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Abstract—Many RFID tags store valuable information privy to their
users that can easily be subject to unauthorized reading, leading to
owner tracking or impersonation. RFID tags are also susceptible to
different forms of relay attacks. This paper presents novel sensing-
enabled defenses to unauthorized reading and relay attacks against
RFID systems without necessitating any changes to the traditional
RFID usage model.

Specifically, the paper proposes the use of cyber-physical inter-
faces, on-board tag sensors, to (automatically) acquire useful con-
textual information about the tag’s environment (or its owner, or the
tag itself). First, such context recognition is leveraged for the purpose
of selective tag unlocking – the tag will respond selectively to reader
interrogations. In particular, novel mechanisms based on owner’s
posture recognition are presented. Second, context recognition is
used as a basis for transaction verification in order to provide protec-
tion against a severe form of relay attacks involving malicious RFID
readers. A new mechanism is developed that can determine the
proximity between a valid tag and a valid reader by correlating certain
(specifically audio) sensor data extracted from the two devices. Our
evaluation of the proposed mechanisms demonstrate their feasibility
in significantly raising the bar against RFID attacks.

Index Terms—RFID; relay attacks; context recognition; sensors

1 INTRODUCTION

T HE low cost, small size, and the ability of allow-
ing computerized identification of objects make Ra-

dio Frequency IDentification (RFID) systems increasingly
ubiquitous in both public and private domains. Prominent
RFID applications include: supply chain (or inventory)
management, e-passports, credit cards, driver’s licenses,
vehicle systems (toll collection or automobile key), access
cards (building or parking, public transport), and medical
implants.

A typical RFID system consists of tags, readers and/or
back-end servers. Tags are miniaturized wireless radio
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devices that store information about their corresponding
subject. Such information is usually sensitive and per-
sonally identifiable. For example, a US e-passport stores
the name, nationality, date of birth, digital photograph,
and (optionally) fingerprint of its owner [22]. Readers
broadcast queries to tags in their radio transmission ranges
for information contained in tags and tags reply with such
information. The queried information is then sent to the
server for further processing.

Due to the inherent weaknesses of underlying wireless
radio communication, RFID systems are plagued with a
wide variety of security and privacy threats [18]. A large
number of these threats are due to the tag’s promiscuous
response to any reader requests. This renders sensitive tag
information easily subject to unauthorized reading [14].
Information (such as an identifier) gleaned from an RFID
tag can be used to track the owner of the tag, or to clone the
tag so that an adversary can impersonate the tag’s owner
[18].

Promiscuous responses also incite different types of relay
attacks. These include the “ghost-and-leech” attack [23],
whereby an attacker (leech) relays the information surrep-
titiously read from a legitimate RFID tag to a colluding
entity (ghost) which relays it to a legitimate reader. This
way a ghost and leech pair can succeed in impersonating
a legitimate RFID tag without actually possessing the
device. A more severe form of relay attacks, usually against
payment cards, is called a “reader-and-ghost” attack. In
this attack, a malicious reader colludes with the ghost [6]1,
and can make purchases using a victim’s RFID tag. We
note that addressing the reader-and-ghost attack requires
transaction verification, i.e., validation that the tag is indeed
authorizing the intended payment amount. The feasibility
of executing relay attacks has been demonstrated on many
RFID (or related) deployments, including the Chip-and-PIN
credit card system [6], and keyless entry and start car key
system [8].

1.1 Sensing-Enabled Automated Defenses
Although a variety of security solutions exist, many of
them do not fully meet the requirements of the underlying

1. In contrast to the ghost-and-leech attack, the owner in the reader-
and-ghost attack is aware of the interrogation from the (malicious) reader.
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RFID applications in terms of (one or more of): efficiency,
security and usability. We discuss prior work in Section 2.

In an attempt to address this situation, this paper proposes
the use of sensing technologies for preventing unautho-
rized reading and relay attacks without necessitating any
changes to the traditional RFID usage model, i.e., without
incorporating any explicit user involvement beyond what is
practiced today.

The premise of our work is a current technological
advancement that enables many RFID tags with low-cost
sensing capabilities. Various types of sensors have been
incorporated with many RFID tags [30], [15], [32]. Intel’s
Wireless Identification and Sensing Platform (WISP) [31],
[36] is a representative example of a sensor-enabled tag
which extends RFID beyond simple identification to in-
depth sensing. This new generation of RFID devices can
facilitate numerous promising applications for ubiquitous
sensing and computation. They also suggest new ways of
providing security and privacy services by leveraging the
unique properties of the physical environment or physical
status of the tag (or its owner).

The physical environment offers a rich set of attributes
that are unique in space, time, and to individual objects.
These attributes – such as temperature, sound, light, acceler-
ation or magnetic field – reflect either the current condition
of a tag’s surrounding environment or the condition of the
tag (or its owner) itself. A sensor-enabled RFID tag can
therefore acquire useful contextual information, and this
information can be utilized for enhanced RFID security and
privacy.

1.2 Our Contributions
In this paper, we show that contextual information can be
leveraged in two broad ways towards providing enhanced
protection against RFID unauthorized reading and relay
attacks, and put forth the following contributions.
Context-aware Selective Unlocking: We show that contex-
tual information can be used to design selective unlocking
mechanisms so that tags can selectively respond to reader
interrogations. That is, rather than responding promiscu-
ously to queries from any readers, a tag can utilize “context
recognition” and will only communicate when it makes
sense to do so, thus raising the bar even for sophisticated
adversaries. For example, an office building access card can
remain locked unless it is aware that it is near the (fixed)
entrance of the building.

We propose a mechanism for such a context aware selec-
tive unlocking geared for many different RFID applications.
Our approach is based on owner’s posture recognition,
and is well-suited for many applications where a specific
posture of the owner of the RFID tag may serve as a valid
context. These include implanted medical devices and smart
car keys used as part of the Passive Keyless Entry and Start
(PKES) systems [8]. For example, in the latter application,
a car engine starts automatically when the driver sits down
on the car seat while the key resides in the driver’s pocket;
a valid context for the key to get unlocked is an “upright
seating posture”. We present the design, implementation,

and evaluation of such a posture recognition/translation
mechanism based on a combination of accelerometer and
magnetometer readings. Our results indicate the mechanism
to be fairly accurate even under severe resource constraints.

Transaction Verification Using Sensor Data Correlation:
We show that contextual information can be used as a basis
for transaction verification in order to defend against the
reader-and-ghost attacks, a specialized form of relay attacks
involving malicious readers. For example, a bank server
can deny a $2000 transaction (jewelery purchase) when it
detects the valid tag (RFID credit card) is currently located
in a restaurant where a normal transaction is usually less
than $200, and can prevent the attack presented in [6].

Specifically, we develop a new transaction verification
mechanism that can determine the proximity (or lack
thereof) between a valid tag and a valid reader by correlat-
ing certain sensor data extracted from the two devices. This
is based on the assumption that certain ambient information,
extracted by the tag and reader at the same time (transaction
time), will be highly correlated if the two devices are in
close physical proximity.

1.3 Scope of Our Work
Errors are inherent to any context recognition approaches.
Our approaches are no different in this regard in that
they yield non-zero, although quite low, false positive and
false negative rates. Thus, the proposed approaches can
not guarantee absolute security and usability. However, our
techniques significantly raise the bar even for sophisticated
adversaries without affecting the RFID usage model. More-
over, although the proposed techniques can work in a stand-
alone fashion, they can also be used in conjunction with
other security mechanisms, such as cryptographic proto-
cols, to provide stronger cross-layer security protection. In
addition, many of our proposed ideas and techniques will be
broadly applicable in the realm of other devices equipped
with sensors.

While we have designed and optimized our context
detection approaches to minimize error rates, we are aware
that false negatives may sporadically occur in which users
are unable to gain access to a resource using their RFID
hardware. In these situations it is important to have fallback
contingencies through which users can still perform their
required task. Most applications of our context recognition
proposal can use a physical token or mechanism, such
as a button, as fallback mechanism. For example, if a
false negative occurs while a legitimate user is attempting
to unlock their vehicle using a contactless system, the
individual will be prevented from starting the car’s engine.
In this scenario, users could fall back to utilizing a physical
key to activate the car.

1.4 Paper Outline

The rest of the paper is organized as follows. We review
related works in Section 2. We present, in Section 3, our
selective unlocking mechanisms based on posture recogni-
tion. Next, we present our secure transaction verification
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based on signal correlation in Section 4. Finally, we report
on our experimentation and associated results in Section 5.
Section 6 provides concluding remarks.

2 PRIOR WORK
Hardware-based Selective Unlocking: These include:
Blocker Tag [19], RFID Enhancer Proxy [20] RFID
Guardian [29], and Vibrate-to-Unlock [34]. All of these
approaches, however, require the users to carry an auxiliary
device (a blocker tag in [19], a mobile phone in [34],
and a PDA like special-purpose RFID-enabled device in
[20], [29]). Such an auxiliary device may not be available
at the time of accessing RFID tags, and users may not
be willing to always carry these devices. A Faraday cage
can also be used to prevent an RFID tag from responding
promiscuously by shielding its transmission. However, a
special-purpose cage (a foil envelope or a wallet) would
be needed and the tag would need to be removed from the
cage in order to be read.
Cryptographic Protocols: Cryptographic reader-to-tag au-
thentication protocols could also be used to defend against
unauthorized reading. However, due to their computational
complexity and high bandwidth requirements, many of
these protocols were still unworkable even on high-end tags
as of 2006 [18]. There has been a growing interest in the
research community to design lightweight cryptographic
mechanisms (e.g., [21], [10]). However, these protocols
usually require shared key(s) between tags and readers,
which is not an option in some applications.
Distance Bounding Protocols: These protocols have been
used to thwart relay attacks [6], [8]. A distance bounding
protocol is a cryptographic challenge-response authentica-
tion protocol which allows the verifier to measure an upper-
bound of its distance from the prover [3]. (We stress that
traditional “non-distance-bounding” cryptographic authen-
tication protocols are completely ineffective in defending
against relay attacks.) Using this protocol, a valid RFID
reader can verify whether the valid tag is within a close
proximity thereby detecting ghost-and-leech and reader-
and-ghost relay attacks [6], [8]. The upper-bound calculated
by an RF distance bounding protocol, however, is very
sensitive to response time delay, as even a light delay
(a few nanoseconds) may result in a significant error in
distance bounding. Therefore, even XOR- or comparison-
based distance bounding protocols [3], [13] are not suitable
for RF distance bounding since simply signal conversion
and modulation can lead to significant delays. A recent pro-
tocol eliminated the need for signal modulation and instead
utilized signal reflection and channel selection, achieving
a processing time of less than 1 ns at the prover side
[28]. However, the protocol requires specialized hardware at
the prover side for channel selection. This renders existing
protocols currently infeasible for even high-end RFID tags.
Context-Aware Selective Unlocking: “Secret Handshakes”
is a recently proposed interesting selective unlocking
method that is based on context awareness [4]. In order
to unlock an accelerometer-equipped RFID tag [31], [36]

using Secret Handshakes, a user must move or shake the
tag (or its container) in a particular pattern. For example,
the user might be required to move the tag parallel with the
surface of the RFID reader’s antenna in a circular manner.
A number of unlocking patterns were studied and shown
to exhibit low error rates [4]. A central drawback to Secret
Handshakes, however, is that a specialized movement pat-
tern is required for the tag to be unlocked. While a standard,
insecure RFID setup only requires users to bring their
RFID tags within range of a reader, the Secret Handshakes
approach requires that users consciously move the tag in a
certain pattern. This clearly requires subtle changes to the
existing RFID usage model.

“Motion Detection” [35] is another selective unlocking
scheme. Here a tag would respond only when it is in motion
instead of doing so promiscuously. In other words, if the
device is still, it remains silent. Although Motion Detection
raises the bar required for a few common attacks to succeed,
it is not capable of discerning whether the device is in
motion due to a particular gesture or because its owner
is in motion, which results in a high false positive rate.
The use of location (and speed) information derived from
the GPS sensors for RFID security problems tacked in our
paper has been explored in recent work [26], [27].

3 SELECTIVE UNLOCKING USING POSTURE
RECOGNITION

In certain RFID applications, a specific posture of the tag
owner may serve as a valid context. One class of such
applications involve implanted medical devices (IMDs).
Under legitimate IMD access, we can assume that the
patient is lying down on his or her back. Thus, access
to the IMD will be granted only when the patient’s body
is in such a pre-defined unique posture. This will prevent
an attacker from controlling the IMD in many common
scenarios, such as while standing just behind the patient
in public. Yet another class of applications that can benefit
from posture based contexts involve the Passive Keyless
Entry and Start (PKES) system [8]. In such applications,
a driver needs to move into the car and sit down on the
driver’s seat before the engine can be started automatically
while the key resides in the driver’s pockets. Thus, getting
into the car and sitting on the driver seat can be considered
necessary posture sequences that need to be performed to
unlock the car key. In turn, this will ”unlock” the car’s
engine, allowing its driver to ignite it and drive the vehicle.
Note that posture is not used to unlock the vehicle’s door
in this scenario; the driver will gain entry to the vehicle
via an existing mechanism. The posture recognition system
is instead applied to prevent unauthorized individuals from
turning on the car’s engine. Such an unlocking mechanism
will prevent an adversary from launching attacks in sce-
narios whereby the driver is not entering the car and then
sitting on the car seat.

Since posture formations are human activities performed
by users unconsciously, posture recognition can provide a
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finer-grained non-obtrusive unlocking mechanism without
purposeful or conscious user involvement.

There may be some situations where the assumptions
regarding the usage specifics of a scenario differ. For
example, in areas with colder climates, some people choose
to start their car remotely to allow the vehicle’s engine
and interior to warm up before entering it. Our scheme
is adaptable to situations such as these as each user’s
posture template will reflect the particulars of their usage
habits. Of course, additional hardware may be required to
accommodate less common usage scenarios, i.e., a longer
transmission range would be required to detect the context
of a user who starts his or her vehicle from a distance.

In the subsequent sections, we first point out the dif-
ferences between two primary activity types: posture and
posture transition. We then concentrate on posture transition
recognition.

3.1 Posture Classifications

In order to optimize our algorithms (due to RFID resource
constraints), we classify postures into two primary types:
posture and posture transition. Posture means a static bodily
position that a user can maintain for a certain duration, such
as lying, sitting, standing and walking. Posture transition
subsumes different human movements, such as “stand-to-
sit”, “sit-to-stand”, “sit-to-lie”, “lie-to-sit”, and so on. Pos-
ture transitions capture the dynamics of human movement
and usually only last for a short duration.

We analyze the features of these two posture types and
realize that most of the postures and some of the posture
transitions can be simply detected by measuring direction
changes or status changes in sagittal and transverse planes.
In case of posture recognition, consider, for example, an
IMD – such as a pacemaker implanted into the patient’s
chest area – equipped with a 3-axes accelerometer. As
the IMD is fixed to the human body, it remains static
relative to the body system but has different orientations in
the earth coordinate system (magnetic north and gravity)
due to human body movement. Thus, we can detect such
movements by simply monitoring its relative orientation
change in the earth coordinate system. For example, when
the patient is in the “sitting” position, the Z axis of the
accelerometer points to the sky and the X-Y plane is
parallel to the earth surface. When the patient lies down,
the Z axis now should be parallel to the earth surface while
one of the X or Y axis should point to the sky. Thus, by
simply monitoring the change of directions of axes, we can
tell whether a patient is lying or not. We note that mobile
devices also commonly use such detection techniques based
on accelerometer axis direction change to perform screen
rotation functions [24]. Similarly, the work of [7] tracks
direction changes of magnetometer axes during walking.

In the following subsections, we will focus on posture
transition recognition in the presence of device tilt. From
here on, we use posture and posture transition interchange-
ably.

3.2 Design Considerations

Choice of Sensors. Current systems for full orientation
estimation, such as the one in Apple iPad2, typically
use a set of sensor modalities – including gyroscopes,
accelerometers and magnetometers – to estimate device
orientation. Gyroscopes are used to accurately determine
angular changes while the other sensors are used to com-
pensate for the gyroscopes’ integration drift. However, a
typical gyroscope is larger and requires about 5 to 10 times
more power than magnetometer and accelerometer together
[1]. Therefore, gyroscopes are not commonly available in
a tiny single package MEMS-chip. In addition, it has been
shown that neither accelerometers or magnetometers are
good enough alone to estimate full orientation [9], [33].
On the other hand, orientation estimation schemes that use
both accelerometers and magnetometers show very promis-
ing results [38], [17]. Considering the resource constrains
imposed by RFID platforms, we avoid using gyroscopes
and instead focus on accelerometers and magnetometers
for device orientation and posture estimation. As integrated
accelerometers and magnetometers are commercially avail-
able in tiny packages, an RFID tag with such sensors can
be flat and less obtrusive for the user, which makes them
very attractive to be used in IMDs or smart car keys.
Device Orientation. A number of schemes have been
proposed to estimate device orientation via the calculation
of Euler angles using readings from both accelerometers
and magnetometers [2], [17], [1]. However, many of them
suffered from a common problem, called motion distur-
bance, which leads to inaccurate orientation estimation
when the device is in motion. The scheme proposed in
[17] uses an unscented Kalman filter to effectively reduce
the influence of motion disturbance on the sensor signals.
However, it has higher computational complexity due to the
addition of a signal processing module. Considering the
limited computation and memory resources of the RFID
platform, it is clear that we have to simplify the algorithms
as much as possible without losing efficiency and accuracy.

After investigating multiple schemes in the literature
on human movement detection, we chose to adopt the
scheme proposed in [2] for posture recognition. Unlike
other schemes, which can be applied to detect generic
types of movements (not only human movements), the
scheme proposed in [2] is specifically designed to track
certain human movements, e.g., rising from a chair or
walking. So, it is well suited to planar movements which
are classically performed by humans and relevant for our
RFID applications.

3.3 System Design
Our posture recognition system makes use of the strategies
explored in the two gesture recognition systems [4], [25]
and extends them to deal with device tilt due to certain
human movements. Because our system is free of orienta-
tion limitations, there is no need for the user to hold the
device in a certain fixed way during the movement. We
achieve our goal by utilizing a 3-axis magnetometer and a
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3-axis accelerometer combination. The magnetometer data
is used to estimate device orientation in motion to miti-
gate the effect of motion disturbance since magnetometer
reading is insensitive to acceleration. With the orientation
information, the accelerometer data is “shifted” back to the
reference coordinate system, and is then compared with the
template(s) stored on the tag to recognize a certain posture.

Orientation Estimation: In this paper, all coordinate sys-
tems used are right-handed Cartesian coordinate systems.
The earth-fixed reference coordinate system I is defined
as follows (see Figure 1). The z axis points to the sky
and is perpendicular to the ground. The x axis is parallel
to the ground and points to the magnetic north. The y
axis follows the right-hand rule, is also parallel to the
ground and orthogonal to z and x. Each sensor, 3-axis
magnetometer and 3-axis accelerometer, has its own body
coordinate system B.

(a) Horizontal plane (b) North meridian plane

Fig. 1. The Earth Reference Coordinate System

Let ~vacc = (ax, ay, az) denote the values of the 3 axes
from the accelerometer and ~vmag = (mx,my,mz) denote
the values of the 3 axes from the magnetometer. Let ~I =
(x, y, z) be the unit vector in the earth reference coordinate
system. In the general case, there exists a unique rotation
matrix R that gives the relative orientation between the
sensor coordinate system B and the reference system I .
The rotation matrix R can be decomposed as a sequence
of three elementary rotations, i.e., rotation around the Z
axis or yaw angle (ψ), followed by a rotation around the Y
axis or pitch angle (θ), and finally a rotation around the X
axis or roll angle (ϕ). This transformation is shown as:

R(ψ, θ, ϕ) = R(ψ)R(θ)R(ϕ)

By adapting the approach proposed in [2], without losing
the capability to catch the features of movements, we
assume a null roll angle (ϕ = 0) and a null acceleration
along the ay axis. Now we can simply represent the rotation
matrix as R(ψ, θ) = R(ψ)R(θ). By minimizing a cost
function:

J = || ~vmag

|~vmag|
−R~I||2 (1)

we can recover the two Euler angles ψ and θ. From
these angles, we can compute the acceleration in horizontal
and vertical direction in the reference coordinate system as
follows (g = 9.81m/s2):

ah = −ax cos θ cosψ − az sin θ (2)
av = ax sin θ − az cos θ + g (3)

System Components: Based on the orientation calculation
algorithm presented above, posture recognition can be
accomplished in the following steps:

1) Template Creation: Posture templates in the ref-
erence coordinate system are created and stored on
the tag before posture recognition is performed. Each
template defines a specific type of posture. It serves as
a reference to be later compared with real-time user
movement data: a match indicates the recognition of
a particular posture defined by the posture template.
We will also convert the template data into vertical
and horizontal direction acceleration. A vector in the
template is denoted as ~Ti = (Thi, Tvi).

2) Data Collection: While a user performs the move-
ment corresponding to a particular posture, ac-
celerometer and magnetometer data are collected for
a certain short period depending on the number of
data points needed to accurately identify a movement.
Posture changes are relatively slow in comparison
with hand gestures. Thus, variations in the acceler-
ation components do not vary a lot during a posture
transition. Hence, under normal circumstances, fewer
data points are needed in posture recognition than
in gesture recognition. During data collection, the
device/tag is either fixed on the shoulder/chest or
casually placed inside the pocket.

3) Orientation Estimation: Once a series of temporal
magnetometer data is captured, it is used to estimate
the orientation of the tag and to transform the accel-
eration vector back to reference coordinate system as
adjusted acceleration data. That is, the data is used to
calculate the two Euler angles ψ and θ by minimizing
the cost function J (as defined in formula 1).

4) Posture Recognition: Similar to the Secret Hand-
shake scheme, we use cross-correlation to mea-
sure the similarity between two time series. The
cross-correlation C of the adjusted acceleration data
(ah, av) against a template T is calculated as follows:

C =

n∑
i=1

(ahiThi + aviTvi) (4)

A match will be confirmed when C exceeds a cer-
tain cross-correlation threshold. The estimation of
the cross-correlation threshold will be described in
Section 5.

3.4 Enrollment
A posture detection system must include an enrollment
mechanism in order to be practical. In a real-world system,
users would first participate in a brief one time enrollment
period during which their posture transition template would
be created with respect to the location (e.g., pocket/wallet)
of their sensing enabled RFID hardware. If a user wanted
to store the RFID tag in a new location, he or she would
have to perform an enrollment renewal to avoid the tag’s
new frame of reference from introducing errors into the
unlocking process. Note that the unlocking process does
not imply that any particular hardware response must take
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place, but rather that the response may only take place once
the hardware is unlocked. Using the car entry example,
sitting in the driver’s seat does not necessarily automatically
start the vehicle’s engine, but rather the vehicle’s engine
can be started at any time when the driver’s RFID tag has
indicated/detected that he or she is sitting in the vehicle.

4 PROXIMITY DETECTION TECHNIQUES

4.1 Correlation Using Audio
We explore the use of audio sensors (microphones) for
accomplishing the aforementioned approach to proximity
detection. This choice is motivated by the intuition that the
audio data captured at two different locations at a given
time is different to some extent.

We first need to determine if the audio recordings
captured from the same location have higher similarity
than recordings taken at different locations. To this end,
we investigate a few methods to detect such similarity
including: time-based methods, frequency-based methods
as well as a combined time-frequency method.

Time-Based Similarity Detection: To detect the similarity
between the time-based signals Xi and Xj , we propose
using two methods: correlation and difference. The signals
will first be normalized according to their energy (so that
each signal had a total energy equal to 1). Then, in the
first method, the correlation between each two signals will
be calculated and the maximum correlation will be used.
Therefore, the correlation based similarity between two
signals Xi and Xj can be measured by:

Sc(i, j) = max(Cross-Corr(Xi, Xj)) and Dc(i, j) = 1− Sc(i, j) (5)

In the second method, the distance between each bit of
the signals is calculated and the overall Euclidean norm of
the distance is used as below:

Dd(i, j) = ‖Xi −Xj‖ and Sd(i, j) = 1−Dd(i, j) (6)

Frequency-Based Similarity Detection: In the frequency-
based detection approach, we use Fast Fourier Transform
(FFT) to create the frequency coefficients for each recorded
signal. We then use both the correlation and the difference
between the FFT coefficients in order to evaluate the
similarity between different segments taken at the same
place (in consecutive time periods) vs. recordings taken at
different locations.

Time-Frequency Based Similarity Detection: This novel
method combines both the time and frequency based mea-
surements to create a point in 2-D space. In this technique,
the overall time-frequency similarity measure is calculated
by:

D(i, j) =
√

(Dc,time(i, j))2 + (Dd,frequency(i, j))2 and S(i, j) = 1−D(i, j) (7)

This implies that the similarity measurement will be
higher for closer signals.

Using audio data to perform proximity detection requires
recording local sounds, which raises some privacy ques-
tions. Fortunately, after an audio sample has been used
to determine the proximity of two pieces of hardware,
there is no more need for the audio sample. It can thus
be discarded from both of the devices performing the
security operation, ensuring that this potentially sensitive
data will not be the target of attack. A malicious device
could potentially be programmed to retain the sound data
after the correlation process. However, in the absence of our
solution, an adversary could accomplish the same effect by
placing a minuscule microphone near one of the devices
or compromising other nearby microphone equipped hard-
ware.

4.2 Correlation Using Ambient Light
We also explore the use of light sensors for the purpose
of proximity detection. This choice is inspired by an
observation that different types of places may have differ-
ent lighting conditions. For example, fast food restaurants
usually use bright lights to attract customers and to signify
a place bustling with activity and very fast service, while
fine dinning restaurants typically use low-intensity of light
to create an intimate and leisurely atmosphere. As lighting
conditions are location dependent, the ambient light can
be used as the contextual information to determine the
proximity between two devices (or a lack thereof).

Unlike ambient audio which can be heavily affected
by surrounding human/non-human activity, indoor ambient
light (without natural light) is intuitively quite steady over
time as the lighting infrastructure usually remains untapped
– this intuition is later validated through the experiments
as illustrated in Section 5.3. Hence, in this case, we use
a simple strategy that involves just comparing the mean
value of the illuminance data to determine whether ambient
light readings captured from the same location have higher
similarity than recordings taken at different locations.

Let Li and Lj be the mean value of illuminance data
captured in a short time interval by two devices at location
i and j. The difference of mean value is calculated as:

D(i, j) = |Li − Lj | (8)

As long as D(i, j) is below a threshold, we consider
the two readings to be similar enough and believe that
they are captured from the same location. Otherwise, the
two readings are believed to be captured from different
locations. We will discuss how to establish the threshold
via experiments in Section 5.3.

Light sensors can be attached on both tag and reader in
order to collect short-term data and transfer to the bank
server for further processing and Instead of compare the
patterns of the signal like what we do with audio data, we
compare just the mean value of the illuminance data since
unlike the audio signal is heavily affected by the around
happening, the illuminance is intuitively considered steady
through time for certain location and different for different
location. The two figures below prove our intuition. Curves
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in Figure 2 represent the data we collected from 4 differ-
ent places (Fast-food restaurant, supermarket, fine dinner
restaurant and shopping mall), the curves are steady and
well and parallel separated which means the mean value can
be used to distinguish these places. The boxes in Figure 3
show the mean value of the data we collected from various
locations and give us a more direct view how the mean
values of illuminance differ from locations.
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5 EXPERIMENTS AND RESULTS

To evaluate the effectiveness and performance of the pro-
posed posture based selective unlocking technique , we
build proof-of-concept prototypes on the WISP tags. WISPs
are passively-powered RFID tags that are compliant with
the Electronic Product Code (EPC) protocol. Specifically,
we utilized the 4.1 version of the WISP hardware, which
partially implements Class 1 Generation 2 of the EPC
standard. These tags possess an onboard Texas Instruments
MSP430F2132 microcontroller and sensors such as the
ADXL330 three-axis ±3g accelerometer [37]. The 16-bit

MCU features an 8 MHz clock rate, 8 kilobytes of flash
memory, and 512 bytes of RAM. WISP is chosen as our test
platform because: (1) it is the only existing programmable
UHF RFID device, and (2) it has an extensible hardware
architecture which allows for integration of new sensors.

To evaluate our sensor data correlation approach , we
develop a proof-of-concept prototype on mobile phones,
which allows us to collect data from different locations,
and demonstrate the feasibility of our transaction verifica-
tion approach. This experimental scenario is also directly
applicable to the Near Field Communication (NFC) phone
usage.

5.1 Interfacing Additional Sensors with the WISP
As mentioned above, the WISP already possesses an ac-
celerometer which will be used as part of our posture
recognition mechanism. In addition, we needed to integrate
a magnetometer with the WISP.

To this end, we decided to use HMC1053 [16], a 3-axis
magnetometer from Honeywell. The Honeywell HMC1053
is specifically designed for low-field magnetic sensing and
can measure the direction as well as the magnitude of
magnetic field ranging from 120 micro-gauss to 6 gauss.
Each of its magnetoresistive sensors is configured as a 4-
element wheatstone bridge to convert magnetic fields to
differential output voltages. There are 3 such magnetore-
sistive sensor bridges connected orthogonally to obtain the
magnetic field intensity in 3 axes. HMC1053 has ultra low
power requirements which can be satisfactorily sustained
by the WISP as these tags work ideally at 1.8 V.

As a proof-of-concept, in support of our transaction
verification scheme, we also integrated a microphone with
the WISP. Specifically, we integrated ADMP401 – an
omnidirectional microphone manufactured by the Analog
Devices [5] – with the WISP. This ideally suits the power
requirement of the WISP as it has a very low current
consumption of less than 250 µA and has a supply voltage
range of 1.5 to 3.3V. Moreover, this microphone is quite
thin and will not affect the form factor of a typical RFID
card.

5.2 Posture Recognition Experiments

We report on our implementation and evaluation of the
posture recognition based selective unlocking scheme.

We have implemented a prototype of posture recognition
on the WISP to evaluate the effectiveness of the proposed
scheme in terms of successful recognition rate. In our cur-
rent realization of the orientation estimation module, how-
ever, to find the (ψ, θ) pair that minimizes the cost function
J in Equation 1, we need to go through, in an exhaustive
way, a list of 360 × 360 possible candidate values. More-
over, the WISP platform has limited mathematical function
support. We thus had to use software implementation of
the sin and cos functions in order to rotate data vectors
back to the Earth reference coordinate system. Although
we tried to minimize computation cost via implementation
optimizations, the aforementioned factors still make posture
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recognition with orientation estimation a bit slow on WISP
tags. So, our evaluation with the WISP prototype does not
use this module currently. We expect that implementation of
posture recognition techniques with orientation estimation
will be better-suited for more powerful tags with more
resources, such as the smart keys used in modern cars
which provides the user with various functionalities such
as starting the car automatically while the driver sits down
in the car. An NFC enabled smartphone can also be thought
of as a powerful sensing-enabled RFID device.

While we were looking for a more efficient orientation
estimation design for use with WISP tags, we also im-
plemented a prototype on a desktop PC. Our PC-based
prototype implementation serves the purpose of evaluating
the effectiveness of posture recognition with orientation
estimation on a more powerful RFID platform. Our design
is modular and so the orientation estimation module can be
ported to more powerful tags when they become available
on the market.

We manually created posture templates by affixing a
WISP on the front trouser pocket area of a test subject and
recorded accelerometer data while the subject performed
certain movements. We created templates for 4 postures:
“sit-to-std” (moving from sitting posture to standing pos-
ture), “std-to-sit” , “sit-to-lie” and “std-to-car-sit”. The std-
to-car-sit posture simulates the smart key setting when a
driver gets into the car, i.e., she stands before a car, then
moves into the car, and sits down on the driver’s seat. Nor-
mally, posture movement is slower than gesture movement.
Thus, variations in the acceleration components do not
change much during a posture movement. Therefore fewer
data points are needed for successful posture recognition in
comparison to gesture recognition. In our experiments, we
collected 30 data points for each posture. Our experimental
results show that this number is sufficient for accurate
posture recognition.

To determine which cross-correlation detection thresh-
olds to use, we collected 40 traces of accelerometer data for
each posture. Each trace is then used as a template, which
is compared with all the other traces to calculate a serial
of C values (Equation 4). The smallest C value is chosen
as the threshold value. This threshold value is stored with
the corresponding template and a matched posture needs to
yield a C value larger than this threshold.

We conducted the following experiment with the WISP
prototype – posture recognition without orientation esti-
mation. In this experiment, posture data is collected when
the WISP is fixed in the position similar to the one we
used while collecting the template data. This simulates the
case of an implanted device which would usually remain
in the same fixed position inside the body. For our second
experiment, we tilted the WISP in different ways in the
sagittal plane and then affixed it to the trouser pocket area.
This is to simulate other (external) RFID devices that can be
tilted inside the pocket or purse. We conducted this second
type of experiments with orientation estimation using our
PC prototype.

We requested a single participant to generate templates

and test samples for our experiments. For each posture, we
conducted 60 tests (each test yielded 30 data points) and
calculated the success rate based on these 60 test results.

The results of our first experiment show that it takes only
around 220 ms to recognize a posture on the WISP. Our
overall results for the two posture recognition experiments
are summarized in the two confusion matrices depicted
in Table 1. Table 1(Left) represents the results for the
WISP implementation without orientation estimation func-
tionality executed on samples where the device was not
tilted (simulating medical implants, for example); Table 1
(Right) represents the results for the PC implementation
with orientation estimation module executed on samples
where the device was tilted.

First comparing the successful posture recognition rates
in Table 1(Left) with that of gesture recognition schemes,
such as Secret Handshakes [4] and uWave [25], we find
that we achieve slightly lower recognition rates, although
still high enough for practical purposes. This might be
because of the tilt effect of human movement, as postures
can not be performed in as controlled of a way as gestures.
(Note that we could not completely prevent the effect of tilt
while collecting our samples, unlike the case of a real fixed
medical implant). The posture recognition rates in Table
1(Right), on the contrary, are comparable to that of gesture
recognition schemes. This confirms the effectiveness of the
orientation estimation module for posture recognition in
scenarios where device tilt occurs.

Our experiments also show that when a device can be
tilted but no orientation estimation is used to correct the
data, the posture recognition algorithms are not successful.
This is because without orientation estimation, the readings
of the accelerometer can not reflect the external force due
to tilt. The same external force may produce different
accelerations along the three axes of the accelerometer if it
is tilted differently; likewise, the different forces may also
produce the same accelerometer readings. Thus, without
orientation estimation, a given posture can be confused with
any of the other postures.

Overall, the results of our posture recognition experi-
ments were mixed. On the positive side, we were able to
efficiently estimate posture with a computational RFID tag;
the 220 ms recognition rate that we achieved is fast enough
to be used in applications with very low delay tolerances,
such as access tokens. Furthermore, when taking orienta-
tion into account, the accuracy of our proposed posture
recognition scheme was comparable to alternatives with
more demanding usage models, such as gesture recognition.
Unfortunately, we found orientation estimate to be too
computationally expensive for current processor equipped
tags such as the WISP. Moreover, a study with additional
participants would help establish the applicability of our
scheme to a broader population.

5.3 Audio Data Experiments
In this section, we present our evaluation of the techniques
for transaction verification based on audio data correlation.



9

sit-std std-sit sit-lie std-car-sit
sit-std 91.67% 3.33% 3.33% 1.67%
std-sit 1.66% 88.34% 6.67% 3.33%
sit-lie 3.33% 1.66% 93.34% 1.67%

std-car-sit 3.33% 3.33% 1.67% 91.67%

sit-std std-sit sit-lie std-car-sit
sit-std 96.66% 1.67% 1.67% 0.00%
std-sit 1.67% 93.33% 3.33% 1.67%
sit-lie 1.67% 3.33% 95.00% 0.00%

std-car-sit 0.00% 1.67% 5.00% 93.33%

TABLE 1
Confusion Matrices for Posture Recognition: (Left) without orientation estimation and device tilt (WISP

implementation); (Right) with orientation estimation and device tilt (PC implementation)

5.3.1 Data Collection

The goal of sensor data correlation is to detect whether
the valid tag and valid reader are at the same or different
locations. Therefore, we needed to collect the sensor data
when the two devices are located in close physical prox-
imity as well as when they are at two different locations.
Since capturing this data at different locations is not feasible
while using an RFID tag (since our RFID reader was
not mobile), we decided to instead work with two mobile
phones, simulating a valid RFID tag and a valid RFID
reader.

To enable recording of background sounds using the
phones, we developed a program that captures audio from
the phone’s built-in microphone and installed it on two
mobile phones. The program was designed to record up to
30 seconds of continuous audio data. The audio-capturing
programs were launched on both phones and activated at
about the same time to record the samples (the phones were
synchronized by means of a wireless signal). We recorded,
with the microphones, a few audio samples at different
locations. We needed to determine if it was possible to
distinguish between recordings taken at the same location
versus at different locations.

To simulate a normal usage scenario (i.e., when no
attacks occur), the phones were separated by a distance of
3-12 inches. In this case, we tried to detect the probability
that two recordings taken at the same general location (but
a few inches apart and with a different sensor) can be
distinguished from recordings taken at different locations.
For this purpose, we collected data at 5 different locations,
recording 20 1-sec segments from two sensors simultane-
ously (located a few inches apart).

To simulate attack scenarios, we recorded audio at 7
different locations, including a few retail stores and fast
food restaurants. Specifically, we recorded surrounding
noise at: McDonald’s, Wendy’s, Target, and our university
cafeteria and library.

All recorded audio files were then converted from the
3GPP format to the WAV format to be fed into our matlab
algorithms for signal correlation (discussed in Section 4.1).
Conversion from 3GPP to WAV, unlike the inverse, is
considered lossless, since there is no compression used
in WAV format. Thus, no important information was lost
during this conversion.

5.3.2 Performance of Similarity Detection Tech-
niques:
We test the performance of various techniques, outlined
in Section 4, to identify which one can most accurately
detect the similarity between recordings taken at the same
location. Specifically, in every test group, we use 5 pairs
of 1-sec recording segments. The two samples in each pair
were taken by two different sensors at the same location
simultaneously (each pair was recorded at a separate loca-
tion). For all the techniques, we calculated the probability
that the recording, identified as the most similar one to
a given recording, was the recording taken at the same
location.

We ran the test for the dataset collected previously. Our
results showed that the time-based “correlation” (Equation
5) gave better result (38% detection rate) compared to the
“distance” (Equation 6) between the signals (which resulted
in detection rate of 14%). Also, our tests showed that
frequency-coefficients based distance yielded better results
(50% detection rate) compared to time-based methods and
to frequency-based cross-correlation methods (which re-
sulted in 39% detection rate). Finally, our tests also demon-
strated that the result corresponding to time-frequency clas-
sification is superior to all other methods, with a successful
detection rate of 53%. In the rest of our analysis, therefore,
we use the time-frequency based technique.

5.3.3 Performance of Audio-based Proximity Detec-
tion:
We next used the test dataset to determine the performance
of our time-frequency detection on data taken under normal
usage as well as attack scenario. We calculated the time-
frequency distance measure between each two different
samples. We found the square distance D(i, j)2 (Section
4.1) and used it as our data features. For each pair of
locations, we calculate the mean of the square distance.
We generated a confusion matrix for our dataset as shown
in Table 2.

To distinguish between recordings taken at the same ap-
proximate location we compare the time-frequency square
distance between each recorded signal and the one taken by
the second microphone at the same location as well as with
all the recordings taken at different locations. We construct
the similarity matrix s using the similarity measurements
and use it as our feature data. We use the input data to train
the classifier to find the similarity threshold for each couple
of samples. We use the SimpleLogistics classifier from the
WEKA package to classify the samples. We run a 10-fold
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TABLE 2
Confusion Matrix of Square Time-Frequency Distance

Concert Hall Library McDonalds Library (2) Cafe

Concert Hall 0.4678 1.7889 1.8645 1.7556 1.8412
Library 1.7889 0.8539 1.7878 1.6753 1.7545

McDonalds 1.8645 1.7878 0.6018 1.7962 1.7241
Library (2) 1.7556 1.6753 1.7962 0.8213 1.8140

Cafe 1.8412 1.7545 1.7241 1.8140 0.5289

classification, which partitions the data into 10 partitions,
trains the classifier over 9 of the partitions (which act as
the training set) and classify the remaining samples (the
testing set). This is repeated for each partition and training
set in the dataset.

We note that the classifier arrived at a simple classifica-
tion formula: if y = 11.49 × Corr − 8.69 < 0, then both
samples will be considered to be taken at the same place.
Otherwise, they will be considered to be taken at different
locations. This is a simple calculation (one multiplication
and one addition) and will take the server a negligible
amount of time to validate whether both samples were
captured at the same location.

Using the classifier results, we find the detection rate
for each pair of locations in which the samples were
taken (where one sample is captured in each location). The
detection rate is calculated over all the pairs of samples
which were taken at the two locations, by dividing the
number of pairs of samples that were correctly classified
by the number of total pairs of samples (taken at those
locations). The result of the correct recognition rates can be
found in Table 3. As can be seen from the table, our audio
signal based correlation technique yields 100% detection
rate.

5.3.4 False Accept Rate vs. False Reject Rate:
We next determined the probabilities of incorrectly ap-
proving the transaction with an unauthorized phone and
rejecting the transaction with an authorized phone, by
calculating the False Accept Rate (FAR) vs. the False Reject
Rate (FRR). FAR is the sum of false positives, which occur
when the audio signal captured by a valid reader matches
the audio signal captured by a phone, even when the two
devices are at different locations. FRR, on the other hand,
is the sum of false negatives, and denotes the probability
that the transaction is rejected even when the valid phone
and valid reader are in close physical proximity.

Using the classifier results, since our detection rates are
100%, our FAR and FRR are both clearly equal to 0%.
This indicates that our audio-based proximity detection
technique is very robust.

6 CONCLUSIONS
We presented novel defenses to unauthorized reading and
relay attacks against RFID systems without necessitating
any changes to the traditional RFID usage model. More
specifically, we proposed the use of on-board tag sensors
to acquire useful contextual information about the tag’s

environment. First, such context recognition was leveraged
for the purpose of selective tag unlocking. In particular,
selective unlocking mechanisms based on owner’s posture
recognition were presented. Second, context recognition
was used as a basis for transaction verification in order to
provide protection against relay attacks involving malicious
RFID readers. More precisely, a transaction verification
mechanism was developed that can determine the proximity
between a valid tag and a valid reader by correlating audio
sensor data extracted from the two devices.

Our evaluation of all the proposed mechanisms demon-
strate their feasibility in effectively and significantly raising
the bar against many lingering RFID attacks without nega-
tively affecting the currently employed usage model of the
underlying RFID applications.
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