
Device-Enhanced Password Protocols with Optimal
Online-Offline Protection

Stanislaw Jarecki
University of California Irvine

stasio@ics.uci.edu

Hugo Krawczyk
IBM Research

hugo@ee.technion.ac.il

Maliheh Shirvanian
University of Alabama at

Birmingham
maliheh@uab.edu

Nitesh Saxena
University of Alabama at

Birmingham
saxena@cis.uab.edu

ABSTRACT
We introduce a setting that we call Device-Enhanced PAKE (DE-
PAKE), where PAKE (password-authenticated key exchange) pro-
tocols are strengthened against online and offline attacks through
the use of an auxiliary device that aids the user in the authentication
process. We build such schemes and show that their security, prop-
erly formalized, achieves maximal-attainable resistance to online
and offline attacks in both PKI and PKI-free settings. In particular,
an online attacker must guess the user’s password and also cor-
rupt the user’s auxiliary device to authenticate, while an attacker
who corrupts the server cannot learn the users’ passwords via an
offline dictionary attack. Notably, our solutions do not require se-
cure channels, and nothing (in an information-theoretic sense) is
learned about the password by the device (or a malicious software
running on the device) or over the device-client channel, even with-
out any external protection of this channel. An attacker taking over
the device still requires a full online attack to impersonate the user.
Importantly, our DE-PAKE scheme can be deployed at the user end
without the need to modify the server and without the server having
to be aware that the user is using a DE-PAKE scheme. In particu-
lar, the schemes can work with standard servers running the usual
password-over-TLS authentication.

We use these protocols to implement a practical DE-PAKE sys-
tem and we evaluate its performance. To improve usability the
implemented system utilizes automated and user-transparent data
channel between the mobile device and the client, falling back to
localized communication if the device looses primary connectivity.

1. INTRODUCTION
Today, passwords constitute the prevalent authentication mech-

anism for bootstrapping security in most online applications (and
many offline systems). A plethora of sensitive information stored
in many different contexts therefore depends on the security of
password-based authentication. However, passwords are vulner-
able to both online and offline dictionary attacks that build on pass-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
c© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897880

word dictionaries from which a significant portion of passwords are
chosen. Candidate passwords for authenticating a user to a server
can be tested by an attacker through online interactions with the
server. Furthermore, an attacker breaking into a server can mount
an offline attack that uses information stored on the server (typi-
cally, a salted one-way mapping of the password) to test the differ-
ent passwords in the dictionary. Such offline dictionary attacks are
a serious concern, especially in light of frequent attacks against ma-
jor commercial vendors recently, such as PayPal [1], LinkedIn [4],
Blizzard [2] and Gmail [3]. The offline attacks are particularly dev-
astating because a single server break-in may lead to compromising
a huge number of user accounts [7]. Furthermore, since many users
re-use their passwords across multiple services, compromising one
service may compromise user accounts at other services.

In this paper we present solutions which enhance password pro-
tocols against both online and offline attacks by an active man-in-
the-middle attacker acting on user-server and user-device links, and
capable of compromising devices and servers by learning their full
internal state (e.g., server’s password file and device’s secrets).

1.1 Our Contributions
We introduce a setting of Device-Enhanced PAKE (DE-PAKE),

where PAKE (password-authenticated key exchange) protocol is
strengthened against online and offline attacks through the use of
an auxiliary device which aids the user in the authentication pro-
cess. We build such scheme and show that its security, properly
formalized, achieves maximal-attainable resistance to online and
offline attacks in both PKI and PKI-free1 settings. Moreover, our
DE-PAKE scheme can be deployed at the user end without the need
to modify the server and without the server having to be aware that
the user is using a DE-PAKE scheme. In particular, in the PKI
setting the scheme can work with unmodified servers running the
usual password-over-TLS authentication. Finally, while we focus
the presentation on a setting where the auxiliary device is a physical
personal device, e.g. a phone, our protocols apply also to the set-
ting where the device entity is implemented by an auxiliary on-line
service. Indeed, since our solution is secure against a fully capa-

1The PAKE notion was originally used for the peer-to-peer pass-
word setting (where the two peers share a password) but was later
extended to the client-server setting too. In the latter case one
differentiates between the PKI case, where the client possesses a
server’s certificate in addition to the password, and the PKI-free
case where no such certificate, or other form of secure channels,
is assumed for user login. Password registration, being much less
frequent than regular login, can use special safeguards, such PKI-
based interactions or out-of-band channels.

177

ble man in the middle and provides strong protection even in case
of device corruption, an implementation that uses an auxiliary web
service in the role of the device is protected against both network
attacks and against the compromise of this service.

Secure and Efficient DE-PAKE Protocols: We introduce efficient
DE-PAKE protocols with the following properties:

• Resistance to online and offline attacks: Our DE-PAKE schemes
provide maximal-attainable security in terms of resistance to both
online and offline attacks. That is, the only attack allowed by the
scheme is the unavoidable online guessing attack where the at-
tacker tests if a given value p is the user U’s password by inter-
acting with both device and server in the role of U with password
p and observing whether S accepts. In other words, each guess at-
tempt requires the attacker to interact on both U-D and U-S links.
No amount of attacking on one link helps without a corresponding
attack on the other. Moreover, fully compromising D still requires
a full online guessing attack on the U-S link and fully compromis-
ing the server requires a full online guessing attack on the U-D link.
And even if both S and D are compromised, a full offline dictionary
attack is required. More formally, to have an impersonation prob-
ability of q/|Dict|, where Dict is the passwords dictionary, the at-
tacker needs to either run q online interactions with D and q online
interactions with S, or q online interactions with U impersonating
both D and S. Moreover, even when compromising D and finding
all its secrets, the attacker still needs to run q online interactions
with either S or U, and if the server is compromised, q online in-
teractions with D or U. Finally, if both D and S are compromised
the adversary must stage a full offline dictionary attack to learn any
passwords. We formalize these properties through a security model
that extends the traditional PAKE security setting, and then we use
this model to prove the security of our schemes.

• PKI-agnostic: The above security is achieved even when the user-
server channel is not protected by a server public key. On the other
hand, when such protection is available one obtains the additional
benefit that impersonating the server to the user is infeasible even
if the user’s password is disclosed. Luckily, our schemes can work,
without modification and without having to be aware of it, with
PKI-based and PKI-free authentication protocols, providing in each
case the best possible offline-online protection.

• Modularity and server-transparency: Our design is modular al-
lowing for the use of independent device and server components,
in particular enabling the use of our scheme with existing password
protocols and without the need to modify the server side.

DE-PAKE Systems Design and Evaluation: To demonstrate the
flexibility provided by our modular approach, we design, develop
and test a concrete instantiation of DE-PAKE scheme in the PKI-
free model. We develop server-side (PHP/JavaScript), client-side
(Chrome browser extensions) and device-side (Android app) im-
plementations, and measure their computational performance and
communication delays. A key component of DE-PAKE system is
the D-U communication channel. To support this, we propose a
“hybrid model” whereby the primary channel is based on fast and
user-transparent data channel, and the secondary channel involves
localized WiFi communications. Since the secondary channel can
be potentially difficult for the user to establish, we use it only as
a fall-back when the primary channel is not available (e.g., when
the user’s phone is out of network coverage). This approach will
significantly improve the user experience underlying DE-PAKE lo-
gins. We design, implement and evaluate the performance of our
DE-PAKE construction (Section 6).

1.2 Related Work

Prior Work on Device-Enhanced Authentication. Our approach
is closely related to the work of Acar, Belenkiy, and Kupcu [8],
and Boyen [13]. A close variant of the key ingredient of our so-
lution, a “Password-to-Random” (PTR) protocol, was proposed as
a “Hidden Credential Retrieval” (HCR) scheme by [13]. Our DE-
PAKE protocol has similar goals as the “Single Password Authen-
tication” (SPA) scheme of [8], namely, strengthening password au-
thentication by making offline dictionary attack against the server
infeasible. Moreover, one of their schemes does so in roughly the
same way as we do, following an approach first suggested by Ford-
Kaliski [17], i.e. having the user “strengthen” her password into
a strong secret via the HCR/PTR protocol with an auxiliary de-
vice (or service), and then use this strong secret to authenticate to
the primary server. Despite these similarities, our work improves
on [8, 13] in the following aspects: (1) Whereas [13] shows that
HCR can be realized almost identically to our PTR, i.e. using the
same variant of the Ford-Kaliski protocol [17], the SPA scheme
of [8] did not show a general compiler from HCR, but assumed a
stronger tool of unique blind signature which is costlier to realize
(moreover, in their scheme the user-device blind signature protocol
goes over TLS, while in ours the PTR protocol goes over insecure
links); (2) The SPA scheme of [8] is weaker than our DE-PAKE,
in that it achieves only entity authentication rather than authenti-
cated key exchange as in our case and it assumes PKI while our
DE-PAKE works in both PKI-free and PKI settings;2 (3) Very im-
portantly, our modular approach that treats PTR and PAKE as in-
dependent components and has no involvement of the server in the
PTR execution, allows us to obtain DE-PAKE security without any
modification to existing servers (e.g., those running password-over-
TLS authentication). In contrast, the SPA scheme of [8] requires
the server to perform additional public key operations.

Relation to Work on Two-Factor Authentication. One important
and increasingly common line of defense against password attacks
is the use of two-factor password authentication (TFA) schemes.
TFA mechanisms are used for authenticating a user U to a server
S, and establishing a session key between the two, where the user
has a password and a personal device D (e.g., a smartphone) that
contains some secret auxiliary information. This secret information
is used to increase the security of password authentication by pre-
venting online attacks for an adversary that does not have access to
D. Typically, D displays a short one-time PIN (OTP), received di-
rectly from the server or computed by D based on a key shared with
the server, that the user manually copies over to the authentication
terminal in addition to providing her password.

Traditionally, these TFA schemes have been used for increas-
ing resistance to online dictionary attacks. However, as argued by
Shirvanian et al. [29], with the increasing vulnerabilities of servers
to compromise [5, 6], TFA schemes should also be enhanced to
strengthen security against offline attacks. The work of [29] pre-
sented several schemes for achieving this goal. There are, however,
two important aspects in which the schemes of [29] can be im-
proved, and we do so in this paper. First, all their schemes assume
a PKI setting, namely, the user (through a client application) must
be in possession of an authentic public key of the server which is
used to establish a secure channel, e.g., via TLS. If such public
key is not available or is compromised, the security of the scheme
completely breaks down. Given the vulnerabilities of PKI to certifi-
cation failures and man-in-the-middle (MitM) attacks (either due to

2Our DE-PAKE security model is also more precise, e.g. letting
adversary observe whether user authentication succeeds or not.

178

programmatic errors or human mistakes), e.g., [15,20,30], reducing
the dependency of authentication security on public keys is an in-
creasingly important goal. Second, the schemes of [29] require the
authentication server to run a different protocol than currently stan-
dard PKI-setting TFA schemes which can inhibit the deployment of
such schemes. For example, an individual user (or an application)
cannot adopt the schemes from [29] to protect her password stored
by a web service without that service being modified to support the
new TFA method.

The notion of DE-PAKE scheme we propose (and its efficient
realization we construct) addresses many of the same concerns as
TFA schemes, e.g. increased security against on-line attacks viz-a-
viz solely-password based authentication, and it surpasses security
offered by existing TFA schemes by offering maximal resistance
to off-line attacks, i.e. making offline dictionary search impossible
in case of server compromise. However, traditional TFA schemes
offer also increased security against compromise of the client ma-
chine (compared to solely-password authentication). A generic
DE-PAKE scheme does not provide this, although the specific DE-
PAKE scheme we propose can be extended to offer additional de-
fenses against attacks on the client (see Section 5). Moreover, it is
possible to combine a DE-PAKE scheme with a traditional MFA
mechanism (e.g. a one-time PIN delivered to or generated by the
hand-held device) to extend the security properties of DE-PAKE to
include the same level of resistance against client compromise as
offered by traditional TFA schemes.

1.3 Organization and Glossary
We overview our design and proof methodology in Section 2,

with full details given in Section 4. Section 3 presents our formal
DE-PAKE security model on which we base our analysis. Section 5
presents protocol instantiations and extensions: A fully specified
DE-PAKE scheme secure in the PKI-free (i.e. CRS) model; a de-
scription of our approach for armoring existing servers against on-
line and offline attacks while keeping the servers unmodified; and
extensions which address issues related to client security (which are
not covered in our DE-PAKE model). In Section 6 we present our
system and implementation work and report on performance mea-
surements. For easy reference, in Table 1 we provide a summary of
the main terms and acronyms used throughout the paper.

2. OVERVIEW: DESIGN AND ANALYSIS
Our design follows the “password hardening” approach of Ford

and Kaliski [17], but dispenses of authenticated channels (other
than during a registration phase), multiple servers and/or other safe-
guards that were required for the secure use of these techniques in
prior work [17, 21].

The idea is simple: the user memorizes a regular password pwd
but uses as her password with server S a value rwd = Fk(pwd)
where F is a pseudorandom function and k is a key held by de-
vice (or an auxiliary on-line service) D (rwd is a mnemonics for
“randomized password"). Before authenticating to S, U contacts D
(through a client application) and obtains rwd via a special proto-
col with D (in which D learns nothing about pwd or rwd). U then
authenticates to S via a (standard) PAKE protocol using rwd as a
password. Note that without knowledge of k, the value rwd has full
entropy (in the range set of function F) hence dictionary attacks do
not apply against rwd (neither online or offline attacks, not even if
the server is compromised). Moreover, we will ensure that even if
D (or S) is compromised, offline attacks against pwd are infeasi-
ble. Thus, the challenge is in implementing the protocol between
U and D, to which we refer as PTR (for Password-to-Random), so
that U can compute Fk(pwd) but the protocol leaks no other infor-

mation about protocol inputs, i.e. pwd and k. Note that we cannot
assume an authenticated or secret channel between the client and
D since this would either require knowing a device public key or
storing pwd-related information at D (the latter would open pwd to
an offline dictionary attack upon compromising D). We show that
in spite of the client-device link being unauthenticated, hence con-
trolled by the attacker, the “blinded DH" approach of Ford-Kaliski,
(see Section 4.1), can be used to implement the PTR protocol.

PTR

1. kd 1. pwd

PAKE

3. rwd

input
output

3. σs(U)

4. K 2. rwd = Fkd(pwd)

Figure 1: PTR-PAKE Authentication Phase

Hence, we obtain a DE-PAKE scheme, which we call PTR-PAKE,
as the composition of a PTR protocol and a secure PAKE. We de-
pict this generic construction of a DE-PAKE protocol in Figure 1.
The outputK in step 4 denotes the session key established between
the user and the server, i.e. the output of the DE-PAKE protocol,
which is equal to the output of the PAKE subprotocol. The server’s
input σS(U) to the PAKE subprotocol denotes the user-specific in-
formation stored at S created in the PAKE initialization using rwd
in the role of the password (e.g. in a common PKI-based PAKE
σS(U) would be a salted hash of rwd).

In order to prove the security of such scheme, we first extend the
established security models for the PAKE functionality to the DE-
PAKE setting (Section 3). For the DE-PAKE modeling we consider
a fully capable man-in-the-middle attacker active on all the links
between all parties and one who is allowed to compromise servers
and devices at will. No external source of authentication is assumed
other than the user’s password (except for secure registration of a
user with the server and device). Second, we define the security
requirements from a PTR protocol and show a PTR instantiation,
FK-PTR, that satisfies this definition in the random oracle model.
Finally, we prove a generic security composition theorem showing
that the composition of a secure PTR scheme (run between U and D
on the basis of the user’s password pwd) with a secure PAKE pro-
tocol (run between U and S on the basis of the hardened password
rwd = Fk(pwd)) results in a secure DE-PAKE scheme, provided
that the PAKE protocol satisfies “security against server compro-
mise” or the more precise notion of KCI resistance introduced and
discussed in Section 3.1 (we note that typical protocols that store a
salted version of the password satisfy this property).

Since our FK-PTR scheme does not require PKI, using a PKI-
free PAKE in the above composition results in a DE-PAKE protocol
that does not rely on public keys or other secure channels.

In order to demonstrate full standalone solutions, in Section 5
we describe two instantiations of our PTR-PAKE construction of a
DE-PAKE scheme. First, we compose our FK-PTR scheme with
a specific PAKE protocol - a KCI-resistant version of the single-
server variant of threshold PAKE from [22, 23]. Since this PAKE
protocol does not require PKI, neither does the resulting DE-PAKE
protocol. Secondly, we expand on the fact that since our PTR-
PAKE construction can be used with any existing password proto-
col with resistance to KCI attacks, one obtains DE-PAKE schemes

179

Table 1: Glossary

Acronym Description

PAKE Password-authenticated key exchange. We refer to password protocols by PAKE as well as to
their security model (recalled in Section 3.1).

PKI-Free PAKE
A PAKE protocol that does not assume any secret or authenticated key carried by the user other
than its own password. In particular, no PKI-based server-authentication is assumed.
This is also known as the CRS or password-only model.

DE-PAKE
A new notion of Device-Enhanced PAKE protocols that guarantees optimal resilience to offline and
online attacks upon compromise of device and/or server. We use DE-PAKE to refer to the security
model (Section 3.2) as well as to the constructions satisfying this model (Sections 4 and 5) .

PTR A security notion and model for password hardening protocols. We use PTR (password-to-random) to
refer to the security model (Section 4.2) as well as to the constructions satisfying this model (Section 4.1).

FK-PTR Specific PTR construction using the Ford-Kaliski password hardening technique (Section 4.1).

OPRF Oblivious PRF (see Section 4.1) is the basis for the FK-PTR protocol.
When implemented via the function Fk(x) = H(x, (H′(x))k) we obtain FK-PTR.

PTR-PAKE A general name for DE-PAKE protocols built by composing a PTR and a PAKE protocols
(their generic security is based on Theorem 3)

FK-PTR-PAKE A PTR-PAKE scheme where the PTR part is implemented with the FK-PTR construction. It is also the
name of the protocol in Fig 3 that combines FK-PTR with the PKI-free PAKE protocol of [22, 23].

without changing the server that implements the PAKE protocol.
In particular, this allows us to use without any change a server that
implements the standard PKI-based password-over-TLS protocol.

A PTR scheme is a close variant of OPRF, and the potential of
OPRF to strengthen password authentication was recently used in
the Pythia system [16], but their proposal differs from ours in at
least three ways: (1) Their OPRF scheme is significantly more
costly than our PTR: it requires 6 exponentiations and a bilinear
map compared to 3 exponentiations in our PTR scheme (and we
can use elliptic curves without bilinear maps where exponentiations
are cheaper); (2) Their solution relies on PKI, while ours does not;
(3) Their solution does not offer a server-transparent instantiation.

3. SECURITY MODEL
We introduce the Device-Enhanced PAKE (DE-PAKE) security

model under which we prove the security of our schemes. The
model extends the standard PAKE (Password Authenticated Key
Exchange) formalisms to include user-specific devices and formu-
lates a security definition that guarantees maximal online and of-
fline security of password protocols. We start by recalling the PAKE
security model (adapted to the client-server setting) and then we
present the extension of the PAKE model to the DE-PAKE setting.

3.1 PAKE Security Model
We recall the security model for PAKE (Password-based Authen-

ticated Key Exchange) protocols, based on the model of Bellare,
Pointcheval and Rogaway [10] that extends authenticated key ex-
change models to account for the inherent vulnerability of pass-
word protocols to online guessing attacks. We adapt the PAKE
model to the client-server setting borrowing some of the formalism
from [22], and we recall an extension of this standard PAKE model
to security against server compromise.
Protocol participants. There are two types PAKE protocol partic-
ipants, users and servers. Each user U is associated with a unique
server S while servers may be associated with multiple users.
Protocol execution. A PAKE protocol has two phases: initial-
ization and key exchange. In the initialization phase each user U
chooses a random password pwd from a given dictionary Dict and
interacts with its associated server S producing a user’s state σS(U)
that S stores while U only remembers its password pwd. Initial-
ization is assumed to be executed securely, e.g., over secure chan-
nels. In the key exchange phase, users interact with servers over
insecure (adversary-controlled) channels to establish session keys.

Both users and servers may execute the protocol multiple times in a
concurrent fashion. Each execution of the PAKE protocol by U or S
defines a (user or server) protocol instance, also referred to as a pro-
tocol session, denoted respectively ΠU

i or ΠS
i , where integer pointer

i serves to differentiates between multiple protocol instances exe-
cuted by the same party. Each protocol session is associated with
the following variables: a session identifier sid, which we equate
with the message transcript observed by this instance (where both
U and S order their interaction transcripts starting with U’s mes-
sage), a peer identity pid, and a session key sk. For a user instance
the peer is always the user’s server while for a server instance the
peer is the user authenticated in the session. The output of an exe-
cution consists of the above three variables which can be set to⊥ if
the party aborts the session (e.g., when authentication fails, a mis-
formed message is received, etc.). When a session outputs sk 6=⊥
we say that the session accepts.
PAKE Security. To define security we consider a probabilistic at-
tacker A which schedules all actions in the protocol and controls
all communication channels with full ability to transport, modify,
inject, delay or drop messages. In addition, the attacker knows (or
even chooses) the dictionaries used by users. The model defines the
following queries or activations through which the adversary inter-
acts with, and learns information from, the protocol’s participants.
send(P, i, P ′,M): Delivers message M to instance ΠP

i purport-
edly coming from P ′. In response to a send query the instance
takes the actions specified by the protocol and outputs a message
given to A. When a session accepts, a message indicating accep-
tance is given to A. A send message with a new value i (possibly
with null M) creates a new instance at P with pid P ′. For simplic-
ity, we assume that the pair {P, P ′} in any send message contains
a user and the server associated to that user (a non-compliant mes-
sage causes the receiving instance to abort). The send query can
also create a new instance of party P : If ΠU

i does not exist then
query send(U, i, S, init) creates a new instance ΠU

i which executes
with pid = S on U’s chosen password pwd. Similarly, if ΠS

i does
not exist then send(S, i,U,M) creates a new instance ΠS

i which
executes with pid = U on S’s input σS(U), with U’s first message
set to M . (This formalism assumes that protocol exchanges are
initiated by users, which is the operational setting in PAKE.)
reveal(P, i): If instance ΠP

i has accepted, outputs the respective
session key sk; otherwise outputs ⊥.
corrupt(P): Outputs all data held by party P and A gains full con-
trol of P . We say that P is corrupted.

180

compromise(S,U): Outputs state σS(U) at S. S is U-compromised.

test(P, i): If instance ΠP
i has accepted, this query causes ΠP

i to
flip a random bit b. If b = 1 the instance’s session key sk is output
and if b = 0 a string drawn uniformly from the space of session
keys is output. A test query may be asked at any time during the
execution of the protocol, but may only be asked once. We will
refer to the party P against which a test query was issued and to its
peer as the target parties.

The following notion taken from [22] is used in the security defi-
nition below to ensure that legitimate messages exchanged between
honest parties do not help the attacker in online password guess-
ing attempts (only adversarially-generated messages count towards
such online attacks). It has similar motivation as the execute query
in [10], but the latter fails to capture the ability of the attacker to
delay and interleave messages from different sessions.

Rogue send queries/activations: We say that a send(P, i, P ′,M)
query is rogue if it was not generated and/or delivered according to
the specification of the protocol, i.e. message M has been changed
or injected by the attacker, or the delivery order differs from what
is stipulated by the protocol (delaying message delivery or inter-
leaving messages from different sessions is not considered a rogue
operation as long as internal session ordering is preserved). We also
consider as rogue any send(P, i, P ′,M) query where P is uncor-
rupted and P ′ is corrupted. We refer to messages delivered through
rogue send queries as rogue activations by A.

Matching sessions. A session in instance ΠP
i and a session in in-

stance ΠP ′
j are said to be matching if both have the same session

identifier sid (i.e., their transcripts match), the first has pid = P ′,
the second has pid = P , and both have accepted.

Fresh sessions. A session at instance ΠP
i with peerP ′ s.t. {P, P ′} =

{U, S} is called fresh if none of the queries corrupt(U), corrupt(S),
compromise(S,U), reveal(P, i) or reveal(P ′, i′) were issued, where
ΠP ′

i′ is an instance whose session matches ΠP
i (if such ΠP ′

i′ exists).

Correctness. Matching sessions between uncorrupted peers output
the same session key.

Attacker’s advantage. Let PAKE be a PAKE protocol and A be an
attacker with the above capabilities running against PAKE. Assume
that A issues a single test query against a fresh session at a user or
server and ends its run with an output bit b′. We say that A wins
if b′ = b where b is the bit chosen internally by the test session.
The advantage of A against PAKE is defined as AdvPAKE

A = 2 ·
Pr [A wins against PAKE]− 1.

Definition 1. A PAKE protocol PAKE is (qS , qU , T, ε)-secure if it
is correct and for any password dictionary Dict and any attacker
A that runs in time T , it holds that AdvPAKE

A ≤ qU+qS
|Dict| + ε where

qU is the number of rogue send queries having the target user U
as recipient and qS is the number of rogue send queries having the
target S as recipient.

Dictionary size 2d. Our treatment works for any dictionary size,
but for notational convenience we denote it as 2d.

Security against server compromise and KCI-resistance. In the
asymmetric client-server setting of password authentication that
concerns us in this paper, plain passwords should not be stored at
the server, so as to prevent the leakage of the password in case of
server compromise. Instead, the server should store some other
verification information corresponding to this password, such as
the salted password hash. The security requirement in this case,
often referred to as security against server compromise [19], is that
access to the server’s state for a particular user (i.e, U-compromise

in our terminology) does not allow the attacker to authenticate that
user to the server except after running an offline dictionary attack
that recovers the password given the server’s state.3 In the key-
exchange literature an attack in which the compromise of a party P
allows the attacker to falsely authenticate another party P ′ to P is
called a Key-Compromise Impersonation (KCI) attack [12]. There-
fore, the above notion of security against server compromise can be
seen as a weak form of KCI resistance, where impersonation of U
to S is possible but only after running an offline dictionary attack.

We extend the above PAKE formalism to capture resistance to
weak KCI attacks (wKCI-resistance) through the following game
(which is well-suited to ROM-based implementations that hash the
password). The security experiment is as before except for the fol-
lowing changes. User U (associated with server S) chooses its pass-
word at random from a dictionary Dict, where Dict is a random
subset of {0, 1}τ of size 2d (for integers d<τ). The attacker A
is given a random subset of Dict of size q as well as the server’s
state σS(U), and it must choose the test session at an instance of
S with peer U (in the regular case this is not allowed since S is U-
compromised). We call a PAKE scheme ε-wKCI-resistant if for any
q ≤ 2d, the attacker’s advantage in this game is at most q/2d + ε.

A strong notion of KCI resistance is achieved in the DE-PAKE
model as we will see next.

3.2 DE-PAKE Security Model
We extend the PAKE model to the DE-PAKE setting. Besides

servers and users in the PAKE model, each user is associated with
a device D with which it communicates over a two-way link. (We
stress that the role of D can be played by any data-connected en-
tity, including a hand-held device or an auxiliary web service.) The
initialization phase of PAKE is extended to include the user-device
communication that establishes the state stored at D. As before,
users only remember their passwords. As in the PAKE case, ini-
tialization (including the user-device interaction) is assumed to run
over secure channels. After initialization, the links between users
and devices are subject to the same man-in-the-middle adversar-
ial activity as in the links between users and servers. Device in-
stances ΠD

i are created similarly to user and server instances, and
are activated by A via send queries that include users and devices
as senders and receivers. However, device instances do not pro-
duce output other than the outgoing messages. In particular, reveal
queries do not apply to them, but corrupt queries can be issued
against devices, in which case the internal state of the device is
revealed to A who then controls the device. The session-related
notions, including the test query, do not apply to devices.

The attacker’s goal is the same as before, i.e. to win the test ex-
periment at a user or server instance, as in the PAKE setting. Also
the correctness property is unchanged. However, to the attacker re-
sources we add the number of rogue send queries (see Section 3.1)
where the target user is the recipient and the device the sender (de-
noted q′U) and the number of rogue send queries where the target
user is the sender and the device the recipient (denoted qD). We
refer to this more powerful adversary as a DE-PAKE attacker.

Strong KCI resistance. The DE-PAKE model is intended to pro-
vide a much stronger notion of security in case of server compro-
mise than achievable in the PAKE case. While in the latter, imper-
sonating U to S in case of U-compromise is possible (and unavoid-
able) through an offline dictionary attack, in DE-PAKE protocols

3Recovering the password via an offline dictionary attack is un-
avoidable in the PAKE model. Also unavoidable is impersonating
S to U when S is U-compromised (except if one assumes, as in the
PKI model, an independent authenticated channel from S to U).

181

this is prohibited. In order to formalize this requirement we fol-
low the treatment of KCI resistance from [27] and we strengthen
the capabilities of a DE-PAKE attacker through a more liberal no-
tion of fresh sessions at a server S. All sessions considered fresh in
the PAKE model are also considered fresh in the DE-PAKE model;
in addition, in the DE-PAKE model, a session ΠS

i at server S with
peer U is considered fresh even if corrupt(S) or compromise(S,U)
were issued as long as all other requirements for freshness are sat-
isfied and the attacker A does not have access to the temporary
state information created by session ΠS

i . This relaxation of the no-
tion of freshness captures the case where the attacker A might have
corrupted S and gained access to S’s secrets (including long-term
ones), yet A is not actively controlling S during the generation of
session ΠS

i . In this case we would still want to prevent A from au-
thenticating as U to S on that session. Definition 2 (item 2) below
ensures that this is the case for DE-PAKE secure protocols even
when unbounded offline attacks against S are allowed.

The following security definition captures the maximal-attainable
online and offline security from a DE-PAKE protocol as informally
discussed in the introduction. Let DPK be a DE-PAKE protocol and
A be an attacker with the above capabilities running against DPK.
As in the PAKE model, we assume that A issues a single test query
against some U or S session, that A output bit b′, and we say that
A wins if b′ = b where b is the bit chosen by the test session. We
define AdvDPK

A = 2 · Pr [A wins against DPK]− 1.

Definition 2. A DE-PAKE protocol is called (qS , qU , q
′
U , qD, T, ε)-

secure if it is correct, and for any password dictionary Dict of size
2d and any attacker that runs in time T , the following properties
hold (for qS , qU , q′U , qD as defined above):

1. If S and D are uncorrupted, the following bound holds:

AdvDPK
A ≤ min{qU + qS , q

′
U + qD}

2d
+ ε. (1)

2. If D is corrupted then AdvDPK
A ≤ (qU + qS)/2d + ε.

3. If S is corrupted then AdvDPK
A ≤ (q′U + qD)/2d + ε.

4. When both D and S are corrupted, expression (1) holds but
qD and qS are replaced by the number of offline operations
performed based on D’s and S’s state, respectively.

Note that the bounds in items 3 and 4 hold also when S is U-
compromised (since being corrupted implies U-compromise for all
users U associated with S).

Note on modeling DE-PAKE via a (2,2)-TPAKE. In a (t+ 1, n)
threshold-PAKE (TPAKE) (cf. [22]), a user holding a single pass-
word can securely establish authenticated keys with a subset of n
servers as long as no more than t of them are corrupted (and the
user interacts with at least t + 1 well-behaving servers). One can
implement DE-PAKE on the basis of (2,2)-TPAKE by letting D and
S act as the two servers in a (2,2)-TPAKE scheme (this would imply
the first three conditions of Definition 2 but the last one should be
added as an additional requirement). Moreover, one can use (2,2)-
TPAKE as the basis for the definition of DE-PAKE where the user
only authenticates to one of the parties. However, the dedicated
DE-PAKE definition we present, and its instantiations, provide sev-
eral advantages: (1) It makes the security goals for the DE-PAKE
notion clearer; (2) It allows for a more precise specification of the
(strict) upper bounds on attacker’s advantage depending on the at-
tack setting; and (3) It allows for more efficient implementations,
in particular enabling a server-transparent DE-PAKE implementa-
tion, which cannot be done using TPAKE. (A TPAKE cannot be
server-transparent because if S runs the code as in PAKE then S’s
presence cannot help U to authenticate to D.)

Note on client security. The DE-PAKE model is designed to cap-
ture (maximal) security against online and offline attacks where the
attacker fully controls all communication channels and can com-
promise servers and devices. However, as it is customary in the
PAKE setting, the model does not consider the security of the ma-
chine (the “client") into which the user enters the password. Yet,
our solutions, while vulnerable to some forms of attack by an at-
tacker controlling the client machine, also provide defenses to com-
mon attacks such as keyloggers or phishing attacks (see Section 5).
4. A MODULAR DE-PAKE SCHEME

In this section we present and analyze our generic DE-PAKE
scheme, i.e. the PTR-PAKE shown in Figure 1, which results from
the composition of two independent cryptographic primitives, a
PTR protocol and a PAKE protocol with resistance to wKCI attacks
(see section 3.1). For a high-level description of the functionality
of a PTR (password-to-random) scheme and its use for obtaining a
DE-PAKE scheme see Section 2. We start by describing a specific
efficient PTR implementation we call FK-PTR, with is based on the
“password hardening” protocol of Ford-Kaliski [17] (Section 4.1).
We then use this protocol example to formalize the PTR notion
and its security requirements (Section 4.2), and we prove that the
FK-PTR protocol satisfies the PTR security notion (Section 4.3).
Finally, we prove that the generic composition of any secure PTR
scheme and any PAKE scheme with resistance to wKCI attacks re-
sults in a secure DE-PAKE scheme (Section 4.4). Thus, our scheme
can be instantiated with the FK-PTR scheme as the PTR part and
any secure wKCI-resistant PAKE protocol (e.g., [19, 22]). More-
over, if the PAKE scheme is in the password-only model4 then the
DE-PAKE scheme is also secure in this model.

4.1 The FK-PTR Scheme
The instantiation of a PTR scheme we call FK-PTR is based on

Ford-Kaliski’s “password hardening" [17] or its more general in-
terpretation as an Oblivious PRF (OPRF) [18,25,26]. Roughly, an
OPRF is a pseudorandom function that is computed by two parties,
one that holds the key to the function and learns nothing from the
computation, and one that holds an input and learns the output of
the function on that input and nothing else.5 In Figure 2 we present
a particular instantiation of the PTR-PAKE protocol, which we call
FK-PTR-PAKE, that results from a composition of FK-PTR, which
is a specific instantiation of a PTR scheme, with a PAKE scheme.
Figure 2 fully specifies the FK-PTR protocol, which is an interac-
tion between U and D by which U retrieves a random value rwd
with the help of its password pwd. At initialization, U chooses and
remembers password pwd while D chooses and stores k ← Zq .
To retrieve rwd, U first blinds pwd by raising the hashed value
H ′(pwd) to a random exponent ρ, and send it to D. This perfectly
hides pwd from D and from any eavesdropper on the U − D link.
D checks that the received value is in the groupG and if so it raises
it to the secret exponent k. Now, U can de-blind this value by rais-
4This model assumes that user/password registration is imple-
mented over secure channels but user authentication after registra-
tion does not assume public keys or secure channels for any party
in the system - only the existence of public parameters, e.g., for
defining an elliptic curve, is assumed. These parameters are com-
mon to all users and are part of the client program run by a user;
they require the same integrity guarantees as the program itself.
5We use the PTR notion instead of existing OPRF definitions be-
cause game-based OPRF notions, e.g. [18, 25], do not seem to en-
able our PTR-to-DEPAKE compiler, while the UC OPRF of [22]
includes verifiability, which is costlier to achieve than PTR. How-
ever, it is possible that the recent UC notion of non-verifiable OPRF
[23] would suffice in our compiler. (Note that the FK-PTR scheme
is identical to the OPRF construction in [23].)

182

Setup

• Group G. The scheme works over a cyclic group G of prime order q, |q| = `, with generator g.

• Hash functions H,H′ map arbitrary-length strings into elements of {0, 1}τ and G, respectively, where τ is a security parameter.

• OPRF. For a key k ← Zq , we define function Fk as Fk(x) = H(x, (H′(x))k).

• Parties. User U, Device D, Server S.

• Dictionary Dict of size 2d (a power of 2 is used for notational convenience only).

• Any PAKE protocol Π.

Initialization Phase (assumed to be executed over secure links)

• FK-PTR Initialization: U chooses password pwd← Dict; D chooses and stores OPRF key k ← Zq ; U interacts with D to compute rwd = Fk(pwd).

• PAKE Initialization: User U and server S are initialized with value rwd used as a password according to the specification of PAKE protocol Π.

Login Phase

• User-Device Interaction (FK-PTR)
1. U chooses ρ← Zq ; sends α = (H′(pwd))ρ to D.

2. D checks that the received α ∈ G and if so it responds with β = αk .

3. U sets rwd = H(pwd, β1/ρ).

• User-Server Interaction (PAKE)

Follows the specification of the PAKE protocol Π where U uses rwd as its password.

Figure 2: The FK-PTR-PAKE Scheme

ing it to the power 1/ρ to obtain H ′(pwd)k. Finally, U hashes this
value with pwd to obtain the randomized password rwd.

Note that D contains no information related to pwd hence an
attacker interacting with D or even breaking into it learns nothing
about pwd. Also, U does not run any test on the value reconstructed
in the FK-PTR protocol. Hence, an attacker that interacts with U
in the role of D does not learn anything about pwd from watching
the behavior of U. These “obliviousness" and minimality proper-
ties of FK-PTR are essential to achieve PTR security and make the
security analysis challenging. We will use this scheme to moti-
vate the security requirements from a PTR scheme as needed for
composing it with a PAKE protocol and obtain a secure DE-PAKE
protocol. We establish these requirements in the next subsection
and then prove the security of FK-PTR.

4.2 PTR Security Model
Here we present the security model for (generic) PTR schemes.

We first define the adversarial game underlying this model and then
use the FK-PTR scheme and explicit potential attacks against it to
motivate the security definition.

PTR adversarial game. The game is parameterized by a function
family F and a password dictionary Dict of size 2d for some d
(the power of two is chosen for notational convenience only). User
U is initialized with password pwd ← Dict and device D with a
key k defining function Fk. Later, the parties interact so that in
an undisturbed interaction between U and D, where U runs with
input pwd, U outputs the secret rwd = Fk(pwd). Attacker A has
oracle access to U and D, calling these parties with any message
of its choice and receiving the corresponding response as defined
by the scheme depending on the internal secrets and state of the
responding party. The security requirements are defined below in
Definition 3 but we first motivate them as follows.

Attack avenues and PTR security requirements. We define se-
curity of a PTR scheme in a way that guarantees that the generic
composition of PTR and PAKE protocols results in a secure DE-
PAKE scheme. The definition consists of several requirements that
we motivate next via concrete attacks showing these requirements
to be necessary (and by virtue of Thm. 3 also sufficient). Reducing

the PTR requirements to the minimum necessary is pivotal for ob-
taining our very efficient FK-PTR implementation that would not
be possible otherwise.

Attack avenue 1: Leakage on rwd = Fk(pwd). Given that A can
obtain values in RDict by interacting with D on input any pass-
word in Dict we need to assure that nothing in the scheme leaks
information on the specific value of rwd = Fk(pwd) or otherwise
the attacker can use this information to gain advantage on guessing
which of the RDict values is more plausible to be the correct rwd
(e.g., it shouldn’t be possible for A to test a possible value p as a
candidate for pwd or to test a value r as a candidate for rwd). More
generally, to apply PAKE we need to ensure that the view of the
attacker at the end of the PTR run is independent, computationally
or statistically, from rwd.

To capture this property we define the following experiment re-
ferred to as the distinguishing test. Define RDict as {Fk(p) : p ∈
Dict} where k is D’s secret key. Let rwd = Fk(pwd) and choose
r ← RDict \ {rwd}. A is given both rwd, r (in random order) and
it needs to guess which one equals Fk(pwd).

Attack avenue 2: Learning values in RDict. Since A can learn
values in RDict by interacting with D, A can later interact with S
in the PAKE protocol using these values. Thus, the best we can
do is to require the PTR protocol not to leak to A more than one
value in RDict for each interaction with D. We formalize this by
defining a game where the attacker, at the end of its run, outputs
a set of candidate values in RDict, and requiring that this set does
not contain more than qD correct values where qD is the number of
rogue activations of D by A.

Attack avenue 3: Using U to test passwords. Since the attacker can
influence the values output by U in the PTR protocol, the possibility
exists, at least in principle, that A makes U output a value Fk(pwd′)
where pwd′ ∈ Dict is known to A. In this case, A can observe the
PAKE run of U with S and see if pwd′ is the correct password.
This allows A to test passwords in Dict without having to act as
an active MitM in the PAKE protocol between U and S. While
this attack is not possible against FK-PTR (as we will prove later),
one can show PTR schemes where this attack is feasible. There are

183

two ways of dealing with this issue. We either show that any such
“dictated password” requires a specific rogue activation of D (as in
Attack 2 above) hence treating it as any other password in RDict
that A may learn by interacting with D or we require that a secure
PTR scheme does not allow for such attack. The latter is better as it
prevents A from testing passwords without a rogue activation of U
but the former can be acceptable in a protocol that allows the attack.
Given that our FK-PTR protocol does not allow the attacker to use
U as an oracle for testing passwords in RDict \ {rwd}, we choose
the stronger notion by adding an explicit requirement against such
possibility.

To prevent this we require that U’s PTR output equals Fk(pwd′)
for pwd′ ∈ Dict \ {pwd} with at most negligible probability.

Attack avenue 4: Running U on passwords outside RDict. The
PTR-PAKE composition presents an attack avenue not present in
regular PAKE protocols: A can make U run the PAKE protocol
on a password from a dictionary RDict∗ different than RDict (note
that this is different from attack scenario 3). To see this, consider an
attack in which A impersonates D to U running the protocol with
a key k′ chosen by A. As a consequence, U will run the PAKE
protocol with the value Fk′(pwd), i.e., with a value uniformly dis-
tributed over RDict∗ = {Fk′(p) : p ∈ Dict} where RDict∗ is
known to A. This allows A to attack the PAKE protocol as follows.
It impersonates S to U as if the server’s state was initialized with
password Fk′(p) for p ∈ Dict. If p = pwd, A succeeds in the
impersonation and learns pwd.6 This attack is not contemplated
in standard PAKE models where the user is assumed to run with
a password from the specified dictionary and without adversarial
choice of the password. To illustrate the dangers of such attack,
imagine that the family F has a key k∗ such that Fk∗(·) is a con-
stant function (with an output known to A). This is a real possibil-
ity against FK-PTR if we define Fk(p) to beH((H ′(p)k) in which
case k∗ = 0 has exactly this effect. Similarly, if there is a key
k∗ for which Fk∗ is a t-to-1 function, A could discard t passwords
with each S-impersonation attempt against U. Again, this is possi-
ble against FK-PTR with the modified Fk where A can choose β′,
the response returned to U, to be in a group of small-order. (Such
an implementation of FK-PTR would require to test β′ ∈ G\{1}.)

To prevent this attack avenue we require that any attack strategy
by A for generating a dictionary RDict∗ induces a 1-1 function.
We formalize this as follows. Let c denote a set of coins for parties
U,D,A in a PTR run. For any such c define fc(p) as the output
from U if its password was p. We require that except for negligible
probability over the choice of c, fc is 1-1. (Note that each such c
defines a dictionary RDict∗ = {fc(p) : p ∈ Dict} of size |Dict|.)
We are now ready to define PTR security.

Definition 3. We say that a PTR scheme is (qD, qU , T, ε)-secure if
for any PTR attacker A that runs time T and performs qD and qU
rogue activations of D and U, respectively, ε is an upper bound on
the values ε1, ε2, ε3, ε4 defined as follows (these εi are functions of
qD, qU , T and they correspond to the above attack avenues):

6This attack recovers pwd with 2d impersonation attempts (of S)
against U and it only requires one value Fk′(pwd) used by U as
its PAKE password. This does not imply a break of the DE-PAKE
scheme, since for each impersonation attempt against U, A needs
to perform a rogue activation of U in PTR. If q′U is the number of
rogue activation of U in PTR and qU is the number of rogue calls
to U in PAKE, then the probability of successful impersonation is
at most min{qU , q′U}/2d. This implies that it is insecure for U
to cache the value retrieved from D for use in multiple sessions -
doing so allows the above attack without A having to act as a MitM
between U and D in each DE-PAKE session.

1. the probability that A passes the distinguishing test of attack
avenue 1 is at most 1/2 + ε1;

2. the probability that A outputs more than qD values in RDict
following attack avenue 2 is at most ε2;

3. the probability that U outputs Fk(pwd′) for pwd′ ∈ Dict \
{pwd} is at most ε3;

4. the probability that fc, as defined in attack avenue 4, is not
1-1 is less than ε4.

where in all four cases the probability goes over random PTR key
k and random pwd in Dict.

4.3 Security of the FK-PTR Scheme
Theorem 1 below summarizes the security of the FK-PTR scheme

in terms of Definition 3. It uses the One-More Gap Diffie-Hellman
assumption defined next.

Note on proofs: Proofs for all statements below are in [24].
The One-More Gap DH (OMG-DH) Assumption [9, 26]: Let G
be a group of prime order q and k a random value in Zq . Let DHk
be an oracle7 that on input g ∈ G outputs gk, and let DDHk be
an oracle that on input a pair (a, b) answers whether b = ak. We
say that G satisfies the εomg-OMG-DH assumption for function
εomg if any attacker A that runs in time T has probability at most
εomg(T, qdh, qddh) to win the following game: A is given access to
the DHk and DDHk oracles, which it queries qdh and qddh times,
resp., and is given a set R of random elements in G. It wins if it
outputs qdh + 1 different pairs (g, gk), g ∈ R.

Theorem 1. Let G be a group where the εomg(·)-One-More Gap
DH holds. Let the hash functions H,H ′ be modeled as random
oracles and qH be the number of invocations to H . Then, the FK-
PTR scheme run over group G with a dictionary Dict ⊂ {0, 1}τ is
(qD, qU , T, ε)-secure where ε = max{ε1, ε2, ε3, ε4} with ε1 = 0,
ε2 ≤ T/2τ + εomg(T, qD, qH), ε3 ≤ 1/2τ , ε4 ≤ |Dict|2/2τ .

Note: The bound |Dict|2/2τ on ε4 can be reduced significantly
if one relaxes requirement 4 of PTR security to allow for some
deviation from injectiveness, e.g., allowing RDict to be of size α ·
|Dict| for some α, say α = 1/2.

Lemma 2. Let G be a group where the εomg-One-More Gap DH
assumption holds and model hash functions H,H ′ as random or-
acles. Let A be a PTR-attacker against the FK-PTR scheme that
runs time T and activates D qD times with values chosen by A
(i.e., rogue activations). Then, the probability that A outputs more
than qD values in RDict (as in attack avenue 2) is at most ε2 =
T/2τ + εomg(T

′, qD, qH) where qH is the number of invocations
of H by A and T ′ ≈ T .

4.4 PTR-PAKE Composition Theorem
We are now ready to prove the composition theorem showing

that composing a secure PTR with a PAKE that offers the wKCI-
resistance property, results in a secure DE-PAKE scheme (with se-
curity definitions as presented in Section 3). As noted earlier, if the
PTR and PAKE schemes dispense of PKI so does our DE-PAKE
protocol: An example of such composed scheme free of PKI (ex-
cept for initialization) is presented in Section 5.
Theorem 3. Let P be a (qD, q

′
U , TP , εP)-secure PTR scheme and

Π be a (qS , qU , TΠ, εΠ)-secure PAKE protocol that is also εKC -
wKCI-resistant, then the DE-PAKE scheme C that uses the compo-
sition of both protocols is a (qS , qU , q

′
U , qD, TC , εC)-secure DE-

PAKE protocol where εC = εΠ + (3q′U + 1)εP + εKC + qU+qS
2τ−1 .

7DHk is not defined over elements outside G hence one needs to
check the input to the oracle - it can be done by an explicit group
membership check or by co-factor exponentiation.

184

5. INSTANTIATIONS AND EXTENSIONS
In this section, we discuss several instantiations and extensions

of our PTR-PAKE scheme showing the practicality and flexibility
of our approach. We first present a full and detailed instantiation of
PTR-PAKE that is secure in the PKI-free setting and which we use
as the basis for our implementation and evaluation work reported
in Section 6. Then, we show how to provide transparent DE-PAKE
support to currently deployed web services, namely, armoring an
existing service against online and offline attacks without chang-
ing the server. Finally, we comment on extensions that provide
defenses against client-side and phishing attacks.

PKI-Free DE-PAKE. Figure 3 describes a full instantiation of
a PKI-free PTR-PAKE protocol using the FK-PTR scheme from
Figure 2 and a PKI-free PAKE protocol with resistance against
wKCI attacks adapted from the threshold PAKE (TPAKE) proto-
col of [22, 23]. More precisely, the PAKE protocol we use is an
adaptation of the variant of the TPAKE protocol from [22,23] with
resistance against wKCI attacks, proven secure in the PKI-free (or
CRS) model, to the single-server case (i.e., a (1,1)-TPAKE).

The protocol as described in Figure 3 also requires a key-exchange
mechanism (the “KE formula") to set a session key between server
and user (in particular for the sake of mutual authentication). Dif-
ferent protocols can be used here, for example, based on shared
keys or public keys, with or without forward secrecy, etc. However,
we note that in order to achieve security against server compromise
(needed to provide the maximal security of a PTR-PAKE scheme)
one must use a public key mechanism. Otherwise, the server would
be storing a secret authentication key for the user which would al-
low an attacker to impersonate the user to the server in case of
server compromise. Thus, while we allow for different key ex-
change mechanisms through a general KE formula, we do require
these to be based on public keys for both parties (we also accom-
modate ephemeral keys if forward secrecy is desired). For illus-
tration, and as a concrete and efficient instantiation that preserves
a minimal number of messages and provides forward secrecy, we
define the key computation formulas corresponding to the HMQV
protocol [27], where eu = H(Xu, S), es = H(Xs,U):

For S: K = KE(ps, xs, Pu, Xu) = H
(
(XuP

eu
u)xs+esps

)
For U: K = KE(pu, xu, PS , XS) = H

(
(XsP

es
s)xu+eupu

)
The user attempts to log-in to a web service (S) from a browser

running at the client (U), using her smartphone (D) to map her
password pwd to a random rwd. S and U run an instantiation of
PAKE protocol on input rwd to authenticate the user. Although the
scheme can be extended to other devices with same capabilities as
smartphones, we targeted latter as the most common device.

Server-Transparent DE-PAKE. An important implication of the
modularity of our PTR-PAKE scheme is that the user can use any
secure PTR protocol to derive a hardened password rwd from her
nominal password pwd, and then register rwd as her actual pass-
word with an existing server, where the latter implements any wKCI-
resistant password authentication protocol. Since the password au-
thentication protocol is independent of the hardening procedure, it
can be the standard password-over-TLS protocol used in the de-
facto standard PKI setting. (Note that if the server stores a salted
password hash then the password-over-TLS authentication is wKCI-
resistant.) In such case the login phase of the PTR-PAKE protocol
consists of the user typing her password pwd, the client terminal
and the device executing the PTR protocol to compute the hard-
ened password rwd, and the client terminal sending rwd to the
server over a TLS session. In this setting, no modification to an

existing service is required. We refer to this mechanism as Server-
Transparent DE-PAKE.

There are several advantages of this setting: (1) the user can
simply remember the short nominal pwd but register with a strong
high-entropy password that significantly increases resistance to on-
line and offline guessing attacks (in particular, offline-only attacks
on a compromised server are not possible); (2) nominal password
pwd can be the same or reused among multiple services, but the
OPRF key associated with each service stored on the device can
be different (hence also rwd would be different), and therefore the
compromise of the password rwd at one server will not reveal the
actual password pwd and will not compromise the user’s accounts
with other services; (3) rather than asking the user to frequently
change the password and memorize the updated password, only the
key on the device can be changed, which improves the usability.

We are currently studying the application of this server-transparent
FK-PTR-PAKE scheme to building a secure password manager.

Resisting Client-Side & Phishing Attacks. Malicious code and
keyloggers remain a threat to browsers in spite of browser secu-
rity enhancements. Because we use a keyed password hardening
scheme, an attacker who learns pwd by a key-logger or shoulder
surfing can not authenticate to the service without interacting with
the device. However, an attacker who compromises a client termi-
nal can obtain rwd. By using service-specific keys at the device
we guarantee that an attacker who obtains rwd can only compro-
mise the particular service associated with it; even if pwd is used
for multiple services, the rwd values derived for each service are
random and independent .

Still, one can reduce the threat of the malware attack to the by
combining our scheme with the traditional two-factor authentica-
tion (TFA) mechanism, i.e., having D generate a PRF on a time
value or a nonce under a key that D shares with S. Note that in
a traditional TFA mechanism, compromising the client allows the
attacker to hijack the current login session of the user, but does not
allow the attacker to login in future sessions (due to the use of “one-
time” PIN codes). Integrating our DE-PAKE protocol with tradi-
tional TFA could provide the same level of security in the event of
client compromise, while providing all the other security properties
of our DE-PAKE scheme.

Resistance to phishing attacks can be achieved if rwd is com-
puted on a concatenatation of pwd and the URL being accessed,
i.e., if rwd = FKd(pwd|url). This is similar to the PwdHash ap-
proach [28] except that in PwdHash, the attacker that obtains the
randomized password through phishing can mount a dictionary at-
tack to find the user’s password while in our case this is not feasible.

6. DEVELOPMENT AND EVALUATION
We evaluate the feasibility and performance of our DE-PAKE

scheme, we pursue a proof of concept system development and
evaluation of protocol FK-PTR-PAKE described in Figure 3. The
FK-PTR-PAKE protocol implements a secure DE-PAKE solution
with full resilience to online and offline attacks, and without re-
liance on PKI (except for initialization).

6.1 FK-PTR-PAKE System Design
We implemented parties S,D,U as follows: S is a web-server

hosted on a Debian 7.6 server running PHP 5.4.4; D is an LG G3
Verizon VS985 Android 5.1 phone running our Java code devel-
oped for Android API 22; and U logs in from a client running
Google Chrome 40.0 browser on a MacBook Air laptop with a 1.3
GHz Intel Core i5 and 4GB memory. At the client side, all com-
putations are performed in our Chrome app. At the device side,

185

Parties: User U, Device D, Server S.
Public Parameters and Components

• Group G of prime order q with generator g.
• Hash functions H,H′ with ranges {0, 1}2τ , G and Zq , respectively, for τ a security parameter.
• Pseudorandom function (PRF) f with range {0, 1}2τ .
• OPRF function Fk(x) = H(x, (H′(x))k) for key k ∈ Zq .
• Key exchange formula KE: on input long-term and ephemeral private-public keys outputs shared key K ∈ {0, 1}τ .

Initialization Phase (assumed to be executed over secure links)

• FK-PTR Initialization: Run FK-PTR initialization of Fig. 2 to choose pwd, device’s OPRF key kd, and compute rwd = Fkd (pwd).

• PAKE Initialization:

1. S chooses ps ∈R Zq and sends to U the public key Ps = gps (Ps can be used with all of S’s users).
2. U chooses z ∈R {0, 1}τ , ks ∈R Zq ;

sets values c = z ⊕ Fks (rwd), r = fz(0), C = H(r, rwd, c), pu = fz(1) mod q;
computes Pu = gpu and mu = fz(2, Pu, Ps); and sends to S the values c, C, ks, Pu, mu.

3. S stores c, C, ks, Pu,mu in its U-associated storage (if Ps is user-specific, it also stores Ps and ps).

Login Phase

• User-Device Interaction (FK-PTR)
Follows the FK-PTR protocol as per Fig. 2 to obtain rwd on input pwd from U and input kd from D.

• User-Server Interaction (PAKE)

1. U chooses ρ, xu ← Zq ; initiates a key exchange session with S by sending its identity U, the value
α = (H′(rwd))ρ and Xu = gxu .

2. S proceeds as follows:

(a) Checks that α ∈ G;
(b) Retrieves (c, C, ks, Pu,mu) from its U-associated storage;
(c) Picks xs ∈R Zq and computes β = αks , Xs = gxs .
(d) Sends to U: β, c, C, Pu,mu, Ps, Xs.
(e) Computes K = KE(ps, xs, Pu, Xu) and outputs session key SK = fK(0).

3. U proceeds as follows:

(a) Sets z = c⊕H(rwd, β1/ρ), r = fz(0), pu = fz(1) mod q.
(b) Aborts unless the following conditions hold: β ∈ G, C = H(r, rwd, c), mu = fz(2, Pu, Ps).
(c) Computes K = KE(pu, xu, Ps, Xs) and outputs session key SK = fK(0).

• Explicit Authentication
If explicit authentication of the parties is required then S adds the value fK(1) to its message and U adds a third message with value
fK(2). Each party verifies the value received from the other party.

Figure 3: Instantiation of FK-PTR-PAKE with PKI-free PAKE protocol from [22, 23]

all computation is performed by our Android app. The server uses
a Java communication application to run the single-server PAKE
of [22] (see Figure 3) and PHP scripts to authenticate the user.

While client U and server S communicate over the Internet, the
device-client (U−D) communication depends on the features of the
device. Our implementation allows D to communicate either via
the cellular data network or the WiFi internet, but if such channels
are unavailable, e.g. because device D looses cellular data and/or
WiFi internet coverage, we allow for a fall-back to a localized
device-client channel, which in our current implementation is re-
alized by an ad hoc WiFi connection between U and D.

Hash Functions: The modular structure of the the DE-PAKE pro-
tocol gives us the flexibility to pick any hash function in the imple-
mentation. The “Hash onto Elliptic Curve” function, denoted by
H ′, maps an arbitrary-length string into an element of the group
G of prime order q; in our implementation G is an elliptic curve
NIST P-256 group. In this hashing function, SHA-256 of the input
(concatenated with the iteration number) is computed and truncated
into an element in Zq , the computed value is considered as the x

coordinate of a point on the curve only if a y value associated with
it is a quadratic residue (i.e., x and y satisfy the curve equation).
Otherwise, the same computation is repeated in the next iteration
until a curve element is obtained8. Such a point on the curve is the
output of the hash function H ′. The other hash function in our im-
plementation, denoted by H , is a SHA256 hash function. The PRF
f used in computing r, pu, and mu in Figure 3 is implemented
using HMAC-SHA256 with τ -bit keys and τ -bit outputs.

OPRF Function: OPRF is defined as Fk(x) = H(x, (H ′(x))k)
with input x from the client and k from the server/device [22]. The
OPRF works over group G of prime order p, which in our imple-
mentation is an elliptic curve NIST P-256 group.

8We note that the number of iterations in this hunt-and-peck pro-
cedure (as used in our prototype) can leak information on the pass-
word. A safer approach is to use a curve such as 25519 with the El-
ligator 2 hashing technique [11] which provides better side-channel
protection and better performance.

186

Table 2: Performance Analysis of the FK-PTR-PAKE Protocol; mean (standard deviation) of delay is reported in milliseconds; The interaction of the user
with the system is exuded from this evaluation. The primary D− U channel implementation is over Cellular Data (12Mbps 4G LTE).

Device Client Server S− U Channel D− U Channel Total
PTR 183.30 (0.02) 45.37 (1.20) – – 36.81 (0.10) (4G LTE) 265.48ms
PAKE – 195.05 (0.03) 27.85 (0.00) 26.76 (2.45) – 249.66ms
Overall Time 515.14ms

of EC Exponentiations 1 7 4 WiFi Internet
(10 Mbps) 48.09 (0.23)

Single EC Exponentiation Cost 167.41(0.03) 10.65 (0.02) 1.39 (0.00) Localized WiFi
(54 Mbps) 7.42 (0.01)

Key Computation: The Key Computation function, KE, is from
the HMQV protocol [27] described in Section 5 and is computed at
the client’s Chrome application and the server application.
Commitment: During initialization, commitment C is computed
as H(r, rwd, c) at the client side, and is sent to the server to be
stored at the server. During authentication, the server sends backC,
which is compared againstH(r, rwd, c) to verify that the computed
values at the client are valid. The client aborts the protocol if the
commitment is not verified.
Message Authentication Code: mu is the message authentica-
tion code that is sent to the server from the client during initializa-
tion, and is stored at the server. During the authentication phase,
the server sends mu back to the client, which is compared against
fz(2, Pu, Ps) at the client side. If the two do not match, it means
the received mu is not the same as the one sent to the server dur-
ing the initialization and therefore the client aborts the protocol,
otherwise the received public key Ps is valid (i.e., the server is le-
gitimate) and client can continue running the protocol.
Chrome Extension: We developed a Chrome JavaScript applica-
tion to implement user U on a client browser. The user needs to run
this application during the initialization and authentication phases
(if not already running). This application interacts with D to recon-
struct rwd, and with S to construct K and session key SK, and to
authenticate U to S. For all Elliptic Curve computations, we used
the Stanford EC library, and for SHA-256 and OPRF functions,
we used CryptoJS APIs. We used Stanford JSBN and JSBN2 li-
braries for all BigInteger computations on the Chrome App. We
used Chrome.socket API to send and receive data between U and
D in the PTR protocol, and between U and S in the PAKE protocol.

Server Application: Server side PHP scripts are the initial and last
point of interaction with the user. Moreover, the application on the
server-side is responsible for storing user specific information, and
participating in the PAKE protocol to authenticate the user. We
developed a Java program using native Java Socket, Java Security
and Bouncy Castle libraries to run the PAKE protocol.

Device Application: The Android app running on the device is
responsible for storing OPRF kd, receiving α = (H ′(pwd))ρ from
the client, checking the group membership of α, and sending β =
αkd to the client. Although this application can theoretically run
on the device without any interaction with the user, we require the
user to confirm the transfer of β. The user needs to launch the
application (if not already running) and wait for the app to prompt
for the consent. Then, she can approve the communication, to let
the device send β to the client. This design choice is made to ensure
that the device does not respond to unauthorized requests (without
user’s awareness). All elliptic curve functions in our app are based
on Java Security and Spongy Castle on Android 5.1.
Device-Client Communication. Since the device-client communi-
cation in our scheme does not require to be confidential or authen-
ticated (i.e., does not need to be protected), we can use any channel
to run the protocol. Today, almost all smartphones have Internet

connectivity (cellular data or WiFi), which can serve as an effective
device-client communication channel. In addition to performance
and bandwidth, such channels have the advantage that the user does
not need to be involved in the channel set-up phase (unlike, for
example, a Bluetooth channel that requires device pairing by the
user). Although such channels are not cost-free (especially cellular
data), currently most of the carriers offer unlimited text/voice/data
plan with as less as $25 per month on some of the plans. With these
type of plans, we believe that device-client channels may not im-
pose additional cost for the user. At home or at work, for example,
users often have WiFi Internet connectivity available.

Due to the above advantages our implementation is based on a
device-client “data channel”. On occasions this channel becomes
unavailable, e.g., when the user loses network coverage, our imple-
mentation allows fall-back to the localized wireless ad-hoc chan-
nels at the cost of reduced usability, since some user effort is re-
quired for establishing localized channels. Assuming such a fall-
back is not required frequently, this “hybrid model” of device-client
communication may provide a high level of usability. (For other
case studies using localized WiFi channel see e.g. [14, 29].)

6.2 Performance Evaluation
The overall execution time of FK-PTR-PAKE implementations

is evaluated over 10, 000 iterations, and the averaged results are
reported in Table 2 in settings described in the previous subsection.

The communication between U and S is timed over the Inter-
net (web server and client with 10Mbps Internet connection), but
the communication between U and D is tested in three different
settings: (1) The primary setting is when the communication chan-
nel between D and the internet is a Cellular Data link, which in our
tests was a 12Mbps Verizon 4G LTE link; (2) The second setting we
tested is when D has a WiFi Internet connection (10Mbps), which
is another popular Internet connection setting for mobile devices,
commonly used as an alternative to cellular data communication;
(3) Finally, we timed the protocol in the Localized WiFi setting,
namely a point-to-point 54Mbps wireless device-client link (ad hoc
WiFi) established between U and D. As we argued in the previous
subsection, the localized WiFi channel is an important fall-back op-
tion in case the other two channels are unavailable. Table 2 shows
overall costs for setting (1), but at the bottom of the right-most col-
umn we show the D-U channel delay in settings (2) and (3).

Based on our evaluation, for all parties, the most costly computa-
tion is Elliptic Curve (EC) exponentiation (10.65ms on the Chrome
app, 167.41ms on the Android app, and 1.39ms on the server with
the mentioned libraries). In one round of the protocol with dif-
ferent device-client links, the most costly communication is around
50ms between the client and the device over 10Mbps WiFi Internet.
The overall execution time of FK-PTR-PAKE protocol, excluding
the manual task of password entry, is around 515ms, which seems
reasonably efficient. On an average, the PTR part of the protocol
takes around 265ms to complete (with the major delay due to com-
putation on the device), and the PAKE part of the protocol takes

187

249ms to complete (with the major delay due to computation on
the client). Since the major computation is performed by the client
due to EC exponentiations (total number of 7 Exponentiation, 2 in
PTR and 5 in PAKE protocol), optimizing the exponentiation code
at the client might help to further improve the performance. Also,
one can reduce the number of exponentiations for both server and
user by almost one exponentiation by implementing the HMQV
computation via a multi-exponentiation technique.

Communication delays are a smaller component of the overall
cost, hence the choice of a particular D − U channel does not sig-
nificanly affect the overall performance: Using WiFi Internet in-
stead of Cellular Data adds 11.28ms, causing only a 2% increase in
the overall time, while using Localized WiFi cuts 29.39ms, a 6%
speed-up in the overall time.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we considered the problem of armoring password

protocols against online guessing attacks as well as offline dic-
tionary attacks in the event of server or device compromise. We
proposed a novel, efficient and modular device-enhanced password
protocol (DE-PAKE) and formally analyzed its security. In con-
trast to previous work on this subject, our protocol does not re-
quire the presence of a public key infrastructure or the availability
of authenticated public keys (except, possibly, for initial password
registration) thus relaxing the concerns regarding PKI failures or
compromises. At the same time, when an authentic and uncom-
promised public key of the server is available, our protocol further
guarantees resilience to server impersonation even when the user’s
password is disclosed. Remarkably, we can achieve these benefits
without necessitating service-side changes.

Finally, we note that, thanks to our modular architecture, one
can further increase the resistance to server compromise by using
a threshold-PAKE protocol (e.g., [22]), in which case an attacker
needs to compromise a threshold of servers in addition to the device
before being able to mount an offline dictionary attack.

We demonstrate practical viability of our solution by building a
DE-PAKE system based on a concrete instantiations of our protocol
(with and without server-side changes), utilizing an automated data
channel between the device and the client (falling back to localized
WiFi communication only when such a channel is to become un-
available). Our performance evaluation demonstrate the promising
feasibility of our schemes, although a systematic investigation of
their overall usability is left for future work.

Acknowledgments
This research is partially supported by ONR Contract N00014-14-
C-0113, NSF CICI Award #1547435 and #1547350, and NSF CNS
Award #1209280.

8. REFERENCES
[1] Anonymous hackers claim to leak 28,000 PayPal passwords on

global protest day. Available at: http://goo.gl/oPv2h.
[2] Blizzard servers hacked; emails, hashed passwords stolen. Available

at: http://goo.gl/OTNWJC.
[3] Hackers compromised nearly 5M Gmail passwords. Available at:

http://goo.gl/IRu07u.
[4] LinkedIn Confirms Account Passwords Hacked. Available at:

http://goo.gl/UBWuY0.
[5] RSA breach leaks data for hacking securid tokens. Available at:

http://goo.gl/tcEoS.
[6] RSA SecurID software token cloning: a new how-to. Available at:

http://goo.gl/qkSFY.
[7] Russian Hackers Amass Over a Billion Internet Passwords. Available

at: http://goo.gl/aXzqj8.

[8] T. Acar, M. Belenkiy, and A. Kupcu. Single password authentication.
Computer Networks, 57(13):2597 – 2614, 2013.

[9] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The
one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. 16(3):185–215, June 2003.

[10] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key
exchange secure against dictionary attacks. In Advances in
Cryptology – Eurocrypt, 2000.

[11] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings.
pages 967–980, 2013.

[12] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement
protocols and their security analysis. In Proceedings of the 6th IMA
International Conference on Cryptography and Coding, pages
30–45, London, UK, UK, 1997. Springer-Verlag.

[13] X. Boyen. Hidden credential retrieval from a reusable password. In
Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, ASIACCS ’09, pages
228–238, New York, NY, USA, 2009. ACM.

[14] A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz.
Strengthening user authentication through opportunistic
cryptographic identity assertions. In Proceedings of ACM conference
on Computer and communications security. ACM, 2012.

[15] I. Dacosta, M. Ahamad, and P. Traynor. Trust no one else: Detecting
MITM attacks against SSL/TLS without third-parties. In European
Symposium on Research in Computer Security, 2012.

[16] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart.
The pythia prf service. In 24th USENIX Security Symposium
(USENIX Security 15), 2015.

[17] W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong
secret from a password. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2000.

[18] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword
search and oblivious pseudorandom functions. In Theory of
Cryptography. 2005.

[19] C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making
password-based key exchange resilient to server compromise. In
Advances in Cryptology-CRYPTO. 2006.

[20] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: Validating ssl
certificates in non-browser software. In Proceedings of the ACM
Conference on Computer and Communications Security, 2012.

[21] D. P. Jablon. Password authentication using multiple servers. In The
Cryptographer’s Track at RSA Conference (CT-RSA). 2001.

[22] S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only
model. In Advances in Cryptology–ASIACRYPT. 2014.

[23] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly Efficient and
Composable Password-Protected Secret Sharing. In 1st IEEE
European Symposium on Security and Privacy (EuroS&P). 2015.

[24] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena.
Device-enhanced password protocols with optimal online-offline
protection. IACR Cryptology ePrint Archive: Report 2015/1099
available at http://eprint.iacr.org/2015/1099, December 2015.

[25] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function
with applications to adaptive ot and secure computation of set
intersection. In Theory of Cryptography. 2009.

[26] S. Jarecki and X. Liu. Fast secure computation of set intersection. In
Security and Cryptography for Networks. 2010.

[27] H. Krawczyk. Hmqv: A high-performance secure diffie-hellman
protocol. In Advances in Cryptology–CRYPTO, 2005.

[28] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell.
Stronger password authentication using browser extensions. In
Usenix security Symposium, 2005.

[29] M. Shirvanian, S. Jarecki, N. Saxena, and N. Nathan. Two-factor
authentication resilient to server compromise using mix-bandwidth
devices. In Network & Distributed System Security Symposium, 2014.

[30] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor.
Crying wolf: An empirical study of ssl warning effectiveness. In
USENIX Security Symposium, 2009.

188

