
Emerging Image Game CAPTCHAs for Resisting
Automated and Human-Solver Relay Attacks

Song Gao
Google

gaos@uab.edu

Manar Mohamed
University of Alabama at

Birmingham
manar@uab.edu

Nitesh Saxena
University of Alabama at

Birmingham
saxena@uab.edu

Chengcui Zhang
University of Alabama at

Birmingham
zhang@uab.edu

ABSTRACT
CAPTCHAs represent an important pillar in the web security do-
main. Yet, current CAPTCHAs do not fully meet the web security
requirements. Many existing CAPTCHAs can be broken using au-
tomated attacks based on image processing and machine learning
techniques. Moreover, most existing CAPTCHAs are completely
vulnerable to human-solver relay attacks, whereby CAPTCHA
challenges are simply outsourced to a remote human solver.

In this paper, we introduce a new class of CAPTCHAs that can
not only resist automated attacks but can also make relay attacks
hard and detectable. These CAPTCHAs are carefully built on the
notions of dynamic cognitive games (DCG) and emerging images
(EI), present in the literature. While existing CAPTCHAs based on
the DCG notion alone (e.g., an object matching game embedded in
a clear background) are prone to automated attacks and those based
on the EI notion alone (e.g., moving text embedded in emerging
images) are prone to relay attacks, we show that a careful amalga-
mation of the two notions can resist both forms of attacks. Specifi-
cally, we formalize, design and implement a concrete instantiation
of EI-DCG CAPTCHAs, and demonstrate its security with respect
to image processing and object tracking techniques as well as their
resistance to and detectability of relay attacks.

1. INTRODUCTION
Almost every online service relies upon CAPTCHAs [4, 16] to

thwart various forms of online attacks and resource abuse. Un-
fortunately, many existing CAPTCHAs can be broken using au-
tomated attacks based on image processing and machine learning
techniques (see, e.g., [7, 9, 10, 13, 19, 20]). Moreover, most are vul-
nerable to human-solver relay attacks, whereby CAPTCHA chal-
lenges are simply outsourced to a remote human solver. These
attacks do not merely exist in theory – a myriad of CAPTCHA
solving services have already emerged in practice [14].

Our research is driven by the question: can a CAPTCHA scheme

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818006

be designed that resists both automated attacks and relay attacks?
To answer this question, we turn to two categories of CAPTCHAs
from the current literature – Emerging Image (EI) CAPTCHAs
[17, 18] (known to be resistant to automated attacks) and Dynamic
Cognitive Game (DCG) CAPTCHAs [12,13] (known to be resistant
to relay attacks). However, no current scheme is known to be simul-
taneously resistant to both attacks. We aim to achieve this property
via a careful combination of the two categories of CAPTCHAs.

In the work of [11], the authors proposed emerging images of 3D
objects and explained the emergence as “the phenomenon by which
we perceive objects in an image not by recognizing the object parts,
but as a whole, all at once”. The authors indicate [11]: “humans
cannot instantaneously detect the object in such images, and can
probably recognize it only after several iterations that take into
account numerous relationships between hypothetical objects and
their context. The computational complexity of this human pro-
cessing is believed to be extremely high [15], leading us to hypoth-
esize that emergence images are hard for automatic algorithms to
segment, identify, and recognize”. They further go on to argue that:
“Taking into account the complexity of the task, and the lack of a
clear understanding of how humans solve the problem, it is highly
unlikely, if not impossible, that these types of tasks could be car-
ried out by bots in the near future”. A concrete instantiation of an
EI CAPTCHA developed in [17, 18] inherits the above-mentioned
characteristics, and is demonstrated to be secure against automated
attacks. However, such video-based EI CAPTCHAs are completely
vulnerable to relay attacks whereby the static video challenge can
be simply forwarded to the remote human-solver.

DCG CAPTCHA [12] is a CAPTCHA that challenges the user to
perform a game-like cognitive task interacting with a series of dy-
namic objects in a static scene. A simple form of DCG CAPTCHAs
requires the user to identify the answer object(s) from a set of mov-
ing objects, and drag-drop them to the corresponding target ob-
ject(s). Recently, a startup company, named “are you a human”, re-
leased a series of such DCG CAPTCHAs [1]. A DCG CAPTCHA
exhibits certain interesting properties. First, it is based on a cog-
nitive puzzle, which is easy for humans to understand, but may be
difficult for a bot without enough clues. Second, the game-based
nature enhances the usability of CAPTCHA solving. Third, due to
the dynamic and interactive nature of the underlying game, relay-
ing the game to a remote solver might be challenging. As shown
in [12], however, DCG CAPTCHAs based on static background are
vulnerable to automated attacks. On the positive side, they were
shown to offer resistance to relay attacks [12, 13].



Our Contributions: We introduce a new class of CAPTCHAs
(called EI-DCG), carefully combining the EI and DCG notions, that
can not only resist automated attacks but also make relay attacks
hard and detectable. Our specific contributions are three-fold:

1. Design of an EI-DCG CAPTCHA (Section 3): We design and
implement a concrete instantiation of EI-DCG CAPTCHA
combining an EI CAPTCHA [17, 18] and a DCG CAPTCHA
[12]. Our design further incorporates various countermeasures,
including pseudo 3D object rotation, incomplete object con-
tour and tiling background, to reduce the information exposure
through the superimposition of consecutive frames, and a fast
frame rate to resist the relay attack based on streaming.

2. Resistance to Automated Attacks (Section 4): To evaluate the
robustness of EI-DCG against automated attacks, we design
an attack framework that guesses the centroids of moving ob-
jects based on local density variance, for example, by select-
ing density peaks and valleys as the object centroids, in the
binary mask of a frame, in the accumulation of three consec-
utive frames, and in the frequency map of the accumulation.
We demonstrate that EI-DCG can effectively resist this sophis-
ticated attack framework.

3. Usability and Resistance to Relay Attacks (Section 5): We
conduct a usability study with Amazon Mechanical Turk
workers to evaluate the performance of legitimate users in
solving EI-DCG challenges. The results show that legitimate
users were able to solve the EI-DCG challenges with relatively
high accuracies suggesting an acceptable level of usability.
Then, we study EI-DCG streaming-based relay attack [13] with
human-solvers located in a foreign country (India) connected
via a low-speed high-latency channel, and with human-solvers
located in close proximity of the attacker (US) connected via
a high-speed low-latency channel. The study shows that the
solvers in India could only solve less than 1% of EI-DCG
challenges successfully, while the solvers in the US could
solve only around 13% of EI-DCG challenges.

Going further, we design a streaming-based relay attack detec-
tion mechanism, which utilizes the game-solving statistics and
machine learning classifiers in order to differentiate legitimate
users from human-solvers. The results show that it is possi-
ble to detect the streaming-based relay attack with around 65%
accuracy, making the overall detection rate to be around 95%.

2. BACKGROUND
A fundamental design objective of EI-DCG CAPTCHA is the

same as that of any CAPTCHA: a bot (automated computer pro-
gram) must only be able to solve CAPTCHA challenges with no
better than a negligible probability, and users should be able to
solve the challenges with high accuracy. Further, we add that EI-
DCG CAPTCHA should offer resilience to relay attacks. In order
to achieve these design objectives, we carefully integrate the DCG
CAPTCHA proposed in [12,13], which offers resilience to relay at-
tacks, with the EI CAPTCHA proposed in [17,18] (which we refer
to as EI-Nu, since it is a variant of the NuCaptcha [2] based on the
EI notion), which offers security against automated attacks. The
threat model for EI-DCG CAPTCHA therefore also naturally com-
bines the threat models of EI CAPTCHAs and DCG CAPTCHAs.

DCG CAPTCHA is a simple interactive CAPTCHA that consists
of several objects that moves randomly within a frame and some
static target objects (Figure 1b). DCG CAPTCHA challenges the
user to drag a subset of the moving objects (answer objects) to their
corresponding target objects. The authors in [12, 13] showed that
the dynamic nature of DCG as well as the requirement for mul-

(a) (b)
Figure 1: A snapshot of EI-Nu CAPTCHA and DCG CAPTCHA utilized in our work:
(a) EI-Nu challenge codeword “7FX”. (b) DCG Shape game – blue region contains
the stationary target objects, the white region contains the moving possible answer
objects. Our resulting EI-DCG construction is a character matching game rendered on
top of emerging images (Figure 2(h) depicts a sample EI-DCG frame)

Figure 2: Generating an EI-DCG CAPTCHA frame (this and the other figures are best
viewed in color)

tiple interactions between the user and the CAPTCHA facilitate
resilience to relay attacks. To support their claims, the authors for-
malized two types of relay attacks:
1. Static Relay Attack: The attacker asynchronously sends static

snapshots of the game to the human solver. The human solver
has to identify the target objects and then recognize their cor-
responding answer objects in the subsequent frames as quickly
as possible given that the answer objects are moving. The bot
then clicks on the position specified by the human-solver as an
answer object, drags it and drops it to the pre-specified target
object.

2. Stream Relay Attack: The attacker utilizes a streaming soft-
ware, such as VNC, to stream the game frames from the at-
tacker to the human solver, and the game interactions from the
human-solver to the attacker.

The authors of [12,13] argued that the user performance in legit-
imate setting and in relay attack settings differs. While a legitimate
user plays a flash-based game rendered locally by the client ma-
chine, a remote solver has to play a streamed game which may be
of degraded quality due to the latency of the communication chan-
nel between the attacker and the solver. This difference in the qual-
ity of the game, resulting in different game playing patterns, was
then utilized to detect the relay attack with high accuracy based on
machine learning techniques [13] .

EI-Nu CAPTCHA proposed in [17, 18] (Figure 1a) is based
on the emerging images notion presented in [11]. EI-Nu is a
video based CAPTCHA that contains several characters, collec-
tively called a codeword. It is designed such that a single snapshot
of the challenges does not provide enough clues about the code-
word in the challenge. However, the user can recognize the code-
word by watching multiple frames. The authors in [17, 18] argued
that EI-Nu is secure against automated attacks based on existing
computer vision and object tracking techniques.

3. DESIGN & IMPLEMENTATION



3.1 Design Overview
Our EI-DCG CAPTCHA has following unique features that dif-

ferentiate it from EI-based Nu CAPTCHA (EI-Nu) [18] and the
original EI-based videos [11].
1. Instead of using 2D objects as in EI-Nu CAPTCHA or real 3D

objects with shading as in EI videos, EI-DCG CAPTCHA uses
a pseudo 3D object (i.e., projecting a 2D object into 3D space,
applying necessary transformations, and projecting it back to
2D) to provide a simulated 3D view, and more importantly
to lower the possibility of recovering object contours through
accumulation of information from consecutive frames, i.e., to
protect against auto-decoding.

2. Hiding information in a single frame is more challenging in
EI-DCG CAPTCHA since there are usually more foreground
objects (e.g., ≥ 5) than there are in EI-Nu or EI videos. Most
EI-based videos in [11] contain one single object, making it rel-
atively easy for a human viewer to focus on the object. Mean-
while, having very few moving objects also leaves adequate
room for making each object sufficiently large for easy recog-
nition by human eyes. However, it will be too risky for a DCG
CAPTCHA to use less than 5 objects (keeping in mind the ran-
dom guessing attacks). According to [13], if the locations of
moving objects are exposed (e.g., through multi-frame accumu-
lation), a random guess can achieve ∼13% success rate given
5 moving objects, 3 target objects, allowing ≤2 drag-and-drop
attempts per object. In an EI-DCG CAPTCHA frame, we cam-
ouflage moving objects in both a single frame and in the accu-
mulation of consecutive frames by tiling the background with
deformed and incomplete edge segments from foreground ob-
jects in a way similar to that of the EI videos [11].

3. Both EI-Nu and EI videos play a fixed video clip repeatedly,
leading to a constant-time requirement for rendering. How-
ever, an EI-DCG CAPTCHA challenge demands real-time user
interaction with foreground objects, requiring each frame to be
generated on the fly and incurring higher computation. We ap-
ply a divide-and-conquer strategy to prepare the information
needed for generating a frame in advance, and repeatedly use it
to efficiently create more new frames.

Creating an EI-DCG frame requires creating both the foreground
object mask as well as the background mask. For an input image
with both foreground objects and the target objects (Figure 2(a)),
the edge mask and the weight mask are computed (Figure 2(b)),
which are used to generate the EI visual effect (Figure 2(c)). Large
segments that may leave clue for reconstructing object contour will
be further split. The pseudo 3D effect for each object is applied
based on current rotation and scaling parameters (Figure 2(d)). The
remaining area in the frame (i.e., the background) is tiled with
segments from foreground objects (Figure 2(e)). Finally, an EI-
based frame (Figure 2(h)) is the Gaussian blur of the combination
of the foreground mask, tiled background, target object mask (Fig-
ure 2(f)), and random noise mask (Figure 2(g)). The details will
be provided in the following subsections. An EI-DCG CAPTCHA
challenge is configured as follows:

• Dimension: 340(height)×400(width).
• 3 target objects and 5 foreground objects, which are all al-

phanumeric characters.
• Object moving speed: 3 pixels per frame (ppf ).
• Frame rate: 40 frames per second (fps).
• N=40 pairs of foreground and background that record the pixel

value and location of foreground and background objects in
each frame are rendered.

The purpose of using a higher frame rate (e.g., 40 fps) than usual
(e.g., 30 fps) is to increase the robustness against the relay attack.
The higher the frame rate, the less information about foreground
objects is revealed in one single frame, thus requiring more frames
to be read at a time in order to recognize the object. In case of
a relay attack, the communication delay between the bot and the
human solver’s machine could cause loss of synchronization and
thus lead to the failure to keep up with the required frame rate,
resulting in jittery motion in video play. Since human eyes rely on
continuous motion to recognize EI objects, this design choice will
make it even harder for remote human-solver to identify the object
and play the game effectively.

3.2 Creation of EI-based Foreground Mask
The use of hollow objects may be more secure than solid objects

in dynamic CAPTCHAs (e.g., EI-Nu and EI-DCG) because less
shape information of a hollow object could be revealed by superim-
position of consecutive frames than that for a solid object. Given an
input image with both solid moving objects and target objects, we
first generate the foreground edge mask, and the normalized fore-
ground weight mask by computing the norm of derivatives. Both
masks are dilated with a flat, disk-shaped structuring element in
order to enhance the low geometric details that could be later con-
verted into an emerging image. The edge mask (Ifg_e) indicates the
location of edge pixels, while the weight mask (Ifg_w) indicates
the relative importance of each edge pixel. We largely followed
the instructions of EI-Nu CAPTCHA [18] to create an EI-based
foreground mask, with additional countermeasures implemented to
deter potential computer-vision based attacks, as discussed below:

1. We generate a noise image Ibg with each pixel following a Gaus-
sian distribution. The median filter is used to blur the noise
image such that each pixel value is similar to its nearby pixels
(Figure 3(a)).

2. We manipulate the pixel values in both the foreground edge
mask Ifg_e and the noise image Ibg to preserve the temporal
continuity between two consecutive frames, without revealing
too much information about objects.

In the edge mask, a small portion (e.g., 10%) of the edge of
each object is intentionally hidden in the current frame (Figure
3(e)). A different hidden edge segment is selected in the next
frame. In this way, in one frame, no complete object contour
will be exposed, further lowering the possibility of reconstruct-
ing the contour through superimposition of consecutive frames.
Meanwhile, according to the law of closure in Gestalt theory [8],
humans can perceive objects as being whole even if they are not
complete. Specifically, when parts of a whole picture are miss-
ing, human perception fills in the visual gap. The weight values
in the weight mask Ifg_w corresponding to the hidden edge seg-
ment will also be hidden (Figure 3(b)).

We denote common pixels as the edge pixels shared between the
edge masks of two consecutive frames (previous and current),
and discrepant pixels as the edge pixels that only exist in the
current frame. The temporal continuity is preserved through al-
lowing a certain percentage of common pixels to be displayed
again in the current frame. Common pixels with non-negative
Ibg values and discrepant pixels with negative Ibg values ex-
change their values. Discrepant pixels are exchanged in the as-
cending order of their Ibg values until the largest negative pixel
is reached. A percentage parameter ρ (e.g., 0.7) is used to con-
trol the exchange percentage of common pixels so as to control
the degree of temporal continuity. The swap operation preserves
the current Gaussian distribution in Ibg .



Figure 3: Generating an EI-DCG CAPTCHA frame.

Figure 4: (a) EI-based foreground mask of character “5”. (b) Split and erosion on
large or long segments, (c) followed by a small rotation and translation. To highlight
the changes, we show the original segments in gray in (b) and (c).

3. We create an image I (Figure 3(c)) by combining both the
foreground weight mask Ifg_w and the noise image Ibg using
the equation I(x, y) = Ibg(x, y) × exp(Ifg_w/const), where
exp(x) is the exponential function. In our design, const is set as
0.6. According to this, pixels with smaller Ibg values are more
likely to appear as black pixels. Therefore, the swap operation
in Step 2 makes common pixels more likely to be displayed as
black again in the current frame.

4. We generate the binary mask Bfg for foreground objects
through binarizing I by setting all the pixels whose values
are greater than a user-defined threshold t < 0 (e.g., -0.5) to
‘white’, and the remaining pixels to ‘black’ (Figure 3(d)).

5. We generate the EI-based foreground mask Efg by removing
all the black pixels in Bfg that are not on the foreground edge
mask Ifg_e (Figure 3(e)) such that only those black segments on
the object edges remain in the binary mask (Figure 3(f)).

Large segments in the foreground mask may raise a potential risk
of exposing object contour. Therefore, we apply a post-processing
including split, erosion, and random rotation and translation on seg-
ments that have area larger than a threshold tarea or their major axis
is longer than tmaxis (Figure 4). The values of tarea and tmaxis

are determined by the current object size. For a large or long seg-
ment, the split point is selected as a random point between 1/3 and
2/3 along the major axis that crosses the center of the segment. Fur-
ther erosion is applied on the split segments, followed by a small
random rotation and translation to further disrupt the continuity be-
tween nearby edge segments.

3.3 Pseudo 3D Visual Effect
Taking a closer look at EI-Nu CAPTCHA challenges, we learned

that accumulating information from consecutive frames could pos-
sibly recover object contours, especially when the primary moving
direction of foreground objects is known. In an EI-Nu CAPTCHA
challenge, a codeword moves horizontally from the right side of
background to the left at a constant speed. Each character in the

codeword also moves up and down harmonically, rotates slightly
such that neighbor characters overlap each other to some extent.

Thus, we argue that 2D movement as described above may not
be sufficient to prevent the reconstruction of the object contour
through accumulating information from consecutive frames. First,
we demonstrate how much information is exposed in consecutive
frames. Given three consecutive frames (Figure 5(a)), we converted
them into color code representation [13], which replaces a pixel
value with a 6-bit color value ([0,63]) consisting of the highest two
bits from each 8-bit RGB channel. The color code can help group
pixels with similar colors into the same code, facilitating the bi-
narization process. We converted all pixel values in a color code
representation that are less than or equal to an empirical threshold
(e.g., 21) to white (Figure 5(b)), and black otherwise. Since the
primary moving direction is from right to left, during superimposi-
tion, the (i+2)-th frame is shifted right 1 pixel, while the i-th frame
is shifted left 1 pixel, before they are superimposed on the (i+1)-
th frame. The superimposition of three binary masks as shown in
Figure 5(c) exposes a large portion of codeword contour. More-
over, removing the background scene mask from the superimposed
mask is technically possible and could further increase the accuracy
of codeword contour detection.

Second, the orientation difference of a character in 2D space be-
tween two consecutive frames is small. If such rotation degree per
frame is large, say 10 degrees per frame and the frame rate is 30
fps, the character will rotate 150 degree in 0.5 second, in which
case even a human can barely recognize the character. Therefore,
the 2D rotation of a character between consecutive frames cannot
be too large, thereby making it possible to accumulate contour in-
formation through superimposition of consecutive frames

In our EI-DCG CAPTCHA design, therefore, we propose to im-
plement a pseudo 3D effect that includes 3D rotation and scaling
for each moving object in order to hinder information accumulation
from superimposition. First, the 2D mask of an object is extracted
from the EI-based foreground mask (Figure 3(f)). Second, the 2D
matrix (the mask) is projected into 3D, in which the X-axis and
Y-axis are consistent with the previous axes in 2D, while Z-axis
represents the viewer’s direction. Third, a degree of rotation is ap-
plied to each of the X-, Y-, and Z-axis, respectively. In the end, the
3D geometry is projected back into 2D. Meanwhile, the focal dis-
tance is tuned in the projection matrix to scale up/down the object
in the current frame.

In our design, the rotation range in degree around X-, Y-, and
Z-axis are [-40,40], [-60,60], and [-40,40], respectively. The ro-
tation speed (degrees perframe) is determined by the equation
r = (2 × rotation_range)/N , where N is the number of pairs
of foreground and background as mentioned in Section 2. There-
fore, the object rotates around a specific axis from one side to the
other, and then back within N rounds. The object also scales up
and down between 100% and 184% with a changing speed calcu-
lated in the same way as the rotation speed. On top of all that, there
is no primary moving direction in our design - each object moves
in their own random direction.

To examine the resilience of the above mechanisms to
superimposition-based information recovery, we screen-captured
three consecutive frames of an EI-DCG CAPTCHA challenge
without background or target objects, converted them into binary
masks, and showed the captured object contour through superimpo-
sition of two and three masks, respectively. As shown in Figure 6,
unlike the result in Figure 5(c), none of the superimposition masks
expose long segments that are part of the object contours. We can
expect that with the addition of background, the superimposition
mask will only get noisier.



Figure 5: Reconstructing the codeword “7FX”. (a) 3 consecutive frames of an EI-Nu
CAPTCHA challenge. (b) Binary mask of each frame. (c) Superimposition of three
consecutive frames.

Figure 6: Effect of 3D rotation and scaling on superimposed masks. Objects from
left to right: “5”, “X”, and “Z”. (a) Binary masks. (b-c) Superimposition of 2 and 3
consecutive masks.

3.4 Background Tiling
We further identified several key requirements for effectively

camouflaging foreground objects in EI-based background.

1. Any subarea of a background should look visually similar to
the foreground objects. If long or large segments exist in an
EI-based foreground mask, similar segments will also be repli-
cated multiple times in the background. Thus even an exhaus-
tive search in a screen-captured frame based on known object
templates will returns multiple candidates, while only one of
them may be the real object.

2. Ideally, any subarea in the background should also have similar
density as the foreground objects, so that the location of mov-
ing objects can be better camouflaged since there is no density
anomaly across the whole frame.

3. The background should be tiled, i.e. filled, in a way that
can hide objects in the superimposed mask of consecutive
frames. One reason that EI-Nu CAPTCHA is vulnerable to
superimposition-based attack (Figure 5(c)) is because its back-
ground is sparsely and unevenly tiled. To introduce the maxi-
mum noise into the superimposed mask, we tile the entire back-
ground (except the areas occupied by foreground objects) with
segments that exhibit similar density as foreground objects, and
thus no prominent subarea that may correspond to foreground
objects can be easily identified.

To meet the above requirements, we tile the background using the
same idea of the EI video [11] but in a different way of selecting
the tile segments and tiling.
Determining the Tile Size: Similar to the original EI, we use the
subparts of foreground objects to tile the background. If the tile

size is too big, more complete object contour information may be
exposed at multiple locations in a frame. And, the larger the tile,
the sparser the scene becomes, leaving fewer object candidates in
a single frame, leading to less guess work for automated attack.
For the same reason, there is also an increased risk associated with
information recovery from superimposed masks, if a too large tile
size is used. On the other hand, a too small tile size will make
the background too crowded, making the relative sparseness in the
areas of foreground objects more distinguishable, again easing the
auto-attack. Given all the minimum bounding boxes (MBRs) of
foreground objects in a frame, we define a tile as a square with
size lt = min (dimensions of all MBRs). Assume the size of a
CAPTCHA window is h× w. If there is no overlap in tiling, there
will be totally Nt = floor(h× w/(lt × lt)) tiles.
Determining the Tile Segment Candidates: A tile mask should
have a similar density as that of the foreground MBR mask. First,
from the mask of each of the K foreground objects in a frame, the
subarea of dimension lt × lt that has the maximum pixel count for
that mask is identified. The average density dt of these subareas
is used as a reference to extract tile segment candidates in K fore-
ground object masks. Second, tile segment candidates are selected
by searching each subarea of dimension lt × lt in each foreground
object mask that has a density in the range [dt − δ, dt + δ] where
δ is a random value between 0 and 0.1×dt. Each such subarea is a
tile segment candidate, and there are totalNt candidates in a frame.
Determine the Tile Locations: Instead of paving tiles side by side
in a regular grid, we vary the locations of tile centers both hori-
zontally and vertically, such that tiles may overlap or separate from
each other by a small random amount, thereby further randomizing
the segment distribution. Each tile segment candidate obtained in
the previous step is further rotated by a random angle and pasted
in the background anchored to the center of a randomly selected
unpaved tile space.

3.5 EI-DCG Configuration Levels
EI-DCG CAPTCHA is configured at three levels of potential dif-

ficulty for the human user (easy, medium, and difficult), using the
parameter settings in Table 1. The more “difficult” the CAPTCHA
is, the less susceptible it is supposed to be against computer vision-
based auto attack. The pixel density decreases when the difficulty
level increases, i.e., decreasing amount of foreground information
embedded in one single frame.
Table 1: Parameters settings used to generate EI-DCG CAPTCHA challenges at easy,
medium, difficult levels.

Threshold Easy Medium Difficult

Foreground threshold t -0.1 -0.5 -0.7
Percentage of hidden edge γ 0.05 0.1 0.1
Gaussian blur (kernel size, std dev) (3, 1) (2, 1) (2, 1)

4. AUTOMATED ATTACK RESISTANCE
Emerging images [11] are known to be robust to automatic object

detection using existing image processing and machine learning
techniques. Compared with EI-Nu CAPTCHA (Figure 5), there is
no primary moving direction in our proposed EI-DCG CAPTCHA
challenge, and thus it is difficult to estimate the object moving
speed to compute the shift offset before superimposing consecutive
masks. Therefore, the contour information is well camouflaged in
both a single binary mask and a superimposed mask.

One challenge in EI-DCG design is the local density difference
caused by the presence of hollow objects and the white dilation
surrounding the moving objects (used to make objects more visu-
ally distinguishable), which may facilitate automated attack. On



one hand, the hollow area and the white dilation area, which ac-
company the moving object in consecutive frames, may remain
white (and thus appear “sparser”) in the superimposed mask, in-
dicating possible presence of foreground objects. Also, due to the
randomness in the layout of background tiles, the local density of
foreground objects in a single frame may occasionally become rel-
atively higher/lower than surrounding areas. In this case, the auto-
mated attack could first detect subareas that exhibit such local den-
sity anomalies, randomly pick one of them, and drag it to the target.
Other automated attacks using object detection in computer vision
would be extremely hard, both theoretically and computationally,
if not entirely impossible in this case, due to a lack of presence of
distinct object visual features such as color, gradient, corner points,
edge, or shape, and a lack of prior knowledge of object features.
Therefore, neither feature-based nor apearance-based object detec-
tion would work well, leaving the best hope with an anomaly-based
detection method such as the automated density-based attack that
is also computationally efficient.

To evaluate the robustness of EI-DCG CAPTCHA against such
density-based automated attack, we applied the automated attack to
3 different masks, i.e., single binary mask (single), superimposition
of 3 consecutive masks (3x), and the frequency map of 3 consecu-
tive masks (freq). Our automated attack assumes that the locations
of the target objects are already known (e.g., known via a simple
image-based relay attack). First, a screen-captured frame is con-
verted into a binary mask with the target area removed. Second,
the remaining area (i.e., activity area of moving objects) is divided
intom×m equal-sized subareas (e.g., 40×40 pixels, Figure 7). An
m ×m density matrix is created in which each element indicates
the black pixel count of the corresponding subarea. The centroids
of subareas that correspond to local peak or valley elements in the
2D density matrix are treated as the location candidates of moving
objects (Figure 7(a)). Third, the automated attack randomly selects
a location candidate and performs a drag-and-drop operation from
the cell centroid to each of the target objects.

Figure 7: (a-c) Top: single binary mask, superimposition of 3 consecutive binary
masks, and binary mask of frequency map with pixels having the highest possible
frequency (i.e., 3) shown as white. Bottom: density matrix with grid interval as 40
pixels. The red and blue dots indicate local density peaks and valleys, respectively.

A superimposed mask (3x) is generated by superimposing the
current binary mask with its previous two consecutive masks (Fig-
ure 7(b)). The value of a pixel in the frequency map is the number
of times a black pixel appears at that pixel location across the 3 con-
secutive masks. The frequency map is further binarized so that only
those pixels whose value is 3 (the highest possible frequency count
of a black pixel) will be shown as white in the final binary mask
(Figure 7(c)). The density matrix of such a binary mask records the

Figure 8: Success rate and number of drag-and-drops in density-based automated at-
tack with ≤50 drag-and-drops for each attack. (a)(c)(e) Success rates by using density
matrices of single, 3x, and freq. (b)(d)(f) The mean and standard deviation of the
number of drag-and-drops to complete an EI-DCG CAPTCHA challenge.

white pixel count in each subarea (2nd row, Figure 7(c)).
We randomly created 100 challenges of EI-DCG CAPTCHAs

corresponding to each difficulty level. There are 12 groups of at-
tacks with various parameter settings (Table 2) for each difficulty
level. Each group contains 500 attacks on randomly selected chal-
lenges from the corresponding 100-challenge set. Each attack will
perform drag-and-drop at most 50 times (“time out” otherwise). In
our first experiment, we set the maximum number of drag-and-drop
attempts allowed to be 21, i.e., each target object will receive ≤7
drops on average, given 3 target objects. This is the threshold pa-
rameter that our EI-DCG CAPTCHA implementation will use in
practice (later in, Section 5, we will demonstrate that such a thresh-
oldization does not have much impact on the usability of solving
EI-DCG challenges by legitimate users).

Table 2: Parameter settings for the density-based automated attack

Parameters Values

Difficulty level Easy, Medium, Difficult
Density matrix (DM) Single mask, 3x superimposition, Freq. map
Obj. locations (OL) Local density peak, Local density valley
Grid interval (GI) 40 pixels, 60 pixels

Our result indicates that the success rate for density-based au-
tomated attack is lower than 0.8%, given ≤7 drag-and-drops per
target object on average. Since this attack is based on local density
anomaly, that occurs with randomness, the difficulty level is not
necessarily reflected in the success rate. This success rate is well-
aligned with the acceptable security level for CAPTCHAs (e.g., as
specified by Zhu et al. [21]).

Next, we further experiment with ≤50 drag-and-drops in order
to gain more insights. As shown in Figure 8 (a)(c), localizing fore-
ground objects by using local valleys in the density matrix of single
and 3x provides a higher success rate than that by using local peaks.
In a single binary mask (single) or the superimposition of 3 con-
secutive masks (3x), the white dilation area surrounding the mov-
ing object (for highlighting the object) may form relatively sparse
subareas (valleys), thereby making the valley-based attacks more
effective than peak-based attacks. On the other hand, since there



are not many pixels in the binary mask of frequency map (freq),
the local peaks more likely correspond to the moving traces left
by moving objects. Therefore, the success rate of peak-based at-
tack by using density matrix of freq is higher than the other two.
For the same reason, a small grid interval, such as 40 pixels, may
result in many meaningless valleys in the density matrix of freq
(e.g., Figure 7(c)) and thus likely lead to a lower success rate. This
explains why in the experiment for freq, ‘valley+40’ has a lower
success rate than the other three configurations i.e., ‘valley+60’,
‘peak+40’, and ‘peak+60’ (Figure 8(e)).

Experiment on the number of drag-and-drops (Figure 8(b)(d)(f))
indicates that a successful automated attack usually requires an av-
erage of 30∼40 drag-and-drops to complete the CAPTCHA. which
is much higher than our threshold of 21.

5. USABILITY AND RELAY ATTACK
RESISTANCE

In this section, we present the design and the results of our study
to evaluate the usability of our proposed EI-DCGs with the three
difficulty levels (Easy, Medium, Difficult). Then, we demonstrate
the resilience of EI-DCGs against relay attacks. To this end, we
present two relay attack studies we conducted to measure the per-
formance of the Stream Relay attack (Section 2) against EI-DCGs.
Finally, we develop a Stream Relay attack detection mechanism
based on the differences between the users’ solving performance in
the attack studies and the usability study. We note that the Static
Relay attack against EI-DCGs will naturally fail given that a single
or multiple static snapshots of the underlying emerging image does
not reveal much meaningful information to a human solver (thus,
we do not evaluate this attack).

5.1 Usability Study
In our usability study of EI-DCGs, we use EI-Nu as a baseline –

our goal is to compare the usability of EI-DCGs with that of EI-Nu.
Basically, we wanted to determine how much usability degradation
occurs in EI-DCG over EI-Nu, as a trade-off to enhancing the secu-
rity against relay attacks. We utilized the Amazon Mechanical Turk
(MTurk) service to recruit participants for the study. The study was
approved by our University’s Institutional Review Board.

5.1.1 Study Design
Each EI-Nu CAPTCHA challenge is of size 285×125 and is dis-

played as a 6-second video that loops continuously. We asked the
participants to type the three characters of the challenge in a textbox
and press the “submit” button when they are done. Each EI-DCG
challenge is of size 360×400. The user task is to drag-drop the an-
swer objects to their corresponding target objects within 60 seconds
(time-out). If the user cannot complete the task within the 60 sec-
onds, the challenge is considered unsuccessful. We generated 100
challenges for each category of tested CAPTCHAs: EI-Nu and EI-
DCG (Easy, Medium and Difficult). We employ a within-subjects
experimental design, where we ask each participant to solve 5 chal-
lenges each for all the four categories. The order of presenting the
four categories (EI-Nu, EI-DCG_Easy, EI-DCG_Medium, and EI-
DCG_Difficult) followed the standard 4×4 Latin square to reduce
the effect of learning biases, while the challenges within each cat-
egory followed a random order. We recruited 120 MTurk workers,
and the experiment took 27 minutes on an average to complete per
worker.

We subjected the MTurk workers to a consent form. Then, we
asked them to fill-out a demographics form, solve five challenges of
one of the tested CAPTCHA categories, and fill-out a survey form

about their experience. The survey contains the 10 System Usable
Scale (SUS) [6] standard questions, each with 5 possible responses
(5-point Likert scale, where strong disagreement is represented by
“1” and strong agreement is represented by “5”). We used a similar
design to test the rest of the categories. The demographics of the
study participants are shown in the second column of Table 3.

Table 3: Demographics of participants in the usability and relay attack studies

Usability Stream Relay Attack

Participants Study Type LSHL HSLL
Participants Size (N=195) N = 120 N = 27 N = 48

Age (%)
<18 0 0 2.1

18 - 24 26.6 16.7 8.3
25 - 34 44.2 70.8 58.3
35 - 50 19.2 8.3 27.1

>50 10 4.2 4.2
Gender (%)

Female 39.2 25 27.1
Male 60.8 75 72.9

Education (%)
High School 30.8 0 22.9

Bachelor 43.3 62.5 72.9
Master 24.2 33.3 4.2
PhD 1.7 4.2 0

Field of Study/Profession (%)
Computer Science 31.7 25 22.9

Engineering 10.8 29.2 10.4
Medicine 0.8 4.2 2.1

Journalism 2.5 4.2 4.2
Finance 5.8 20.8 25
Business 12.5 8.3 12.5

Social sciences 0 0 8.3
other 35.9 8.3 14.6

5.1.2 Results
We evaluated the usability of the tested CAPTCHA categories

with respect to the measures of: (1) solving time, (2) error rate, and
(3) user experiences, as described below. The results are summa-
rized in Table 4.
Solving time: We calculated the solving time as the time taken
by the participants to solve each challenge. In case of EI-Nu, we
start measuring the timing from the time the challenge is displayed
till the submit button is pressed. Whereas, in case of EI-DCG, we
record the timing till the participants drag-drop all the answer ob-
jects to their corresponding target objects. We considered in our
calculation the time taken only corresponding to the challenges
solved successfully. The average solving time is shown in the third
column of Table 4.

The time taken to solve EI-DCG challenges is about double the
time taken to solve EI-Nu challenges. However, it is still less than
25 seconds on average. Moreover, the time for solving EI-DCG
increases with the difficulty level of EI-DCG. A Friedman’s test

Table 4: The solving time, error rate, number of drags, number of attempts and SUS
scores for the usability study

Challenge SUS Time (sec) #Drags #Attempts Error
Type mean (std. dev.) Rate

EI-Nu 71.75 (18.39) 10.34 (6.21) N/A N/A 0.16

EI-DCG
Easy 55.94 (19.75) 19.82 (10.20) 3.82 (1.79) 1.17 (1.86) 0.13
Medium 57.15 (18.09) 21.55 (10.55) 3.82 (1.58) 1.51 (2.42) 0.10
Difficult 56.00 (20.08) 23.34 (11.60) 3.84 (1.85) 1.44 (2.03) 0.13



showed a statistically significant difference between the solving
time of the four tested categories (χ2(3) = 500.06, p < 0.001).
Further analyzing using pairwise Wilcoxon Signed-Rank test with
Bonferroni correction, we found a statistically significant differ-
ence between all of the tested pairs (p < 0.001).
Error Rate: The error rate represents the percentage of the chal-
lenges that were not solved successfully by the participants. The
last column of Table 4 shows the error rate for solving each of the
tested CAPTCHA categories. All of the categories had low error
rate with the minimum error rate for EI-DCG medium as 0.10 and
the maximum for EI-Nu as 0.16. The lower error rate in EI-DCGs
compared to EI-Nu may be attributed to to the momentary feed-
back that EI-DCG provides. Whenever the participant drag-drops
a correct object to its corresponding target, the object disappears,
which informs the user he performed a correct drag-drop. However,
EI-Nu does not check the users response until after he submits the
whole answer of the challenge.

Further, we analyzed the number of drag-drops performed by
the participants, which represents the error rate per drag. We no-
ticed that a minimum of three drag-drops is required to complete
any challenge and on an average the users performed less than four
drag-drops in all the EI-DCG categories. Finally, we analyzed the
number of attempts (clicks that do not correspond to object drag)
performed by the users and we found the users performed less than
2 attempts on average for all of the EI-DCG categories. Upon fur-
ther analysis of the collected logs, we found that some of the partic-
ipants performed many drags and attempts (up to 37) while solving
challenges. However, the fraction of such actions is extremely low,
which confirms that we can limit the number of allowed drags and
drops to 21 to limit the ability of density-based automated attack (as
analyzed in Section 4) successfully without impacting the usability
much. The overall error rate, after limiting to 21 drags/attempts,
becomes 0.14, 0.11, and 0.14 for Easy, Medium and Difficult EI-
DCG, respectively. These errors rates are still similar to that of
EI-Nu.
User Experience (SUS Scores): The first column of the Table 4
shows the SUS scores corresponding to the tested CAPTCHA cat-
egories. In our SUS calculations, we ignored the responses of 17
participants as they seem to answer the questionnaire randomly, ei-
ther by giving the same rating to all the questions or at least answer
two contradicting questions with the same answer (i.e., we removed
the responses from participants who answer both of “I found the
system unnecessarily complex” and “I thought the system was easy
to use” with “strongly agree”).

We find degradation in the user experience in EI-DCG compared
to EI-Nu. However, the SUS scores for EI-DCG are still above
50.9, which means EI-DCGs have fair usability [5]. Comparing the
SUS scores using Friedman’s test shows statistical significant dif-
ference among the tested CAPTCHA categories (χ2(3) = 87.63, p
< 0.0001). Further, we used pairwise Wilcoxon Signed-Rank test
with Bonferroni correction to assess the difference between each of
the pair of the four categories. Significant differences are found (p
< 0.01) between EI-Nu and the three categories of EI-DCG. How-
ever, no significant difference is found in the SUS score between
any pair of the EI-DCG categories.
Summary: The results of the usability study show some degra-
dation of the user experience represented in lower SUS score and
higher time taken to solve EI-DCG challenges compared to EI-Nu
challenges. However, the average SUS scores for EI-DCG show
that they still have fair usability. Moreover, the error rate decreased
slightly compared to EI-Nu. Given that EI-DCG offers higher se-
curity than EI-Nu, especially against relay attacks, we believe that

this degradation in usability may be acceptable.

5.2 Streaming-based Relay Attack Study
We conducted two studies to investigate the ability of EI-DCG

to resist Stream Relay attack introduced in [12]. The studies differs
in only the location of the participants. In the first study, tagged
Low-Speed High-Latency (LSHL), we recruited participants from
a developing country (India), where we expect the users to have
a slow Internet connection and they reside on far proximity of the
attacker (residing in the USA). In the second study, High-Speed
Low-Latency (HSLL), we recruited participants from a developed
country (USA), where we expect the users to have a fast Internet
connection and they reside in near proximity of the attacker (USA).
These two attack models emulate realistic relay attack scenarios
[12]. In both models, the human-solvers attempt to solve EI-DCG
challenges that are streamed to them in-real time from the attacker’s
machine using the VNC streaming software.

5.2.1 Study Design
Following the study design in the usability study, we employed a

within-subjects experimental design, where we ask each participant
to solve 5 challenges for all of the three EI-DCG categories. The or-
der of presenting the three categories followed standard 3×3 Latin
square, and the challenges within each category followed a ran-
dom order. We asked the MTurk workers to connect to a computer
which resides in our university (streaming server) via the RealVNC
Java applet (streaming client). Then, we subject them to consent an
agreement. Next, we ask them to fill-out a demographics form, and
solve five challenges of one of the categories. We followed a sim-
ilar design to test the other categories. The study was approved by
our University’s Institutional Review Board.

We conducted two separate streaming-based relay attack studies.
The two studies differ only in the location of the participants. In the
first study (LSHL), we recruited 27 participants in India which sim-
ulate the real scenario settings in which the attacker is in USA and
hires human-solvers in far and developing countries. In the second
study (HSLL), we recruited 48 participants from USA. The sec-
ond study is to assess how much the performance of the attack will
increase when the attacker recruits solvers in near proximity and
from developed countries. The demographics of our participants
are shown in columns 3-4 of Table 3. The participant characteris-
tics in our relay attack studies are in line with that in our usability
study, allowing us to fairly compare the two settings in a between-
subjects design.

5.2.2 Results
We evaluated the performance of the participants in solving EI-

DCG over the streaming channel with respect to the measures of
solving time and error rate. The results are summarized in Table 5.

In the LSHL relay attack setting, only two participants could
complete one of the EI-DCG Easy variant, and only one participant
could complete one of the EI-DCG medium variant. The overall
error rate is therefore 0.99 on an average for the three categories
of EI-DCG. The average time taken by the participants to complete
the challenges was 42.68 seconds. Moreover, the participants per-
formed much higher number of drag-drops and attempts compared
to the participants in the usability study. Moreover, if we limit the
number of allowed drags/attempts to 21, the overall error rate for
the Easy EI-DCG becomes 1.00.

In the HSLL relay attack setting, the error rate decreased from
around 0.99 to 0.87 on average when compared to the LSHL relay
attack study. However, the error rate is still considerably high. The
completion time and number of drags and attempts for the partici-



Table 5: The solving time, error rate, number of drags, and number of attempts for the India-based and USA-based streaming-based relay attack studies on EI-DCG

EI-DCG LSHL (human-solver in India) HSLL (human-solver in USA)
Challenge Type Time (sec) # Drags # Attempts Error Time (sec) # Drags # Attempts Error

mean (std. dev.) Rate mean (std. dev.) Rate

Easy 39.05 (5.47) 8.00 (4.24) 24.00 (1.41) 0.98 18.73 (10.62) 4.35 (3.05) 4.71 (15.83) 0.87
Medium 49.92 4.00 15.00 0.99 22.13 (11.69) 4.17 (2.91) 1.63 (1.88) 0.88
Difficult - - - 1.00 24.05 (11.71) 4.53 (2.37) 1.66 (2.89) 0.86

pants who successfully solved the challenges are comparable to the
ones in the usability study, except for the number of attempts in
the Easy variant. Limiting the number of allowed drags/attempts to
our threshold of 21 did not effect the over all error rate. Comparing
the successful completion time between each variant of EI-DCG in
usability and its corresponding streaming-based relay attack study,
using Mann-Whitney test, did not reveal statistically significant dif-
ferences, however. Further investigation of the collected data shows
that only 9 out of the 48 participants (18.75%) were able to com-
plete any EI-DCG challenges. On an average each of them solved
around 10.33 out of the 15 challenges.

The above analysis suggests that EI-DCG is very hard to solve
via streaming-based relaying, especially when the human-solvers
are located far away and have slow Internet connections. The
chance of solving EI-DCG challenges seem to increase, but still
only marginally, when recruiting the solvers residing in near prox-
imity and having high-speed Internet connections. Even when the
solvers can solve the CAPTCHA challenges, we will next show
how they can be detected based on different game play patterns
compared to legitimate human users.

5.2.3 Attack Detection Technique
We design and implement a machine-learning based EI-DCG

Stream Relay attack detection mechanism based on the differences
between the participants’ performances in completing the chal-
lenges in the usability study and the human-solvers’ performance in
the HSLL relay attack study. We logged all the participants’ inter-
actions with the challenges, while they were solving the challenges.
We logged the interactions with the challenges regularly and when-
ever a mouse event is performed. Specifically, at each timestamp,
we log the mouse position, mouse status (up or down), and for each
object, we log its position and weather it is being dragged or not.
From each of the collected challenge log files, we extract a total of
sixteen different features, as described below:

• Number of Drags (ND): Total number of drags.

• Number of Attempts (NA): The number of mouse clicks
outside of the moving objects.

• Distance-based Features: (1) Distance Drag (DD): The to-
tal distance of the mouse movement while it is dragging an
object; (2) Distance Attempts (DA): Distance of the mouse
movement while the mouse status is down but not dragging
an object; and (3) Distance mouse Up (DU): Distance of the
mouse movement while the mouse status is up.

• Time-based Features: (1) Completion Time (T): The total
time taken by the participant to complete the challenge; (2)
Time drags (TD): The total time in which an object is being
dragged; (3) Time Attempts (TA): Time in which the mouse
is down and no object is being dragged, and (4) Time mouse
Up (TU): Time in which the mouse status is up.

• Speed-based Features (Distance/Time): Speed of Drags
(SD), Speed of Attempts (SA) and Speed of Mouse Up (SU).

• Acceleration-based features (Speed/Time): Acceleration of
Drags (AD), Acceleration of Attempts (AA) and Accelera-
tion of Mouse Up (AU).

• Max Attempt (MA): The maximum time taken in a single
attempt.

For each of the EI-DCG variants, we picked randomly a num-
ber of instances of the successfully completed challenges in the us-
ability study equal to the number of successfully completed chal-
lenges in the HSLL relay attack study. Then, we implemented a
Java program to check which subset of features along with which
classifier provides the best results for each of the challenges cate-
gories (Easy, Medium, Difficult). We experimented with different
classifiers: SVM (C-SVC and nu-SVN, linear, polynomial and ra-
dial kernels), Multilayer Perceptron, Naive Bayes, Random Forest,
Random Tree, Simple Logistic and Logistic.

As performance measures for our classification task, we used
Precision, Recall and F-measure (F1 score), as shown in Equation 1
(TP: True Positive; FP: False Positive; FN: False Negative). Preci-
sion measures the security of the proposed system, i.e., the robust-
ness of the system in detecting the relay attack. Recall measures
the system usability as low recall leads to high rejection rate of le-
gitimate users’ actions. F-measure is the weighted average of both
of the precision and recall. We select the classifier with maximum
recall, to reduce the rejection of honest users, and have acceptable
precision rate.

precision =
TP

TP + FP
; recall =

TP

TP + FN
;

F -measure = 2 ∗
precision ∗ recall
precision+ recall

(1)

Table 6: Results of using the optimal feature subset for each EI-DCG game in the
classification of legitimate user and HSLL streaming-based relay attacker

Challenge
Type

Classifier Features Precision Recall F-measure

Easy Multilayer ND, T, TD, TA, SD, SU 0.78 0.90 0.84
Perceptron

Medium Random Tree ND, T, DD, DA, DU, 0.72 0.87 0.79
TU, MA, AD, AU

Difficult Multilayer T, TU, AD, AA, AU 0.66 0.91 0.76
Perceptron

The results of the best classifier along the best features subset for
each of the EI-DCG difficulty level are shown in Table 6. The re-
sults show that a classifier can be effectively built such that it rejects
around 11% of legitimate users and be able to detect around 65%
for HSLL relay attackers. As shown in Table 5, on average only
13% of HSLL relay attackers could solve the EI-DCG challenges,
utilizing our proposed detection method 65% of them could be de-
tected. Therefore, the detection rate for the HSLL relay attack is
about 95%. The LSHL relay attack is already prevented with at
least 98% probability (Table 5). This suggests that the streaming-
based relay attack in general has a very low chance of succeeding
against EI-DCG CAPTCHAs.

5.3 Discussion
The previous subsection shows that EI-DCGs is resilient to

streaming-based relay attacks. Inherently, this ability is due to the
fact that the user needs to see the challenge at about 40 fps to be



able to recognize the objects and solve the challenge successfully.
That requires high data connection speed with low latency between
the attacker and the human-solver.

As the game size is 340×400 and the required frame rate is 40
fps, using 2 bit per pixel will require the connection speed of 10.38
Mbit/s between the attacker and the solver, if no compression is
performed. However, RealVNC performs some compression on
the data sent between the client and the server to enhance the per-
formance. First, RealVNC sends only the modified pixels between
the current frame and the previous frame rather than sending the
whole frame. Second, the RealVNC client allows the user to ad-
just the quality of the images, varying from low quality (8 col-
ors) to best quality (all available colors). In order to evaluate the
minimum bandwidth required between the attacker and the human-
solver to transfer the game with 40 fps, we performed an exper-
iment in which we connected two laptops over a LAN, installed
RealVNC server on one of them and RealVNC client on the other.
We varied the RealVNC compression levels starting from the best
compression that achieves the best transmission quality. We used
Wireshark to capture the packets sent between the two laptops in
all of the cases, and then analyzed the average data rate used. The
average Mbit/s for the getting all colors with maximum compres-
sion is 4.70 Mbit/s, 3.15 Mbit/s for the default settings (256 colors)
and 2.22 Mbit/s for the best compression (8 colors). This shows
the minimum connection speed required between the attacker and
human-solver should be 2.22 Mbit/s to be able to solve the EI-DCG
at the human-solver’s end. Any slower connection would result in
a jittery rendering of the game, and therefore the human-solver will
not be able to solve the EI-DCG successfully. This justifies the
results of the user studies presented in the previous subsection.

According to [3], the average connection speed is 2.0 Mbit/s in
India. Also, since the long distance between the attacker (USA)
and the human solver slows down the connection speed, almost all
the participants in India could not remain connected to our server
with high speed and they failed to successfully solve the challenges.
On the other hand, the average connection speed in USA is 11.1
Mbit/s. Also, the distance is much less between the attackers and
the human-solvers in the HSLL streaming-based relay attack study.
This explains why some of the human-solver were able to success-
fully solve some of the challenges.

We tested multiple screen-sharing applications, such as
TeamViewer and anydesk. All of them require almost similar data
rates between the server and the client to transfer the challenges.
For example, TeamViewer requires 2.73 Mbit/s for gray-scale, and
anydesk requires 2.63 Mbit/sec. Therefore, we conclude that the
results of our relay attack studies are not limited to RealVNC.

A third relay attack scenario was suggested in [12], namely,
Small Game Relay, whereby the attacker reduces the game size be-
fore sending it to the human-solver to lower the data rate required
between the attacker and the solvers. However, this scenario can-
not be applied to EI-DCG as reducing the game size will make it
almost impossible for the human-solver to recognize the moving
objects (because of the emerging effect).

6. CONCLUSIONS
We proposed a new class of CAPTCHAs, EI-DCG, based on

the notion of emerging images and Dynamic Cognitive Games.
EI-DCG applies a series of countermeasures, such as pseudo 3D
rotation, hidden edge segments, segment split-erosion-rotation-
translation and tiled background, to resist automated object recog-
nition based on both single frames and frame superimposition.
Since a human can perceive objects in EI-based frames from mo-
tion, playing an EI-based video in a relatively slower frame rate de-

creases the human recognition rate. Based on this property, a faster
frame rate (i.e., 40 fps) was applied for the normal playing of an
EI-DCG challenge. The higher the network delay is, the lower the
frame rate of EI-DCG becomes on the human-solver’s side, pro-
viding less opportunity for the solver to complete the challenge
successfully. The experiments against both automated and relay
attacks indicated the robustness of EI-DCG.

Acknowledgments
The work has been partially supported by a grant from the National
Science Foundation (CNS-1255919) and an award from COM-
CAST.

7. REFERENCES
[1] Are you a human. http://areyouahuman.com/.
[2] Nucaptcha. http://www.nucaptcha.com/.
[3] Akamai. Akamai’s state of the internet: Q4 2014 report.

http://www.stateoftheinternet.com/resources-connectivity-2014-q4-
state-of-the-internet-report.html.

[4] H. S. Baird, A. L. Coates, and R. J. Fateman. Pessimalprint: a reverse
turing test. International Journal on Document Analysis and
Recognition, 2003.

[5] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability
studies, 2009.

[6] J. Brooke. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 1996.

[7] J. M. G. Hidalgo and G. Alvarez. Captchas: An artificial intelligence
application to web security. Advances in Computers, 2011.

[8] G. Kanizsa. Organization in vision: Essays on Gestalt perception.
Praeger New York, 1979.

[9] G. Keizer. Spammers’ bot cracks microsoft’s captcha. Computer
World, Available at: http://www.computerworld.com/article/
2536901/security0/spammers--bot-cracks-microsoft-s-captcha.html,
2008.

[10] K. A. Kluever and R. Zanibbi. Balancing usability and security in a
video captcha. In Symposium on Usable Privacy and Security, 2009.

[11] N. J. Mitra, H.-K. Chu, T.-Y. Lee, L. Wolf, H. Yeshurun, and
D. Cohen-Or. Emerging images. In Transactions on Graphics, 2009.

[12] M. Mohamed, S. Gao, N. Saxena, and C. Zhang. Dynamic cognitive
game captcha usability and detection of streaming-based farming. In
the Workshop on Usable Security (USEC), 2014.

[13] M. Mohamed, N. Sachdeva, M. Georgescu, S. Gao, N. Saxena,
C. Zhang, P. Kumaraguru, P. C. van Oorschot, and W.-B. Chen. A
three-way investigation of a game-captcha: automated attacks, relay
attacks and usability. In ACM symposium on Information, computer
and communications security, 2014.

[14] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker,
and S. Savage. Re: Captchas-understanding captcha-solving services
in an economic context. In USENIX Security Symposium, 2010.

[15] J. K. Tsotsos. On the relative complexity of active vs. passive visual
search. International journal of computer vision, 1992.

[16] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford. Captcha:
Using hard ai problems for security. In EUROCRYPT 2003.

[17] Y. Xu, G. Reynaga, S. Chiasson, J. Frahm, F. Monrose, and
P. Van Oorschot. Security analysis and related usability of
motion-based captchas: Decoding codewords in motion.
Transactions On Dependable And Secure Computing, 2013.

[18] Y. Xu, G. Reynaga, S. Chiasson, J.-M. Frahm, F. Monrose, and P. C.
van Oorschot. Security and usability challenges of moving-object
captchas: Decoding codewords in motion. In USENIX Security
Symposium, 2012.

[19] J. Yan and A. S. El Ahmad. Breaking visual captchas with naive
pattern recognition algorithms. In Computer Security Applications
Conference, 2007.

[20] J. Yan and A. S. El Ahmad. A low-cost attack on a microsoft captcha.
In Conference on Computer and communications security, 2008.

[21] B. B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, and K. Cai.
Attacks and design of image recognition captchas. In ACM
Conference on Computer and Communications Security (CCS), 2010.


