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Abstract. In certain applications, it is important for a remote server
to securely determine whether or not two mobile devices are in close
physical proximity. In particular, in the context of an NFC transaction,
the bank server can validate the transaction if both the NFC phone and
reader are precisely at the same location thereby preventing a form of a
devastating relay attack against such systems.
In this paper, we develop secure proximity detection techniques based on
the information collected by ambient sensors available on NFC mobile
phones, such as audio and light data. These techniques can work under
the current payment infrastructure, and offer many advantages. First,
they do not require the users to perform explicit actions, or make security
decisions, during the transaction – just bringing the devices close to each
other is sufficient. Second, being based on environmental attributes, they
make it very hard, if not impossible, for the adversary to undermine the
security of the system. Third, they provide a natural protection to users’
location privacy as the explicit location information is never transmitted
to the server. Our experiments with the proposed techniques developed
on off-the-shelf mobile phones indicate them to be quite effective in sig-
nificantly raising the bar against known attacks, without affecting the
NFC usage model. Although the focus of this work is on NFC phones,
our approach will also be broadly applicable to RFID tags or related
payment cards equipped with on-board audio or light sensors.
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1 Introduction

Radio Frequency Identification (RFID) systems are becoming increasingly ubiq-
uitous in both public and private domains enabling computerized identification
of objects and individuals. An RFID system usually consists of RFID tags and
readers. Tags are miniaturized wireless radio devices that store information, such
as a unique identification number, about their corresponding subject. Readers
broadcast queries to tags in their radio transmission ranges for information con-
tained in tags and tags reply with such information. Some of the prominent
RFID applications include supply chain management (inventory control) [6], e-
passports [22], credit cards [5], driver’s licenses [23, 19], vehicle systems (toll
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collection or car key) [7, 11, 9], access cards (building, parking or public trans-
port) [20], and medical implants [16].

NFC, or Near Field Communication [10], is an upcoming RFID technology
which allows devices, such as smartphones, to have both RFID tag and reader
functionality. In particular, the use of NFC-equipped mobile devices as payment
tokens (such as the Google Wallet app) is considered to be the next generation of
payment system and the latest buzz in the US financial industry. Technological
companies, such as Google and Apple, financial institutions, such as JPM, Visa,
Mastercard and Citi, and telecommunication providers, such as Verizon and T-
Mobile, have worked together and started launching test programs of NFC based
payment system in the US [8]. It is predicted that mobile payments using NFC
will reach $670 billion by 2015 [2].

Due to the inherent weaknesses of underlying wireless radio communication,
NFC systems are plagued with a wide variety of security and privacy threats
similar to the RFID systems [12]. In particular, the threat of relay attacks on
such devices is real. One class of these attacks is referred to as “ghost-and-
leech” [13]. In this attack, an adversary, called a “leech,” relays the information
surreptitiously read from a legitimate RFID tag to a colluding entity known as
a “ghost.” The ghost can then relay the received information to a corresponding
legitimate reader and vice versa in the other direction. This way a ghost and
leech pair can succeed in impersonating a legitimate RFID tag without actually
possessing the device.

The focus of this paper is on a more severe form of relay attacks, called
“reader-and-ghost”. It involves a malicious reader and an unsuspecting owner
intending to make a transaction [4]4. In this attack, the malicious reader, serving
the role of a leech and colluding with the ghost, can fool the owner of the card
into approving a transaction which she did not intend to make (e.g., paying for a
diamond purchase made by the adversary while the owner only intends to pay for
food). We note that addressing this problem requires transaction verification, i.e.,
validation that the tag is indeed authorizing the intended payment amount. The
feasibility of executing reader-and-ghost attacks has already been demonstrated
on the Chip-and-PIN credit card system [4].

With an expected ubiquitous deployment of NFC systems, there is a pressing
need for the development of security primitives to defeat the relay attacks. Doing
so, however, presents a unique and formidable set of challenges. Although the
NFC devices are not as constrained as the stand-alone RFID tags, the inherent
difficulty stems from the unusual usability requirements imposed by NFC appli-
cations (originally geared for automation). Consequently, solutions designed for
NFC systems need to satisfy the requirements of the underlying applications in
terms of not only efficiency and security, but also usability.

4 In contrast to the “ghost-and-leech” attack, the owner in the “reader-and-ghost”
attack is aware of the interrogation from the (malicious) reader.
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1.1 Sensing-Enabled Automated Defense

Although a variety of solutions to address the reader-and-leech attacks exist,
many of them do not fully meet the requirements of the underlying NFC appli-
cations in terms of (one or more of): efficiency, security and usability. We discuss
prior work in Section 2.

In an attempt to resolve this situation, this paper proposes the use of sensing
technologies for preventing reader-and-ghost relay attacks without necessitating
any changes to the traditional NFC phone usage model, i.e., without incorpo-
rating any explicit user involvement beyond what is practiced today.

The premise of our work is a current technological advancement that enables
many NFC phones with low-cost sensing capabilities. Various types of sensors
have been incorporated on many NFC phones, including accelerometers, micro-
phones, and light sensors. This new generation of NFC phones can facilitate
numerous promising applications for ubiquitous sensing and computation. They
also suggest new ways of providing security and privacy services by leveraging
the unique properties of the physical environment or physical status of the phone
(or its owner).

The physical environment measured by these sensors offers a rich set of at-
tributes that are unique in space, time, and to individual objects. These at-
tributes – such as sound and light – reflect either the current condition of a
phone’s surrounding environment or the condition of the phone (or its owner)
itself. An NFC phone can therefore acquire useful contextual information, and
this information can be utilized for enhanced security.

1.2 Our Contributions

In this paper, we show that the contextual information can be effectively lever-
aged to defend against the reader-and-ghost attacks on NFC devices.

Specifically, we develop a new transaction verification mechanism that can
determine the proximity (or lack thereof) between a valid server and a valid
phone by correlating certain sensor data extracted from the two devices. This is
based on the assumption that certain ambient information, extracted by the NFC
device and reader at the same time (transaction time), will be highly correlated if
the two devices are in close physical proximity. Said differently, if a certain sensor
attached to the server and the same type of sensor attached to the phone report
mismatching ambient information, this will indicate that the server and phone
are (most likely) not at the same location or close to each other. In particular, we
demonstrate that audio sensors (microphones) and ambient light sensors can be
effectively used for such transaction verification. We present several techniques
that can be used for determining similarity between two short audio signals
as well as between the light data extracted by the valid NFC phone and valid
reader, and show that these techniques are quite useful in significantly raising
the bar against the reader-and-ghost attacks.

Our approach can be seamlessly deployed on the current payment infras-
tructure, and offers many advantages. First, it does not require the users to
perform explicit actions, or make security decisions, during the transaction –
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just bringing the devices close to each other is sufficient. Second, being based on
environmental attributes, the approach makes it very hard, if not impossible, for
the adversary to undermine the security of the system. Third, it provides a nat-
ural protection to users’ location privacy as the explicit location information is
never transmitted to the server. Our experiments with the proposed techniques
developed on popular mobile platforms (Java ME and Android) indicate them
to be fairly robust to errors and effective for off-the-shelf mobile phones.

1.3 Scope of Our Work

Errors are inherent to any context recognition approach. Our approach is no
different in this regard in that it would yield non-zero, although quite low, false
positive and false negative rates in practice. Thus, the proposed approaches can
not guarantee absolute security and usability. However, our technique signif-
icantly raises the bar even for sophisticated adversaries without affecting the
NFC phones usage model. Moreover, although the proposed technique can work
in a stand-alone fashion, it can also be used in conjunction with other security
mechanisms, such as cryptographic distance bounding protocols [4], to provide
stronger cross-layer security protection. In addition, our proximity detection ap-
proach is broadly applicable in the realm of other wireless (or wired) devices
equipped with sensors.

1.4 Paper Outline

The rest of the paper is organized as follows. We review related work in Section 2.
We present, in Section 3, the current payment system and our threat model, and
provide a higher level overview of our proximity detection approach. Next, we
elaborate on our proximity detection techniques based on audio and light sensor
data in Section 4. Finally, we report on our experimentation and associated
results in Section 5, followed by a discussion in Section 6. Section 7 provides
concluding remarks.

2 Related Prior Work

In this section, we discuss prior work that is applicable to address the problem
of reader-and-ghost attacks.

The distance bounding protocols have been explicitly proposed for preventing
reader-and-ghost relay attacks [4, 7]. A distance bounding protocol is a crypto-
graphic challenge-response authentication protocol which allows the verifier to
measure an upper-bound of its distance from the prover [1]. (We stress that
traditional “non-distance-bounding” cryptographic authentication protocols are
completely ineffective in defending against relay attacks). Using this protocol, a
valid RFID reader can verify whether the valid tag is within a close proximity
thereby detecting both ghost-and-leech and reader-and-ghost relay attacks [4, 7].
However, these protocols may not be currently feasible on commodity devices
(such as NFC phones) due to their high sensitivity to time delay or need for
special-purpose hardware.
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A straight-forward solution to the reader-and-ghost attacks is to show the
transaction details (e.g., the amount of transaction) on the NFC device itself [18],
and have the user validate the details. This approach, however, is problematic
because it requires explicit user involvement that may lead to the success of an
attack. In particular, users will need to compare the amount/currency displayed
on the reader’s screen and that on their NFC phone’s screen. If they make an
error in the comparison, they may still be susceptible to the attack. Human users
are known to make such mistakes (as demonstrated in [14]).

As suggested in [4], and demonstrated in [15], GPS data can be used in a
straight-forward manner to determine whether the NFC phone and the reader are
in close proximity. As opposed to our sensor-centric approach, however, the use of
GPS data relies on an additional infrastructure (GPS). GPS is also known to not
work well in an indoor environment (which is where the payment transactions
take place commonly). Moreover, since GPS information is directly sent to the
payment server, this approach raises location privacy concerns – users’ location
during the transaction is revealed to a potentially untrusted third party.

Our idea of secure proximity detection based on sensor information is related
to the Bump application [21]. This application associates two phones based on
a mutually shared “bump” event. However, there are significant differences be-
tween the two approaches. First, we work with audio/light data, while Bump
uses accelerometer as well as GPS data. Second, we do not require users to ex-
plicitly Bump their devices; rather only bringing the phone close to the reader is
sufficient (a gesture that already needs to be performed as part of the payment
process). Third, we develop open-source sensor data correlation and similarity
detection techniques, whereas the techniques employed by the Bump server are
not transparent.

3 Background and Overview

3.1 Payment Infrastructure, and Threat Model

EMV, named after its creators, Europay, Mastercard and Visa, is a global stan-
dard for debit and credit card payments. Payment systems based on EMV have
been introduced across the world, known by a variety of different names such as
“Chip and PIN” [4]. Mastercards PayPass is another EMV compatible “contact-
less” payment protocol. Figure 1 presents a simplified version of the EMV-based
mobile payment system which consists of three entities of interest: the card-
holder, the merchant and the issuer bank which issues the card. The payment
application (such as Google Wallet) on the NFC-enabled phone of a cardholder
stores the details such as the credit card number, name of the owner, and ex-
piration date. It also stores a symmetric key shared with its issuer bank. The
Point-of-Sale (PoS) terminal at the merchant side is equipped with NFC Con-
tactless Readers (such as MasterCard PayPass). A transaction starts with the
merchant issuing a challenge to the payment app. The app calculates a cryp-
tographic response based on the challenge and other information using the key
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shared with the issuer bank. It then transfers the response to the merchant ter-
minal using the NFC chip on the mobile device. The response is next forwarded
by the terminal to the issuer bank which verifies the response and approves the
transaction, if authentication is successful.

In the rest of this paper, we use the terms card, card holder and (NFC) phone
interchangeably, all depicting the valid user’s device involved in a transaction.

$

Bank

cardholder merchant

challenge

response= (challenge, …)key

response

result

Fig. 1. Online authorization in a mobile payment system

Our proposed approach can work under the current payment infrastructure.
It is meant to defend specifically against the reader-and-ghost attacks which
NFC payment systems are susceptible to. We call the NFC card (reader) under
attack a valid card (reader), and call the tag (reader) controlled by the adversary
as malicious card (reader).

Under the threat model of the reader-and-ghost attack, originally called the
“mafia fraud” attack [3, 4], the adversary controls a malicious reader and card
pair, just like in the ghost-and-leech attack. However, the malicious reader con-
trolled by the reader-and-ghost adversary is a legitimate reader or believed by
the valid card to be a legitimate reader. Hence, the valid card (or its owner) is
aware of and agrees to communicate with the malicious reader. That is, inter-
rogations from the malicious reader to the valid card are not surreptitious as in
the ghost-and-leech attacks. The goal of the adversary is still to impersonate the
valid card.

We assume that the adversary does not have direct access to the valid card.
So tampering or corrupting the card physically is not possible, or can be easily
detected. The adversary is also unable to tamper the card remotely through
injected malicious code. We further assume that the adversary is unable to spoof
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the ambient sensor signals, such as by changing the environmental conditions.
We also do not consider loss or theft of card.

In addition to security, our threat model also considers the privacy of the card
owners. In particular, a (malicious) bank server may be interested in determining
the location of a card owner at the time of transaction, and track the whereabouts
of the owner. Thus, transmitting explicit location information to the bank server,
such as when using the GPS sensors, would be prone to location privacy attacks.

3.2 Overview of Our Approach

As mentioned above, our approach can work under the current mobile payment
infrastructure. The card (NFC phone) already shares a symmetric key with its
issuer bank. We only require that both the card and terminal measure certain
location-dependent information using on-board sensors (such as audio and ambi-
ent light). Location-dependent data captured by both sensors are then forwarded
to the bank. The bank server decides whether to approve the transaction after
“comparing” the data received from the two ends. Figure 2 provides an overview
of our approach. The user-side sensor generates its location-dependent infor-
mation loccard while the merchant-side sensor generates its version of location-
dependent information locmerchant. loccard is protected (e.g., via MAC) with the
key shared with the issuer bank before it is sent to the merchant’s terminal which
then forwards its own location information locmerchant along with the (phone’s)
card credentials to the bank for transaction verification and authorization. Since
the integrity of loccard is protected by the shared key between the card and bank,
a malicious reader would be unable to change this value.

$

bank

cardholder merchant

challenge

response= (challenge, loccard …)key

response, 
loccard, locmerchant 

result

user-side 
sensor: loccard

merchant-side 
sensor: locmerchant 

Fig. 2. Online authorization in a mobile payment system enhanced with our proximity
detection approach
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4 Proximity Detection Techniques

4.1 Correlation Using Audio

We explore the use of audio sensors (microphones) for accomplishing the afore-
mentioned approach to proximity detection. This choice is motivated by the
intuition that the audio data captured at two different locations at a given time
is different to some extent.

We first need to determine if the audio recordings captured from the same
location have higher similarity than recordings taken at different locations. To
this end, we investigate a few methods to detect such similarity including: time-
based methods, frequency-based methods as well as a combined time-frequency
method.

Time-Based Similarity Detection: To detect the similarity between the time-
based signals Xi and Xj , we propose using two methods: correlation and differ-
ence. The signals will first be normalized according to their energy (so that each
signal had a total energy equal to 1). Then, in the first method, the correlation
between each two signals will be calculated and the maximum correlation will
be used. Therefore, the correlation based similarity between two signals Xi and
Xj can be measured by:

Sc(i, j) = max(Cross-Corr(Xi, Xj)) and Dc(i, j) = 1− Sc(i, j) (1)

In the second method, the distance between each bit of the signals is calcu-
lated and the overall Euclidean norm of the distance is used as below:

Dd(i, j) = ‖Xi −Xj‖ and Sd(i, j) = 1−Dd(i, j) (2)

Frequency-Based Similarity Detection: In the frequency-based detection
approach, we use Fast Fourier Transform (FFT) to create the frequency co-
efficients for each recorded signal. We then use both the correlation and the
difference between the FFT coefficients in order to evaluate the similarity be-
tween different segments taken at the same place (in consecutive time periods)
vs. recordings taken at different locations.

Time-Frequency Based Similarity Detection: This novel method combines
both the time and frequency based measurements to create a point in 2-D space.
In this technique, the overall time-frequency similarity measure is calculated by:

D(i, j) =
√

(Dc,time(i, j))2 + (Dd,frequency(i, j))2 and S(i, j) = 1−D(i, j) (3)

This implies that the similarity measurement will be higher for closer signals.

4.2 Correlation Using Ambient Light

We also explore the use of light sensors for the purpose of proximity detection.
This choice is inspired by an observation that different types of places may
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have different lighting conditions. For example, fast food restaurants usually use
bright lights to attract customers and to signify a place bustling with activity
and very fast service, while fine dinning restaurants typically use low-intensity of
light to create an intimate and leisurely atmosphere. As lighting conditions are
location dependent, the ambient light can be used as the contextual information
to determine the proximity between two devices (or a lack thereof).

Unlike ambient audio which can be heavily affected by surrounding human/non-
human activity, indoor ambient light (without natural light) is intuitively quite
steady over time as the lighting infrastructure usually remains untapped – this
intuition is later validated through the experiments as illustrated in Section 5.1.
Hence, in this case, we use a simple strategy that involves just comparing the
mean value of the illuminance data to determine whether ambient light readings
captured from the same location have higher similarity than recordings taken at
different locations.

Let Li and Lj be the mean value of illuminance data captured in a short
time interval by two devices at location i and j. The difference of mean value is
calculated as:

D(i, j) = |Li − Lj | (4)

As long as D(i, j) is below a threshold, we consider the two readings to
be similar enough and believe that they are captured from the same location.
Otherwise, the two readings are believed to be captured from different locations.
We will discuss how to establish the threshold via experiments in Section 5.1.

5 Experiments and Results

To evaluate our Near Field Communication (NFC) phone sensor data correlation
techniques, we develop a proof-of-concept prototype on mobile phones, which
allows us to collect data from different locations, and demonstrate the feasibility
of our proximity detection approach.

5.1 Audio Data Experiments

In this section, we present our evaluation of the techniques for transaction veri-
fication based on audio data correlation.

Data Collection: The goal of sensor data correlation is to detect whether
the valid card (phone) and valid reader are at the same or different locations.
Therefore, we needed to collect the sensor data when the two devices are located
in close physical proximity as well as when they are at two different locations.
We work with two mobile phones (two Nokia N97s), simulating a valid NFC
device and a valid RFID reader.

To enable recording of background sounds using the phones, we developed a
program that captures audio from the phone’s built-in microphone and installed
it on two mobile phones. The program was designed to record up to 30 seconds
of continuous audio data. The audio-capturing programs were launched on both
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phones and activated at about the same time to record the samples (the phones
were synchronized by means of a wireless signal). We recorded, with the micro-
phones, a few audio samples at different locations. We needed to determine if it
was possible to distinguish between recordings taken at the same location versus
at different locations.

We first examined the likelihood that different techniques can be used to
find similarities between recordings taken at the same location and differentiate
between recordings taken at separate locations. To determine the performance
of the different techniques and find the optimal one, we initially created our
“first dataset”. For this, we used 7 groups of 20 1-sec recordings (for a total of
140 distinctive 1-sec audio recordings). Each group of recordings was captured
at a separate location at consecutive time periods. The recordings were taken
from 5 different locations, including a few retail stores and fast food restaurants.
Specifically, we recorded surrounding noise at: McDonald’s and Target (samples
captured at two different occasions in each of the two), Wendy’s, and our univer-
sity cafeteria and library. We explored a few signal processing methods to detect
the similarities between the different recordings taken at the same location at
consecutive time periods vs. the similarities between recordings taken at differ-
ent locations. The dataset was used to test the different techniques and find the
optimal detection method.

To test the performance of the detection method in both a normal usage
scenario (i.e., when no attacks occur) as well as in attack scenario, we created a
“second dataset”. For this dataset, we again took recordings at different locations
with two phones simultaneously, separated by a distance of 3-12 inches. In this
case, we collected the data from 5 different locations, including a concert hall,
library (at two different locations), Mcdonalds and a coffee shop. We recorded
at each location 20 1-sec segments from the two sensors simultaneously (located
a few inches apart), capturing a total of 200 separate (100 pairs) 1-sec audio
recordings.

All recorded audio files were then converted from the 3GPP format to the
WAV format to be fed into our matlab algorithms for signal correlation (discussed
in Section 4.1). Conversion from 3GPP to WAV, unlike the inverse, is considered
lossless, since there is no compression used in WAV format. Thus, no important
information was lost during this conversion.

Performance of Similarity Detection Techniques: We test the perfor-
mance of various techniques, outlined in Section 4, to identify which one can
most accurately detect the similarity between recordings taken at the same loca-
tion. Specifically, in every test group, we use 5 pairs of 1-sec recording segments.
The two samples in each pair were taken by two different sensors at the same
location simultaneously (each pair was recorded at a separate location). For all
the techniques, we calculated the probability that the recording, identified as
the most similar one to a given recording, was the recording taken at the same
location.

We ran the test for the dataset collected previously. Our results showed that
the time-based “correlation” (Equation 1) gave better result (38% detection rate)
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compared to the “distance” (Equation 2) between the signals (which resulted in
detection rate of 14%). Also, our tests showed that frequency-coefficients based
distance yielded better results (50% detection rate) compared to time-based
methods and to frequency-based distance methods (which resulted in 39% de-
tection rate). Finally, our tests also demonstrated that the result corresponding
to time-frequency classification is superior to all other methods, with a suc-
cessful detection rate of 53%. In the rest of our analysis, therefore, we use the
time-frequency based technique.

Performance of Audio-based Proximity Detection: We next used the test
dataset to determine the performance of our time-frequency detection on data
taken under normal usage as well as attack scenario. We calculated the time-
frequency distance measure between each two different samples. We found the
square distance D(i, j)2 (Section 4.1) and used it as our data features. For each
pair of locations, we calculate the mean of the square distance. We generated a
confusion matrix for our dataset as shown in Table 1.

Table 1. Confusion Matrix of Square Time-Frequency Distance

Concert Hall Library McDonalds Library (2) Cafe

Concert Hall 0.4678 1.7889 1.8645 1.7556 1.8412
Library 1.7889 0.8539 1.7878 1.6753 1.7545

McDonalds 1.8645 1.7878 0.6018 1.7962 1.7241
Library (2) 1.7556 1.6753 1.7962 0.8213 1.8140

Cafe 1.8412 1.7545 1.7241 1.8140 0.5289

To distinguish between recordings taken at the same approximate location we
compare the time-frequency square distance between each recorded signal and
the one taken by the second microphone at the same location as well as with all
the recordings taken at different locations. We construct the similarity matrix
s using the similarity measurements and use it as our feature data. We use the
input data to train the classifier to find the similarity threshold for each couple
of samples. We use the SimpleLogistics classifier from the WEKA package to
classify the samples. We run a 10-fold classification, which partitions the data
into 10 partitions, trains the classifier over 9 of the partitions (which act as
the training set) and classify the remaining samples (the testing set). This is
repeated for each partition and training set in the dataset.

We note that the classifier arrived at a simple classification formula: if y =
11.49×Corr−8.69 < 0, then both samples will be considered to be taken at the
same place. Otherwise, they will be considered to be taken at different locations.
This is a simple calculation (one multiplication and one addition) and will take
the server a negligible amount of time to validate whether both samples were
captured at the same location.

Using the classifier results, we find the detection rate for each pair of locations
in which the samples were taken (where one sample is captured in each location).
The detection rate is calculated over all the pairs of samples which were taken at
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the two locations, by dividing the number of pairs of samples that were correctly
classified by the number of total pairs of samples (taken at those locations).
The result of the correct recognition rates can be found in Table 2. As can be
seen from the table, our audio signal based correlation technique yields 100%
detection rate.

Table 2. Experimental result of “positives” using WEKA SimpleLogistics classifier

Concert Hall Library McDonalds Library (2) Cafe

Concert Hall 100% 100% 100% 100% 100%
Library N/A 100% 100% 100% 100%

McDonalds N/A N/A 100% 100% 100%
Library (2) N/A N/A N/A 100% 100%

Cafe N/A N/A N/A N/A 100%

False Accept Rate vs. False Reject Rate: We next determined the prob-
abilities of incorrectly approving the transaction with an unauthorized phone
and rejecting the transaction with an authorized phone, by calculating the False
Accept Rate (FAR) vs. the False Reject Rate (FRR). FAR is the sum of false
positives, which occur when the audio signal captured by a valid reader matches
the audio signal captured by a phone, even when the two devices are at different
locations. FRR, on the other hand, is the sum of false negatives, and denotes
the probability that the transaction is rejected even when the valid phone and
valid reader are in close physical proximity.

Using the classifier results, since our detection rates are 100%, our FAR and
FRR are both clearly equal to 0%. This indicates that our audio-based proximity
detection technique is very robust.

5.2 Light Data Experiments

In this section, we present our evaluation of the techniques for transaction veri-
fication based on light data correlation.

Data Collection: We conducted this set of experiment with two mobile phones
(Google Nexus S) which are equipped with ambient light sensors. The light sensor
on the phone is generally utilized for the purpose of auto-adjustment of screen
brightness. We develop a simple Android application to capture data readings
from the light sensor. The sampling rate is set to be 25 Hz which records 50 data
points every 2 seconds.

As in the audio test, to simulate a normal usage, we used two phones repre-
senting the valid NFC phone making the transaction and the valid reader. They
are separated by a distance of 3-12 inches and hand-held during the transaction.

To simulate attack scenarios, we recorded light data at five different loca-
tions with different business types: two different types of restaurants (fast food
restaurant vs. fine dining restaurant), two different types of retailer stores (su-
permarket vs. department store) and a car dealership. Our purpose is to find
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(dis)similarity in term of lighting conditions at locations of different business
types.

Threshold Establishment: Figures 3 and 4 prove our intuition that lighting
conditions are location-dependent. Curves in Figure 3 illustrates that lighting
data collected from the aforementioned five different locations. Although light
readings at a specific location fluctuate around a baseline, these curves are par-
allel to one other and clearly disparate which means the mean value can be used
to distinguish different locations. Illuminance readings can be affected by several
factors. The first is that the user cannot hold the phone firmly static. So the ori-
entation of the phone and its relative position to the surrounding light sources
can change which can affect the light sensor readings. Also, at different types
of locations, surrounding human movements such as hand waving, may induce
shadowing effect on the sensor causing changes to the data readings. Figure 4
shows the mean value of the data we collected from various locations and it gives
us a more direct view of how the mean values of illuminance differ at different
locations.

As described in Section 4.2, the transaction should be approved when the
difference of mean values captured by two sensors is below a threshold, which
indicates that the phone and the reader are at the same place. The transaction
should be terminated otherwise, i.e., if the difference of mean values is above
the threshold. To establish the threshold, we recorded 10 samples of light data,
each consisting of 50 data points over a period of 2 seconds, on both devices at
each location selected. From the captured data, we generate a confusion matrix
as shown in Table 3. Values across the diagonal represent the average mean
difference when phone and reader are at the same location while the others
represent the average mean difference when the two devices are at different
locations. From the table, we can observe that the threshold could be chosen
in the range between 20.6 and 55.3 (lux) if we want to distinguish between
these locations. The lower bound (20.6) is the maximum difference when the
two phones are placed at the same location while the upper bound (55.3) is the
minimum difference when phones are put at two different locations.

We picked 38 lux as the threshold value, and measure the performance of
light-based proximity detection as discussed in the next section. We note that
an interesting observation from the table is that the brighter the place, the higher
is difference of readings captured by two devices at the said location.

Performance of Light-based Proximity Detection: We further collected
40 samples of light data on both phones at each location. We then calculate
their mean difference according to Equation 4 and compare the result using the
threshold value 38. Similar to the audio tests, we next find the detection rate
for each pair of locations in which the samples were taken (where one sample is
captured in each location). The detection rate is calculated over all the pairs of
samples which were taken at the two locations, by dividing the number of pairs
of samples that were correctly classified by the number of total pairs of samples
(taken at those locations). Our experimental results of the light-based detection
rate is shown in Table 4.
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Fig. 4. Mean illuminance at different locations

False Accept Rate vs. False Reject Rate: We next determined the FAR
and FRR for the light-based detection method, similar to the case of our audio
data tests. We found that our FAR is equal to 6.5% while the FRR is equal to
5%. This means that the light-based detection is likely to fail, both under normal
scenario and attack scenario, although on only on a small fraction of times.

Although these error rates are non-zero and higher than that produced by
our audio-based correlation technique, these results generally demonstrate good
recognition rates, especially for locations with smaller mean difference such as
fine dining and department store.

6 Discussion

6.1 Audio vs. Light Data Proximity Detection

Our results show that audio and ambient light can serve as two different means
of detecting proximity between two NFC devices involved in a transaction. Both
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Table 3. Confusion Matrix of Mean Difference (lux)

Fine Department Supermarket Fast Food Car
Dining Store Dealer

Fine Dining 1.1 71.0 283.5 291.9 347.1
DepartmentStore 71.0 6.4 163.6 220.9 276.1

Supermarket 283.5 163.6 9.9 58.3 113.5
Fast Food 291.9 220.9 58.3 17.0 55.3
Car Dealer 347.1 276.1 113.5 55.3 20.6

Table 4. Experimental results of “positives” based on mean differences (threshold 38
lux)

Fine Department Supermarket Fast Food Car
Dining Store Dealer

Fine Dining 100% 97.5% 100% 100% 100%
DepartmentStore N/A 100% 100% 100% 100%

Supermarket N/A N/A 95% 82.5% 95%
Fast Food N/A N/A N/A 92.5% 60%
Car Dealer N/A N/A N/A N/A 87.5%

result in quite low error rates, FAR as well as FRR, demonstrating the effective-
ness of our approach. In fact, our experiments with the audio-based proximity
detection approach yields no errors at all.

This suggests that audio is a potentially stronger signal for detecting the
proximity of two devices when compared to light. The robustness of audio in
this regard could be attributed to the fact that audio at two distinct locations
is highly distinct in nature. On the other hand, the use of light is likely to result
in a few false accepts in scenarios where the lighting conditions of two distinct
locations is similar enough, and in a few false rejects in scenarios where the
orientation of two close by phones affects their recorded light readings.

These results imply that when using our audio-based approach, it will be very
difficult, if not impossible, for the attacker to succeed in launching the reader-
and-ghost relay attack. When using the light sensor, in contrast, the adversary
will need to choose a remote location having very similar lighting conditions as
the one where a valid card is located at the time of transaction. This restriction,
however, still significantly complicates the task of the attacker. Nevertheless, the
specific attack demonstrated in [4] where the valid card is at a restaurant and
the valid reader is at a jewellery store can be easily prevented when using our
light based approach.

We note that our data was taken at locations typical to financial transactions.
These are likely to be commercial environments, such as restaurants, shops and
department stores. Since these are environments with customers, there will likely
always be some background noise (e.g., due to people talking) which will be
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captured by the sensors. Therefore, this demonstrates a promising feasibility of
our approach. While we can not completely rule out the probability of a false
accept, our results show that it is unlikely that the attacker can capture similar
enough audio data at a far-off location.

6.2 Location Privacy of Card Owners

As discussed in Section 3, our threat model covers the privacy of the card own-
ers when making transactions. In particular, we are interested in protecting the
location privacy of the card owners from a malicious bank server during the trans-
action process. Our sensor-centric proximity detection approach indeed provides
a natural protection in this regard. In fact, we do not even need to use private
proximity testing protocols proposed in the literature [17]. This is due to the
fact that our approach does not require the card or the reader to transmit their
explicit location information (unlike the GPS-based approach of [15]). Rather,
only the captured audio or light readings are sent to the server. Although these
readings possess some correlation with the exact location, it seems very difficult
to infer this location just by analyzing these readings. This is especially true for
the audio readings since they fluctuate over time drastically. The only possibility
for the attacker to learn the location of the owner in this case is to be physically
present at the said location at the time of transaction.

6.3 Manipulating Physical Environment

If the adversary can tamper with the physical environment, at the side of the
valid card (NFC phone) and/or valid reader, it can enforce the two devices
to capture similar enough data even from different locations. For example, if
the adversary can induce similar lighting or acoustic conditions at two differ-
ent locations at the time of the transaction, then it may succeed in launching
the reader-and-leech attack. However, tampering with such environmental at-
tributes (light or audio) looks like a daunting task. It may require sophisticated
equipment as well as close proximity to the devices and will likely be easily de-
tected. We believe this characteristic to be an inherent strength of our proximity
detection approach.

6.4 Other Sensors

It is a natural question as to what other sensors are suitable for the purpose of
proximity detection.

Temperature sensors are likely not going to be useful because indoor temper-
atures at different locations do not vary significantly. We also tried to use mag-
netic field data in this context, given that most modern phones come equipped
with magnetometers. However, we could not find any method to detect the sim-
ilarity between measurements taken at the same location (at consecutive time
periods) vs. measurements taken at different locations. Therefore, we conclude
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that a magnetometer does not provide data which can be used reliably to de-
rive a location-specific information. This is because the magnetic sensor readings
are dominated by the Earth’s background magnetic field, which do not change
significantly across different locations. Odor sensors might be more promising
for our application. However, we are not aware of any commercial phones that
possess odor sensors as yet.

7 Conclusions

In this paper, we developed a secure proximity detection approach based on
the information collected by audio and ambient light sensors available on NFC
mobile phones. This approach is geared for preventing reader-and-ghost attacks,
and offer many advantages. First, it does not require the users to perform explicit
actions during the underlying operation – just bringing the devices close to each
other is sufficient. Second, being based on environmental attributes, our approach
makes it very hard, if not impossible, for the adversary to undermine the security
of the system. Third, it provides a natural protection to users’ location privacy
as the explicit location information is never transmitted to the server.

Our evaluation of the proposed mechanism on common mobile platforms
demonstrate its feasibility in effectively and significantly raising the bar against
the reader-and-ghost attacks without negatively affecting the currently employed
usage model of the underlying NFC applications. In particular, we found the
audio-based detection to be quite powerful. In the future, we plan on identifying
other sensors (besides microphones and light sensors), and combinations thereof,
that can be used for the purpose of proximity detection.
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