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Emerging-Image Motion CAPTCHAs:
Vulnerabilities of Existing Designs, and

Countermeasures
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Abstract—Based on the notion of “emergence”, Xu et al. (Usenix Security 2012; TDSC 2013) developed the first concrete instantiation
of emerging-image moving-object (EIMO) CAPTCHAs using 2D hollow objects (codewords), shown to be usable and believed to be
secure. In this paper, we highlight the hidden security weaknesses of such a 2D EIMO CAPTCHA design. A key vulnerability is that the
camera projection on 2D objects is constant (unlike 3D objects), making it possible to reconstruct the underlying codewords by
superimposing and aggregating the temporally scattered parts of the object extracted from consecutive frames. We design and
implement an automated attack framework to defeat this design using image processing techniques, and show that its accuracy in
recognizing moving codewords is up to 89.2%, under different parameterizations. Our framework can be broadly used to undermine
the security of different instances of 2D EIMO CAPTCHAs (not just the current state-of-the-art by Xu et al.), given the generalized and
robust back-end theories in our attack, namely the methods to locate a codeword, reduce noises and accumulate objects’ contour
information from consecutive frames corresponding to multiple time periods. As a countermeasure, we propose a fundamentally
different design of EIMO CAPTCHAs based on pseudo 3D objects, and examine its security as well as usability. We argue that this
design can resist our attack against 2D EIMO CAPTCHAs, although at the cost of reduced usability compared to the – now insecure –
2D EIMO CAPTCHAs.

Index Terms—CAPTCHAs, security, usability, computer vision.

F

1 INTRODUCTION

A LMOST every online service relies upon CAPTCHAs
[5, 19] to thwart various forms of online attacks. The

offensive-defensive research in CAPTCHA security (espe-
cially focusing on automated or auto- attacks) has continued
[8, 9, 10, 14, 22] for more than ten years, advancing the sci-
ence towards developing secure CAPTCHAs. In this paper,
we follow the path of this established line of research explic-
itly focusing on a recently introduced breed of CAPTCHAs,
called the Moving-object (MO) CAPTCHAs [20, 21].

MO CAPTCHAs embed a text identification task into
dynamic moving objects, in an attempt to enhance both
the security with respect to auto-attacks and the usability
compared to static text-based CAPTCHAs. One of the rep-
resentative commercial instantiations of MO CAPTCHAs is
NuCaptcha [4], which challenges the user with a few char-
acters flowing across a dynamic scene following a certain
trajectory, and requires the user to recognize the highlighted
characters (referred to as the codeword). Such designs add
another layer of resistance to existing auto-attack algorithms
used to break static text-based CAPTCHAs, because it is
significantly harder to extract dynamic texts through track-
ing and distinguish the codeword from other characters.
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Moreover, since the codeword is relatively easy for humans
to recognize, the usability of NuCaptcha might be better
than most static text-based CAPTCHAs [20, 21].

However, Xu et al. [20, 21] recently reported compromis-
ing the security of NuCaptcha by using image processing
and machine learning techniques with a success rate more
than 70%. Similar work was done by Bursztein that uses sin-
gle frame segmentation and recognition to break NuCaptcha
[2]. As a countermeasure to their auto-attack, Xu et al.
considered developing MO CAPTCHAs based on the notion
of emerging-images (EI), introduced by Mitra et al. [13]. Theo-
retically, an emerging-image moving-object (EIMO) CAPTCHA
makes it easy for a human user to perceive a shape from
motion, while making it difficult, if not impossible, for auto-
recognition using existing computer vision techniques. The
authors proposed an instantiation of EIMO CAPTCHAs
based on 2D objects, which we call EI-Nu in this paper and
is the focus of this study. Xu et al. demonstrated that EI-Nu
exhibits a usability level similar to that of NuCaptcha, and
showed that it is resilient to their attack against NuCaptcha
and argued that it poses “significant challenges to existing
computer vision methods” [21].

Let us first briefly review the notion of emergent images.
In the seminal work that introduced this notion [13], the
authors proposed emerging images of (pure) 3D objects1,
and explained the emergence as “the phenomenon by which
we perceive objects in an image not by recognizing the

1. A 3D EI-based video demo is available at: http://graphics.
stanford.edu/∼niloy/research/emergence/emergence image siga 09.
html
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object parts, but as a whole, all at once”. As the authors
indicate [13], “Humans cannot instantaneously detect the
object in such images, and can probably recognize it only
after several iterations that take into account numerous
relationships between hypothetical objects and their context.
The computational complexity of this human processing is
believed to be extremely high [16], leading us to hypothesize
that emerging images are hard for automatic algorithms to
segment, identify, and recognize. Taking into account the
complexity of the task, and the lack of a clear understanding
of how humans solve the problem, it is highly unlikely, if not
impossible, that these types of tasks could be carried out by
bots in the near future.”

The EI-Nu CAPTCHA proposed in [1, 20, 21] does have
the above-mentioned characteristics of emerging images.
However, in this paper, we identify several critical differ-
ences between the 2D object-based EI-Nu CAPTCHA of
[20, 21] and the 3D object-based emerging image/video of
[13], which seem to highlight the security weaknesses of
the former. We explain these differences and weaknesses in
Section 3.1. One of the key differences is that the camera
projection is variable on 3D objects but constant on 2D
objects, making it possible to reconstruct 2D objects by su-
perimposing and connecting the temporally scattered parts
of the object extracted from consecutive frames.

In this paper, we focus on investigating the security of
2D emerging CAPTCHA instead of (pure) 3D emerging
CAPTCHA for the following reason. 3D emerging images
have limited choices on the type of objects they can embed,
because the visual details of the object are removed in a
3D emerging image in order to prevent automated attack,
and a human’s perception of emergence effect depends
on their familiarity with the object. Therefore, only those
simple objects that are commonly seen, and have distinct
shape features, can be embedded into a 3D emerging image
and must have a size large enough to be perceivable. This
limits not only the diversity of such images but also the
number of objects that can be embedded, therefore lowering
the feasibility of easy design of secure and usable 3D EI
CAPTCHAs.

Our Contributions: We show that the weaknesses of 2D
emerging CAPTCHAs mentioned above can be exploited
to effectively compromise the security of EI-Nu CAPTCHA
of [20, 21], the current state-of-the-art in EIMO CAPTCHAs.
Specifically, we report on an automated attack framework to
defeat EI-Nu CAPTCHA, and propose fundamental coun-
termeasures based on pseudo (not pure) 3D effects and real
dynamic background. As such, we believe that we are ad-
vancing the state of science in CAPTCHA security by: (1)
demonstrating and quantifying the security limitations of a
CAPTCHA type previously believed to be secure, and (2)
proposing and evaluating countermeasures. A repository of
our CAPTCHA samples, attack demonstrations and defense
strategies are available online at: https://sites.google.com/
site/breakingeimo1/. Our specific contributions in this pa-
per are as follows:

1) Design of a Novel Automated Attack Framework: We de-
signed an attack framework using image processing
to recover the shape contour of the codeword in a
“bottom-up” manner, i.e., by reconstructing the shape

contour first from individual binary masks, then from
the combination of a set of consecutive masks, and
finally from the combination of multiple sets. An exten-
sive evaluation of thousands of CAPTCHA challenges
(including limited samples available from developers’
own website [1]) demonstrates that our attack can un-
dermine the security of EI-Nu CAPTCHAs with a non-
trivial success rate (i.e., up to 89.2%) under different
parameterizations (Sections 3 and 4).

2) New Countermeasures and Usability Evaluation: We de-
velop a set of countermeasures to enhance the secu-
rity of EI-Nu CAPTCHAs (broadly applicable to 2D
EIMO CAPTCHAs in general). Specifically, we propose
a novel variant based on pseudo 3D effects (i.e., rotation
and scaling) and dynamic background with dynamics
mainly existing in low geometric details that can be
well transmitted into EI-based frames, examine its se-
curity, and evaluate its usability. We demonstrate that
this variant can resist almost all auto-attacks, in our
knowledge, based on accumulated information. This
improvement in security, however, comes at the cost of
reduced usability compared to the - now shown insecure
- 2D variant (EI-Nu). (Section 5).

Significance and Impact of Our Work: Emerging images
represent a relatively new notion being applied to the
CAPTCHA domain, and promise to defeat most existing
object detection methods that rely on common visual fea-
tures, such as edge, color, and corner point. The signifi-
cance and impact of our work therefore lies in systematically
exploring and highlighting the security vulnerabilities of
a representative instance of such CAPTCHAs, and asso-
ciated countermeasures. While such CAPTCHAs have not
currently been deployed, they may soon be given their at-
tractive properties. Our work represents a preemptive effort
to analyze the security of these CAPTCHAs in advance of
their deployment.

Generalized and Robust Attack/Countermeasures: Our
attack targets EI-Nu CAPTCHAs, “the first concrete instan-
tiation of the notion of Emerging Images applied to captchas”
[20, 21] with certain parameter setting, such as the minimum
bounding rectangle (MBR) of a codeword, the number of
characters in a codeword (e.g., 3), and the threshold of the
trivial segment size. However, without loss of generality, our
methods to locate a codeword, reduce noises, and accumu-
late edges from consecutive masks of multiple time periods,
are generally-applicable and robust to defeat all similar
2D EI designs. In the same vein, our countermeasures are
generally applicable to other 2D EI designs.

2 BACKGROUND

The authors in [20, 21] proposed a 4-step process in gen-
erating 2D EI-Nu. However, it is difficult to reproduce the
exact same effect by following their instructions due to a
lack of detailed explanation about implementation choices
such as parameter settings. Therefore, we independently
reconstructed EI-Nu CAPTCHAs by following the original
instructions with certain modification as explained below,
followed by the proof of visual equality of the reconstructed
version and the original EI-Nu.
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Fig. 1: Comparison between the original EI-Nu CAPTCHA and our design with
codeword “KHZ”. (a) A single frame image. (b) A single binary mask after
removing the background scene. (c) Superimposition of 2 consecutive binary
masks. (d) Superimposition of 5 consecutive binary masks.

1) Generate a noisy frame Ibg with each pixel following
a Gaussian distribution (same as the original instruction).
Due to a lack of instructions for mixing the current frame
and the previous frame to preserve the temporal continu-
ity, we implemented our own method based on our best
understanding of the principal and best effort to observe
the mixing pattern. Here common pixels refer to those object
edge pixels shared between the edge mask of the current
frame and that of the previous frame, while discrepant pixels
denote those edge pixels that only exist in the current frame.
The temporal continuity is preserved by allowing a certain
percentage of common pixels to be displayed again in the
current frame. The formula for generating the combined
frame I (in Step 3) indicates that pixels with smaller Ibg val-
ues have a higher possibility to be displayed as black pixels.
Therefore, common pixels with non-negative Ibg values and
discrepant pixels with negative Ibg values exchange their
values. Discrepant pixels are exchanged in ascending order
of their Ibg values until the largest negative pixel is reached.
A percentage parameter ρ is used to control the exchange
percentage of common pixels so as to control the degree
of temporal continuity. The swap operation preserves the
current Gaussian distribution in Ibg . Finally, a median filter
is used to blur the noise frame.
2) Generate the edge mask Ifg for both foreground code-
word and the background scene (same as the original in-
struction).
3) A combined frame I is created by combining the fore-
ground edge mask Ifg and the noisy frame Ibg using:
I(x, y) = Ibg(x, y) × exp(Ifg/const), where exp(x) is the
exponential function. As indicated in [20, 21], in this way,
pixels near the edges of characters in I can be made noisier
than other pixels (same as the original instruction).
4) In the original Step 4, the final binary frame is generated
through binarizing I by setting all the pixels whose values
are greater than a user-defined exposure degree threshold
t <0 to ‘white’, and the remaining pixels to ‘black’. How-
ever, it is difficult to reproduce the exact same effect by
following the original instructions due to a lack of expla-
nation of the value selection for t. Since the pixel values
in a noisy frame follow the Gaussian distribution, blurring
(like in the original Step 1) could shrink the value range,
which increases the threshold sensitivity of t in Step 4.
Consequently, a small change of t value would often lead to
too many/few white pixels being generated, easily causing
the resulting frame to be visually dissimilar to that in the
original design. To address this issue, two thresholds, i.e.,
t1 < t2 < 0, are used to generate the final binary frame.
In particular, t2 is applied only to the pixels on the contour
of codewords and its surrounding area, and t1 is applied to

the noise background, enabling a finer granularity of control
and thus reducing the sensitivity when only one threshold
is used.

To prove that our version produces visually similar
effects as the original EI-Nu CAPTCHA, we provide a com-
parison of the two versions with respect to two primitive
visual similarity measures:
• A single screen-captured frame image.
• A single binary mask of a codeword, or superimposi-

tion of multiple consecutive binary masks. The method
to generate such masks will be introduced in Section 3.

The first standard is used to check whether similar visual
effect is presented to the human user, while the second
standard relates to whether similar clues are exposed to
attacking algorithms. As shown in Figure 1(a), only partial
shape contours, represented as edge segments, for both
codewords and the background scene are exposed in a sin-
gle frame image. The codeword shape is blurred in overlap
of 5 consecutive binary masks (Figure 1(d)). Moreover, the
exposed contour (i.e., edge segments) of the codeword in
a single frame, a single binary mask, and superimposition
of 2 consecutive masks from the reconstructed version is
perceivably less than that of the original EI-Nu CAPTCHA.
Therefore, our design is at least as secure as or even more
secure than the original design in terms of resilience to
vision-based auto-attacks.

3 ATTACK ON EI-NU CAPTCHA
In this section, we highlight the weaknesses of the EI-Nu
CAPTCHA, and describe our automated attack framework
that exploits these weaknesses.

3.1 Design Weaknesses
We have identified following weaknesses in the EI-Nu
CAPTCHA design, the first three of which are significant.
1) 2D Camera View: The recognition of 2D shapes is rela-
tively easier than that of 3D shapes since the former have a
constant camera projection, which as we mentioned earlier,
makes it easier to connect scattered parts from consecutive
frames into meaningful objects after superimposition.
2) Dynamic Background: Even though the input edge mask
Ifg consists of both the codewords and the background
scene, as will be seen in Section 3.2, the background can
be recovered to some extent by collecting clues from con-
secutive frames. With the background mask removed from
each frame, the task of codeword auto-recognition becomes
easier.
3) Accumulated Knowledge: Although each character ro-
tates within a certain angle range, overlaps with neighbor
characters to some extent, and moves up and down in a
wavy motion, there is a primary moving direction (e.g., left
to right) with a low to moderate moving speed while other
movements between two consecutive frames are compara-
bly trivial. Therefore, once the location of the codeword is
identified, it is possible to superimpose consecutive frames
based on this primary direction so as to collect contour
segments of the codeword.
4) Puzzle Data Size: Each CAPTCHA challenge loops con-
tinuously within a short video (6 seconds) to: (1) limit
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Fig. 2: Auto-attack framework for EI-Nu CAPTCHA. (a) Collect frame images and convert them into binary masks. (b) Detect background scene mask. (c) Remove
background scene mask from each binary mask (1x), and generate overlapped masks (2x). (d) Generate dense masks from overlapped masks. (e) Shape separation and
character recognition (In the dashed rectangle, red: detected shapes; white: templates). (This and other figures are best viewed in color.)

Fig. 3: The capture of frame images. (a) Original frame; (b) Color code image; (c)
Binary mask; (d) Removed noise.

the CAPTCHA file size; and (2) prevent the accumulative
collection of codeword contours. For example, the longer
the video, the more likely it is for the codeword to reappear
in the same orientation but with different contour segments
(due to the randomness in generating Ibg), facilitating the
reconstruction of codeword shapes. However, one problem
with using a short video is all the information is stored in a
relatively small number of frames, making it computation-
ally more feasible for automated algorithms to mine these
patterns.
5) Color: Since each frame is a binary image, only black
pixels (which usually constitute the smaller portion of a
frame) that come from the edge mask, and random noises
need to be explored by the automated attack program that
is computationally feasible.

3.2 Our Attack Framework
Our EI-Nu attack framework consists of five steps (Figure
2).
1) Capture of Frame Images: A set of consecutive frames is
screen-captured from an EI-Nu CAPTCHA challenge, and
converted into binary masks (Figure 2(a)).
2) Background Scene Detection: The background scene is
reconstructed by accumulative learning from the binary
masks multiple times (Figure 2(b)).
3) Preprocessing of Binary Masks: The background edge
is removed from each binary mask. Multiple consecutive
masks (e.g., 2) are superimposed to form a clearer shape of
codewords, which is called overlapped mask (Figure 2(c)).
4) Generation of Dense Masks: A set of dense masks is
generated from the overlapped masks (Figure 2(d)).
5) Character Separation and Recognition: All dense masks
are matched with each other to form the frequency map
for each character. The detected shape is extracted from
the frequency map using a constant frequency threshold.
A Generalized Hough Transform (GHT) [6] is performed to
match each shape to a character template (Figure 2(e)). See
Appendix A for further explanation of the use of GHT.

3.2.1 Step 1: The Capture of Frame Images
As mentioned in Section 3.1, each CAPTCHA challenge
loops continuously within a 6-second video clip. We screen-

capture consecutive frames from this 6-second clip. The
shape recognition only needs to focus on segments consist-
ing of black pixels, which represent codewords, background
scene and random noise. However, due to the quality loss
in the conversion from frame images to a video clip in
generating the CAPTCHA, a screencaptured frame image
becomes a color image with a very low saturation (i.e.,
grayish). To obtain a binary frame mask, we first convert
an RGB frame image into an image I with color code
representation [24], which replaces a pixel value with a 6-
bit color value consisting of the highest two bits from each
8-bit RGB channel. A sample color code image is shown
in Figure 3(b), in which different colors represent different
color code values. First, such a simplification operation will
drastically reduce the number of colors from 2563 to 26 = 64,
ease the selection of the threshold value, and remove noises.
Second, color code can help group pixels with similar colors
into the same code, facilitating the binarization process. We
empirically select the dominant bin value (e.g., 21 in our
case) that is the second darkest among all dominant bins
from colorcode histogram as the threshold tb for binariza-
tion. All pixel values in I that are lower than or equal to
tb are made white (Figure 3(c)), and black otherwise. A lot
of pixels irrelevant to the codeword as well as some edge
pixels from the codeword are removed in this binarization
procedure (Figure 3(d)).

3.2.2 Step 2: Background Scene Detection
As mentioned in Section 3.1, one of the drawbacks of the
original 2D EI-Nu design is the use of a weak dynamic
background (Figure 6 in [1]) that is not sufficiently dynamic
because most dynamics/movements exist in the high geo-
metric details in the original natural scene videos but get
largely lost during conversion into binary EI-based frames,
while low geometric details (the relatively static video con-
tent) are largely preserved in the resulting binary frames,
which is an innate limitation of binary emerging images.
Therefore, such a background scene is ineffective in hiding
the location of foreground codewords. As can be seen from
the EI-Nu samples on our demo website, certain dynamics
from the original natural scene video is still preserved,
however not sufficient to border against our proposed attack
especially the recovery and removal of background which is
the key to the successful extraction of the codeword.

For the four natural scene videos used in the experiments
of [20, 21], we convert each frame into gray image and
recover the background by treating the most frequent gray
value among all frames as the true color from background.
Our study shows that this operation can recover most con-
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Fig. 4: Background Mask Detection (corresponding to the natural scene in Figure
4(g)). (a) Superimposition of 25 consecutive binary masks. (b) Localization of the
codewords in integral image. (c) Incomplete background mask after removing
the overlapping codewords area fMBR (dashed rectangle). (d) A single complete
background mask Bi. (e) Intersection of 5 complete background mask. (f) Inter-
section of 20 complete background mask.

tents of all four natural scene videos used in [20, 21]. Next,
we will show how a video background like the one used in
original EI-Nu CAPTCHA (Figure 1), despite the existence
of moderate vibration effect and random noises, can be
extracted automatically. Further, based on the observations
from this study, we implemented new countermeasures
with dynamic background (details in Section 5.2).

This process starts with randomly selecting a starting
frame (e.g., ith frame) from the n collected binary masks.
Let b|(i+k−1)mod ni denote the incomplete background mask
(Figure 4(c)) generated by superimposing k consecutive
binary masks (Figure 4(a)) that corresponds to a very short
period ∆t and removing the subarea fMBR of overlapping
codewords. To construct a complete background, multiple
incomplete backgrounds are generated while the codeword
travels across the background scene. For this purpose, after
the first starting frame (ith frame) is selected and the first
incomplete background mask is constructed, the process
moves on to select the second starting frame ((i+k)th frame)
and generate the second incomplete background mask,
and continues until all the removed foreground subareas,
when superimposed together, cover the full width of the
CAPTCHA window, or the maximum number of iterations
is reached. One complete sweep of the codewords across
the CAPTCHA challenge window is usually sufficient to
provide enough incomplete background masks to form a
complete background mask Bi, but often with a lot of noises
(Figure 4(d)). Since noise pixels appear randomly in each
frame, one way to reduce noise in the background mask
is to generate multiple background masks using different
first starting frames (e.g., ith, (i+1)th, (i+2)th,.., (i+p)th where
p<k), and group the common white pixels shared by those
background masks to form the final background B (Figure
4(e-f)).

Background detection is described in the following equa-
tions, in which olp(i,k) is the superimposition of k (e.g.,
25) masks starting from the ith mask, r is the number of
iterations to generate one complete background mask, and
p is the total number of complete background masks used
to generate the final background mask B.

b|(i+k−1)mod n
i = opl(i , k)− fMBR i ⊆ [1,n] (1)

Bi = b|(i+k−1)mod n
i

⋃
b|(i+2k−1)mod n
(i+k)mod n

⋃
...

⋃
b|(i+rk−1)mod n
(i+(r−1)k)mod n

(2)

B = Bi

⋂
B(i+1)mod n

⋂
..

⋂
B(i+p−1)mod n (3)

Fig. 5: Effects of superimposing and shifting on binary mask of the original EI-Nu
CAPTCHA. The background is removed in the above images. (a) Superimposition
of 5 consecutive binary masks. (b) The degree of discrepancy of the codewords
between 2 consecutive masks - the global view and the zoomed-in view. Red color
represents pixels from (i- 1)th frame, while white color represents pixels in the ith

frame. (c) 2x-overlapped mask based on the two masks in (b).

The remaining task is to locate the overlapping code-
word subarea fMBR from a superimposed mask. Based on
some a prior knowledge, (e.g., the number of characters
nc, the font and font size) in a CAPTCHA challenge, a
minimum bounding rectangle (MBR) can be defined, the
dimensions of which are determined by the maximum pos-
sible MBR for the nc characters arranged side-by-side. As
mentioned in Section 2, pixels near the edges of characters
are made noisier than other pixels, meaning that there are
more noise pixels near the edges than the other areas.
Therefore, the task to locate the overlapping codeword
subarea is to find the MBR with the maximum pixel count
in the superimposed binary mask. The integral image [18]
is used to quickly calculate the pixel count in an MBR
(Figure 4(b)). The size of an MBR is further adjusted, usually
made smaller, after the removal of trivial segments (e.g.,<10
pixels) from the MBR.

3.2.3 Step 3: Preprocessing of Binary Masks

Both the background scene and the random noise introduce
errors in auto-recognition of the codewords. It is necessary
to remove these artifacts from the binary mask before the
shape detection. However, since the background scene and
the random noise share the same color with the codewords,
removing them may also remove some contour/edge pix-
els of the codewords. The generation instruction of EI-Nu
CAPTCHA, as mentioned in Section 2, suggests that the
edge segments preserve certain level of temporal continuity.
Therefore, the higher the temporal continuity, the higher
the probability that similarly shaped segment will appear
again in the current frame at about the same location, thus
revealing less new edge information. Preserving temporal
continuity is critical in preventing the fast revelation of
the character’s shape. Superimposing multiple consecutive
binary masks over a relatively long period (e.g., ≥5 frames)
will blur the character shape due to self-rotation and move-
ments (i.e., horizontal and/or vertical movement) of the
codeword (Figure 5(a)). However, there is an upper bound
for both the rotation speed and the moving speed for the
sake of usability of solving CAPTCHAs. If the movement
is too much and too fast, the user may feel dizzy when
watching the CAPTCHA, in turn decreasing the usability.

Thus, superimposing consecutive binary masks over a
relatively short period (e.g., < 5 frames) may still be used
to recover partial shape contours with an acceptable degree
of distortion. Figure 5(b) shows the degree of discrepancy
of the codewords between two consecutive binary masks
of an original EI-Nu challenge, which indicates that the
orientation difference of a character, and the wavy up and
down movement between TWO consecutive frames (i.e., 2x-
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overlapped mask, Figure 2(c)) are very minute. First, the ori-
entation difference of a character between two consecutive
frames is trivial. If such rotation degree per frame is large,
e.g., 10 degrees per frame and the frame rate is 30 fps, the
character will rotate 150 degree in 0.5 second, in which case
even human could barely recognize the character. Second,
the height of the CAPTCHA window restricts the up and
down moving offset between TWO consecutive frames.
The wavy up and down is controlled by a sine function
y(t)=A×sin(ω t+ψ), where y is the vertical position of the
letter, t is the frame id, and A, ω, ψ are adjustable param-
eters. The vibration needs to be restricted under certain
level that does not undermine the usability severely. For
example, assume the moving offset is 3 pixels per frame
and the frame rate is 30 fps. The codeword can vertically
travel across 90 pixels in one second, which corresponds to
about 72% of the height of the CAPTCHA window (i.e., 125
pixels) and more than half of the sine period. It is difficult
and inconvenient for a human to recognize codewords at
such fast speed. Therefore, 1 or 2 pixels per frame for up
and down movement are more user-friendly, resulting in
relatively trivial frame-to-frame difference in at least 2x-
overlapped masks compared with the character size and
edge thickness.

The preprocessing on the binary masks consists of two
steps: 1) subtract the background scene mask from each
binary mask, and 2) generate the kx-overlapped mask, which
accumulatively collects contour information from the com-
bination of k consecutive masks through shifting and super-
imposing operations. To determine the value of k, factors to
consider include the extent of exposure of the shape contour
in consecutive masks, the moving speed of the codeword,
and the frame rate. If the extent of exposure is low (e.g.,
high temporal continuity), a small k cannot provide enough
contour information. However, if the moving speed and/or
the frame rate is high, a large k may over-blur the shape
contour. Our design may have a different moving speed
and/or frame rate than the original design. We find that
the optimal k for attacking the original EI-Nu CAPTCHA is
2, while the optimal k for attacking our design is 3.

Step 2 includes two operations, shifting and superimpos-
ing. To generate the ith 2x-overlapped mask, without loss of
generality, the previous mask bi-1 is left-shifted by 1 pixel
and superimposed on the ith binary mask bi. Note that the
shifting offset value vary depending on the moving speed
of codewords. The moving speed can be estimated by mea-
suring the distance between the two MBRs’ centroids that
come from the beginning and ending of a set of consecutive
frames. Also, the frame rate can be calculated by counting
the number of unique frames per second collected using
high sampling rate (e.g., 1/90 second). In our attack on the
original EI-Nu, a constant shifting offset due to the constant
moving speed.

As shown in Figure 5(c), the 2x-overlapped mask of an
original EI-Nu CAPTCHA exposes more shape information,
which can be used in character recognition. To generate the
ith 3x-overlaped mask, there are two options in selecting the
two neighbor masks (bi-2, bi-1, bi) or (bi-1, bi, bi+1). Because
of the temporal continuity between consecutive frames, the
difference of edge segments between bi-2 and bi is larger
than that between bi+1 and bi, therefore, exposing more

shape information when superimposed. In our experiment,
we use (bi-2, bi-1, bi) to generate the ith 3x-overlapped mask.
The shift distance of bi-2 is twice as much as that of bi-1.

3.2.4 Step 4: Generation of Dense Masks

Only partial shape exists in a 2x-overlapped mask and is
not sufficient for separation of characters from each other
or for character recognition. One way to obtain better shape
information is to use more consecutive frames in generating
kx-overlapped masks. However, using too many consecu-
tive frames (e.g., k ≥ 5) will introduce too much noise due
to character rotation and movement. Another way is to use
multiple kx-overlapped masks, where k is a relatively small
value, in order to collect more shape contour via cross-
matching between two or more such overlapped masks. To
match the codeword shape in one kx-overlapped mask with
that in a neighbor overlapped mask, a divide-and-conquer
strategy is adopted to match each subarea that contains
only one character in an overlapped mask with the corre-
sponding subarea in a neighbor mask by testing different
orientations and locations of each character subarea during
matching.

First, the codeword subarea fMBR in each kx-overlapped
mask (e.g., k=2) is extracted by using the same method
presented in Section 3.2.2. Since the background scene has
been removed from an overlapped mask, the codeword
subarea becomes the densest subarea, and thus easy to
detect. Not all detected MBRs provide the correct location
of the codeword. For example, sometimes the background
scene is not thoroughly removed, or the codeword is split
into two parts and appears on both sides of the CAPTCHA
window. An MBR may contain partial codeword and par-
tial background scene segments or noises. Such MBRs are
removed based on the following two criteria:
• The width of an MBR must be larger than a predefined

threshold that indicates the minimum width of the side-
by-side arrangement of three characters

• The total pixel count in an MBR must be larger than a
predefined threshold that indicates the minimum seg-
ment pixel count of an incomplete codeword contour.

Instead of exhaustively matching an MBR with all of its
neighbor MBRs, only a few MBR candidates are selected
based on their entropy values for the sake of efficiency. The
MBR entropy is calculated as H(X) = −

∑
p(xi)log2p(xi),

where X denotes an MBR, xi∈ X is a 9×9 block of pixels,
and p(xi) denotes the pixel density of the ith block, i.e.,
the number of white pixels divided by the area of the cell.
Usually, the lower the entropy, the more evident and cleaner
the shape contours contained in that MBR. Top qualified
MBRs are selected one by one in the ascending order of their
entropy values, and typically no more than 5 top candidates
are selected.

Further, each MBR candidate, together with the MBRs
of its previous k neighbors (e.g., k=4), is horizontally and
evenly divided into three subareas, each of which roughly
contains one character. Subareas in each neighbor MBR are
treated as templates while subareas in the current MBR
candidate are treated as the target. Generalized Hough
Transform (GHT) [6], which is an object detection method
for arbitrary shapes, is applied to match the character shape
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Fig. 6: Flowchart for generating the dense mask.

Fig. 7: The 5 dense masks corresponding to the top 5 MBR candidates (codeword:
“KHZ”).

between the MBR candidate and its neighbors. The spatial
correlation among several consecutive masks results in a
small rotation range (e.g., ±10 degrees) used in GHT. More-
over, the temporal continuity preserves the overlapping of
certain edge segments of the same character from consecu-
tive masks. A frequency map (see Figure 6) is generated to
show the matching frequency of each white pixel in the MBR
candidate. Then, a dense mask for each MBR candidate is cre-
ated through binarizing the corresponding frequency map
by using a fixed threshold (i.e., Round(k/2)), in which white
pixels represent those that are highly frequently matched to
the templates from neighbor MBRs. The above process is
illustrated in Figure 6. The dense masks corresponding to
the top five MBR candidates are shown in Figure 7.

3.2.5 Step 5: Character Separation and Recognition
The main challenge in breaking static text-based
CAPTCHAs, such as Google CAPTCHA and reCAPTCHA,
is to separate characters from each other in order to perform
optical character recognition (OCR) [7]. A similar challenge
exists in breaking EI-Nu CAPTCHAs, due to the overlap
between characters. Unlike static text-based CAPTCHAs,
or NuCaptcha, that can utilize some robust features such as
corner points and closed loops to determine the boundary
between characters, the character contour, consisting of
edge segments, in EI-Nu CAPTCHA is often unsmooth
and incomplete. Therefore, it is challenging to find cutting
points on edge segments to reliably separate characters.

To address the above problem, we apply the same cross
matching method (Figure 6) to dense masks in order to find
the frequently matched pixels in each subarea group (i.e.,
one group for each set of left, middle, and right subareas).
For each subarea group, the target image is chosen as the
one with the maximum pixel count, while the other subareas
are used as templates. As shown in Figure 8, the first dense
mask is selected as the target in shape detection of the
left character. Pixels with matching frequency larger than a
threshold (e.g., 2 for 5 masks) are included in the final char-
acter mask for that subarea group. Since the variation in the
orientation of the same character in different dense masks

may be significant, a relatively large rotation angle range
(e.g., ±60 degrees) is used in GHT. Since the middle charac-
ter overlaps with both the left and the right characters, its
detection is also largely affected by the detection of those
two characters. Therefore, the left and the right characters
are detected before the middle character. In particular, the
middle character is detected based on the frequency map
after the pixels of the other two characters are removed.

In recognizing characters, it is unreliable to use the char-
acter pixel count [23] in the left, middle, or right subareas
due to the irregularity of edge segments. For the sake of
efficiency and simplicity, we again rely on GHT to compare
the detected shapes (used as object templates) with known
character templates (used as target images). Assume the
pixel counts of the template and the target image are N1

and N2, respectively. The matching similarity scope P is
calculated in (5), where comm(N1, N2) returns the count of
common pixels shared by the template and the target image:
P = p1×p2 = (comm(N1, N2)/N1)×(comm(N1, N2)/N2).

It is noteworthy that evenly dividing the MBR into
three subareas could undermine the shape contour detection
due to unequal width of characters (e.g., “W” and “M”
are wider than most others while “J” is narrower.) The
fewer the characters in a codeword, the less is such an
impact because there are fewer division errors. For example,
according to our experimental results on 101 4-character
codewords (3 attack attempts each), a codeword such as
“WWK” is fully recognizable because the division error
did not exceed the mitigating capability of GHT, while
“MWWK” could not be fully recognized. In this batch of
experiments, 40 out of the 101 codewords contain a mix of
normal-sized characters and wide/narrow characters such
as “M”, “W”, and “J”. The overall average success rate is ∼
67%, while the average success rate on unequal-width code-
words is 30%. Some successful attacks on unequal-width
codewords include “49GW”, “9VWZ”, and “368W”, etc. As
for “MWWK”, although our algorithm never recognized
the word completely correctly, the best result is “FWWK”
which is pretty close and can be acceptable if the CAPTCHA
does not demand a 100% correct answer (such as the Multi-
digit Number Recognition from Street View2 and Google
reCaptcha3).

It is also worth noting that character combinations such
as “MW”, “VW”, “83”, “5S”, “O0Q”, “1lI”, “NM” should be
avoided in generating codewords, since they are also hard
for human solvers to distinguish in EI videos. However, in
our experiments on the 101 4-character codewords, we did
not exclude those combinations. The actual success rate of
our algorithm could be higher in a more practical setting
that excludes those combinations.

4 ATTACK IMPLEMENTATION AND EVALUATION

Our attack is implemented in MATLAB, except of some
functions, e.g., rotating image, calculating integral image
and matrix matching, are implemented with C based APIs in
OpenCV. Our experiments with the attack framework focus
on evaluating the security of the EI-Nu CAPTCHAs under

2. http://arxiv.org/abs/1312.6082
3. https://www.cs.cmu.edu/∼biglou/reCAPTCHA Science.pdf
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Fig. 8: Separation of left character in a codeword, and character recognition using known character template images. The number labels are the dense mask IDs.
Different colors in the frequency map represent different matching frequencies: sky blue (1), cyan (2), green (3), yellow (4), and brown (5).

different difficulty levels. All experiments are performed on
a MAC air laptop with hardware configuration: 2 GHz Intel
Core i7, 8GB 1600MHz DDR3, and 250G SSD; and software
configuration: OS X 10.8.5, MATLAB R2013b.

To evaluate our attack, we first implemented our ver-
sions of the EI-Nu CAPTCHAs as described in Section 2.2.
In our implementation, each challenge loops on a 6-second
video clip that uses a canvas of size 285(W)×125(H). A
codeword moves across the background scene from right
to left with constant speed (represented as pixels per frame
(ppf )), and moves up and down harmonically. Each char-
acter in a codeword also rotates around its centroid. A
vibration effect is implemented for the background scene
by randomly shaking the scene image up and down. The
frame rate is 27 fps when moving speed of codewords is
2 ppf, and 20 fps for 3 ppf for better perception to human
users.

As mentioned in Section 2, three parameters were used
in our CAPTCHA implementation against which our attack
was evaluated: (1) A percentage parameter ρ is used to
control the degree of temporal continuity; (2) A parameter
const is used to calculate the intensity image I ; and (3)
Different t values (t < 0) are used to generate the binary
masks for codeword, background scene, and random noises.
Table 1 shows the range of the parameters used for control-
ling the segment density of codeword, background scene,
and noises. In all experiments, we only vary the parameter
values for codewords since they determine the extent of ex-
posure of shape contour (e.g. a challenge with t2 = -0.75 have
about 6% less codeword segment pixels than a challenge
with t2=-0.70). A set of constant parameter values is applied
to generate segments of background scene and noises in
each frame, thereby maintaining a similar visual effect as the
original design. Two different horizontal moving speeds for
a codeword, i.e., ppf = {2, 3}, are tested to show its security
impact. A color image (Figure 11(a)) is used to generate
the background scene edge mask. The templates used in
attacking the original EI-Nu CAPTCHA are obtained by
copying the character contour from NuCaptcha challenges
(available from NuCaptcha website), and scaling it to an
appropriate size. In our versions, the font style and size of
each template is Arial narrow bold and 60 pt.

Before attacking our versions, we applied the attack on
the two original EI-Nu CAPTCHA challenges with code-
word “KHZ” and “7FX”, 100 times each. Due to the random-
ness in selecting the first frame for detecting the background
in Step 2 (Section 3.2.2), the detected background can be
slightly different. Therefore, the best dense masks may not

Fig. 9: Results of dense mask candidates and character recognition for attacking
the original EI-Nu CAPTCHA.

TABLE 1: Range of parameters used in generating CAPTCHAs.

ρ const t < 0
Codeword {0.5, 0.6, 0.7, 0.6 {-0.70, -0.75} (t2)

0.8, 0.9}
Bg. Scene 0.5 0.3 -0.40

Noises 0.5 0.6 -0.85 (t1)

always be selected, leading to errors in character recogni-
tion. In order to improve the efficiency of GHM matching,
we scaled down each detected shape by 20%. The average
success rates are 65% and 52%, respectively, in attacking the
two challenges. A lower accuracy in recognizing “7FX” than
that of “KHZ” is partially due to the mismatch in detecting
the shape of “7” with template “T”. The detected dense
masks and the shapes of the “7FX” challenge are shown in
Figure 9. This demonstrates that our attack can effectively
solve the EI-Nu challenges proposed in [20, 21].

The first experiment with our EI-Nu CAPTCHAs is to
explore the security impact of the moving speed and the
threshold t2 that controls the segment density of codeword.
Two different degrees of temporal continuity {0.5 and 0.7}
are tested . Together with two moving speeds {2 and 3}
ppf and two t2 values {-0.70 and -0.75}. A total of 8
EI-Nu groups have been tested, each group contains 500
CAPTCHA challenges with randomly generated unique 3
characters codeword. In order to adapt the attack to our
version of CAPTCHAs, two parameter settings are tuned in
Step 3 (Section 3.2.3). First, 3x-overlapped mask that com-
bines 3 consecutive binary masks, are generated in Step 3
instead of 2x-overlapped mask. Moreover, when the moving
speed is 2 ppf, the 1st neighbor mask (i.e., bi−1) is left-shifted
by 1 pixel, and the 2nd neighbor (i.e., bi−2) is leftshifted by 2
pixels. When the moving speed is 3 ppf, the shifting offset is
adjusted to 2 and 4 for the 1st and 2nd neighbor, respectively.

TABLE 2: Success Rate (%) of the Proposed Attack under Different Moving
Speed and Threshold t2.

TC
````````̀Speed(ppf )

t2 -0.70 -0.75

0.5 2 89.2 80.4
3 76.8 66.2

0.7 2 57.8 51.6
3 48.8 40.6

Table 2 indicates that the success rate decreases with the
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Fig. 10: Success rate of each character location in a codeword and overall success
rate under different degrees of temporal continuity.

increase of the codeword moving speed and/or the decrease
of the threshold t2. Each character in a codeword rotates,
and moves up and down, so there is a certain degree of dis-
tortion on the codeword shape in the 3x-overlapped mask. A
higher moving speed will further distort the object’s shape
in the overlapped mask. Decreasing the threshold t2 allows
less amount of contour pixels to be displayed in the final
binary frame. Thereby, the completeness of the detected
shape from speed 3 CAPTCHAs with a small threshold t2 is
worse than that of speed 2 with a relatively larger t2.

In the second test, we focus on assessing the security
impact of the temporal continuity. As mentioned in Section
2, to preserve the temporal continuity between two consec-
utive binary frames, a selected common pixel always swaps
its Ibg values with the current largest discrepant pixel that
has a negative Ibg value. The parameter ρ, which relates to
the degree of temporal continuity, is varied from 0.5 to 0.9
in our experiment at a fixed interval 0.1, while t2 = -0.7 and
moving speed = 2 ppf.

As shown in Figure 10, the success rate decreases when
the degree of temporal continuity increases. A higher degree
of temporal continuity implies that common pixels have
a higher probability to be displayed in both the current
frame and the previous frame while the display of those
discrepant pixels with the largest negative Ibg values are
more likely to be suppressed, leading to less revelation of
new information in the current frame. Therefore, under a
higher temporal continuity, in order to collect the complete
shape contour information, more consecutive masks need to
be analyzed, making the challenge more difficult to break.
However, while consecutive masks within a short period
(<5 consecutive masks) may not be able to provide enough
contour pixels to recover an object shape, consecutive masks
in a long period may over-blur the shape contour after
superimposition. Therefore, such a dilemma leads to a very
low success rate of the proposed attack when the temporal
continuity is very high, such as 0.9. We did not experiment
with any ρ value lower than 0.5 because the success rate is
already very high at this degree of continuity.

In each group of the above test, the success rate in
recognizing characters in each location of a codeword is
summarized in Figure 10. Take the left character as an
example, the success rate is calculated as the ratio of the
number of recognized left characters to the total number
of challenges in a test group (i.e., 500). Since the middle
character overlaps characters from both left and right sides,
it is more difficult to detect.

Finally, the evaluation of the processing time of the

proposed attack is analyzed from two aspects, namely, the
total completion time of an attack and the proportion of
time of each step. In all our previous groups of test, the
average completion time of an attack is relatively stable (i.e.,
96.15 seconds) given a specific degree of temporal continuity
(i.e., ρ=0.5). As the degree of temporal continuity increases
from 0.6 to 0.9 , the average completion time decreases
from 92.74 to 76.87 seconds due to the decrease in the
number of recovered contour pixels. Fewer contour pixels
result in faster matching between the detected shape and
the templates. However, the attack success rate decreases
sharply (Figure 10).

All modules in each step are executed linearly. The
bottleneck is in Steps 4 (19% of computing time) and 5
(55% of computing time), which use GHT matching to gen-
erate dense masks and object shapes, and perform charac-
ter recognition. During character recognition, one detected
character contour needs to be matched to each of the 36
templates (26 letters and 10 numbers). As shown in Figure
12 (Appendix B), more than half of the processing time is
spent on the last step of the attack.

There are several ways to improve the efficiency of our
attack: (1) Upgrading the current hardware; (2) Writing each
module in a more efficient, lower level language, such as
C/C++; and (3) Using parallelized algorithms. For example,
the last step could be applied on the left and the right
characters simultaneously. Moreover, a detected shape can
be matched to all templates in parallel.

5 COUNTERMEASURES AND USABILITY

In this section, we introduce a new design of EIMO
CAPTCHAs that can defeat almost all auto-attacks, to our
knowledge, based on accumulated information, and pursue
a study to evaluate its usability. Before introducing our new
design, we consider and rule out several straight-forward
countermeasures.

5.1 Straight-forward Countermeasures

We explore several possible countermeasures to improve
the security of EI-Nu CAPTCHAs against our auto-attacks,
while keeping in mind the usability aspects. The first nat-
ural counter-attack is to increase the number of charac-
ters displayed in the challenge window, referred to as Ex-
tended in [20, 21]. However, simply increasing the number
of characters is not necessarily an effective defense. First,
Extended will only increase the completion time of our
attack linearly, but still affordable with proper parallelism
as suggested in Section 4. Second, to examine the impact
of longer codewords, we performed experiments on 101
4-character codewords (three attack attempts each), and
the average success rate is ∼67%, which is a noticeably
drop compared to the average success rate of attacking 3-
character codewords (89%). However, this success rate is
still considered sufficiently high. We did not perform exper-
iments on 5- or more character codewords, because: (1) The
current window size can hold up to 5 characters but leave
very little space for codeword movement, thus significantly
increasing the difficulty for the human solver because there
would be much less time (< 2 seconds with a moving
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speed of 2ppf) that all the characters of the codeword
appear simultaneously in the window. (2) Given the fact
that emerging image contains very limited visual cues, the
font size cannot be too small, posing a limit on the number
of characters (e.g., ≤5) in the challenge window. According
to the study in [20, 21], the variant of NuCaptcha (which did
not even have any emergent effect) considerably increased
the difficulty of character recognition for human users due
to confusing pairing of characters, missing letters, and extra
ones. Their usability study also indicates that solving a long
codeword is the least preferred by the user, and thus the
most disliked. (3) It is not practical to further enlarge the
window in order to accommodate long codewords because
a too-large CAPTCHA window takes up too much space on
a web page, which may degrade the UI experience of web
browsing.

Another natural way that may counter our attack is to
reduce the exposure of visual clues in each frame. This is
similar to the idea of Transparent countermeasure proposed
in [20, 21]. We did test our attack with different t2 values,
which is used to control the extent of exposure of shape
contour. In our experiments, we decrease the t2 value (i.e.,
causing less exposure) gradually to a level that would still
yield human recognizable characters (though increasingly
harder). The results in Table 2 indicate that the success rate
drops with the decrease of t2 value but the lowest success
rate of our attack is still above 40%.

Increasing the overlap between adjacent characters, re-
ferred to as Overlapping in [20, 21], could be another viable
mechanism of mitigating our attack. However, too much
overlapping is likely to be challenging to both the attack and
human users (usability), especially when combined with
emerging effect and hollow characters that leave very little
visual cues. We already demonstrated that our attack is
effective in defeating the EI-Nu CAPTCHAs that do contain
small-medium amount of overlapping. We followed the
original design in [20, 21] to set up the character distance.

As shown in [20, 21], none of the above obvious coun-
termeasures is considered effective in defeating auto-attacks
against NuCaptcha without significantly compromising us-
ability. They also seem unworkable against our auto-attack
against EI-Nu.

Our attack effectively leverages the temporal informa-
tion in the moving objects not only by exploring the accumu-
lated shape information from a series of consecutive frames,
but also by exploring higher-level accumulated information
from lower-level accumulated information in a bottom-up
fashion, and doing so at different moments of time to
compensate for the incomplete and inconsistent visual cues
exposed at different points of time. In the case of (2D-based)
EI-Nu, although there are not enough visual cues in one
frame that help distinguish characters from the background,
and the codeword has no seemingly temporally consistent
appearance (e.g., due to rotation, emerging effect, and wavy
movement), the 2D character has a relatively consistent
shape that does not change over time. What keeps changing
from one frame to another is the specific set of edges seg-
ments (containing the shape information) exposed in each
frame and the local transformations that make them look
different if the same edge segment is displayed again. Also,
although the background already incorporates emerging ef-

fects and appears to be “dynamic”, the amount of dynamics
embedded in largely “fixed” low geometric details is not
sufficient to prevent foreground/background separation.

In summary, none of the above-mentioned obvious coun-
termeasures fundamentally improve the design paradigm
of 2D EIMO CAPTCHAs, and therefore still susceptible to
the proposed attack and falling into a subclass of computer
vision problems that have a computationally feasible so-
lution and are characterized by relatively consistent object
shapes with rigid 2D transformations, partial (and locally
transformed) shape information exposed in a frame, and an
emerging background that has largely “fixed” low geomet-
ric details.

5.2 A Fundamentally Different Design

In this section, we introduce a new design of EIMO
CAPTCHA that addresses the fundamental limitations of
the current 2D EIMO CAPCHAs. Our design consists of the
following countermeasures.

The first countermeasure aims at drastically (rather than
gradually) increasing the amount of dynamics embedded
in the background, preventing the background detection.
Instead of randomly moving the background up and down
to implement the vibration effect, the CAPTCHA challenge
window will start from an initial location in a larger back-
ground scene canvas, and randomly move up, down, left,
or right with a constant speed (Figure 11(b)) that is fast
enough in order to produce fast changing background,
equivalent to drastically changing the low geometric details
in the background in each frame. The background scene
edge mask within the current CAPTCHA window is used in
generating the current EI-based frame mask. Due to the fast
dynamic change of the scene content, a “static” background
scene can no longer be constructed, not even in a remotely
reliable way, by superimposing multiple consecutive frame
masks because such methods rely on reasonably consistent
low geometric details or gradually varying appearance over
time. In this case, pixel segments from the background
scene will present them in the overlapped mask as noises,
preventing effective detection of the codeword. In contrast,
the original EI-Nu design [20, 21] converts each frame from a
natural scene video (with slow varying appearance) into an
emerging image as the background, resulting largely “fixed”
low geometric details in the background, which is not
sufficient to prevent foreground/background separation.

The second countermeasure is to add a pseudo 3D effect
in the 2D object movement, which increases the problem
space by an order of magnitude (vs. gradual increment) and
effectively invalidates the assumption that the object shape
remains constant over time. The implementation of pseudo
3D is simpler than that of the real 3D effect in the original EI
videos [13], which depends on 3D objects and their shadow.
Each character in a codeword rotates around the vertical
axis, and also scales up and down randomly, producing
a visual effect as if the character is moving toward/away
from the human viewer. Figure 11(c) shows the pseudo 3D
effect (codeword: “M3E”) and dynamic background content
in two edge masks. Such enhancement can largely prevent
character separation through cross matching among multi-
ple dense masks that are collected from different periods
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Fig. 11: Countermeasures against our proposed autoattack. (a) The
natural scene image. (b) CAPTCHA window randomly roams in the
canvas. (c) Pseudo 3D effect and dynamic background content. (The
contrast of the edge mask is enhanced for better visualization.)

of the CAPTCHA video. However, 3D effect by itself is not
guaranteed to be a sufficient defense, because occasionally
we found that some superimposition masks (constructed
from the version with 3D effect only) can still expose long
object contours that can be visually recognized by a hu-
man solver, although not fully recognizable by our attack
approach.

Our resulting EIMO CAPTCHA variant, termed 3D-EI,
incorporates both of the above countermeasures. We can
expect that, with two levels of security (3D effect foreground
and dynamic background), the superimposition mask will
only get much noisier, thus drastically reducing the suc-
cess of attacks. In fact, 3D-EI not only defeats our attack
against EI-Nu, but is also resistant to almost all commonly
used computer vision based auto-attacks, to our knowledge,
based on accumulated information. For example, it defeats
the character pixel count approach [7], due to the irregu-
larity of edge segments, i.e., the edge is no longer smooth,
equal-width, or sufficiently continuous, not to mention the
significant amount of noise existent in the subarea. The fact
that it defeats our attack shows that 3D-EI is also resistant to
shape matching attacks based on accumulated information.
The color filling segmentation [7] relies on the availability
of complete boundary of each character. The authors of
emerging images have already proved the robustness of
emerging images against conventional edge detectors (e.g.,
Canny edge detector). Therefore, no complete boundary can
be detected in either a single frame image or a dense mask
due to absence of information in the local neighborhood
area, therefore cannot be used to attack 3D-EI. Examples
of 3D-EI can be found at https://sites.google.com/site/
breakingeimo1/proposed. The difference in the amount of
background dynamics between the original EI-Nu and 3D-
EI is obvious, so is the increased difficulty in recognizing 3D
characters.

5.3 Usability Study: 3D-EI/EI-Nu/Nu

We now present a study to assess the usability of the
proposed pseudo 3D effect EI CAPTCHA (3D-EI) compared
with the EI-Nu CAPTCHA and the commercial NuCaptcha
(Nu). In particular, we wanted to determine how much
usability degradation occurs in 3D-EI over EI-Nu by adding
security to our attack against EI-Nu. NuCaptcha was used as
a baseline for our comparative usability study. We utilized
the Amazon Mechanical Turk (MTurk) to recruit partici-
pants for the study. We chose to utilize MTurk as it would
allow us to collect large amount of data from participants
from various age groups, and backgrounds. Experimenting
with the proposed CAPTCHA in a lab study would give
us only insight of the usability of the proposed CAPTCHA
among limited pool of participants (usually University sam-

ples) and thereby we will not be able to understand how
a diverse set of people would perceive the CAPTCHA
challenges. However, prior to conducting the MTurk study,
small pilot lab studies were conducted in various stages
of the CAPTCHA development process. Our university’s
Institutional Review Board approved the project.

5.3.1 Study Design
Each CAPTCHA challenge was of size 285(W)×125(H) and
displayed as a 6-second video that loops continuously. We
generated 100 challenges for each of 3D-EI and EI-Nu, and
downloaded 100 challenges for Nu from its website [3]. A
within-subjects experimental design was employed, where
each participant was asked to solve exactly 10 challenges
of the three categories (either correctly or incorrectly), the
total number of solved challenges was 1200 challenges for
each of the tested category. All participants completed all
the tests. To reduce the effect of learning biases, the order
of presenting the three categories followed a standard 3×3
Latin Square, and the challenges within each category fol-
lowed a random order (a similar design was used in [21]).
A total of 120 MTurk workers were recruited for the study
and paid $1.0 each for their efforts that took on average 15
minutes. The participants were divided equally across the
Latin square (40 participants per Latin square).

The MTurk workers were subjected to a consent agree-
ment, and then asked to fill-out a demographics form, solve
ten challenges of one of the categories (selected randomly
from the hundred pre-generated/downloaded challenges),
and fill-out a survey form about user experience. The
survey contained 10 System Usable Scale (SUS) standard
questions, each with 5 possible responses (5-point Likert
scale, where strong disagreement is represented by “1” and
strong agreement is represented by “5”). The same design
was used to test the three categories of CAPTCHAs. Given
the online nature of the study, in order to make sure that
the participants pay attention while answering the survey,
we inserted a dummy question at random location in each
survey which asks the user to select a specific rating.

The participants in our study were from various age
groups, education levels and backgrounds. Age group:
1.67% were < 18 years, 21.67% 18-24 years, 50% 25-34 years,
15.83% 35-50 yearsand 10.83% > 50 years4. Gender: 59.17%
male and 40.83% female. Education: 36.67% high school
graduate, 45% hold bachelor degree, 16.67% hold master
degree and 1.67% hold a PhD degree. The participants were
from various backgrounds such as Computer Science, Engi-
neering, Medicine, Social Science, Finance, Business, Educa-
tion, Art, Sales, Chemistry, Architecture, Construction, etc.

5.3.2 Results
The three CAPTCHA categories were evaluated in terms
of (1) solving time, (2) number of successes, and (3) user
experiences, as described below. The overall results are
summarized in Table 3.

We have performed several statistical tests to evaluate
how the three CAPTCHA categories differ from each other.

4. The age group of the participants in our study is similar to the
age distribution of MTurk workers http://www.behind-the-enemy-
lines.com/2015/04/demographics-of-mechanical-turk-now.html.
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Our selection of the statistical tests follows the analysis
represented in [21]. We used one-way repeated-measures
ANOVA test to analyze the differences between the solving
time and the number of success mean. Post-hoc Tukey HSD
test is used to determine between which pairs the difference
occurred, whenever ANOVA revealed a significant differ-
ence. For SUS, we used the non-parametric Friedman’s test.
Whenever overall significant difference was found, we used
post-hoc pairwise Wilcoxon Signed-Rank tests with Bonfer-
roni correction to see in which of the pairs the difference
occurred.

TABLE 3: Overall usability results for 3D-EI, EI-Nu and Nu

Solving Time (s) # of Success SUS
mean (sdev) mean (sdev) mean (sdev)

3D-EI 9.99 (5.46) 8.35 (1.72) 45.11 (21.16)
EI-Nu 6.68 (3.32) 9.23 (1.51) 58.13 (21.17)
Nu 6.19 (3.59) 9.62 (1.61) 79.62 (15.25)

Solving Time: The solving time was calculated as the time
taken by the participants to solve each challenge. We con-
sidered in our calculation both the time taken that results
in correct as well as the incorrect responses. The average
solving time across all participants is shown in Table 3
(column 1). The results show that the time taken to solve
EI-Nu is 1.08 times the time taken to solve Nu, and the time
taken to solve 3D-EI is 1.50 times the time taken to solve EI-
Nu on average. A one-way repeated measure ANOVA test
showed overall statistically significant difference between
solving time of the three variants (F (2, 1200) = 287.73,
p < 0.0001). Upon further inspection, Tukey HSD tests
showed significant differences between all of the pairs of
the variants: p < 0.01 for the 3D-EI and EI-Nu pair, p < 0.01
for the 3D-EI and Nu pair, and p < 0.05 for the EI-Nu and
Nu pair.
Number of successes: Table 3 (column 2) shows the mean
and standard deviation of the number of successes for
solving each of the tested CAPTCHA variants. Each par-
ticipant was asked to solve 10 challenges of the three
categories. Mean number of success is calculated as the
average number of challenges that is solved correctly by
the participants. The results show an average decrease of
9.53% in the solving accuracy of 3D-EI compared to EI-Nu,
and an average decrease of 4.05% in the solving accuracy
of EI-Nu compared to Nu. Comparing the differences in
mean accuracies between the three categories using one-way
repeated measure ANOVA, we found statistically significant
difference (F (2, 120) = 19.93, p < 0.0001). Further, the Tukey
HSD test showed significant differences between 3D-EI and
EI-Nu (p < 0.01) and between 3D-EI and Nu (p < 0.01); no
significant differences were found between EI-Nu and Nu,
however.

Analyzing the individual participant responses, we
found out the most amount of errors (65.22%) in NuCaptcha
were contributed by the three participants who likely did
not understand the task fully and were inputting the first
moving word rather than the red codeword (the actual
challenge). Further, we found that some of the participants
could not distinguish between visually similar characters
such as {7, T, 1}, {O, Q, 0, C}, and {S, 5, 8}, which reduced
their performance in solving the three tested CAPTCHA

categories (62.12% of the committed error was because of
the confusable characters.). We also analyzed the position
of errors in the challenge/codeword of the three tested
CAPTCHAs (shown in Table 4). As we can see, most errors
in 3D-EI occur in the second letter which is due to the
overlapping with the left and the right characters in the
codeword.

TABLE 4: Location of errors within the challenges/codewords

1st Char
Only

2nd Char
Only

3rd Char
Only

More
Than 1 Char

3D-EI 31 72 54 37
EI-Nu 28 20 20 24
Nu 1 3 4 37

User Experience (SUS Scores): Three participants answered
one of the dummy questions incorrectly and we removed
their responses in that SUS survey from our analysis. Table
3 (column 3) shows the SUS scores (out of 100) for the
three CAPTCHA categories. Nu’s usability was very high
as expected. However, both 3D-EI and EI-Nu variants seem
to have usability on the lower side, given usable indus-
trial software systems generally exhibit SUS scores of 70
or more [12], highlighting the usability challenges under-
ling emerging-image CAPTCHAs in general. Clearly, 3D-EI
scores are lower compared to those for EI-Nu. Comparing
the SUS scores Friedman’s test showed overall significant
difference (p < 0.0001). Further, pairwise Wilcoxon Signed-
Rank test with Bonferroni correction was used to to assess
the difference between each of the three pairs. Significant
differences were found (p < 0.01) between all the pairs of
the three categories.
Familiarity: To evaluate whether the performance of
CAPTCHA solving improves with practice, for each of
the variants, we compared the average solving time and
solving accuracy between the first and last attempt of the
participants. The results are shown in Table 5. For both 3D-
EI and EI-Nu, we found improvement in the participants’
performance reflected by the decrease in solving time and
increase in solving accuracy. Comparing the solving time
using paired t-test, we found a statistical difference between
the first and last attempts of both EI-Nu and EI-3D. No such
statistical differences were found for NuCaptcha, however.
Also, we found that only 52% of the participants could
solve the 3D-EI variant the first time they saw it, while
the percentage increased to 92% on their 10th attempt. This
analyses suggests that participants performed better and
their tolerance to the 3D effect and dynamic background
increased with more exposure to these emerging CAPTCHA
variants.
TABLE 5: Comparing the first and last attempts for the three CAPTCHA
variants

First Attempt Last Attempt
Solving Time Solving Solving Time Solving

mean (sdev) Accuracy(%) mean (sdev) Accuracy(%)
3D-EI 13.83 (8.21) 76.67 9.24 (4.28) 82.50
EI-Nu 8.94 (3.45) 90.00 6.03 (2.41) 96.67

Nu 7.05 (3.93) 95.00 7.88 (5.62) 95.83

Summary: Our results show some degradation in the us-
ability of 3D-EI CAPTCHAs when compared to EI-Nu
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CAPTCHAs (comparable to the degradation in the usabil-
ity of EI-Nu CAPTCHAs over NuCaptchas). On the pos-
itive side, users could get become better at solving 3D-EI
CAPTCHAs as they become more familiar with them over
time. Thus, we believe that a significant improvement in
the security provided by our 3D variant over EI-Nu would
make it a valuable CAPTCHA that may still be used in web
applications that require high security against automated
attacks.

6 CONCLUSIONS

Emerging images provide humans with an easy way to per-
ceive an object, meanwhile, posing a significant challenge
for computers to decode the underlying content. As the first
representative and user-friendly instantiation of emerging
image CAPTCHA, EI-Nu CAPTCHA was proposed be-
lieved to be secure against auto-attacks. However, we have
identified several security vulnerabilities in this design and
translated them into a full attack against this scheme. The
key weakness is to use constant camera projection on 2D
objects, which provides limited, but temporally continuous
contour information in consecutive frames.

Possibly all auto-attacks employing accumulated infor-
mation would fail against our new construction due to two
reasons. First, the dynamic background content eliminates
the possibility for generating static background mask in the
attack. Second, the pseudo 3D objects have different camera
projection in different period of a CAPTCHA video, thereby
reducing the chance to recover the object shape through
cross matching between frames in different periods. This
improvement in security, however, comes at the cost of
reduced usability compared to the (now shown insecure)
2D variant (EI-Nu), which may still be acceptable in high se-
curity web applications. Broadly, our work highlighted the
security and usability challenges associated with emerging-
image CAPTCHAs not known before.
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APPENDIX

A: The Choice of GHT
There are several representative classification methods, such
as ANN [11, 15] and AdaBoost [17], using features of objects
(e.g., edges and corners) for character/object recognition.
However, different from the relatively clean training data
used in [20], our detected shape contours consist of sporadic
small segments and do not have smooth edges or clear
corners (Figure6). Therefore, there are no robust features
that can be reliably used to train a classifier. Instead, we
use GHT-based direct matching to accommodate for noisy
dense masks and rotations.

B: Processing Time of Each Step in our Attack

Fig. 12: Proportion of the processing time of each step in the proposed
attack.
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