusted dealer.
This procedure is so-called Joint Secret Sharing

(JSS) [22]. The main idea here is that the polynomi-
als for each element dij of matrix D are constructed
among t founding members themselves such that

fdijðxÞ ¼ fdij½1�ðxÞ þ fdij½2�ðxÞ þ � � � þ fdij½t�ðxÞ;

where fdij ½k�ðxÞ is the polynomial of each founding
member FMk over Zq for k = 1, . . . , t.

The detailed procedures are as follows. It is
assumed that all FM’s of the network have previously
agreed on the system parameters (N,k, t,q,p,g,B). To
compute ssv(D), each FMk chooses at random a poly-
nomial fdij½k�ðxÞ 2 Zq of degree (t � 1) such that

fdij ½k�ðxÞ ¼
Pt�1

a¼0d
ðaÞ
ij½k�x

a ðmod qÞ for k,v = 1, . . . , t,
where dðaÞij½k� is a random secret that FMk selects. Then,
FMk computes FMv’s share ŝsðkÞv ðdijÞ ¼ fdij ½k�ðvÞ for
FMv (v 2 [1, t]), and securely sends it to FMv (in par-
ticular FMk keeps ŝsðkÞk ). Note that the share values
should be transmitted over the secure channel. Upon
receiving ŝsðkÞv ðdijÞ, FMv computes its share ssv(dij) of
the secret dij as the sum of all shares received:
ssvðdijÞ ¼

Pt
a¼1ŝsðaÞv ðdijÞ.

Next, as for rv(A) = [avj] for j = 1, . . . ,k, each
FMk computes aðkÞvj for FMv such that aðkÞvj ¼Pk

b¼1sskðdjbÞ � lkð0Þ � bbv and securely sends it to
FMv. Then, each FMv gets its own avj by summing
up all ak

vj’s, since avj ¼
Pt

k¼1ak
vj ¼

Pt
k¼1

Pk
b¼1ssk

ðdjbÞ � lkð0Þ �bbv ¼
Pk

b¼1djb � bbv.
Finally, FMk computes VSS witness W ðaÞ

ij½k� of its

own polynomial fdij ½k�ðxÞ such that W ðaÞ
ij½k� ¼ gdðaÞ

ij½k�

ðmod pÞ and send it to each FMv. Then, FMv

obtains the witness W ðaÞ
ij of fdijðxÞ as follows:

W ðaÞ
ij ¼

Qt
k¼1W ðaÞ

ij½k� ðmod pÞ. We note that this is
actually combined with the procedure for comput-
ing ssv(D) as above.

5.2. Member admission

In order to join the network, a prospective node
Mg must collect at least t shares of matrix A’s row g
from the current member nodes and a valid share of
the whole matrix D. Fig. 2 shows the protocol mes-
sage flow for the member admission process.2

1. Mg sends to at least t current member nodes Mm’s
(m 2 [1, n]) a signed JOIN_REQ message which
contains his identity idg and his public Diffie-
Hellman (DH) component yg ð¼ gxg ðmod pÞÞ.
The details about how idg is generated and veri-
fied are discussed in Section 7.

2. After verifying the signed JOIN_REQ, the mem-
ber nodes who wish to participate in the admis-
sion process of Mg reply with a signed message
containing their respective values idm and ym.

3. Mg selects t sponsors Ml(l 2 Rm, jlj = t), com-
putes a secret key DHKgl with each of them, forms
a sponsor list SLg which contains the id’s of the t
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selected sponsors, and replies with an authenti-
cated acknowledgment message to each of them.

4. Each sponsoring node (Ml) on receiving msg3,
computes the secret key DHKgl and replies with
row g of it share of the matrix A, ssl(rg(A)).
The elements of ssl(rg(A)) are computed as
sslðrgðagjÞÞ ¼

Pk
b¼1sslðdjbÞ � bbg ðmod qÞ, for j =

1, . . . ,k. This message is encrypted with DHKgl.
Each (Ml) also responds with the shuffled par-
tial share of matrix D, pssg

lðDÞ, such that
pssg

lðDÞ ¼ ½pssg
lðdijÞ� ¼ ½sslðdijÞ � llðidgÞ� ðmod qÞ

for i, j = 1, . . . ,k. This message is also encrypted
using DHKgl. Note that the Lagrange coefficients
ll(idg) are publicly known, and therefore, Mg can
derive ssl(dij) from pssg

lðdijÞ. This can be pre-
vented using the shuffling technique proposed in
[12] by adding extra random value Rij to each
share. These Rij’s are secret values and must
sum up to zero by construction. They must be
securely shared among the t sponsoring nodes.

5. Mg decrypts the messages it receives from the dif-
ferent nodes and calculates his own rg(A) by add-
ing up all ssl(rg(A))’s as follows: rgðAÞ ¼

Pt
l¼1ssl

ðrgðAÞÞ � llð0Þ ¼ ½
Pt

l¼1sslðrgðagjÞÞ� llð0Þ� ðmod qÞ
for j ¼ 1; . . . ; k. Mg also calculates his own share
of the matrix D, ssg(D), by adding up the partial
share values such that ssgðDÞ ¼

Pt
l¼1pssg

lðDÞ ¼
½
Pt

l¼1pssg
lðdijÞ� ðmod qÞ for i, j = 1, . . . ,k.
5.3. Robustness via verifiability and traceability

At the end of the admission protocol, the joining
node Mg obtains its rg(A) and ssg(D) from the quo-
rum of t member nodes. Before using rg(A) and
ssg(D) for key computation or future admission,
the node must verify if they are correctly computed
since there might be a malicious responder who par-
ticipated in this admission process and detect them
in the process. We therefore propose following
verifiability and traceability mechanisms.

5.3.1. Verifiability

The VSS technique presented in Section 3.1 will
be a useful tool for the verifiability. However, we
claim that the verifiability must be a very inexpen-
sive operation since it will be performed frequently
(whenever a node joins a network). The proposed
mechanism to verify the validity of rg(A) is as
follows:

1. When an existing member node Ml sends the

shares to the node Mg it also sends a well-known
message, such as ‘‘Welcome to network NID’’

encrypted with the pairwise key shared between

Ml and Mg (since the Ml knows the node identi-

fier idg, it can compute the pairwise key Klg). This

will be part of step (4) in Fig. 2.

2. After Mg reconstructs its systems secrets rg(A), it

can then try to decrypt one of the welcome mes-

sages received from the member nodes and verify
whether rg(A) is correctly computed.

Additionally, Mg must verify the validity of the
reconstructed secret share ssg(D). If ssg(D) is correct,
it can be used for future admission of other nodes.
One easy way for Mg to verify the validity of ssg(D)
is to try to use it to reconstruct its row of the matrix
A (i.e., rg(A)) as follows:

Let us say that rg(A) was computed from the
shares ssa(rg(A)), ssb(rg(A)), ssc(rg(A)) that it

received from Ma, Mb and Mc (for t = 3). Mg

can then compute r0gðAÞ from the shares ssa(rg(A)),
ssb(rg(A)) and ssg(rg(A)) (that can easily be com-

puted from ssg(D)). If r0gðAÞ is equal to rg(A) then

the share ssg(D) is correct – otherwise it must be

rejected.
5.3.2. Traceability

The verifiability procedures previously described
allow a node to verify the validity of the secret
(which is the row of the matrix A and a share of
the whole matrix D) that it reconstructed from t

shares. However, the above procedure cannot be
used to identify the bogus shares, in case the verifi-
cation procedure fails (i.e., detects that the recon-
structed secrets are invalid).

In this section, we present two different traceabil-
ity procedures. The first – external attack traceabil-

ity – traces external malicious nodes, i.e., malicious
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nodes that are not part of the MANET and just try
to attack the network by sending bogus shares to
new member. The second – internal attack traceabil-

ity – is useful to detect attacks coming from current
legitimate member nodes that either turn malicious
or get compromised.

Both procedures use the previously described VSS
technique in some innovative ways. Since the inter-
nal traceability procedure is quite costly, we recom-
mend to use the external attack traceability first
and use the internal attack traceability procedure
only if the first one turns out to be unsuccessful.

External attack traceability

With this procedure, a node Mg, instead of veri-
fying individual element of a share (row or matrix),
verifies the sum of the elements of the share. As a
result, instead of applying the VSS technique k or
k2 times, we only apply it once. This, of course,
improves performance considerably.

More specifically, Mg verifies the validity of the
share ssl(rg(A)) and pssg

lðDÞ using the VSS tech-
nique defined in Section 5.1, as follows:

Mg first computes rsslðrgðAÞÞ by summing up all

elements of ssl(rg(A)); i.e., rsslðrgðAÞÞ ¼
Pk

i¼1ssl

ðagiÞ ðmod qÞ. Since W ðaÞ
C ¼

Qk
i¼1

Qk
j¼1ðW

ðaÞ
ij Þ

bjg is
pre-computable, the validity of rsslðrgðAÞÞ can be veri-
fied by checking the following equality:

grsslðrgðAÞÞ9
Yt�1

a¼0

½W ðaÞ
C �

ida
l ðmod pÞ;

where W ðaÞ
C ¼

Yk

i¼1

Yk

j¼1

ðW ðaÞ
ij Þ

bjg ðmod pÞ:
Proof. Since sslðagiÞ ¼
Pk

j¼1sslðdijÞ � bjg, sslðdijÞ ¼
fdijðidlÞ ¼

Pt�1
a¼0d

ðaÞ
ij � ida

l ðmod qÞ, and W ðaÞ
C ¼

Qk
i¼1Qk

j¼1ðW
ðaÞ
ij Þ

bjg for a = 0, . . . , t � 1,

grsslðrgðAÞÞ ¼
Yt�1

a¼0

½W ðaÞ
C �

ida
l

¼
Yt�1

a¼0

Yk

i¼1

Yk

j¼1

ðW ðaÞ
ij Þ

bjg

" #ida
l

¼
Yt�1

a¼0

Yk

i¼1

Yk

j¼1

ðgdðaÞij Þbjg

" #ida
l

¼ g

Pt�1

a¼0

Pk
i¼1

Pk

j¼1

dðaÞij �bjgð Þ�ida
l

¼ g

Pk

i¼1

Pk
j¼1

Pt�1

a¼0

dðaÞij �id
a
l

� �
�bjg

¼ g

Pk

i¼1

Pk
j¼1

sslðdijÞ�bjg

¼ g

Pk

i¼1

sslðagiÞ
ðmod pÞ: �

Similarly, given the precomputed W ðaÞ
D ¼

Qk
i¼1Qk

j¼1W ðaÞ
ij , a node can verify the validity of a partial

of the matrix D, pssg
lðDÞ, after computing rpssg

lðDÞ ¼Pk
i¼1

Pk
j¼1pssg

lðdijÞ ðmod qÞ, as follows:

g
rpssglðDÞ9

Yt�1

a¼0

½W ðaÞ
D �

ida
l�llðidgÞ ðmod pÞ;

where W ðaÞ
D ¼

Yk

i¼1

Yk

j¼1

W ðaÞ
ij ðmod pÞ:
Proof. Since pssg
lðdijÞ ¼ sslðdijÞ � llðidgÞ, sslðdijÞ ¼

fdijðidlÞ ¼
Pt�1

a¼0d
ðaÞ
ij � ida

l ðmod qÞ, and W ðaÞ
D ¼

Qk
i¼1Qk

j¼1W ðaÞ
ij for a = 0, . . . , t � 1,

g
rpssglðDÞ ¼

Yt�1

a¼0

½W ðaÞ
D �

ida
l �llðidgÞ

¼
Yt�1

a¼0

Yk

i¼1

Yk

j¼1

W ðaÞ
ij

" #ida
l �llðidgÞ

¼
"

g

Pt�1

a¼0

Pk
i¼1

Pk
j¼1

dðaÞij

#ida
l �llðidgÞ

¼ g

Pk

i¼1

Pk
j¼1

Pt�1

a¼0

dðaÞij �id
a
l

� �
�llðidgÞ

¼ g

Pk

i¼1

Pk
j¼1

sslðdijÞllðidgÞ

¼ g

Pk

i¼1

Pk
j¼1

pssg
lðdijÞ

ðmod pÞ: �

If the above verification fails, Mg concludes that
Ml is not a legitimate member node. Otherwise, the
malicious node is a group member and thus the fol-
lowing procedure must be used.
Internal attack traceability

If a malicious insider (Mm), who has valid ssm(D),
modifies a value in ssm(D) so that the sum of ssm(D)
remains unchanged (say, ss0mðDÞ such that

Pk
i¼1

Pk
j¼1

ss0mðdijÞ ¼
Pk

i¼1

Pk
j¼1ssmðdijÞ), the external attack

traceability procedure does not work. In order
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to protect against such an internal attack, VSS must
be applied individually to each of elements
of pssl(rg(A)) and/or ssg

lðDÞ. Since W ðaÞ
I ¼

Qk
i¼1

ðW ðaÞ
ij Þ

bjg is pre-computable, internal traceability is
provided by checking that

gsslðagiÞ ¼
Yt�1

a¼0

½W ðaÞ
I �

ida
l and

gpssg
lðdijÞ ¼

Yt�1

a¼0

½W ðaÞ
ij �

ida
lllðidgÞ ðmod pÞ

where W ðaÞ
I ¼

Yk

i¼1

ðW ðaÞ
ij Þ

bjg ðmod pÞ; i; j 2 ½1; k�:

Obviously, these tracing mechanisms for an inter-
nal attack are more expensive than the external ones.
However, we argue that tracing is an infrequent phe-
nomenon, as an attacker knows that if it performs an
internal attack, it will be detected in the process.

5.4. Secret key computation

When a node, Mi, reconstructs its private row of
matrix A, ri(A) = [ai1, . . . ,aik], he can compute a
secret key, Ki j, with any other node, Mj, of the net-
work as follows:

Since aij ¼
Pk

a¼1dja � bai and dij = dji,

Kij ¼
Xk

b¼1

aibbbj ¼
Xk

b¼1

Xk

a¼1

dbabaibbj

¼
Xk

a¼1

Xk

b¼1

dabbbjbai ¼
Xk

a¼1

ajabai ¼ Kji:

Note that these keys do not have to be computed
in advance but can be computed on-the-fly. The
security of this key establishment procedure is
unconditional, i.e, it is not based on any security
assumption. Refer to [3] for the security arguments.

6. PSK: polynomial based self-keying

The various steps of the PSK scheme, which is
based on polynomial secret sharing, are described
in following subsections.

6.1. Bootstrapping

Centralized bootstrapping. The centralized boot-
strapping works exactly as described in Section 3.1.

Distributed bootstrapping. A group of t or more
founding members employ JSS [22] to collectively
compute shares corresponding to Shamir secret
sharing of a random value.
6.2. Member admission

In order to join the network, a prospective node
Mg must collect at least t partial shares from exist-
ing nodes to be able to compute its secret share.
Fig. 3 shows the protocol message flow for the
member admission process.

1–3. Steps 1–3 are exactly the same as in the MSK

admission protocol described in Section 5.2.
4. Each sponsoring node (Ml) on receiving msg3,

computes the secret key DHKgl and replies
with the shuffled partial share [12], pssl(g),
such that pssl(g) = ssl Æ ll(idg) (mod q). This
message is encrypted using DHKgl.

5. Mg decrypts the messages it receives from the
different nodes and calculates his own secret
share ssg, by adding up the partial share
values such that ssg ¼

Pt
l¼1psslðgÞ.
6.3. Robustness via verifiability and traceability

Mg can easily validate the acquired secret share
by checking if gssg ¼

Qt�1
k¼0ðW kÞid

k
g ðmod pÞ from the

public commitment values. In case this verification
fails, Mg can trace the node(s) which sent the fake
shares by checking the validity of each of pssl(g)
values. This can achieved by verifying if gpsslðgÞ ¼
½
Qt�1

k¼0ðW kÞid
k
l �llðidgÞ ðmod pÞ.

6.4. Secret key computation

Any pair of nodes Mi and Mj can establish
shared keys using their respective secret shares ssi,
ssj and the public VSS information as described in
Section 3.1. Mi computes gssj ¼

Qt�1
k¼0ðW kÞid

k
j

ðmod pÞ from the public commitment values, and
exponentiate it to its own share ssi to get a key
Kij ¼ ðgssjÞssi ðmod pÞ. Similarly, Mj computes
gssi ¼

Qt�1
k¼0ðW kÞid

k
i ðmod pÞ and exponentiate it to

its own share ssj to get a key Kji ¼ ðgssiÞssj

ðmod pÞ. Since, Kij = Kji = K, Mi and Mj have a
shared secret and they can use H(K) as a symmetric
key (where H( ) is a hash function such as MD5 or
SHA-1) to secure their subsequent communication.

Note that the above key establishment mecha-
nism is different from standard Diffie-Hellman key
exchange protocol. In the latter, the secret expo-
nents used by the parties are independently gener-
ated, while in the former, the secret exponents (or
the secret shares) are related by being points on a
polynomial and any set of t of these exponents
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determine the rest. It is not obvious whether such a
usage of related exponents in the key establishment
remains secure.

We show, in the theorem to follow, that indeed
the proposed key establishment procedure using
related exponents remains secure. Basically, we
show that our scheme remains secure under the
Computational Diffie-Hellman (CDH) assumption3

in the random oracle model (ROM) [1]. In other
words, an adversary who corrupts atmost t � 1
nodes, cannot distinguish a key KIJ for some uncor-
rupted user pair (MI,MJ) from random even if he
learns all other session keys Kij for (i, j) 5 (I,J), as
long as the CDH assumption holds and when hash
function is modeled as an ideal random oracle. This
is the standard notion for the security of a key
establishment protocol and is adopted from [4].

Theorem 1 (security of PSK secret key computa-
tion). Under the CDH Assumption in ROM, there

exists no probabilistic polynomial time adversary A,
which on inputs of secret keys of t corrupted users,

and shared keys Kij between every user pair except

KIJ {(i, j) 5 (I, J)}, is able to distinguish with a non-

negligible probability KIJ from a random value.

Proof. We prove the above claim by contradiction,
i.e, we prove that if a polynomial time adversarial
algorithm A, which on inputs of secret keys of t cor-
rupted users, and shared keys Kij between every user
pair except KIJ {(i, j) 5 (I,J)}, is able to distinguish
with a non-negligible probability KIJ from a random
value, then there exists a polynomial time algorithm
B, which is able to break the CDH assumption in
the random oracle model.

In order to construct the algorithm B which
breaks the CDH assumption, we first construct a
polynomial time algorithm C, which breaks the
Square Computational Diffie-Hellman (SCDH)4
3 CDH assumption: In a cyclic group generated by g 2 Z�p of
order q, for a; b 2 Z�q, given (g,ga (mod p),gb (mod p)), it is hard
to compute gab (mod p).

4 SCDH assumption: In a cyclic group generated by g 2 Z�p of
order q, for a 2 Z�q, given (g,ga (mod p)), it is hard to compute
ga2 ðmod pÞ.
assumption. The algorithm C runs on input of an
SCDH instance y = gx (mod p), and would translate
the adversarial algorithm A into outputting
gx2 ðmod pÞ.

Without loss of generality, we first assume that
the adversary A corrupts t � 1 players denoted by
M1,M2, . . . ,Mt�1. Now, the algorithm C runs as
follows:

As in the simulation of Feldman’s VSS, C picks
x1,x2, . . . ,xt�1 values corresponding to the secret
keys of corrupted users, uniformly at random from
Zq. It then sets xi = F(idi), and employs appropriate
Lagrange interpolation coefficients in the exponent
to compute the public witnesses gA1 ; . . . ; gAt�1

ðmod pÞ, where F(z) = x + A1z + � � � + At�1zt�1

(mod q).
Corresponding to the shared keys Kij between

every user pair, C picks a random value Rij, and
runs the algorithm A on x1, . . . ,xt�1 and Ri,j values.
Note that the values x1, . . . ,xt�1 and the witnesses
have an identical distribution to an actual run of the
Feldman’s secret sharing protocol, and therefore A
cannot see the difference between C’s inputs and
actual protocol run. Also, since the Kij values for
(i, j) 5 (I,J) are obtained by hashing gxixj , the only
way A can tell the difference, except with negligible
probability, between Ki,j and Ri,j for (i, j) 5 (I,J), is
by querying the random oracle on at least one
appropriate gxixj value. If A does tell the difference,
then C records R ¼ gxixj , and use the following
equations to compute gx2

,

x ¼
Xt�1

k¼1

xkli
k þ xil

i
i ðmod qÞ;

x ¼
Xt�1

k¼1

xklj
k þ xjl

j
j ðmod qÞ

(li
k denotes the Lagrange coefficient lG

k ð0Þ, where
G = {1, . . . , t � 1, i}).

Multiplying above two equations, we get

x2 ¼
Xt�1

k¼1

xkli
k

 ! Xt�1

k¼1

xklj
k

 !
þ xixjl

i
il

j
j ðmod qÞ:
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This implies,

gx2 ¼ g

Pt�1

k¼1

xk li
k

� � Pt�1

k¼1

xklj
k

� �
Rli

il
j
j ðmod pÞ:

If A does not tell the difference between Ki,j and
Ri,j for (i, j) 5 (I,J), then it must tell the difference
between KI,J and RI,J. However, as above, this is
only possible, except with negligible probability, if
A queries gxI xJ to the random oracle. Them C
records this value (say K) and computes gx2

similarly
as above, using the following equation:

gx2 ¼ g

Pt�1

k¼1

xk lI
k

� � Pt�1

k¼1

xklJ
k

� �
KlI

I lJ
J ðmod pÞ:

Now, we will use C to construct B to break a
CDH instance (gu,gv). This is very simple as out-
lined in [16]: B runs C on input gu, then on gv,
and finally on gu+v = gugv, and receives gu2

; gv2
;

gðuþvÞ2 , respectively. Now, since (u + v)2 = u2 +
v2 + 2uv (mod q), B can easily compute guv from
the outputs of C.

Clearly, Pr(B) = Pr(C)3, where Pr(B), Pr(C),
denote the probabilities of success of B and C
respectively. h
7. Discussion

7.1. Identifier configuration

In the MSK and PSK schemes, the identifier idi

of each node Mi must be unique and verifiable.
Otherwise, a malicious node could use the identifier
of some other node and get its secret from the mem-
ber nodes during the admission process.

For unique and unforgeable id assignment, we
propose to use a solution based on Crypto-Based

ID (CBID) [18]: The idi is chosen by the node itself
from an ephemeral public/private key pair. More
specifically, the node computes idi as follows: idi =
H64(yijNID), where yi is Mi’s temporary DH public
key in our schemes, NID is the network identifier
and H64(Æ) a 64-bit long hash function. When a node
contacts the member nodes for admission, it sends
its identifier idi together with its ephemeral public
key yi and signs a challenge sent by the member
node. Upon reception of the signature, the member
node can verify that the idi actually belongs to the
requesting node (by verifying the signature and that
the idi) was generated as H64(yijNID). Note that the
yi does not need to be certified and therefore no PKI
is required. The identifier is verifiable because a node
that does not know the private key, associated with
the public key used to generate an id, cannot claim
to own it. Furthermore since id is computed from a
hash function, collision probability between two
nodes is very low. As a result, the identifier are
statistically unique. Note that this solution requires
that N = 264. However, as we will see this has no
effect on the performance or scalability of our
proposal.

7.2. Secure channel establishment

In the proposed admission protocols, the chan-
nels between the node requesting admission and
each of the member nodes must be authenticated
and encrypted. It has to be authenticated because
each member node must be sure that it is sending
the shares to the correct node (i.e., the node that
claims to own the identifier). Otherwise, the member
node could send the shares to an impersonating
node. Similarly, the joining node also needs to
authenticate the member nodes. The channel has to
be private because otherwise a malicious node that
eavesdrops on the shares sent to a node could recon-
struct the node’s secret and impersonate it.

Establishing an authenticated and private chan-
nel usually requires the use of certificates, which
bind identities to public keys, and an access to a
PKI. However, PKI is not always available in
MANET environments. Fortunately in our case,
what is really needed is a way to bind an identifier
to a public key, where the identifier is a number that
identifies one row of the matrix A. This binding is
actually provided by CBID, described previously.
As a result, certificates and PKI are not required.
Therefore, the public keys (yi’s) that are sent in mes-
sage 1 and 2 of the protocols described in Sections
5.2 and 6.2 do not need to be certified.

7.3. Parameters selection

The security of the MSK scheme relies on two
security parameters t and k, whereas the PSK

scheme depends only on t. k and t denote the num-
ber of collusions needed to break these schemes.
These parameters should be selected carefully. In
particular, it is suggested to set k = t. However,
more generally, k should be at least t in the hierar-
chical MANET settings where only a subset of
nodes possesses the ability to admit new nodes.
For the evaluation of our schemes (as described in
the next section) we set k P t.



5 It has been shown that sending one bit of data is roughly
equivalent to adding 1000 32-bit numbers [19].
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8. Performance evaluation

We implemented both MSK and PSK protocols
and evaluated them in a real MANET environment
in terms of node admission and pairwise key com-
putation costs.

8.1. Experimental setup

The MSK and PSK protocol suites are imple-
mented on top of the OpenSSL library [20]. They
are written in C for Linux, and consists of about
10,000 lines of code for each. The source code is
available at [23].

For the experimental setup, we used a total of five
laptops; four laptops with a Pentium-3 800 MHz
CPU and 256MB memory and one laptop with a
Mobile Pentium 1.8 GHz CPU and 512MB memory.
Each device ran Linux 2.4 and was equipped with a
802.11b wireless card configured in ad-hoc mode.
Specifically, for measuring the admission cost, four
laptops with same computing power were used to
configure the existing member nodes and the high-
end laptop was used for the joining node. In our
experiments, each node (except the joining node)
was emulated by a daemon and each machine was
running up to three daemons. The measurements
were performed with the different threshold values
t and k for MSK. The size of the parameters q was
set to 160 bits and p to 512 or 1024 bits.

8.2. Admission cost

To evaluate the admission cost, we measured the
total processing time between the sending of the
JOIN_REQ by the prospective node and the receiv-
ing (plus verification) of acquired credentials (i.e.,
rg(A) and ssg(D) in MSK and ssg in PSK). The
resulting measurements include the average compu-
tation time of the basic operations, the communica-
tion costs such as packet encoding and decoding
time, the network delay, and so on.

Fig. 4 shows the average admission time for the
joining node for different values of the threshold t.
For the MSK testing, k was set to 3, 5, 7 and 9.
(In the figure, k is denoted by L.)

As observed from the graphs, the cost for a node
to join the network with PSK is cheaper than that of
MSK. This difference in the costs between MSK and
PSK is even higher for higher threshold values. The
reason is quite intuitive: MSK requires more compu-
tation and bandwidth than PSK. More specifically,
the MSK scheme requires O(k2t) multiplications

and O(k2) exponentiations whereas PSK requires
only O(t2) multiplications and O(1) exponentiations.
For the bandwidth costs, refer to Table 1.

This table shows that the PSK scheme is very effi-
cient in terms of bandwidth. This is an important
property for MANET systems which consist of bat-
tery-operated devices, because wireless transmission
is considered as the most energy consuming
operation.5

8.3. Traceability cost

As described in Sections 5.3 and 6.3, the trace-
ability procedures are used to identify the cheating
or misbehaving nodes during the admission proto-
cols. This section evaluates the performance of these
procedures.

Fig. 5 displays the cost of both the internal and
external attack traceability procedures. As for the
external attack traceability, denoted as MSK_EXT,
the cost is slightly expensive than PSK since some
expensive operations are pre-computable in the lat-
ter. In details, the computation complexity for both
MSK_EXT and PSK is the same; i.e., O(t). The cost
of the internal traceability procedure with MSK,
denoted as MSK_INT, depends on the value of k
as well as t. As a result, this cost increases when k
gets larger. The complexity of the MSK internal
attack traceability procedure is O(k2t) exponentia-
tions with modulus p. However, we expect these
procedures to be executed very infrequently only
when the external traceability fails.

8.4. Key computation cost

Table 2 compares the cost of computing a pair-
wise key in our schemes. The results show that
MSK performs significantly better than a PSK pro-
tocol. The achieved gains with k = 9 range from 10
(t = 1) to 13 (t = 9), and from 305 to 307 for 512-bit
and 1024-bit p, respectively. In other words, MSK is
10–307 times faster than PSK when establishing a
shared secret key.

These results were actually expected because in
MSK the pairwise computation requires only O(k)
modular multiplications where the modulus size is
160 bits. In contrast, PSK requires O(t) expensive
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Table 1
Bandwidth comparison

MSK PSK

Admission O(ktjqj) + O(k2jqj) O(tjqj)
Shuffling O(k2t2jqj) O(t2jqj)

Table 2
Key computation cost (in ms, P4-3.0 GHz, 1 GB memory)

t MSK (k P t) PSK

k = 3 k = 5 k = 7 k = 9 jpj = 512 jpj = 1024

1 0.0371 0.0301 0.0430 0.0550 0.574 17.780
2 0.0398 0.0415 0.0506 0.0570 0.683 18.150
3 0.0436 0.0424 0.0568 0.0564 0.713 18.180
4 – 0.0365 0.0595 0.0655 0.663 18.220
5 – 0.0431 0.0565 0.0629 0.753 18.370
6 – – 0.0628 0.0563 0.772 18.450
7 – – 0.0562 0.0629 0.782 18.570
8 – – – 0.0644 0.851 18.540
9 – – – 0.0637 0.871 19.120
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modular exponentiations with a modulus size of 512
or 1024 bits.

9. Conclusion

We presented distributed solutions to the key pre-
distribution problem in MANETs. Our self-keying
solutions, MSK and PSK, are based on the secret
sharing techniques and are secure against collusive
attacks by a certain threshold of nodes. The solu-
tions allow any pair of nodes in the network to estab-
lish shared keys without communication, as opposed
to the standard Diffie-Hellman key exchange proto-
cols. We implemented the MSK and PSK schemes
and evaluated them in real MANET setting. Our
analysis show that MSK fares better than PSK as
far as the pairwise key establishment costs are con-
cerned. However, in terms of the node admission
costs, the latter outperforms the former. Based on
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this analysis, we conclude that the MSK scheme is
well-suited for MANET applications where node
admission is not a frequent operation, whereas the
PSK scheme is more applicable for highly dynamic
MANETs consisting of mobile devices with reason-
ably high computation power.
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