
The Pollution Attack in P2P Live Video Streaming:
Measurement Results and Defenses

Prithula Dhungel, Xiaojun Hei, Keith W. Ross, and Nitesh Saxena
Department of Computer and Information Science
Polytechnic University, Brooklyn, NY, USA 11201

pdhung01@utopia.poly.edu, {heixj,ross,nsaxena}@poly.edu

ABSTRACT
P2P mesh-pull live video streaming applications – such as Cool-
Streaming, PPLive, and PPStream – have become popular in the
recent years. In this paper, we examine the stream pollution attack,
for which the attacker mixes polluted chunks into the P2P distribu-
tion, degrading the quality of the rendered media at the receivers.
Polluted chunks received by an unsuspecting peer not only effect
that single peer, but since the peer also forwards chunks to other
peers, and those peers in turn forward chunks to more peers, the
polluted content can potentially spread through much of the P2P
network. The contribution of this paper is twofold. First, by way
of experimenting and measuring a popular P2P live video stream-
ing system, we show that the pollution attack can be devastating.
Second, we evaluate the applicability of four possible defenses to
the pollution attack: blacklisting, traffic encryption, hash verifica-
tion, and chunk signing. Among these, we conclude that the chunk
signing solutions are most suitable.

1. INTRODUCTION
P2P live video streaming leverages the upload bandwidth capac-

ity of peers for the distribution of video/audio content. Unlike tra-
ditional client-server based systems, peers forward content to other
peers in the network. Various techniques have been used for im-
plementing P2P live video streaming systems. The most popular
P2P live video streaming applications today, such as PPLive [1]
and PPStream, use the data-driven mesh-pull technique [6]. The
idea is similar to that used in BitTorrent file sharing systems. Each
video stream is divided, at the source of the stream, into chunks. A
peer makes partnerships with a subset of other peers in the network
watching the same video stream. Each participating peer period-
ically sends to its neighbors “buffer maps,” which indicate which
chunks it has available for sharing. In order to watch a particu-
lar stream, a peer actively requests chunks from its partners based
on the buffer maps of the partners. Meanwhile, it also forwards
requested chunks to its neighbors.

The distributed P2P architecture of such systems makes them
prone to various security threats. One potentially devastating threat
is stream pollution. In this attack, the attacker mixes into the stream

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
P2P-TV’07, August 31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-789-6/07/0008 ...$5.00.

bogus chunks, which degrade the quality of the rendered media at
the receivers.

A similar type of attack has already been deployed on a large
scale in P2P file sharing systems [9, 11]. In file sharing, the at-
tacker corrupts the targeted content (for example, with white noise
or with warnings about copyright violations), rendering the content
unusable, and then makes this polluted content available for sharing
from one or more peers. Unable to distinguish polluted files from
unpolluted files, unsuspecting users download the polluted files into
their own file sharing folders, from which other users may then
download the polluted files. In this manner, polluted files spread
through the file sharing system.

In a P2P live video streaming system also, a polluter can intro-
duce corrupted chunks. Specifically, an attacker can join an on-
going video channel and establish partnerships with other peers
watching the channel. The attacker can then advertise to its partners
that it has a large number of chunks for the ongoing video stream.
When the neighbors request advertised chunks, the attacker sends
bogus polluted chunks instead of legitimate chunks. Each receiver
integrates into its playback stream the polluted chunks it receives
from the attacker along with other chunks it receives from its other
neighbors. The polluted chunks degrade the quality of the rendered
video at the receiver.

Importantly, polluted chunks received by an unsuspecting peer
not only effect that single peer, but since the peer also forwards
chunks to other peers, and those peers in turn forward chunks to
more peers, and so on, the polluted content can potentially spread
through much of the P2P network. If the amount of polluted data is
significant, users might eventually get frustrated and entirely stop
using the system.

Polluters are expected to have different motivations, depending
on the video content. If a content source distributes non-authorized
copyrighted content, the owner of the copyrighted content may hire
a “pollution company” to pollute the ongoing video stream, simi-
lar to what has been observed in file sharing. If two channels are
competing with each other, one channel may attempt to pollute the
stream of the other channel. If an individual disagrees with a chan-
nel’s political message, that individual may be motivated to pollute
the channel’s video stream. And there can always be amateur hack-
ers who attempt to disrupt channels just for fun. For P2P live video
streaming, we anticipate a variety of motivations that go well be-
yond copyright issues.

The paper [4] provides a scheme to prevent jamming attacks
caused due to the introduction of corrupted blocks in architectures
that use network coding. There has also been some recent work
on security aspects of streaming systems [3, 5, 14], however, none
on pollution attacks in P2P live video streaming, to the best of our
knowledge. The contribution of this paper is twofold. First, by way

of experimenting and measuring a popular P2P live video stream-
ing system, we show that the pollution attack can be devastating.
In our experiment, before launching the attack in Brooklyn, a par-
ticular channel had about 3300+ viewers before the attack; during
the attack the number of viewers dropped to about 500 quickly,
indicating that video quality became unacceptable for a large ma-
jority of peers. We also observed that for a peer in Hong Kong,
located geographically far from the attacking peer, a large fraction
of its downloaded and uploaded chunks were polluted. The sec-
ond contribution of this paper is a survey of four different classes
of defenses to the pollution attack: blacklisting, traffic encryption,
hash verification, and chunk signing. Among these, we conclude
that chunk signing should be an effective defense.

2. POLLUTION EXPERIMENT
In this section, we present the results of a pollution experiment

that we conducted on a popular P2P live video streaming system
called PPLive. We demonstrate the feasibility of launching a pol-
lution attack and analyze the severity of the attack. For the ex-
periment, we instrumented our own customized PPLive client that
aggressively advertises video chunks, and in response to requests
for advertised chunks, sends polluted chunks. We demonstrate that
even a single malicious peer, equipped with a high bandwidth net-
work access, is able to inject a large number of polluted chunks.
The experimental results also verify that PPLive peers naively for-
ward polluted chunks to one or more other peers. If these peers
also have high bandwidth network access, the pollution in a stream-
ing network propagates to a high level quickly. To the best of our
knowledge, none of the P2P live video streaming systems available
in the market employs any kind of defense against such an attack.
Therefore, our pollution results for PPLive can most likely be du-
plicated for other live streaming systems (such as PPStream and
CoolStreaming).

2.1 Experiment Setup
Figure 1 depicts our pollution experiment. For this experiment,

we selected a popular channel with a chunk size of 7220 bytes and a
playback bit rate 342 kbps as the target channel. We monitored two
normal PPLive peers, capturing their incoming and outgoing traf-
fic. These two peers, labelled as “Brooklyn peer,” and “Hong Kong
peer” are equipped with Ethernet network access. The Brooklyn
peer is located in the Ethernet domain at Polytechnic University,
New York. The Hong Kong peer is located in Hong Kong. The
instrumented polluter is located in the same Ethernet domain as the
Brooklyn peer. This polluter implements the PPLive protocol for
joining a channel and exchanging buffer maps and video chunks
with one target peer. While doing the pollution experiments, we
also ran our PPLive crawler, which tracks the number of peers ac-
tive in the channel [6].

2.2 Experiment Results
In our experiments, the polluter only sends polluted chunks to

the Brooklyn peer. First, the polluter establishes peer partnership
with the Brooklyn peer; it then advertises that it has a large number
of video chunks for the channel. As a result, the Brooklyn peer
starts to request chunks from the polluter. Since the polluter has
a high upload rate, the Brooklyn peer finds that it can download
video chunks from the polluter with a very high network through-
put. We found that after an initial transient stage, the Brooklyn
peer downloads almost all video chunks from the polluter. It also
uploads these polluted chunks to other peers in the network.

The pollution propagation amplified the pollution level signif-
icantly in the network and severely impacted the service of the

Hong Kong
Peer

P2P network

Brooklyn
Peer

Polluter

Peer

Peer Peer

Peer

Peer

Figure 1: PPLive pollution experiment setup

channel. This can be observed from the sharp decrement in the
number of peers for the channel after the polluter started at time
t = 34 minutes, as shown in Figure 2. Figure 2 also shows that
for the same channel, when the system was pollution free on some
other day, during the same time period of the day, the peer number
remained quite steady.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 30 40 50 60 70 80 90 100

21:00 21:15 21:30 21:45 22:00 22:15

of
 p

ee
rs

Time (min)

Hour (GMT-8)

start

attack day
ordinary day

Figure 2: Number of peers viewing channel over experiment
periods

Each polluted chunk that the polluter uploads to the Brooklyn
peer has the same binary content that we prepared before the ex-
periment. Therefore, using byte-by-byte comparison with the orig-
inally prepared binary content, we can distinguish polluted chunks
from other clean chunks in the traces for both Brooklyn and Hong
Kong peers. In the remaining part of this section, we describe re-
sults in terms of the numbers of polluted chunks observed.

In Figure 3, we plot the chunk download rate and upload rate
of the Brooklyn peer, which is the initial pollution target. These
video chunks are divided into polluted chunks and normal chunks.
Before launching the pollution attack at t = 34 minutes, the chunk
download rate is 5.92 chunk/sec, matching the video playback bit
rate 5.92 × 7220 × 8 = 342 kbps. In addition, all the down-
loaded chunks are clean chunks. After the pollution is launched, the
Brooklyn peer receives most of the video chunks from the polluter.
Only sporadically, the Brooklyn peer downloads clean chunks from
other peers. It also starts to upload these polluted chunks to multi-
ple other PPLive peers.

The Hong Kong peer is far away from and is not in the peer lists

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

C
hu

nk
 r

at
e

(c
hu

nk
/s

ec
)

Time (min)

polluted chunk download
clean chunk download

(a) Download

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

C
hu

nk
 r

at
e

(c
hu

nk
/s

ec
)

Time (min)

polluted chunk upload
clean chunk upload

(b) Upload

Figure 3: Clean and polluted chunks to/from Brooklyn peer

of the polluter and the Brooklyn peer; however, we find that the
polluted chunks propagate quickly and impact it significantly. In
Figure 4, we plot the chunk download rate and upload rate of the
Hong Kong peer. Similar to the Brooklyn peer, it sustains a steady
download bit rate before pollution starts; however, after the pollu-
tion starts at around t = 34 minutes, it starts to download a signif-
icant amount of polluted chunks. Unlike the Brooklyn peer, which
receives polluted chunks from the polluter directly, the Hong Kong
peer still manages to receive observable portion of clean chunks. It
also uploads polluted chunks to other peers, acting as a pollution
redistributor.

To examine the pollution redistribution done by a node with
high-bandwidth network access, we plot the number of partners
with which the Hong Kong peer exchanges video chunks, over each
30-second period. Figure 5(a) depicts the number of neighbors that
provided at least one polluted chunk, and the number that provided
at least one clean chunk. As shown in Figure 5(a), before the pol-
lution attack, the Hong Kong peer downloads clean video chunks
from around 30 peers. After the pollution attack starts at t = 34
minutes, it is affected quickly in that it downloads polluted chunks
from around 20 peers. Nevertheless, it still downloads some clean
chunks since it is only polluted indirectly by the polluter. This high
polluted-peer/clean-peer ratio indicates that the pollution level of
the system has reached at a significant level. The pollution ampli-
fication is more clearly demonstrated in the upload of the polluted
chunks by the Hong Kong peer. As shown in Figure 5(b), after the
attack is launched, it uploads polluted chunks to around 30 peers;
however, it only uploads clear chunks to less than 10 peers. In sum-
mary, the Hong Kong peer (which is a high bandwidth peer that is
not being manipulated by us) provides more damage than contribu-
tion to the streaming system.

3. POLLUTION DEFENSE MECHANISMS

3.1 Blacklisting
In the blacklisting approach, we attempt to determine - in a cen-

tralized or decentralized manner - the peers that originate and relay
pollution. All such peers are put onto a blacklist. Peers neither send
chunks to nor receive chunks from peers on the blacklist.

This general approach was taken in [10] for P2P file sharing sys-

tems. For P2P file sharing, it was observed that the attackers often
advertise inordinate numbers of files. Peers can thus individually
count advertisements from IP prefixes and assign reputations to the
prefixes accordingly. As part of a distributed reputation system [7],
the peers then share the reputations with each other and update the
reputations of the IP prefixes. Finally, each peer creates a black-
list based on the reputations it has of the other peers. In a similar
manner, for P2P streaming, we can blacklist peers that advertise
an unusually large number of chunks, as these peers are apparently
trying to attract downloaders. However, an attacker could easily
circumvent such a defense by being less aggressive in its chunk ad-
vertisements. Furthermore, peers that relay pollution are not likely
to exhibit unusual advertising behavior.

An alternative approach is for each peer to attempt to determine
whether a chunk is polluted. If a chunk is determined polluted,
then the peer that sent the chunk can be assigned a low reputa-
tion value. Again, the reputations can be shared and a distributed
blacklist can be created. The critical step in this approach is ac-
curately determining whether a chunk is polluted or not. In P2P
live video streaming, a receiver typically obtains chunks from more
than one peer. Therefore, by comparing characteristics of the re-
ceived chunks, one might be able to distinguish between the fake
and the legitimate copies. Video and audio processing techniques
can possibly be used to detect polluted chunks. However, an at-
tacker should be able to circumvent such an approach by creating
chunks that resemble neighboring chunks (in the stream of chunks)
but nevertheless significantly diminish the quality of the rendered
video. For example, the attacker could insert duplicate chunks into
the stream.

For file sharing systems, a large fraction of pollution can be re-
duced if users are careful enough not to forward polluted content
into the network. The same is true for P2P live streaming. This re-
quires the user to observe and manually indicate to the P2P stream-
ing client the presence of pollution (if any) in the stream being
played. All nodes that are sending data to the client at this time
could then be put on the list of candidate polluters/relayers. These
lists can form the basis of a distributed reputation system, from
which blacklists can be created. This approach requires active in-
volvement from all users. Moreover, for any P2P live distribution,
some users may be absent from their stations even though their sta-

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

C
hu

nk
 r

at
e

(c
hu

nk
/s

ec
)

Time (min)

polluted chunk download
clean chunk download

(a) Download

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

C
hu

nk
 r

at
e

(c
hu

nk
/s

ec
)

Time (min)

polluted chunk upload
clean chunk upload

(b) Upload

Figure 4: Clean and polluted chunks to/from Hong Kong peer

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70 80 90 100

of

 p
ar

tn
er

s

Time (min)

download polluted chunks
download clean chunks

(a) Download

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70 80 90 100

of

 p
ar

tn
er

s

Time (min)

upload polluted chunks
upload clean chunks

(b) Upload

Figure 5: Numbers of polluted and clean partners of Hong Kong peer

tions are actively participating in the distribution. In summary, it
is unlikely that any of these reputation/blacklisting approaches will
be able to consistently stop the pollution attack.

3.2 Traffic Encryption
One reason the current P2P video streaming systems are prone

to pollution attack is that all of these systems have their (control as
well as data) messages transmitted in clear text. To inject pollution
into a stream, the attacker needs to send the correct messages to the
other peers with the correct header and data format. This requires
the attacker to first sniff some traffic specific to the streaming sys-
tem and analyze the traffic to understand the protocol sequence and
message formats. If all the messages a system uses were encrypted,
it would be difficult for the attacker to determine the message struc-
ture in distributed application. This would prevent the attacker from
inserting crafted messages into system, such as message containing
polluted data. This idea is not completely new. Skype is an example
of a widely deployed P2P system that uses encryption techniques to
obfuscate its application specific traffic. Of course, this idea works

only if the system under consideration is not open source.
To achieve traffic encryption, any pair of communicating peers

need to establish a shared key with each other. Public-key based
key exchange protocols, such as Diffie-Hellman, can be used for
this purpose. However, in a dynamic P2P live video streaming en-
vironment, where a peer is typically connected with a number of
other peers, such a continuous key generation might not be feasi-
ble, especially on devices such as PDAs.

The main disadvantage of using traffic encryption as a means
to preventing pollution, however, is that it works well to protect
the privacy of the application protocol and message formats until
the system is subjected to a reverse engineering of the source. For
example, although the Kazaa/FastTrack protocol was proprietary
and encrypted, it was nevertheless reverse engineered (see [8]). If
the reverse engineering process is thorough enough, considerable
fraction of the system protocol and messages can be revealed, thus
facilitating the polluter to inject pollution into one or more streams.

3.3 Hash Verification
In BitTorrent, before a peer begins to download a file, it obtains

a torrent file which provides the hashes of all the chunks of the
file. When a peer receives chunks from other peers, it compares the
hashes of the chunks received with the corresponding hashes in the
torrent file to verify their integrity.

We now consider applying the same general technique for P2P
live video streaming. The simplest approach for this would be for
each receiver to get the hash of each chunk form the source itself.
As in BitTorrent, this would allow each peer to verify the integrity
of each chunk before forwarding it to other peers. However, the
load on the source will be very high for a large number of receivers.
The load on the source can be reduced by distributing the hashes
of the chunks through the P2P system itself. But this allows an
attacker to easily replace an original chunk from the source with a
fake chunk and replace the corresponding valid hash with a hash
for the fake chunk. When an unsuspecting peer receives the fake
chunk, it verifies the fake chunk with the fake hash, thus being
fooled into believing the integrity of the chunk. In summary, hash
version, as done in BitTorrent, is not a viable solution for P2P live
streaming.

3.4 Chunk Signing
In this section, we survey three techniques involving chunk sign-

ing and evaluate their applicability for detecting pollution in P2P
live video streaming systems, based on computational, bandwidth,
and delay overhead (note that delay is an important factor in the
context of a live video). Table 1 summarizes the overheads for each
of the techniques. In each technique, the so-called “authentication
information” needs to be transmitted to the receivers along with the
chunks. This authentication information can either be provided by
the source (in which case the load on the source might be high) or
could be distributed through the P2P system itself, in the form of a
separate stream or be piggybacked onto chunks.

3.4.1 “Sign-All” Approach
In the “Sign-All” approach, each chunk is individually signed by

the source, the signature (which is the authentication information)
is appended with the chunk and delivered to the receivers. The
receiver receives each chunk and its corresponding signature one
by one, verifies its integrity and plays back (and forwards) only if
the chunk is valid, otherwise rejects the chunk as being polluted.

This approach is fast in terms of playback, as it has a delay cor-
responding to the processing of only 1 packet at the source and the
receiving and processing of only 1 packet at the receiver . How-
ever, it incurs high computation overhead. For a stream consisting
of m chunks, the source needs to compute and the receiver needs
to verify m signatures.

For channels with high bit rates, the number of chunks gener-
ated per second can be very high. This means that the number of
times per second the signature and verification operations to be per-
formed can be equally high, leading to high computational require-
ments at the source and the receivers. Thus, we conclude that the
“Sign-All” approach is computationally very expensive, especially
for devices such as PDAs and smart phones.

3.4.2 Signature Amortization Approaches
For reducing the computational overhead incurred in “Sign-All”

scheme above, the “Signature Amortization” approaches of [15],
originally designed for IP multicast, can be used. In these ap-
proaches, the chunks are divided into blocks such that only one
signature operation per block is required. However, each chunk can
be individually verified. This is achieved, however, at the cost of a

slightly higher bandwidth overhead than the “Sign-All” approach.
Two different approaches that provide signature amortization that
have been discussed in [15] can be used. We summarize these next.

Star Chaining. In this approach, the source computes the hash of
the concatenation of the hashes of all chunks in the block, and signs
it to produce the block signature. The authentication information
consists of the block signature, chunk position in the block, and
the hashes of all other chunks in the block. On receipt of a chunk
in the block and the corresponding authentication information, the
receiver first creates the hash of the concatenation of the hashes of
all the chunks and verifies the signature against this hash.

For a block of n chunks, the source needs to perform n + 1 hash
operations and one signature operation. The receiver has to perform
a total of n + 1 hash operations and 1 signature verification. The
scheme incurs a delay overhead equivalent to the processing of n
chunks at the source and receiving and processing of 1 chunk at the
receivers. The total bandwidth overhead is equivalent to the size of
n(n− 1) hashes and n signatures.

Consider an example of a channel with a stream generation bit
rate of 372 kbps at the source. If the chunk size is 4000 bytes,
the number of chunks generated per second at the source is ap-
proximately 12. Using the star chaining approach, by grouping 32
chunks in a block, the source needs to perform 33 hash operations
and only one block signature operation, about every 3 seconds. Re-
ferring to the results of [2], on PDAs of moderate capabilities, for a
message of 2KB, each hash operation takes a fraction of a millisec-
ond, and a signature operation takes about 80 milliseconds. Hence,
the time taken for the source to perform the hashing and signing
operations for a single block is less than 100 milliseconds. This
indicates that the star chaining approach is computationally feasi-
ble even for devices with lower computational capabilities working
as video sources. Furthermore, since signature verification is much
faster than the generation, the computational overhead at the re-
ceiver is even lower. The total bandwidth overhead is equivalent to
around 20KB (around 16%), when using 128-bit MD5 hashing and
1024-bit RSA signing.

Merkle-Tree Chaining. This approach based on Merkle-Tree [13]
requires building an authentication tree at the source for each block.
The leaf nodes correspond to the hashes of the chunks in the block.
Other nodes are constructed as hashes of their children. The sig-
nature on the root node becomes the block signature. The authen-
tication information for each chunk is the block signature, chunk
position in the block, and the siblings of each node on the path
from the leaf node corresponding to the chunk to the root in the
authentication tree. On receiving a chunk in the block and the cor-
responding authentication information, the receiver first creates the
hash of the root node and then verifies the block signature against
this hash.

For a block of n chunks, the source needs to perform 2n − 1
hash operations and one signature operation. The receiver, on the
other hand, has to perform 2n− 1 hash operations and 1 signature
verification to authenticate a block. As in the star approach, the
delay overhead to authenticate a block in this scheme is equivalent
to the processing of n chunks at the source and receiving and pro-
cessing of 1 chunk at the receiver. The total bandwidth overhead,
on the other hand, is equivalent to the size of n log2 n hashes and
n signatures.

Using the example described above, for a block of 32 chunks, the
source and receiver need to perform 63 hash operations each and 1
signature and 1 verification operation, respectively, about every 3
seconds. This is almost twice the cost incurred in the star chaining
approach, however, is still computationally feasible for devices like

Table 1: Computational overhead, bandwidth overhead, and delay for various chunk signing approaches for a block containing n
chunks. |h| is size of hash output (bytes), |s| is size of signature (bytes)

Approach Computational Overhead Bandwidth Overhead Delay
Source Receiver Source Receiver

Sign All n signatures n verifications n|s| 1 1
Star Chaining (n + 1) hashes & 1 signature (n + 1) hashes & 1 verification n(|h|(n− 1) + |s|) n 1

Merkle Tree Chaining (2n− 1) hashes & 1 signature (2n− 1) hashes & 1 verification n(|h|log2n + |s|) n 1
Sign and Correct n hashes & 1 signature & 1 RS encoding βn hashes & constant number of verifications & 1 RS decoding n|h|/ρ n βn

PDAs. The bandwidth overhead is around 5% when using 128-
bit MD5 hashing and 1024-bit RSA signing. This implies that the
Merkle-Tree chaining approach is much more efficient than the star
chaining approach in terms of bandwidth.

3.4.3 “Sign-and-Correct” Approach
We now summarize a solution [12], which we call “Sign-and-

Correct” approach. Refer to [12] for details. The source first hashes
each chunk of the given block separately and signs the concate-
nation of all these hashes. The hashes and the signature together
(which is the authentication information) are then error corrected
using the Reed-Solomon (RS) error correcting code with the rate
ρ = α2

(1+ε)β
, where α denotes the survival rate (which means if a

block of n chunks is sent, the receiver obtains at least αn valid
chunks); β denotes the flood rate (which means if a block of n
chunks is sent, an attacker can not flood more than βn chunks); ε
denotes the tolerance of the RS decoder. The source then sends out
each chunk ci along with the error corrected information si. On
receipt of m chunks (αn ≤ m ≤ βn), the receiver can recon-
struct the authentication information using only αn valid chunks.
Using the authentication information, the validity of all chunks in
the block can be determined.

For a block consisting of n chunks, the source needs to perform
n hashes and 1 signature operation (in addition to RS encoding),
and the receiver needs to perform a constant number of signature
verification operations and n hashes in the best case and βn hashes
in the worst case (in addition to RS decoding). Since the RS en-
coding and decoding involve expensive multiplication and addition
operations over large fields, the computation overhead in this ap-
proach is higher than that in Merkle-Tree chaining.

The total bandwidth overhead is approximately equivalent to the
size of n/ρ hashes. This implies the bandwidth overhead for this
approach is less than that for Merkle-Tree chaining when n(h log2 n+
s) > nh/ρ (where h is hash size and s is signature length). For
the MD5-RSA combination, it is when log2 n + 8 > 1/ρ. Clearly,
for large values of n, the overhead for Sign-and-Correct approach
is much lower than the overhead incurred in Merkle-Tree chaining.
Using the same example as before, for a block of 32 chunks and for
α = 0.5, β = 1.5 and ε = 0.1, the bandwidth overhead comes out
to be around 3380 bytes (around 3%).

This solution incurs a delay corresponding to the processing of
n chunks at the source and receiving and processing of αn chunks,
in the best case, and βn in the worst case, at the receiver. In com-
parison to Merkle-Tree chaining, the delay at the receiver here is
slightly higher, however, it can be acceptable based on the type of
application.

4. CONCLUSION
In this paper, we considered the pollution attack for P2P live

video streaming systems. The contributions made by the paper are
twofold. First, we showed that this attack is potentially devastating
for the streaming network provided that the attacker has access to a
high bandwidth connection. Second, we evaluated the applicability

of four different classes of solutions against these attacks, namely,
blacklisting, traffic encryption, hash verification, and chunk sign-
ing. Among these, we conclude that the chunk signing solutions
– Merkle-Tree chaining and Sign-and-Correct – are most suitable.
Of the two, the former is more efficient in terms of computational
overhead and the delay at the receiver, whereas the latter is more
efficient in terms of bandwidth. Based on the type of applications,
and computational and bandwidth requirements therein, either of
the solutions could be used. In our future work, we would like to
implement these solutions and evaluate their effectiveness towards
controlling pollution in P2P live video streaming.

5. REFERENCES
[1] PPLive. http://www.pplive.com.
[2] P. G. Argyroudis, R. Verma, H. Tewari, and D. O’Mahony.

Performance analysis of cryptographic protocols on
handheld devices. In NCA’04, 2004.

[3] W. Conner, K. Nahrstedt, and I. Gupta. Preventing DoS
attacks in peer-to-peer media streaming systems. In MMCN,
2006.

[4] C. Gkantsidis and P. Rodriguez. Cooperative security for
network coding file distribution. In IEEE INFOCOM, 2006.

[5] M. Haridasan and R. V. Renesse. Defense against intrusion
in a live streaming multicast system. In P2P’06, 2006.

[6] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A
measurement study of a large-scale P2P IPTV system. IEEE
Transactions on Multimedia, Oct. 2007. to appear.

[7] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in P2P
networks. In WWW’03, 2003.

[8] J. Liang, R. Kumar, and K. W. Ross. The FastTrack overlay:
A measurement study. Computer Networks, 2006.

[9] J. Liang, R. Kumar, Y. Xi, and K. W. Ross. Pollution in P2P
file sharing systems. In IEEE INFOCOM, 2005.

[10] J. Liang, N. Naoumov, and K. W. Ross. Efficient blacklisting
and pollution-level estimation in P2P file-sharing systems. In
AINTEC, 2005.

[11] J. Liang, N. Naoumov, and K. W. Ross. The index poisoning
attack in P2P file-sharing systems. In IEEE INFOCOM,
2006.

[12] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos.
Multicast authentication in fully adversarial networks. In
IEEE Symposium on Security and Privacy, 2004.

[13] R. C. Merkle. A digital signature based on a conventional
encryption function. In Crypto’87, 1987.

[14] W. Wang, Y. Xiong, Q. Zhang, and S. Jamin. Ripple-Stream:
Safeguarding P2P streaming against DoS attacks. In ICME,
2006.

[15] C. K. Wong and S. S. Lam. Digital signatures for flows and
multicasts. IEEE/ACM Trans. Netw., 1999.

