
Authenticated Key Agreement with Key Re-use in the
Short Authenticated Strings Model

Stanisław Jarecki and Nitesh Saxena

1 University of California, Irvine
2 Polytechnic Institute of New York University

Abstract. Serge Vaudenay [20] introduced a notion of Message Authentication
(MA) protocols in the Short Authenticated String (SAS) model. A SAS-MA pro-
tocol authenticates arbitrarily long messages sent over insecure channels as long
as the sender and the receiver can additionally send a very short, e.g. 20 bit, au-
thenticated message to each other. The main practical application of a SAS-MA
protocol is Authenticated Key Agreement (AKA) in this communication model,
i.e. SAS-AKA, which can be used for so-called “pairing” of wireless devices.
Subsequent work [9,12,10] showed three-round SAS-AKA protocols. However,
the Diffie-Hellman (DH) based SAS-AKA protocol of [10] requires choosing
fresh DH exponents in each protocol instance, while the generic SAS-AKA con-
struction given by [12] applies only to AKA protocols which have no shared state
between protocol sessions. Therefore, both prior works exclude the most efficient,
although not perfect-forward-secret, AKA protocols that re-use private keys (for
encryption-based AKAs) or DH exponents (for DH-based AKAs) across multiple
protocol sessions.

In this paper, we propose a novel three-round encryption-based SAS-AKA
protocol, using non-malleable commitments and CCA-secure encryption as tools,
which we show secure (but without perfect-forward secrecy) if each player re-
uses its private/public key across protocol sessions. The cost of this protocol is
dominated by a single public key encryption for one party and a decryption for
the other, assuming the Random Oracle Model (ROM). When implemented with
RSA encryption the new SAS-AKA protocol is especially attractive if the two
devices being paired have asymmetric computational power (e.g., a desktop and
a keyboard).

1 Introduction

Serge Vaudenay [20] introduced a notion of a message authentication protocol (MA)
based on so-called short authenticated strings (SAS). Such a protocol allows authenti-
cating messages of arbitrary sizes (sent over insecure channel) making use of an auxil-
iary channel which can authenticate short, e.g. 20-bit, messages. It is assumed that an
adversary has complete control over the insecure channel, i.e., it can eavesdrop, delay,
drop, replay, inject and/or modify messages, while the only restriction on the auxil-
iary channel is that the adversary cannot modify or inject messages on it, but it can
eavesdrop, delay, drop, or replay them. Crucially, no other infrastructure assumptions
are made, i.e. the players do not share any keys or passwords, and there is no Pub-
lic Key Infrastructure they can use. The only leverage for establishing security is this

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 253–270, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

254 S. Jarecki and N. Saxena

bandwidth-restricted, public but authenticated “SAS channel” connecting every pair of
players.

The primary application of SAS-MA protocols is to enable SAS-based authenticated
key agreement (SAS-AKA) between devices with no reliance on key pre-distribution or
a public-key infrastructure. A perfectly fitting and urgently needed application of SAS-
AKA protocols is establishing secure communication channels between two devices
communicating over a publicly-accessible medium (such as Bluetooth, WiFi), which
in addition can also send short authenticated messages to each other (and are hence
equipped with a SAS channel), given some amount of manual supervision or involve-
ment from the users. (This problem is referred to as “device pairing” in the systems
literature.) Implementations of such SAS channels have been proposed for a variety of
device types, assuming various user interfaces and different type of manual supervi-
sion. In the simplest example of two cell-phones, phone owners can be asked to type a
20 bit string (6 digits) displayed by one phone into the keypad of the other. The systems
proposed in [19,1,14,7,16,18,13] show that the same effect can be accomplished with
more primitive devices (e.g., with no keypads) or with less user involvement (e.g. rely-
ing on sound, blinking LED lights, cameras on the phones, etc). In all of these schemes,
it is desirable to have SAS-AKA protocols which are inexpensive both in computation
and communication, since the underlying devices might have limited computation and
battery power, and which provably achieve an optimal 2−k+ ε bound on the probability
of adversary’s attack given a k-bit SAS channel, where ε is a negligible factor in the
security parameter independent of k. The SAS-AKA protocol we propose in this paper
significantly improves upon the first goal compared to the previous work, at the expense
of achieving a slightly weaker bound on adversary’s attack, namely 2−k+1+ ε.

1.1 Prior Work on SAS-MA Protocols

Following [20,12], we refer to a bi-directional message authentication protocol in the
SAS model as SAS-MCA, which stands for “message cross-authentication”. Note that
two instances of a SAS-MA protocol run in each direction always yield such SAS-MCA
scheme, but at twice the cost of the underlying SAS-MA scheme. A straightforward so-
lution for a SAS-MCA was suggested by Balfanz, et al. [1]: Devices A and B exchange
the messages mA, mB over the insecure channel, and the corresponding hashes H(mA)
and H(mB) over the SAS channel. Although non-interactive, the protocol requires H to
be a collision-resistant hash function and therefore it needs at least 160 bits of the SAS
bandwidth in each direction. Pasini and Vaudenay [11] showed a non-interactive proto-
col which weakens the requirement on the hash function to weak (i.e. second-preimage)
collision resistance, and reduces the SAS bandwidth to 80-bits. The ’MANA’ protocols
in Gehrmann et al. [6] reduce the SAS bandwidth to any k bits while assuring the 2−k

bound on attack probability,1 but these protocols require a stronger assumption on the
SAS channel, namely the adversary is assumed to be incapable of delaying or replaying

1 Formally, by “2−k bound on attack probability” we mean that the probability that any ad-
versary that runs in time polynomial in a security parameter n, which is independent of the
SAS-bandwidth k, succeeds against a single instance of the protocol is upper-bounded by
2−k+ ε(n), where ε(n) is negligible in n.

Authenticated Key Agreement with Key Re-use in the SAS Model 255

Pi(m) Pj

Pick Ri ← {0, 1}k
(c, d)← com([m|Ri])

m,c �� Pick Rj ← {0, 1}k
Rj��
d ��

SAS = Ri ⊕Rj
SAS �� [m|Ri]← open(c, d)

Output (Pi, m) if SAS = Ri ⊕Rj

Fig. 1. V-MA : unidirectional SAS-MA authentication (Pi to Pj) of Vaudenay [20]

the SAS messages, which in practice requires synchronization between the two de-
vices, e.g. one device never abandons one session and restarts another session without
the other device also doing the same.

In [20], Vaudenay presented the first SAS-MA scheme, called V-MA and depicted
in Figure 1, with the analysis that bounds the attack probability by 2−k for a k-bit
SAS channel. In [20] this protocol is shown secure under the assumption that the com-
mitment scheme satisfies what Vaudenay refers to as “extractable commitment”, and
subsequently [9] pointed out that this proof goes through under the more standard and
possibly weaker assumption of a non-malleable commitment. The bi-directional SAS-
MCA protocol presented in [20] results from running two instances of the V-MA pro-
tocol, one for each direction, but with each player Pi/j using the same challenge Ri/j

in both protocol instances. This SAS-MCA scheme requires 4 communication rounds
over the insecure channel and was shown to give a 2−k security bound.

In subsequent work, Laur, Asokan, and Nyberg [9,10] and Pasini and Vaudenay [12]
independently gave three-round SAS-MCA protocols. Both schemes are modifications
of the V-MA protocol of Figure 1, and both employ (although differently) a universal
hash function in computation of the SAS message. Both of these protocols make just
a few symmetric key operations if the commitment scheme is implemented using a
cryptographic hash function modeled as a Random Oracle. Both protocols claim the
2−k security bound at least in the ROM model, although the scheme of [9,10] was
analyzed only in a “synchronized” setting where the same pair of players never execute
multiple parallel protocol instances with each other2 (see Theorem 3, Note 5 of [10]).

1.2 Prior Work on SAS-AKA Protocols

Pasini and Vaudenay [12] argue that one can construct a 3-round SAS-based key agree-
ment protocol (SAS-AKA), from any 3-round SAS-based message cross-authentication
protocol (SAS-MCA) like the SAS-MCA protocol presented in [12], and any 2-round

2 While in practice it might be the case that a pair of players is not supposed to execute several
protocol instances concurrently, a man-in-the-middle can cause that several instances of the
protocol between the same pair of players are effectively alive, if he manages to force one
device to time-out and start a new session while the other device is still waiting for an answer.

256 S. Jarecki and N. Saxena

key agreement scheme (KA) which is secure over authenticated links, e.g. a Diffie-
Hellman or an encryption-based KA scheme. The idea is to run the 2-round KA pro-
tocol over an insecure channel, and authenticate the two messages m1, m2 produced
by the KA protocol using the SAS-MCA protocol. (To achieve a 3-round SAS-AKA
protocol, the KA messages m1, m2 are piggybacked with the SAS-MCA protocol mes-
sages.) This compilation is significantly different from the standard compilation from
a protocol secure over authenticated links to a protocol secure over insecure channels,
which works by running a separate unidirectional message-authentication sub-protocol
(MA) for each message of the underlying protocol, e.g. as in Canetti and Krawczyk’s
MA + KA → AKA compilation in [4]. If the SAS-MA authentication protocol has k
rounds then this compilation would result in a 2k-round SAS-AKA scheme, because
the responder cannot, in general, send the second KA message m2 before successful
completion of the SAS-MA sub-protocol that authenticates the first KA message m1.
In contrast, to achieve a (k + 1)-round SAS-AKA protocol, the compilation given in
[12] prescribes that the second message of the KA protocol, m2, is sent by the respon-
der straight away, i.e. on the basis of the first KA message m1, which at this moment
has not been authenticated yet.

The compilation of Pasini and Vaudenay does result in secure 3-round SAS-AKA
schemes, but only when it utilizes a KA scheme which does not keep shared state be-
tween different instances of the KA protocol run by the same player. (This was indeed
the implicit assumption taken by the proof of security for this compilation given in [12].)
Moreover, such SAS-MCA + KA→ SAS-AKA compilation cannot be applied to KA
schemes which do share state between instances. For a simple counter-example, con-
sider a 2-round KA protocol secure in the authenticated links model, which is amended
so that (1) the computed session key is sent in the last message encrypted using re-
sponder Pj ’s long term public key pkij chosen for a particular initiator Pi, and (2)
the responder Pj reveals the corresponding private key skij if the initiator Pi’s first
message is a special symbol which is never used by an honest sender. Such protocol
remains secure in the authenticated links model (in the static corruption case), because
only a dishonest sender Pi can trigger Pj to reveal skij . However, this protocol is inse-
cure when compiled using the method above, because when Pj computes its response
it does not know if the message sent by Pi is authentic, and thus a man-in-the-middle
adversary can trigger Pj to reveal skij by replacing Pi’s initial message in the KA
protocol with that special symbol. This way the adversary’s interference in a single pro-
tocol session leads to revealing the keys on all sessions shared between the same pair
of players, and thus the compiled protocol is not a secure SAS-AKA. (We elaborate on
this counter-example in more detail in Appendix A.)

Independently, Laur and Nyberg also proposed a SAS-AKA protocol [10], based on
their own SAS-MCA protocol [9]. In this (Diffie-Hellman based) SAS-AKA protocol,
the Diffie-Hellman exponents are picked afresh in each protocol instance, and so this
protocol also does not support key re-use across multiple sessions.

1.3 Limitations of SAS-AKA Protocols Without Key Re-use

The key agreement protocols that do not share state between sessions, and thus in par-
ticular do not allow for re-use of private keys, are by definition Perfect-Forward Secret

Authenticated Key Agreement with Key Re-use in the SAS Model 257

(PFS) but they are also significantly more expensive than non-PFS key agreement pro-
tocols. Specifically, the standard Diffie-Hellman PFS KA requires two exponentiations
per player, while the encryption-based PFS KA requires generation of a (public,private)
key pair and a decryption operation by one player, and a public key encryption by
the other player. These are also the dominant costs of the corresponding SAS-AKA
schemes implied by the above results of [9,12]. In contrast, the non-PFS Diffie-Hellman
with fixed exponents costs only one exponentiation per player, and the encryption-based
KA costs one decryption for one player and one encryption for the other. Note that in
practice the efficiency of the non-PFS KA schemes often takes precedence over the
stronger security property offered by perfect forward secret KA schemes. For example,
even though SSL supports PFS version of Diffie-Hellman KA, almost all commercial
SSL sessions run the non-PFS encryption-based KA using RSA encryption, since this
mode offers dramatically faster client’s time (and twice faster server’s time). Also, just
as the asymmetric division of work in the RSA-encryption based key agreement was
attractive for the SSL applications, the same asymmetric costs in the RSA-encryption
based SAS-AKA could be attractive for “pairing” of devices with unequal computa-
tional power, e.g. a PC and a keyboard, a PC and a cell-phone, or a cell-phone and an
earset speaker.

Other applications could also benefit from SAS-AKA protocols which allow for re-
use of public keys across multiple protocol sessions. One compelling application is in
secure initialization of a sensor network [17]. Sensor initialization can be achieved by
the base station simultaneously executing an instance of the SAS-AKA protocol with
each sensor. However, since the number of sensors can be large, generating fresh (RSA
or DH) encryption keys per protocol instance would impose a large overhead on the
base station. An encryption-based SAS-AKA protocol with re-usable public key would
be especially handy because it would minimize sensors’ computation to a single RSA
encryption, and the base station would pick one RSA key pair and then perform one
RSA decryption per each sensor. Another application where key re-use in SAS-AKA
offers immediate benefits is protection against so-called “Evil Twin” attacks in a cyber-
cafe, where multiple users run SAS-AKA protocols to associate their devices with one
central access point [15].

1.4 Our Contributions

In this work, we present a provably secure and minimal cost SAS-AKA scheme which
re-uses public key pairs across protocol sessions and thus presents a lower-cost but
non-PFS alternative to the perfect-forward secret SAS-AKA protocols of [10,12]. Our
SAS-AKA relies on a non-malleable commitments just like the SAS-AKA schemes of
[20,9,12], but unlike the previous schemes it is built directly on CCA-secure encryption,
and it relies on encryption not just for key-establishment but also for authentication se-
curity. As a consequence, the new SAS-AKA is somewhat simpler than the previous
SAS-AKA’s which were built on top of the three-round SAS-MCA’s of [9,12], and in
particular it does not need to use universal hash functions. However, the most impor-
tant contribution of the new SAS-AKA scheme is that it remains secure if each player
uses a permanent public key, and hence shares a state across all protocol sessions it
executes. This leads to two minimal-cost 3-round non-PFS SAS-AKA protocols where

258 S. Jarecki and N. Saxena

the same public/private key pair or the same Diffie-Hellman random contribution is
re-used across protocol instances. Specifically, when instantiated with the hash-based
commitment and the CCA-secure OAEP-RSA, this implies a 3-round SAS-AKA pro-
tocol secure under the RSA assumption in ROM, with the cost of a single RSA encryp-
tion for the responder and a single RSA decryption for the initiator. When instantiated
with the randomness-reusing CCA-secure version of ElGamal [3] this implies a 3-round
SAS-AKA protocol secure under the DH assumption in ROM, with the cost of one ex-
ponentiation per player. In other words, the costs of the SAS-AKA protocols implied
by our result are (for the first time) essentially the same as the costs of the correspond-
ing basic unauthenticated key agreement protocols. By contrast, previously known PFS
SAS-AKA protocols require two exponentiations per player if they are based on DH
[12,10] or a generation of fresh public/private RSA key pair for each protocol instance
if the general result of [12] is instantiated with an RSA-based key agreement.

We note that the SAS-MCA/AKA protocol we show secure is very similar to the
SAS-AKA protocols of [20,9,12], and it is indeed only a new variant of the same three-
round commitment-based SAS-MA protocol analyzed in [20], which also forms a start-
ing point for protocols of [9,12]. However, prior to our work there was no argument
that such SAS-AKA scheme remains secure when players re-use their public/private
key pairs across multiple sessions. Moreover, as we explain above, it is unlikely that
such result can be proven using a modular argument similar to the one used by [12]
for KA protocols that do not keep state between protocol instances, which is also why
our analysis of the proposed protocol proceeds “from scratch” rather than proceed-
ing in a modular fashion based on already known properties of Vaudenay’s SAS-MA
scheme. Secondly, our analysis shows that the SAS-AKA protocol can be simpler than
even a standard encryption-based KA protocol executed over the 3-round SAS-MCA
protocol of [9] or [12]. In fact, our protocol consists of a single instance of the basic
unidirectional SAS-MA scheme of [20], shown in Figure 1, which authenticates only
the initiator’s message, but this message includes the initiator’s (long-term) public key,
which the responder uses to encrypt its message. It turns out that this encryption not
only transforms this protocol to a SAS-AKA scheme but also authenticates responder’s
message, thus yielding not just a cheaper but also a simpler three-round SAS-AKA
protocol.

Paper Organization. Section 2 contains our cryptographic tools. Section 3 contains the
communication and adversarial models for SAS-MCA and SAS-AKA protocols. We
propose our SAS-MCA / SAS-AKA protocol in Section 4. In the same section we argue
that this protocol is a secure SAS-MCA scheme, but for lack of space we relegate the
(very similar) argument that this protocol is also a secure SAS-AKA scheme protocol)
to the full version of this paper [8].

2 Preliminaries

Public Key Encryption. A public key encryption scheme is a tuple of algorithms
(KeyGen, Enc, Dec), where KeyGen on input of a security parameter produces a pair
of public and secret keys (pk, sk), Encpk(m) outputs ciphertext c for message m, and
Decsk(c) decrypts m from c = Encpk(m). In the SAS-MCA/AKA protocol construc-
tion, the encrypted messages come from a special space Mm = {[m|R] s.t. R ∈

Authenticated Key Agreement with Key Re-use in the SAS Model 259

{0, 1}k} where m is some (adversarially chosen) string. Since this message space con-
tains 2k elements, a chosen-ciphertext secure encryption ensures that an adversary who
is given an encryption of a random message in this space can predict this message with
probability at most negligibly higher than 2−k. Namely, the following is a simple fact
about CCA-secure encryption.

Fact 1. If an encryption scheme is (T, ε)-SS-CCA then for every T -bounded algorithm
A and every m,

Pr[ADecC
sk(·)(pk, C) = m̂ | (pk, sk)← KeyGen, m←Mm,

C ← Encpk(m)] ≤ 2−k + ε

where DecC
sk(·) is a decryption oracle except it outputs⊥ on C.

Commitment Schemes. Similarly to the SAS-channel message authentication pro-
tocols given before by [20,9,12], the protocols here are also based on commitment
schemes with some form of non-malleability. In fact, the assumption on commitment
schemes we make is essentially the same as in the SAS-MCA protocols of [20,12], but
we slightly relax (and re-name) this property of commitment schemes here, so that, in
particular, it is satisfied by a very efficient hash-based commitment scheme in the ROM
model for a hash function.

The commitment scheme consists of following three functions: gen generates a
public parameter Kp on input a security parameter, comKp(m), on input of message
m, outputs a pair of a “commitment” c and “decommitment” d, and openKp

(c, d), on
input (c, d), either outputs some value m′ or rejects. This triple of algorithms must
meet a completeness property, namely for any Kp generated by gen and for any m,
if (c, d) is output by comKp(m) then openKp

(c, d) outputs m. We assume a common
reference string (CRS) model, where a trusted third party generates the commitment
key Kp and this key is then embedded in every instance of the protocol. Therefore, we
will use a simplified notation, and write com(m) and open(c, d) without mentioning
the public parameter Kp explicitly. For simplicity of notation in the SAS-MCA/AKA
protocols, we sometimes use m2 ← open(m1, c, d) do denote a procedure which first
does m ← open(c, d) and then compares if m is of the form m = [m1|m2] for the
given m1. If it is, the modified open procedure outputs m2, and otherwise it rejects.

Non-Malleable Commitment Scheme. In our protocols, we use the same notion of
non-malleable commitments as in [9], adopted from [5]. An adversary is a quadruple
A = (A1,A2,A3,A4) of efficient algorithms interacting with Challenger. (A1,A2,A3)
represents an active part of the adversary that creates and afterwards tries to open related
commitments andA4 represents a distinguisher. Challenger is initialized to be in either
of two environments, called “World0” and “World1”. A succeeds if A4 can distinguish
between these two environments World0 and World1.

Challenger first runs gen to produce Kp and sends it to A1. A1 outputs a mes-
sage space M along with state σ and sends it back to Challenger. Challenger picks
two messages m0 and m1 at random from M and computes a challenge commit-
ment (c, d) = comKp(m1) and sends c it to A2. A2 in turn responds with a com-
mitment c∗. Challenger aborts if any c∗ = c, and otherwise sends d to A3. Now, A3

260 S. Jarecki and N. Saxena

must output a valid decommitment d∗. Challenger computes y∗ = openKp
(c∗, d∗). If

y∗ =⊥, then A is halted. Finally, in the environment World0, Challenger invokes A4

with inputs (m0, y
∗), whereas in World1, it invokes A4 with inputs (m1, y

∗). A com-
mitment scheme is (T, ε)-NM (non-malleable) iff for any t time adversary A it holds
that AdvNM

com(A) = |Pr[A4 = 1|World1]− Pr[A4 = 1|World0]| ≤ ε.
For notational convenience, we use a specialization of this non-malleability notion

to message spaceMm = {[m|R] s.t. R ∈ {0, 1}k}, which our SAS-MCA/AKA pro-
tocol deals with, and to a particular simple type of tests which our reductions use
to distinguish between the two distributions above. Namely, we say that the commit-
ment scheme is (T, ε)-NM if for every T -limited adversaryA = (A1,A2,A3), it holds
that Pr[m∗ ⊕ m = σ | KP ← gen; (m, s) ← A1(KP); m ← Mm; (c, d) ←
comKP (m); (c∗, σ)← A2(c, s); d∗ ← A3(c, d, s); m∗ = openKP

(c∗, d∗)] ≤ 2−k + ε
Note that a (T, ε)-NM commitment scheme can be created from any (T, ε)-SS-CCA

encryption scheme (KeyGen, Enc, Dec) [5]. The (Ks, Kp) is a private/public key pair
(sk, pk) of the encryption scheme. compk(m) picks a random string r and outputs
c = Encpk(m; r) and d = (m, r), where Encpk(·; r) denotes the (randomized) en-
cryption procedure with randomness r. Procedure openpk(c, (m, r)) outputs m if c =
Encpk(m; r) and ⊥ otherwise.

Non-Malleable Commitment in the Random Oracle Model (ROM). One can make
a fast and simple commitment scheme using a hash function H : {0, 1}∗ → {0, 1}l′
modeled as a random oracle, where the adversary’s advantage in the NM-Security game
can be set arbitrarily low at very little cost. Generator gen in this scheme is a null
procedure, com(m) picks r ∈ {0, 1}l and returns c = H(m, r) and d = (m, r),
open(c, (m, r)) returns m if c = H(m, r) and ⊥ otherwise. This scheme is (T, ε)-
NM for ε = qH2−l + q2

H2−l′ , where qH is the number of H-function queries that
can be made by a T -bounded adversary A. This is because the probability that A2

learns anything about the value committed by the challenger is qH2−l because the only
informationA2 can get on m chosen by the challenger is by querying hash function H
for some m ∈ M and r used by the challenger, but the probability thatA hits the same
r as the challenger is bounded by qH2−l. Moreover, the probability that A3 is able to
decommit to more than one value is bounded by q2

H2−l′ , because this is the probability
that within qH queries to H, the adversary gets a pair of values which collide.

3 Communication and Adversarial Model

3.1 Network and Communication Setting

We consider the same model as in [20,9,12], but we explicitly cast it in the
multi-player/multi-session world. In other words, we consider a network consisting
of n players P1, · · · , Pn. Each ordered pair of players (Pi, Pj) is connected by two
unidirectional point-to-point communication channels: (1) an insecure channel, e.g. in-
ternet or a Bluetooth or a WiFi channel, over which an adversary has complete control
by eavesdropping, delaying, dropping, replaying, and/or modifying messages, and (2)
a low-bandwidth out-of-band authenticated (but not secret) channel, referred to as a
SAS channel from here on, which preserves the integrity of messages and also provides

Authenticated Key Agreement with Key Re-use in the SAS Model 261

source and target authentication. In other words, on the insecure channel, an adversary
can behave arbitrarily, but it is not allowed to modify (or inject) messages sent on the
SAS channel (which we’ll call SAS messages for short), although it can still read them,
as well as delay, drop, or re-order them.

3.2 SAS-MCA and Its Security

Our security model follows the Canetti-Krawczyk model for authenticated key ex-
change protocols [4], and the earlier work of [2], which allows modeling concurrent
executions of multiple protocol instances. While in practice it will very often be the
case (e.g. in the device pairing application) that a single player is not supposed to ex-
ecute several protocol instances concurrently, a man-in-the-middle can cause that sev-
eral instances of the protocol between the same pair of players are effectively alive, if
he manages to force device A to time-out and start a new SAS-AKA protocol session,
while device B is still waiting for an answer. In this case the adversary can choose
which messages to forward to device B among the messages sent on the different ses-
sions started by device A.

A SAS-MCA protocol is a “cross-party” message authentication protocol, executed
between two players Pi and Pj , whose goal is for Pi and Pj to send authenticated
messages to one another. We denote the τ -th protocol instance run by a player Pi as
Πτ

i , where τ is a locally unique index. The inputs of Πτ
i are a tuple (roleτ

i , Pj , m
τ
i)

where roleτ
i designates Pi as either the initiator (“init”) or a responder (“resp”) in this

instance of the SAS-MCA protocol, Pj identifies the communication partner for this
protocol instance, i.e. it identifies a pair of SAS channels (Pi → Pj) and (Pi ← Pj)
with an entity (Pj) with whom Pi’s application wants to communicate, and mτ

i is the
message to be sent to Pj in this session. With each session Πτ

i there is associated a
unique string sidτ

i , which is a concatenation of all messages sent and received on this
session, including the messages on the SAS channel. We denote input Pj on session
Πτ

i as Peer(Πτ
i). We say that sessions Πτ

i and Πη
j executed by two different players

are matching if Peer(Πτ
i) = Pj , Peer(Πη

j) = Pi, and roleη
j �= roleτ

i . We say that
the sessions are partnered if they are matching and their messages are properly ex-
changed between them, i.e. sidτ

i = sidη
j . By the last requirement, and by inclusion

of random nonces in the protocol, we ensure that except of negligible probability each
session can be partnered with at most one other session. The output of Πτ

i can be either
a tuple (Peer(Πτ

i), mτ
i , m̂τ

i , sidτ
i), for some m̂τ

i , or a rejection. Similarly, Πη
j can ei-

ther output (Peer(Πη
j), mη

j , m̂η
j , sidη

j) or reject. The SAS-MCA protocol should satisfy
the following correctness condition: If sessions Πτ

i and Πη
j are partnered then both

sessions accept and output the messages sent by the other player, i.e. m̂τ
i = mη

j and
m̂η

j = mτ
i .

We model the security of a SAS-MCA protocol via a following game between the
challenger performing the part of the honest players P1, ..., Pn, and the adversary A.
We consider only the static corruption model, where the adversary does not adaptively
corrupt initially honest players. The challenger and the adversary communicate by ex-
changing messages as follows: At the beginning of the interaction, the challenger ini-
tializes the long-term private state of every player Pi, e.g. by generating a public/private
key pair for each player. In the rest of the interaction, the challenger keeps the state of

262 S. Jarecki and N. Saxena

every initialized protocol instance and follows the SAS-MCA protocol on its behalf.
A can trigger a new protocol instance Πτ

i on inputs (role, Pj , m) by issuing a query
launch(Πτ

i , role, Pj , m). The challenger responds by initializing the state of session
Πτ

i and sending back to A the message this session generates. If A issues a query
send(Πτ

i , M) for any previously initialized Πτ
i and any M , the challenger delivers

message M to session Πτ
i and responds by following the SAS-MCA protocol on its

behalf, handing the response of Πτ
i on M to A. However, if Πτ

i outputs a SAS mes-
sage, the challenger hands this message to A and adds it to a multiset SAS(i, j), for
Pj = Peer(Πτ

i), which models the unidirectional SAS channel from Pi to Pj , de-
noted SAS(Pi → Pj). A can issue a SAS-send(Πτ

j , M) query for any message M in
set SAS(i, j), where Pi = Peer(Πτ

j). The challenger then removes element M from
SAS(i, j) and delivers M on the SAS(Pj → Pi) channel to Πτ

i . This models the fact
that the adversary can see, stall, delete, and re-order messages on each SAS(Pi → Pj)
channel, butA cannot modify, duplicate, or add to any of the messages on such channel.

We say that A wins in attack against SAS-MCA if there exists session Πτ
i which

outputs (Pj , mi, mj , sid) but there is no session Πη
j which ran on inputs (∗, Pi, mj).

In other words, if Πτ
i outputs a message mj as sent by Pj but Pj did not send mj to

Pi on any session. We call a SAS-MCA protocol (T, ε)-secure if for every adversary
A running in time T , A wins with probability at most ε. Note that in the SAS-MCA
game the adversary can launch multiple concurrent sessions among every pair of play-
ers. To make our security results concrete in the multi-player setting, we will consider
an (n, τt, τc)-attacker A against the SAS-MCA protocol, where the above game is re-
stricted to n players Pi, at most τt total number of sessions per player, and at most τc

sessions that can be concurrently held by any pair of players, i.e. SAS(i, j) ≤ τc for all
i, j. We note that the τc bound is determined by how long the adversary can lag the SAS
messages, how many sessions he can cause to re-start at one side, and how long he can
keep alive a session waiting for its SAS message on the other side. In many applications
it will be rather small, but it is important to realize that in many applications it is greater
than 1.

3.3 SAS-AKA and Its Security

SAS-AKA is an Authenticated Key Agreement (AKA) protocol in the SAS model. The
inputs to the protocol are as in the SAS-MCA but with no messages. Each instance Πτ

i

outputs either a rejection or a tuple (Peer(Πτ
i), K, sid), where K is a fresh, authenti-

cated, and secret key which Pi hopes to have shared with Pj = Peer(Πs
i), and sid is a

locally unique session id. An SAS-AKA scheme protects the secrecy of keys output by
honest players on sessions involving other uncorrupted player. The correctness prop-
erty for a SAS-AKA protocol is that if two sessions Πτ

i and Πη
j are partnered then both

sessions accept and output the same key Kτ
i = Kη

j .
We model security of the SAS-AKA protocol similarly as in the SAS-MCA case,

by an interaction between the (n, τt, τc)-attackerA and the challenger that operates the
network of n players P1, ..., Pn. In this game, however, the challenger has a private
input of bit b. The rules of communication model between the challenger and A and
the set-up of all honest players are the same as in the SAS-MCA game above, and the
challenger services A’s requests launch, send, and SAS-send in the same way as in

Authenticated Key Agreement with Key Re-use in the SAS Model 263

the SAS-MCA game, except that there’s no message in inputs to the launch request. In
addition,A can issue a query of the form reveal(Πτ

i) for any Πτ
i , which gives him the

key Kτ
i output by Πτ

i if this session computed a key, and a null value otherwise. Finally,
on one of the sessions Πτ

i subject to the constraints specified below, the adversary can
issue a Test(Πτ

i) query. If Πτ
i has not completed, the adversary gets a null value.

Otherwise, if b = 1 thenA gets the key Kτ
i , and if b = 0 thenA gets a random bitstring

of the same length. The constraint on the tested session Πτ
i is that the adversary issues

no reveal(Πτ
i) query and no reveal(Πη

j) query for any Πη
j which is partnered with

Πτ
i . After testing a session, the adversary can then keep issuing the launch, send,

SASsend and reveal commands, except it cannot reveal the tested session or a session
that is partnered with it. Eventually A outputs a bit b̂. We say that an adversary has
advantage ε in the SAS-AKA attack if the probability that b̂ = b is at most 1/2+ ε. We
say that the SAS-AKA protocol is (T, ε)-secure if for all A’s bounded by time T this
advantage is at most ε.

We note that the above model includes only static corruption patterns. Indeed, the
protocols we present here do not have perfect forward secrecy, since we are interested in
provable security of minimal-cost AKA protocols in which players re-use their private
key material across all protocol sessions.

4 Encryption-Based SAS Message Authentication Protocol

In this section, we present a novel 3-round encryption-based bidirectional SAS-MCA
protocol denoted Enc-MCA. The protocol is depicted in Figure 2. It runs between the
initiator Pi, who intends to authenticate a message mi, and the responder Pj , who in-
tends to authenticate a message mj . (SKi, PKi) denotes Pi’s private/public key pair
of an IND-CCA encryption scheme, which w.l.o.g. we assume to be permanent. The
protocol assumes the CRS model where the instance KP of the CCA-Secure commit-
ment scheme is globally chosen. The protocol is based on the unidirectional message-
authentication V-MA protocol of Vaudenay [20], Figure 1. The only difference is that
Pi adds to its message mi its public key PKi and a random nonce si ∈ {0, 1}l, and the
responder Pj sends its randomness Rj encrypted under PKi, together with its message
mj and a random nonce sj ∈ {0, 1}l. In other words, Pi sends (mi, si, PKi) along
with a commitment ci to (mi, si, PKi, Ri) where Ri is a random k-bit bitstring. Pj

replies with an encryption of mj , sj , and a random value Rj ∈ {0, 1}k. Finally Pi

sends to Pj its decommitment di to ci, and Pi and Pj exchange over the SAS channel
values SASi = Ri⊕Rj , where Pi obtains Rj by decrypting ej , and SASj = Ri⊕Rj ,
where Pj obtains Ri by opening the commitment ci. The players accept if the SAS
values match, and reject otherwise. Pi and Pj also output session identifiers sidi and
sidj , respectively, which are outputs of a collision-resistant hash function H on the con-
catenation of all messages sent (received resp.) and received (sent resp.) on this session,
including the messages on the SAS channel. (This is done only for simplicity of security
analysis: In fact the same security argument goes through if sidi = sidj = [si|sj].) The
following theorem states the security of this protocol against an (n, τt, τc)-adversary:

264 S. Jarecki and N. Saxena

Enc-MCA Protocol
(We denote as v̂ the value received by Pi/Pj if the value sent by Pj/Pi is denoted as v.)

Pi(Pj , (SKi, PKi), mi, init) Pj(Pi, mj , resp)

Pick Ri ∈ {0, 1}k , si ∈ {0, 1}l Pick Rj ∈ {0, 1}k , sj ∈ {0, 1}l

(ci, di)← com([mi|si|PKi|Ri])
mi,si,PKi,ci ��

ej�� ej = Enc ˆPKi
([mj |sj |Rj])

[m̂j |ŝj |R̂j]← DecSKi(êj)
di �� R̂i ← open([m̂i|ŝi| ˆPKi], ĉi, d̂i)

SASi = Ri ⊕ R̂j

SASi �� SASj = R̂i ⊕Rj

sidi = H(mi, si, PKi, ci, êj ,
SASj�� sidj = H(m̂i, ŝi, ˆPKi, ĉi, ej ,

di, SASi, ˆSASj) d̂i, ˆSASi, SASj)

Output (Pi, mi, m̂j , sidi) if Output (Pj , mj , m̂i, sidj) if
SASj = Ri ⊕ R̂j SASi = R̂i ⊕Rj

Enc-AKA Protocol
The protocol follows Enc-MCA with mi set to null and mj = K, for random K ∈ {0, 1}l

chosen by Pj . If its SAS test passes player Pj , resp. Pi, outputs mj [= K], resp. m̂j .

Fig. 2. Encryption-based SAS-MCA protocol (Enc-MCA) and SAS-AKA protocol (Enc-AKA)

Theorem 1 (Security of Enc-MCA). If commitment scheme is (TC , εC)-NM and en-
cryption scheme is (TE , εE)-SS-CCA, then the Enc-MCA protocol is (T, p)-secure
against (n, τt, τc)-attacker for p ≥ 2nτtτc(2−k+max(εC , εE)) and T ≤ min(TC , TE)
−μ, for a small constant μ.

Note on the Security Claim and the Proof Strategy. The nτtτc2−k security bound would
be optimally achievable in the context of (n, τt, τc)-adversary because this is the prob-
ability, for nτtτc � 2−k, that the k-bit SAS messages are equal on some two matching
sessions, even though the adversary substitutes sender’s messages on every session,
since there are nτt sessions, each of which can succeed if the SAS message it requires
to complete is present among τc SAS messages produced by the sessions concurrently
executed by its peer player. We note that if adversary’s goal is to attack any particular
player and session, the same theorem applies with values n = τt = 1.

However, the security bound nτtτc2−k+1 we show is factor of 2 away from the opti-
mal. This factor is due to the fact that the reduction has to guess whether the adversary
essentially attacks the encryption or the commitment tool used in our protocol. This
also accounts for the essential difference between our proof and those of [9,12]. Even
assuming the simplest n = τt = τc = 1 case, there are several patterns of attack, corre-
sponding to three possibilities for interleaving messages and other decisions the adver-
sary can make (in our case the crucial switch is whether or not the adversary modifies the

Authenticated Key Agreement with Key Re-use in the SAS Model 265

initiator’s payload m, s, PK). For each pattern of attack, we provide a reduction, which
given an attack that breaks the SAS-MCA/AKA scheme with probability 2−k+ε, condi-
tioned on this attack type being chosen, attacks either the commitment or the encryption
scheme with probability ε. While some of these component reductions are identical to
those shown for the same underlying SAS-MA protocol by Vaudenay in [20], others are
different e.g. because they attack the encryption scheme. However, it is not clear how
to use such reductions to show any better security bound than q ∗ 2−k where q is the
number of such attack cases. Fortunately, we manage to group these attack patterns into
just two groups, with two reductions, the first translating any attack in the first group
into an encryption attack, the second translating any attack in the second group into a
commitment attack. Crucially, both reductions are non-rewinding, and hence they are
security-preserving. However, faced with an adversary which adaptively decides which
group his attack will fall in we still need to guess which reduction to follow, hence the
bound on attacker’s probability we show for our SAS-MCA/AKE scheme is a factor of
2 away from the optimal.

Proof: We prove the above by showing that if there exists (n, τt, τc)-adversaryAwhich
can attack the proposed protocol in time T < min(TC , TE) − μ and probability p >
2nτtτc(2−k +max(εC , εE)), then there exists either a T +μ < TC adversaryBC which
breaks NM security of the commitment scheme with probability better than 2−k+εC , or
there exists a T+μ < TE adversaryBE which wins the SS-CCA game for the encryption
scheme with probability better than 2−k + εE . A succeeds if it can find a player Pi

and a session Πs
i with a peer party Pj , such that Πs

i accepts message m̂j
(s) but the

adversary never launches an instance of Pj on message m̂j
(s). To achieve this A in

particular has to route to Πs
i a SAS message SASj

(s′) originated by some session Πs′
j

s.t. Peer(Πs′
j) = Pi. By inspection of the protocol, Πs

i accepts only if Ri
(s) ⊕ R̂

(s)
j =

R̂
(s′)
i ⊕Rj

(s′), or equivalently, SASi
(s) = SASj

(s′). Note that this condition must hold
regardless whether the attacked session Πs

i is an initiator or a responder. This allows us
to simplify the notation and in the remainder of the proof we assume Πs

i is the initiator,

Πs′
j is the responder, and we assume that either m̂

(s)
i �= mi

(s) or m̂
(s′)
j �= mj

(s′).
In Figure 3 we show adversary’s interactions as a man in the middle between Πs

i and
Πs′

j . Note thatA can control the sequence in which the messages received by these two
players are interleaved, and A has a choice of the following three possible sequences:

Pi(Π
s
i) A Pj(Π

s′
j)1

mi,PKi,ci �� 5
m̂i, ˆPKi,ĉi ��

2
êj�� 6

ej��

3
di �� 7

d̂i ��

4
SASi �� 8

SASj��

Fig. 3. Adversarial Behavior in the Enc-MCA protocol

266 S. Jarecki and N. Saxena

Interleaving pattern I : (1 ≺ 5 ≺ 6 ≺ 2 ≺ 3 ≺ 4 ≺ 7 ≺ 8)
Interleaving pattern II : (1 ≺ 5 ≺ 6 ≺ 7 ≺ 8 ≺ 2 ≺ 3 ≺ 4)

Interleaving pattern III : (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8)

In each of these three message interleaving patterns we consider two subcases, de-
pending on whether the pair (m̂i, ˆPKi) that the adversary delivers to Πs′

j in message
#5 (see Figure 3) is equal to (m,

iPKi) that Πs
i sends in message #1.

We denote the event that adversary succeeds in an attack as AdvSc, the event that
(m̂i, ˆPKi) = (mi, PKi) and that the attack succeeds as SM, the event that (m̂i, ˆPKi)
�= (mi, PKi) and that the attack succeeds as NSM, and we use Int[1], Int[2], Int[3] to
denote events when the adversary follows, respectively, the 1st, 2nd, or 3rd message
interleaving pattern. We divide the six possible patterns which the successful attack
must follow into the following two cases:

Case1 = NSM ∨ (AdvSc ∧ Int[2]) & Case2 = SM ∧ (Int[1] ∨ Int[3])
We construct two reduction algorithms, BC and BE , attacking respectively the NM

property of the commitment, and the SS-CCA property of the encryption scheme used
in the Enc-MCA protocol. Both BC and BE use the Enc-MCA attacker A as a black
box, and both reductions have only constant computational overhead which we denote
as μ, hence both BC and BE run in time at most T − μ < min(TC , TE). We show that
if Pr[Case1] ≥ p/2 then BC wins the NM game with probability greater than 2−k + εC ,
and if Pr[Case2] ≥ p/2 then BE wins the SS-CCA game with probability greater than
2−k + εE . This will complete the proof because AdvSc = Case1∪Case2, and therefore
if Pr[AdvSc] = p then either Pr[Case1] ≥ p/2 or nτtτc) or Pr[Case2] ≥ p/2.

Both BC and BE proceed by first guessing the sessions Πs
i and Πs′

j involved in
A’s attack. The probability that the guess is correct is at least 1/nτtτc because A runs
at most nτt sessions and each session can have at most τc concurrently running peer
sessions. Since the probability of a correct guess is independent of adversary’s view, for
either i = 1 or i = 2, the probability that the guess is correct and Casei happens is at
least p/2 ∗ 1/nτtτc > 2−k + max(εC , εE). We show that if i = 1 then BC wins in the
NM game, and hence its probability of winning is greater than 2−k + εC , and if i = 2
then BE wins the SS-CCA game, and hence its probability of winning is greater than
2−k + εE .

It remains for us to construct algorithms BC and BE with the properties claimed
above. Algorithm BC , depending on the behavior of A, executes one of the three sub-
algorithms, BC[i] for i = 1, 2, 3. These three algorithms correspond to three cases of
message interleaving by the adversary. For lack of space we relegate these reductions to
the full version [8], but each of these reductions are attacks the non-malleability of the
commitment scheme, so each of them is essentially the same as the reduction given by
Vaudenay [20] for the corresponding message interleaving pattern for the underlying
MCA protocol. More specifically:

If (m̂i, ŝi, ˆPKi) �= (mi, si, PKi) and A chooses interleaving pattern I or III, then
BC executes sub-algorithms, respectively, BC[1] and BC[3].
If A chooses interleaving pattern II, BC executes BC[2].
Otherwise, i.e. if A sends (m̂i, ŝi, ˆPKi) = (mi, si, PKi) andA follows patterns I
or III, BC fails.

Authenticated Key Agreement with Key Re-use in the SAS Model 267

Similarly, based on the behavior ofA, algorithmBE executes one of two sub-algorithms
BE[i] for i = 1, 2. In contrast to the original MCA protocol of Vaudenay, these two
reductions attack CCA security of encryption. We show reduction BE[1] in Figure 4.
For lack of space we relegate reduction BE[2] to the full version [8], but it is easy to
reconstruct given the message interleaving pattern it involves, and it is similar to BE[1].
The BE algorithms proceeds in one of the following ways:

If (m̂i, ŝi, ˆPKi) = (mi, si, PKi) and A chooses interleaving pattern I, BE exe-
cutes BE [1].
If (m̂i, ŝi, ˆPKi) = (mi, si, PKi) and A chooses interleaving pattern III, BE exe-
cutes BE [2].
Otherwise, i.e. ifA sends (m̂i, ŝi, ˆPKi) �= (mi, si, PKi) orA follows interleaving
pattern II, BE fails.

Note that if (m̂i, ŝi, ˆPKi) �= (mi, si, PKi) thenA essentially attacks the V-MA proto-
col of Vaudenay, because pair (mi, PKi) in the Enc-MCA protocol plays a role of the
message in the V-MA protocol, so this event in the Enc-MCA protocol is equivalent to
Pj accepting the wrong message in the V-MA protocol. Therefore, the three reduction
(sub)algorithms BC[1], BC[2], and BC[3], essentially perform the same attacks on the
NM game of the commitment scheme as the corresponding three reductions given by
Vaudenay for the V-MA protocol. The only difference is that our reductions put a layer
of encryption on the messages sent by Pj , as is done in our protocol Enc-MCA. As
in Vaudenay’s reductions, the NM game needs to be extended so that the challenger,
at the end of the game sends to the attacker the decommitment d corresponding to the
challenge commitment c. Since this happens after the attacker sends its R, the difficulty
of the NM game remains the same. However, if the BC reduction gets the decommit-
ment d from the NM challenger, the reduction can complete the view of the protocol
to A, which makes it easier to compare the probability of A’s success with the proba-
bility of success of BC . We refer the reader to the full version [8] for the specification
of these three subcases of the reduction to an NM attack. An important feature of these
algorithms is that each of these sub-cases of the BC reduction at first follows the same
protocol with the NM challenger, and that BC can decide which path to follow, namely
whether to switch to sub-algorithm BC[1,2] or BC[3], based on the first message it re-
ceives from A. Specifically, BC switches to BC[3] if A first sends message êj , and
otherwise BC follows BC[1,2]. Similarly, in the latter case, BC switches to either BC[1]
or BC[2] based on A’s next response. Therefore these three algorithms are really just
three subcases of a single reduction algorithm BC . By inspection of these three subcases
one can conclude that BC wins in its non-malleability attack game with probability at
least Pr[Case1].

Similarly algorithm BE at first follows the same algorithm and then can dispatch
into BE [1] or BE[2] depending on adversary’s messages. By inspection of these two
subcases one concludes that BE wins in its CCA attack game with probability at least
Pr[Case2], which ends the proof.

Encryption-based SAS Authenticated Key Agreement Protocol. The SAS-AKA protocol
Enc-AKA based on the Enc-MCA protocol is just an instance of Enc-MCA where Pi’s

268 S. Jarecki and N. Saxena

BE [1] SS-CCA Challenger
mi,mj �� Ri ← {0, 1}k PKi�� (SKi, PKi)← KeyGen

si ← {0, 1}l
mi,si,PKi,ci�� (ci, di)← com(

[mi|si|PKi|Ri])

m̂i,ŝi, ˆPKi,ĉi �� Fail if (m̂i, ŝi, ˆPKi) Rj ← {0, 1}k
�= (mi, si, PKi)

mj �� sj ← {0, 1}l
ej�� ej�� ej ← EncPKi([mj |sj |Rj])
êj �� Fail if êj �= ej

êj �� [m̂j |ŝj |R̂j]← DecSKi(êj)

di,SASi�� SASi ← Ri ⊕ R̂j

m̂j ,ŝj ,R̂j��

d̂i �� R̂i ← open([m̂i

|ŝi| ˆPKi], ĉi, d̂i)
R̂j⊕R̂i⊕Ri �� Success if Rj =

R̂j ⊕ R̂i ⊕Ri

SASj�� SASj ← R̂i ⊕Rj

Fig. 4. Construction of BE [1] ((mi, si, PKi) = (m̂i, ŝi, ˆPKi), interleaving case I)

message mi is set to null and Pj’s message mj is a fresh random key which Pj picks
for each session, as shown in Figure 2. For lack of space we relegate the proof of the
following theorem to the full version [8], but it is very similar to the proof of security
of the Enc-MCA protocol given above.

Theorem 2 (Security of Enc-AKA). If commitment scheme is (TC , εC)-NM and en-
cryption scheme is (TE , εE)-SS-CCA, then the Enc-AKA protocol is (T, p)-secure
against (n, τt, τc)-attacker for p ≥ 2nτtτc(2−k + max(εC , εE) and T ≤ min(TC , TE)
−μ, for a small constant μ.

References

1. Balfanz, D., Smetters, D., Stewart, P., Wong, H.C.: Talking to strangers: Authentication in
ad-hoc wireless networks. In: Network and Distributed System Security Symposium (2002)

2. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of
authentication and key-exchange protocols. In: Symposium on Theory of Computing (2001)

3. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: How to encrypt with
one 160-bit exponentiation. In: ACM Conference on Computer and Communications Secu-
rity (2006)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474.
Springer, Heidelberg (2001)

5. Crescenzo, G.D., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-
malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
40–59. Springer, Heidelberg (2001)

Authenticated Key Agreement with Key Re-use in the SAS Model 269

6. Gehrmann, C., Mitchell, C.J., Nyberg, K.: Manual authentication for wireless devices. RSA
CryptoBytes 7(1), 29–37 (Spring 2004)

7. Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and Clear: Human-
Verifiable Authentication Based on Audio. In: International Conference on Distributed Com-
puting Systems, ICDCS (July 2006), http://www.ics.uci.edu/ccsp/lac

8. Jarecki, S., Saxena, N.: Authenticated key agreement with key re-use in the short authenti-
cated strings model. Available from the authors (2010)

9. Laur, S., Asokan, N., Nyberg, K.: Efficient mutual data authentication based on short au-
thenticated strings. IACR Cryptology ePrint Archive: Report 2005/424 (November 2005),
http://eprint.iacr.org/2005/424

10. Laur, S., Nyberg, K.: Efficient mutual data authentication using manually authenticated
strings. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 90–
107. Springer, Heidelberg (2006)

11. Pasini, S., Vaudenay, S.: An optimal non-interactive message authentication protocol. In:
Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 280–294. Springer, Heidelberg
(2006)

12. Pasini, S., Vaudenay, S.: SAS-Based Authenticated Key Agreement. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 395–409. Springer,
Heidelberg (2006)

13. Prasad, R., Saxena, N.: Efficient device pairing using human-comparable synchronized au-
diovisual patterns. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 328–345. Springer, Heidelberg (2008)

14. Rohs, M., Gfeller, B.: Using camera-equipped mobile phones for interacting with real-world
objects. In: Ferscha, A., Hoertner, H., Kotsis, G. (eds.) Advances in Pervasive Computing,
Vienna, Austria, pp. 265–271. Austrian Computer Society, OCG (April 2004)

15. Roth, V., Polak, W., Rieffel, E., Turner, T.: Simple and effective defenses against evil twin ac-
cess points. In: ACM Conference on Wireless Network Security (WiSec), short paper (2008)

16. Saxena, N., Ekberg, J.-E., Kostiainen, K., Asokan, N.: Secure device pairing based on a visual
channel (short paper). In: IEEE Symposium on Security and Privacy (S&P 2006) (May 2006)

17. Saxena, N., Uddin, B.: Blink ’em all: Scalable, user-friendly and secure initialization of
wireless sensor nodes. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 154–173. Springer, Heidelberg (2009)

18. Soriente, C., Tsudik, G., Uzun, E.: BEDA: Button-Enabled Device Association. In: Interna-
tional Workshop on Security for Spontaneous Interaction, IWSSI (2007)

19. Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc wireless
networks. In: Malcolm, J.A., Christianson, B., Crispo, B., Roe, M. (eds.) Security Protocols
1999. LNCS, vol. 1796, pp. 172–194. Springer, Heidelberg (2000)

20. Vaudenay, S.: Secure communications over insecure channels based on short authenticated
strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 309–326. Springer, Heidel-
berg (2005)

A On the General Compilation Theorem of Pasini-Vaudenay

We claim that the general composition theorem given by Pasini and Vaudenay [12] for
transforming KA protocols to SAS-AKA protocols given any SAS-MCA scheme, can-
not be applied in general to KA schemes which share state between sessions. The theo-
rem of [12] constructs a SAS-AKA protocol by running any 2-round (non-authenticated)
KA protocol and then inputting the two messages generated by this KA, mi of the ini-
tiator Pi and mj of the responder Pj , into a SAS-MCA protocol, where Pi goes first,

http://www.ics.uci.edu/ccsp/lac
http://eprint.iacr.org/2005/424

270 S. Jarecki and N. Saxena

and mj is possibly based on mi. Known 3-round SAS-MCA protocols allow the respon-
der’s message mj to be picked in the second round, and thus this compilation creates a
4-round SAS-AKA from 2-round KA and 3-round SAS-MCA. Note that at the time Pj

computes his response mj , following the algorithm of the KA protocol on the received
message mi, the message mi is not yet authenticated by Pj . If the KA protocol does
not share state between sessions, having Pj compute mj on adversarially-chosen m̂i

can endanger only the current session, and since the SAS-MCA subprotocol will let Pj

know that m̂i was not sent by Pi, Pj will reject this session.
However, if Pj keeps a shared state between sessions then the information Pj re-

veals in mj , computed on unauthenticated message m̂i, could potentially reveal some
secret information that endangers all other sessions of player Pj , or at least all other ses-
sions between Pj and Pi. It’s easy to create a contrived example of a Key Agreement
protocol which is secure in the static adversarial model when implemented over authen-
ticated channels but yields an insecure SAS-AKA protocol when implemented with a
SAS-MCA scheme in this fashion. For example, take any Key Agreement protocol,
KA, secure over authenticated links, let each player Pj keep an additional long-term
secret sj and compute a per-partner secret kij = Fsj (< Pi >) where F is a PRF. If
the initiator’s message mi contains a special symbol ⊥, Pj sends mj = kij to Pi in
the open. Otherwise, Pj follows the KA protocol to compute its response mj , except
that it attaches to it the resulting session key encrypted with a symmetric encryption
scheme under kij . In the authenticated link model, and considering a static adversary,
an honest player never sends the ⊥ symbol. If the encryption is secure, encrypting the
session key does not endanger its security. Also, if F is a PRF then learning values of
the F function under indices corresponding to the corrupt players does not reveal any
information about the values of F on indices corresponding to the honest players. On
the other hand, this protocol is an insecure SAS-AKE protocol, because an adversary
can inject message m̂i =⊥ on the insecure channel on behalf of any player Pi, and
since Pj will reply with ki, this allows the attacker to compute the keys for all sessions,
past and future, between Pj and Pi.

This counter-example relies on an admittedly artificial KA protocol with shared ses-
sion state where interference with a single session between a pair of players trivially
reveals the keys on all sessions between the same players. Still, this does show that the
compilation technique of [12] can apply only to KA protocols with no shared state. Of
course while this general compilation does not apply, a combination of any particular
SAS-MCA protocol and a KA scheme with shared state can still be shown secure, and
that, with some simplifications to the SAS-MCA protocol of Vaudenay [20] made in
the process, is exactly what we show in this paper.

	Authenticated Key Agreement with Key Re-use in the Short Authenticated Strings Model
	Introduction
	Prior Work on SAS-MA Protocols
	Prior Work on SAS-AKA Protocols
	Limitations of SAS-AKA Protocols Without Key Re-use
	Our Contributions

	Preliminaries
	Communication and Adversarial Model
	Network and Communication Setting
	SAS-MCA and Its Security
	SAS-AKA and Its Security

	Encryption-Based SAS Message Authentication Protocol
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

