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Abstract.

Existing CAPTCHA solutions are a major source of user frustration on the Internet today, frequently forcing companies to
lose customers and business. Game CAPTCHAs are a promising approach which may make CAPTCHA solving a fun activity
for the user. One category of such CAPTCHAs — called Dynamic Cognitive Game (DCG) CAPTCHA — challenges the user to
perform a game-like cognitive (or recognition) task interacting with a series of dynamic images. Specifically, it takes the form
of many objects floating around within the images, and the user’s task is to match the objects corresponding to specific target(s),
and drag/drop them to the target region(s).

In this paper, we pursue a comprehensive analysis of DCG CAPTCHAs. We design and implement such CAPTCHAs,
and dissect them across four broad but overlapping dimensions: (1) usability, (2) fully automated attacks, (3) human-solving
relay attacks, and (4) hybrid attacks that combine the strengths of automated and relay attacks. Our study shows that DCG
CAPTCHAs are highly usable, even on mobile devices and offer some resilience to relay attacks, but they are vulnerable to our
proposed automated and hybrid attacks.
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1. Introduction

The abuse of the resources of online services using automated means, such as denial-of-service or
password dictionary attacks, is a common security problem. To prevent such abuse, a primary defense
mechanism is CAPTCHA [2] (denoted “captcha”), a tool aimed to distinguish a human user from a
computer based on a task that is easier for the former but much harder for the latter.

The most commonly encountered captchas today take the form of a garbled string of words or char-
acters, but many other variants have also been proposed (we refer the reader to [6,22,39] which provide
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excellent review of different captcha categories). Unfortunately, existing captchas suffer from several
problems. First, successful automated attacks have been developed against many existing schemes. For
example, algorithms have been designed that can achieve character segmentation with a 90% success
rate [17,23,25,33]. Second, low-cost attacks have been conceived whereby challenges are relayed to, and
solved by, users on different web sites or paid human-solvers in the crowd [9,14,19]. In fact, it has been
shown that [30] such relay attacks are much more viable in practice than automated attacks due to their
simplicity and low economical costs. Third, the same distortions that are used to hide the underlying
content of a captcha puzzle from computers can also severely degrade human usability [8,40].

Given these problems, there is a need to consider alternatives that place the human user at the center
of the captcha design. Game captchas offer a promising approach by attempting to make captcha solving
a fun activity for the users. These are challenges that are built using games that might be enjoyable and
easy for humans, but hard for computers.

In this paper, we focus on a broad form of game captchas, called Dynamic Cognitive Game (DCG)
captchas. This captcha challenges the user to perform a game-like cognitive task interacting with a series
of dynamic images. Specifically, we consider a representative DCG captcha category which involves
objects floating around within the images, and the user’s task is to match (i.e. drag/drop) the objects with
their respective target(s). A startup called “are you a human” [4] has recently been offering such DCG
captchas.

Besides promising to significantly improve user experience, DCG captchas are an appealing platform
for touch screen enabled mobile devices (such as smartphones). Traditional captchas are known to be
quite difficult on such devices due to their small displays and key/touch pads [31], while touch screen
games are much easier and already popular. Motivated by these unique advantages of DCG captchas, we
set out to investigate their security and usability. Specifically, we pursue a comprehensive study of DCG
captchas, analyzing them from four broad yet intersecting dimensions: (1) usability, (2) fully automated
attacks, (3) human-solver relay attacks, and (4) hybrid attacks. Our main contributions are as follows:

1. DCG CAPTCHA Design: We formalize, design and implement instances of a representative cat-
egory of DCG captchas. (Sections 2)

2. Usability Studies: We conduct three usability studies of DCG captchas. Two of these are web-
based studies, one “in-lab” and one online using a crowdsourcing platform. The third one is a
mobile-based study. All the studies evaluate the DCG captchas in terms of time-to-completion,
error rates and perceived usability. The results of our studies indicate the overall usability to be very
good. (Section 3)

3. Automated Attacks: We develop a novel, fully automated framework to attack these DCG captcha
instances based on image processing techniques. The attack is computationally efficient and highly
accurate, but requires building a dictionary to be effective. (Section 4)

4. Relay Attacks, and Relay Attack Detection: We explore Stream Relay attack in which the game
frames and responses are streamed between the attacker and a human-solver. We conducted user
studies for the proposed relay attack and our results shows that Stream Relay is detectable with high
accuracy by our proposed machine learning based relay attack detection algorithm. (Section 5)

5. Hybrid Attacks: We develop a novel and powerful hybrid attack framework that carefully com-
bines the strength of automated algorithms and relay attacks, and overcome the limitations of each.
Basically, the bot would send a single snapshot of the game to the human-solver and keep tracking
the objects while it is waiting for the human response. The human-solver task is to draw line(s)
form the answer object(s) to respective target(s). We evaluated the performance and usability of
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the proposed attack. Our results indicate our attack is usable for a remote solver, and efficient in
breaking broad categories of DCG captchas. (Section 6)

This paper is a combination and consolidation of our prior conference publications [18,28,29], which
serves to integrate multiple studies in a single archival journal paper. Moreover, we report on two new
usability studies. The first new usability study aims to evaluate the usability of DCG on mobile devices.
The second new usability study is for the underlying human task in the hybrid attacks in order to measure
the performance of our proposed attacks, evaluate the participants’ performance in the task, and compare
the performance and usability in this task with the performance and usability of playing the CAPTCHA
games directly by legitimate users in a benign setting.

2. Background

We use the term Dynamic Cognitive Game (DCG) captcha to define the broad captcha schemes that
form the focus of our work. We characterize a DCG captcha as having the following features: (1) dynamic
because it involves objects moving around in image frames; (2) either cognitive because it is a form
of a puzzle that relates to the semantics of the images or image recognition because it involves visual
recognition; and (3) a game because it aims to make captcha solving task a fun activity for the user. In
this section, we discuss the security model and design choices for DCG, and present the DCG categories
and associated instances studied in this paper.

2.1. Security Model and Design Choices

The DCG captcha design objective is the same as that of captcha: a bot (automated computer program)
must only be able to solve captcha challenges with no better than a negligible probability (but a human
should be able to solve with a sufficiently high probability)'.

A pre-requisite for the security of a DCG captcha implementation (or any captcha for that matter) is
that the responses to the challenge must not be provided to the client machine in clear text. For example,
in a character recognition captcha, the characters embedded within the images should not be leaked
out to the client. To avoid such leakage in the context of DCG captchas, it is important to provide a
suitable underlying game platform for run-time support of the implemented captcha. Web-based games
are commonly developed using Flash or HTMLS in conjunction with JavaScript. However, both these
platforms operate by downloading the game code to the client machine and executing it locally. Thus,
if these game platforms were directly used to implement DCG captchas, the client machine will know
the correct objects and the positions of their corresponding target(s), which can be used by the bot to
construct the responses to the server challenges relatively easily. This will undermine the security of
DCG captchas.

The above problem can be addressed by employing encryption and obfuscation of the game code
which will make it difficult for the attacker (bot) on the client machine to extract the game code and thus
the correct responses. Commercial tools, such as SWF Encrypt [3], exist which can be used to achieve
this functionality. This approach works under a security model in which it is assumed that the bot does
not have the capability to learn the keys used to decrypt the code and to deobfuscate the code. A similar

"For example, target thresholds might limit bot success rates below 0.6% [42], and human user success rates above 90% [11].
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model where the attacker has only partial control over the client machine has also been employed in prior
work [35].

In addition to automated attacks, the security model for DCG captchas (and any other captcha) must
also consider human-solver relay attacks [9,30]. In fact, it has been shown that such relay attacks are
much more appealing to the attackers than automated attacks currently due to their simplicity and low
cost [30]. In a relay attack, the bot forwards the captcha challenges to a human user elsewhere on the
Internet (either a payed solver or an unsuspecting user accessing a web-site [15]); the user solves the
challenges and sends the responses back to the bot; and the bot simply relays these responses to the
server. Unfortunately, most, if not all, existing captcha solutions are insecure under such relay attack
model. For example, character recognition captchas are routinely broken via such relay attacks [30]. For
DCG captchas to offer better security than existing captchas, they should provide some resistance to such
human-solver relay attacks (this is indeed the case as we demonstrate in Section 5).

2.2. DCG CAPTCHA Instances and Prototypes

Due to the legal restrictions on attacking commercial DCG CAPTCHAs, we proceeded to develop our
own animation-based DCG prototypes for the purpose of our study. Using Adobe Flash, we implemented
four captcha games that represented a broad class of DCGs. These games are 360x130 pixels in size, and
seamlessly fit into web pages if used for practical purposes.

The DCG captchas implemented for the purpose of this study are shown in Figure 1. Each DCG
captcha can be characterized by the following distinct components.

— Answer object — a moving object that should be dragged to the corresponding target object in order
to successfully complete the game. For the parking game shown in Figure 1(c), the orange boat, that
can be dragged to the empty dock position to complete the game, is the answer object.

— Target object — an object onto which the corresponding answer object should be dragged.

— Target area — the area within which the target objects reside.

— Activity area — the area within which the foreground objects move.

Match the shapes

®
"

Place the ships on the sca a &
i

¢ i

(a) Ships Game (b) Shapes Game
1,’. o Feed the animals
Parkthegoat -~ . . g Q—- {* é
(c) Parking Game (d) Animals Game

Fig. 1. Static snapshots of 4 game instances of a representative DCG captcha analyzed in this paper (targets are static; objects
are mobile)

DCG captchas are classified according to the number of target objects. The Ships game (Figure 1(a)),
is a one-target DCG type, where the sea is the target object. So the ships, that are the answer objects, can
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be dropped anywhere within the sea. The Shape game (Figure 1(b)) has a circle and a pentagon placed
on the left side of the game as the two target objects. The Animal game (Figure 1(d)) is a three-target
instance of DCG captcha. The Parking game (Figure 1(c)) is a variant of DCG captcha where there is no
target object but a target area (the empty parking space) onto which the boat should be dragged.

To complete a DCG captcha game, a user has to drag and drop all answer objects to their corresponding
target objects. For example, in the Animal game, the user has to drag the bone to the dog, the acorn to
the squirrel, and the banana to the monkey. The game is considered incomplete, and the user is rejected
in case the game is not completed within 60s.

Each foreground object has an initial pre-specified location in the activity area. The direction of move-
ment of objects is randomly chosen from 8 possible directions — north (N), south (S), east (E), west
(W), NE, NW, SE and SW. For horizontal and vertical movements, objects move 1 pixel per frame. For
diagonal movements, the objects move 1.414 pixels per frame. The frame rate for the games is set at 40
frames per second. Hence, the foreground objects move at an average speed of (((1 + 1.414)/2) * 40),
i.e., 48.28 pixels per second. An object continues moving in its current direction until it collides with
either another object or the game border. A collision results in an object moving towards a new random
direction.

For each of the 4 games, we set 5 parameterizations, choosing number of moving objects as (4, 5, 6),
and object speed as (10, 20, 40) frames per second (FPS) (These frame rates translate into average object
speeds of 12.1, 24.2 and 48.4 pixels/second, resp.). For each game, we used 5 combinations of speed and
number of objects: (10 FPS, 4 objects); (20 FPS, 4 objects); (20 FPS, 5 objects); (20 FPS, 6 objects); and
(40 FPS, 4 objects). This resulted in a total of 20 games in our corpus.

3. Usability

In this section, we report our usability studies of our representative DCG captcha category. The first
study is student based which we used to measure the usability of the DCG captcha with respect to
different parameters as explained in Section 2.2. Then, to validate our study results we preformed another
study on Amazon Mechanical Turk (MTurk) is which we tested only one variant of each game instance.
Finally, we present our mobile-based study that we conduct to evaluate the usability of DCG captchas on
mobile devices.

3.1. Study Design, Goals, and Process

Our first user study involved 40 participants who were primarily students from various backgrounds.
(For demographics, see the second column of Table 1). The participants were provided with 20 instances
as discussed in Section 2.2 in succession, aimed at understanding how different parameterizations impact
users’ solving capabilities, and the game completion time, and the number of object-drags were recorded.
The order of the games presented to different participants was derived using a standard 20x20 Latin
Square to minimize the learning effect.

The participants were subjected to a consent agreement, and demographics form before the experi-
ment. At the end of the experiment, their experience in solving DCG captchas was recorded using a
survey form. The survey contains the 10 System Usable Scale (SUS) standard questions [7], each with
5 possible responses (5-point Likert scale, where 1 represents strongly disagreement and 5 represents
strongly agreement).
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Table 1
Demographics of participants in the usability, relay and hybrid attacks studies
[ Usability [ Stream Relay Attack [Hybrid Attack
Lab [MTurk[Mobile[ Outside US Us
Game Size 360x130 360x130|180x65|360x130{  360x130
Number of participants| 40 [ 40 [ 20 [ 40 [ 20 | 20 40
Gender (%)
Male 50 | 67.5 80 67.5 80 80 80
Female 50 | 325 20 325 20 20 20
Age (%)
<18 0 2.5 0 2.5 0 0 0
18-24 80 | 40 20 30 45 35 25
25-35 20 | 425 75 52.5 35 50 42
35-50 0 10 5 12.5 20 10 28
>50 0 5 0 2.5 0 5 5
Education (%)

High school 45| 10 25 0 0 55 18
Bachelor 27.5| 60 35 57.5 75 40 67
Masters 22.5| 27.5 30 425 25 5 10

Ph.D. 5125 10 0 0 0 5

For our second user study, we recruited 40 MTurk workers. Each was asked to do similar tasks as
of the first study. However, they had to play only four games (40 FPS, 6 objects) variant of each game
instance. The third column of Table 1 shows the demographics of the 40 participants of our study. The
second study was performed to verify that our results are not limited only to young participants and the
game repetition did not impact the DCG usability.

The third usability study aims to assess the usability of DCG on mobile devices. For this study, we
recruited 20 participants who were primarily students in our university (For demographics, see the forth
column of Table 1). The participants were asked to perform similar task as the MTurk worker but using
Mobile device.

Via our study, our goal was to assess the following aspects of the DCG captchas:

1. Efficiency: time taken to complete each game.
2. Robustness: likelihood of not completing the game, and of incorrect drag and drop attempts.
3. User Experience: participants’ SUS ratings of the games.

3.2. Study Results

In this subsection, we report the study results of the three usability studies we conducted.
3.2.1. Lab-based Usability Study

Completion Time: Table 2 shows the completion time per game type. Clearly, all games turned out to
be quite fast, lasting for less than 10s on an average. Users took longest to solve the Animals game with
an average time of 9.10s, whereas the other games took almost half of this time. This might have been
due to increased semantic load on the users in the Animals game to identify three target objects and then
match them with the corresponding answer objects. Moreover, we noticed a decrease in the solving time
when the target objects were decreased to 2 (i.e., in the Shapes game), and this time was comparable to
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games which had 1 target object (Ships and Parking). A Friedman’s test showed significant difference?
in the mean timings of all 4 types of games (x?(3, N = 200) = 268.83,p < 0.001). Analyzing further
using Wilcoxon signed ranks test with Bonferroni correction, we found significant difference between the

mean times of all the games pairs, (p < 0.001) for all the pairs except for Ships and Parking (p = 0.01).

Table 2
Drag error rates and completion time Lab Usability Study (Overall error rate=0)
Game Type | Completion Time(s) | Drag Error Rate

mean (std) mean

Ships 4.51 (1.00) 0.04

Animals 9.10 (0.96) 0.05

Parking 4.37 (0.90) 0.09

Shapes 5.26 (0.59) 0.03

Error Rates: An important result is that all the tested games yielded 100% accuracy (overall error rate
of 0%). In other words, none of the participant failed to complete any of the games within the time out.
This suggests our DCG captchas instances are quite robust to human errors.

Next, we calculated the likelihood of incorrect drag and drop attempts (drag error rate). For example,
in the Animals game, an incorrect attempt would be to feed the monkey with a flower instead of a banana.
We define the drag error rate as the number of incorrect objects dragged to the target area divided by the
total number of objects dragged and dropped. The results are depicted in Table 2. We observe that the
Shape game yields the smallest average per click error rate of 3%. This suggests that the visual matching
task (as in the Shapes game) is less error prone compared to the semantic matching task (as in the other
games). The game challenge which seemed most difficult for participants was the Parking game. Since
objects in this game are relatively small, participants may have had some difficulty to identify them.

Effect of Object Speed and Number: Table 3 shows the performance of the game captchas in terms
of drag error rates and completion time as per different object speeds. We can see that the maximum
number of per drag errors was committed at 10 FPS speed. Looking at the average timings, we find
that it took longest to complete the games when the objects move at the fastest speed of 40 FPS, while
20 FPS yielded the fastest completion time followed by 10 FPS. A Friedman’s test revealed statistical
difference among the mean completion time corresponding to the three speeds (x?(2, N = 160) =
10.36, p = 0.006). Further analyzing using Wilcoxon signed ranks test with Bonferroni correction, we
found significant difference between the mean timing corresponding to the pair of speeds only: 10 FPS
and 20 FPS (p < 0.001).

Another aspect of the usability analysis included testing the effect of increase in the number of ob-
jects (including noisy answer objects) on the overall game performance. Table 4 summarizes the drag
error rates and completion time against different number of objects. Here, we can see a clear pattern
of increase, albeit very minor, in average completion time and average error rate with increase in the
number of objects. This is intuitive because increasing the number of objects increases the cognitive
load on the users which may slow down the gameplay and introduce chances of errors. A Friedman’s
test revealed statistical difference among the mean completion time corresponding to the three number
of objects (x%(2, N = 160) = 37.59, p < 0.001). Further analyzing using Wilcoxon signed ranks test

2All statistical results reported in this paper are at the 95% confidence level.
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Table 3
Drag error rates and completion time per object speeds (Overall error rate=0)
Object Speed | Completion Time (s) | Drag Error Rate
mean (std) mean
10 FPS 5.74 (2.11) 0.06
20 FPS 4.90 (2.22) 0.05
40 FPS 6.53 (2.87) 0.04

with Bonferroni correction, we found significant difference between the mean timing corresponding to
the pair of number of objects: 4 and 5 objects (p < 0.001) and 4 and 6 objects (p < 0.001).

Table 4

Drag error rates and completion time per # of objects (Overall error rate=0)

# of Objects | Completion Time (s) | Drag Error Rate

mean (std) mean

6.58 (1.69) 0.06

5 5.30(2.28) 0.05

4.90 (2.22) 0.04

3.2.2. MTurk Usability Study
Table 5
Drag error rates, game error rate and completion time MTurk Usability Study
Game Type | Completion Time (s) | Error Rate | Drag Error Rate

mean (std) mean mean
Ships 10.13 (6.81) 0.03 0.32
Animal 14.97 (8.43) 0.03 0.26
Parking 8.53 (7.01) 0.00 0.54
Shapes 9.42 (6.06) 0.08 0.16

Table 5 summarized the results of MTurk usability study. The second column of Table 5 shows that
the average completion time is almost doubled comparing to the lab-based usability study, however,
the completion time still less than 15 seconds on average for all the games. A Friedman’s test showed
significant difference in the mean timings of all 4 types of games (x?(3, N = 37) = 27.26,p < 0.001).
Analyzing further using Wilcoxon signed ranks test with Bonferroni correction, we found significant
difference between the mean times of following pairs: Animals and Parking (p < 0.001), Animals and
Ships (p < 0.001), Animals and Shapes (p = 0.002), Parking and Shapes (p < 0.01), and Parking and
Ships (p = 0.02).

The second column of Table 5 shows that the average overall error rate increases from 0% to 3.5%
and the average drag error rate increases from 4% to 32%. This is due to the diversity of the MTurk
workers over the students who were hired for the first study. Moreover, this variant (40 FPS, 6 objects) is
considered harder than the tested variants in the first study, our previous results shows that the completion
time increases with increasing the speed and number of the objects.
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3.2.3. Mobile-based Usability Study

Table 6 summarized the results of the Mobile-based usability study. The overall error rate is zero —
all the participants were able to complete the games successfully. The second column of Table 6 shows
the time taken by the participants to complete the games. The time to solve the challenges is in between
the time taken by the participants in the lab-based study and Mturk study. Similar to the previous two
studies, the maximum time was taken to solve the Animal game. The drag error rate was the minimum
for the Shape game and the maximum for Parking game, which is in line with the previous two studies.

Table 6
Drag error rates and completion time Mobile-based Usability Study (Overall error rate=0)

Game Type | Completion Time(s) | Drag Error Rate
mean (std) mean
Ships 9.05(3.64) 0.15
Animals 13.31(6.54) 0.12
Parking 7.24(4.99) 0.85
Shapes 6.32(2.37) 0

3.2.4. User Experience of the Three Studies

Now, we analyze the data collected from the participants during the post-study phase. The average
SUS score from the first study came out to be 73.88 (standard deviation = 6.94), for the MTurk based
study came out to be 73.25 (standard deviation = 15.07), and for the Mobile based study came out to be
80.69 (standard deviation = 16.07). Considering that the average SUS scores for user-friendly industrial
software tend to hover in the 60-70 range [27], the usability of our DCG game captcha instances can be
rated as high.

Summary of Usability Analysis: Our results suggest that the DCG captcha representatives tested in this
work offer very good usability, resulting in good user ratings, short completion times (less than 15s) on
average, and very low error rates (0 - 3.5% per game completion). When contrasted with many traditional
captchas, these timings are comparable but the accuracies are better. The average error rate and solving
time for text-based CAPTCHA s have been reported to be over 0.13 and around 9.8 seconds, respectively
[8]. We found that increasing the object speed and number is likely to degrade the game performance,
but up to 6 objects and 40 FPS yield a good level of usability. DCG also seem to have better usability on
mobile devices compared to text-based captchas. For example, the error rate for solving reCAPTCHA
on mobile devices has been found to be 0.09 and the solving time of 25.2 seconds on average [31].

4. Automated Attacks

Having validated, via our usability study, that it is quite easy for the human users to play our DCG
captcha instances, we next proceeded to determine how difficult these games might be for the computer
programs. In this section, we present and evaluate the performance of a fully automated framework that
can solve DCG captcha challenges based on image processing techniques and principles of unsupervised
learning.
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4.1. Our Automated Attack and Results

Our attack framework involves the following phases:

1. Learning the background image of the challenge and identifying the foreground moving objects.

2. Identifying the target area. For example, the area that contains all the animals in the Animals game.

3. Identifying and learning the correct answer objects. For example, the ships in the Ships game.

4. Building a dictionary of answer objects and corresponding targets, the background image, the target
area and their visual features, and later using this knowledge base to attack the new challenges of
the same game.

5. Continuously learning from new challenges containing previously unseen objects.

Next, we elaborate upon our design and matlab-based implementation per each attack phase as well
as our experimental results. We note that, on a web forum [1], the author claims to have developed an
attack against “are you a human” captcha. However, unlike our generalized framework, this method is
perfected for only one simple game that has one target object and a fixed set of answer objects. It is not
known whether or how easily this method can be adapted to handle different games, games with multiple
instances that carry different sets of answer objects, and those with multiple target objects. Since only
one game is cracked, one needs to keep refreshing the game page until that specific game appears. Since
no technical details are provided in [1], we can only doubt if any background learning or object extraction
is implemented by observing the short time it takes to finish the attack.

(1) Background & Foreground Object Extraction: To extract the static background of a DCG chal-
lenge, the intuitive way is to superimpose some sampling frames that cross a valid period (e.g., 40 frames
captured at a fixed time interval (0.2s)), then select the most frequent color value from each pixel as the
background color for that pixel. This is based on the assumption that the background image is static and
the foreground objects are constantly moving, such that the true background color almost always appears
as the most frequent color observed for a pixel. By subtracting the background image from a video frame,
the foreground moving objects become readily extractable. To further reduce the computational cost, a
6-bit color code?, rather than a 3-byte representation of a color value, is used to code the video frame,
the learned background image, and the learned foreground objects.

However, one drawback of this preliminary method is that if the moving speed of the foreground
objects is too slow, especially when some foreground objects hover over a small area, the dominant
color values of most pixels in that area will be contributed by the foreground objects instead of by the
background. A shadow of foreground objects may appear as pseudo patches in the background image as
shown in Figure 2(b) for the Shapes game of Figure 2(a), indicated by the dashed rectangle. Using more
sampling frames for initial background learning could alleviate this problem, but resulting in a time-
consuming learning procedure. Our preliminary experiment indicates that an average 30.9s, generated
by running the above learning method 15 times per game challenge, is needed for learning a game
background completely.

In our new method, we overcome the conflict between the number of sampling frames and the pseudo
patch effect by actively changing the location of one moving object per sampling frame. In the first step, a
few frames N7 (e.g., 10 frames captured in 0.3s interval) are collected to generate the initial background
that is used to extract the foreground object (through background subtraction) in the next step. Because
the number of sampling frames is very limited, pseudo patches may exist. The second step, called active

*http://en.wikipedia.org/wiki/Color_code
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Fig. 2. Detected backgrounds. (a) original frame image; (b) detected background with pseudo patches by using preliminary
method; (c) detected background with pseudo patches after performing the 1Ist step of the proposed method; (d) detected
background with a minor patch after performing the 2nd step of the proposed method.

learning, is to actively drag/drop each moving object to a specified destination, which aims to speed
up the object movement in order to reduce the pseudo patch effect. Then, No (No > Nj) sampling
frames are collected whenever a moving object is actively dragged. Because of the high efficiency of
the moving object detection and the latter mouse operations, enough sampling frames (e.g., No = (30,
50)) without/with minor hovering effect could be collected within a short period. The new background
is detected again based on the dominant color of the collected frames. Figure 2(c, d) show the detected
background with non-trivial pseudo patches and with a minor patch, resp. Minor patches could affect the
detection of a complete object, but since the affected area is minor, partial matching could still be used
in the identification of the answer object.

After removing the extracted background from 5-8 equally distant frames from the collected frames,
the objects in each of the selected frame are extracted. The objects below a certain size threshold were
discarded as noise. The frame with the maximum number of objects was then selected to extract various
objects. Using multiple frames for object extraction also helped us discard the frames in which the objects
overlapped each other and were hence detected as a single object instead of distinct individual objects.

As the final step as part of this phase, the visual features, coded as color code histograms (a visual
feature commonly used to describe the color distribution in an image), of the foreground objects and the
background image, are stored in the database, together with some other meta-data such as the object size
and dimensions.

(2) Target Area Detection: Identifying the target area requires analysis of the background extracted
in the previous phase. For this purpose, we implemented Minimum Bounding Rectangle (MBR) [13]
method. The MBR method is based on the observation that the activity/moving area of foreground objects
has no or very little overlap with the target area. Therefore, by detecting and removing the foreground
moving area from the background image, a reasonable estimate of the target area can be obtained. As the
first step of this approach, the selected 5-8 frames and their foreground object masks from the previous
phase are used to identify the foreground moving area mask. More specifically, the foreground mask is
generated by identifying those pixels that have a different color code value than that of the corresponding
pixels in the background image. Then, an MBR is generated that bounds the area where the foreground
objects are detected in the current frame (Figure 3). The final estimate of the foreground moving area,
denoted as M BR;,q, is the superimposition of all the MBRs extracted from the sample frames, also
represented as a minimum bounding rectangle (see Figure 3(c)).
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(@)

(b)

©

Fig. 3. Target Detection. (a) The detected background for the Parking challenge; (b) One sample frame represented in color
code; (c) Detected foreground objects from (b) and their MBR.

After the removal of the entire area bounded by M B R f;,,,; from the background image, the remaining
background is divided into eight sub-areas. The largest sub-area is identified as the target area. It is worth
noting that the computational cost of this method is very low (O(M N), where N is the number of pixels
in a game scene, M is the number of sample frames, and M < N) since the foreground object masks are
readily available as part of the output from the previous phase. In other words, the most time consuming
part is the extraction of foreground objects O(M N?) from sample frames, which has been covered in
the previous phase .

(3) Answer Object & Target Location Detection: Once the target area is identified, the next step is to
identify the correct answer objects and their respective matching sub-target areas. Since a game can not
have too many sub-target areas (otherwise, usability will be compromised), we divide the entire probable
target area into 9 equal-sized blocks, each represented by its area centroid, drag each foreground object to
each of the 9 centroids, and stop and record the knowledge learned whenever there is a “match.” A match
occurs when an answer object is dragged to its corresponding sub-target area (e.g., a “bone” dragged
onto a “dog”). This is detected by monitoring the change of the area summation of all the foreground
objects, since once an answer object is dragged to its correct target location, it will stay in the target area
and therefore result in a reduction of the foreground area. In our experiments, this method has proven
100% eftective when applied to all four games. As for efficiency, while the worst case upper bound is
O(N), where N is the total number of foreground objects, in practice, much less number of drags are
required. Our experimental results show that, with 5 foreground objects for each game and 15 training
runs for each game, the average number of drags needed for a game is 9. In case the server imposes a
strict limit on drag/drop attempts, this process can be repeated over multiple runs.

(4) Knowledge Database Building and Attacking: The background, target area, and learned answer
objects as well as their corresponding sub-target areas together constitute the knowledge database for a

*We also implemented alternative methods such as Edge-based and exclusion methods, However, MBR method is more
robust.
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game. After learning about sufficient number of games, whenever a new game challenge is presented,
the knowledge base is checked for the challenge. The target area of the currently presented challenge is
matched with the target areas present in the database to identify the challenge. If a match is found, the
extraction of objects from the foreground follows. The visual features such as the color code histogram of
the currently extracted objects are matched with that of the answer objects in the database for that chal-
lenge. The extracted objects identified as correct answer objects are then dragged to their corresponding
sub-target areas. To measure the performance of our approach, we ran this attacking module 100 times
for each game instance, and the average successful attacking time is 6.9s with the number of foreground
objects ranging from 4 to 6. The maximum successful attacking time is 9.3s, observed for an instance
of the Animal game with 6 foreground objects. These timings are in line with those exhibited by honest
users in our usability study, which will make it impossible for the captcha server to time-out our attack.

(5) Continuous Learning: During attacking, if a challenge matches a game in our database but contains
previously unseen answer object(s) (e.g., a new ship object in a Ships game instance), the attack will
not terminate successfully. Whenever such a situation arises, an answer object learning module that is
similar to the aforementioned module is activated, but differs from the latter in that it only needs to
drag a potential answer object to each of the previously learned sub-target areas that have matching
answer objects in the database. The newly learned answer objects and their corresponding sub-target area
centroids are then added to the knowledge base for that game.

4.2. Discussion and Summary

There are two benefits in the background learning. First, the learned background can be used to quickly
extract foreground moving objects. Second, the learned background can be used to locate the target area
where foreground answer objects need to be dragged to. The proposed active learning is tested on all 36
game challenges (i.e., 3 (speeds), 3 (# of objects), 4 (game prototypes)). IV is set to be 10. The shape
objects in the Shape Game have larger size than objects in other games, which easily result in pseudo
patch effect when 6 moving objects exist in the game window with limited size. Therefore, Vs is set
to be 50 for the Shape Game challenges with 6 objects while 30 frames is used for all the other game
challenges. In total, a complete background can be extracted in average 9.04s that is about three times
faster than the preliminary method mentioned earlier (i.e., 30.9s).

The adoption of a large image database for each answer object could pose a challenge to our approach
since it allows for the creation of many different foreground answer object configurations for the same
game. In the worst case, a challenge may contain none of the previously learned answer objects for that
particular game. Continuous learning will be activated in such cases and can also be used as a way for
auto attacking in the run time. Such cases fall into the category of “known foreground answer objects
and known target objects,” and the success rate can be estimated using the number of foreground objects
(0), number of answer objects (¢), and number of drag/drop attempts allowed for each object (a). For
example, if o = 5, ¢t = 3 and a = 2, the success rate is approximately %@03, = 13%. Though as low as
it seems, the rate itself is not affected by the image database size.

During attacking, there is a time lapse between selecting a foreground object and verifying whether it
is an answer object. Both feature extraction and database lookup (through feature matching) take time.
In our implementation, we chose to click and hold a selected object until a match with an answer object
in the database is registered. In doing so, we guarantee that an answer object, once verified, can be
readily dragged/dropped, thus to avoid dealing with the issue of constantly moving objects. However,
this approach may fail if a constraint is added by the captcha implementation that limits the amount of
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time one can hold an object from moving. A less invasive attacking method would be to utilize parallel
processing, in which one thread is created to perform feature extraction and comparison, and another
thread is used to track and predict the movement of the object currently under verification.

Summary of Automated Attack Analysis: Our attack represents a novel approach to breaking a repre-
sentative DCG captcha category. Attacking captcha challenges, for which the knowledge already exists
in the dictionary, is 100% accurate and has solving times in line with that of human users. However,
building the dictionary itself is a relatively slow process. Although this process can be sped-up as we
discussed, it may still pose a challenge as the automated attack may need to repeatedly scan the different
captcha challenges from the server to continuously build an up-to-date dictionary. The defense strate-
gies for the DCG captcha designers may thus include: (1) incorporating a large game database as well
as large object image databases for each game; and (2) setting a lower game time-out (such as 20-30s)
within which human users can finish the games but background learning does not fully complete. Since
our attack relies on the assumption that the background is static, another viable defense would be to
incorporate a dynamically changing background (although this may significantly hurt usability).

5. Relay Attacks

Human-solver relay attacks are a significant problem facing the captcha community, and most, if not
all, existing captchas are completely vulnerable to these attacks routinely executed in the wild [30]. In
this section, we assess DCG captchas w.r.t. to relay attacks.

5.1. Difficulty of Relaying DCG captchas

The attacker’s sole motivation behind a captcha relay attack is to completely avoid the computational
overhead and complexity involved in breaking the captcha via automated attacks. A pure form of a relay
attack, as the name suggests, only requires the attacker to relay the captcha challenge and its response
back and forth between the server and a human-solver. For example, relaying a textual captcha simply
requires the bot to (asynchronously) send the image containing the captcha challenge to a human-solver
and forward the corresponding response from the solver back to the server.

In contrast, DCG captchas offer some level of resistance to relay attacks, as we argue in the rest of
this section. There appears to be a few mechanisms that can potentially subject DCG captchas to a relay
attack. First, if the server sends the game code to the client (bot), the bot may simply ship the code off
to the human-solver, who can complete the game as an honest user would. However, in the DCG captcha
security model (Section 2.1), the game code is obfuscated and can be enforced to be executable only
in a specific domain/host authorized by the server using existing tools [3], which will make this attack
difficult, if not impossible.

The second possibility, called Static Relay attack, is very simple and in line with a traditional captcha
attack (and thus represents a viable and economical relay attack). Here, the bot asynchronously relays
a static snapshot of the game to a human-solver and uses the responses (locations of answer objects
and that of the target objects) from the solver to break the captcha (i.e., drag/drop the object locations
provided by the solver to the target object locations provided by the solver). However, it is expected to
have poor success rates. The intuitive reason behind this is a natural loss of synchronization between
the bot and the solver, due to the dynamic nature of DCG captchas (moving objects). In other words,
by the time the solver provides the locations of target object and the answer objects within a challenge
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image (let us call this the n** frame), the objects themselves would have moved in the subsequent, k",
frame (k > n), making the prior responses from the solver of no use for the bot corresponding to the k"
frame. Recall that the objects move in random directions and therefore it would not be possible for the
bot to predict the location of an object in the k*" frame given the locations of that object in the n*”* frame
(n < k). Such a loss of synchronization will occur due to: (1) communication delay between the bot and
human-solver’s machine, and (2) the manual delay introduced by the solver him/herself in responding to
the received challenge.

The third possibility, called Stream Relay, is for the bot to employ a streaming approach, in which the
bot can synchronously relay the incoming game stream from the server over to the solver, and then relay
back the corresponding clicks made by the solver to the server. Although the Stream Relay attack might
work and its possibility can not be completely ruled out, it presents one main obstacle for the attacker.
Streaming a large number of game frames over a (usually) slow connection between the bot (e.g., based
in the US) and the solver’s machine (e.g., based in China) may degrade the game performance (similar to
video streaming over slow connections), reducing solving accuracy and increasing response time. Such
differences from an average honest user gameplay session may further be used to detect the attack.

In the rest of this section, we report our Stream Relay attack study and show the ability of detecting
such relay attack using our proposed machine learning detection method.

5.2. Stream Relay Attack

Under Stream Relay, the attacker obtains the DCG captcha challenge from the server, just like a legit-
imate user. The attacker runs a streaming server (such as a VNC server), and the human-solver connects
to the attacker machine through a streaming client (such as a VNC client). This streaming software is
responsible for delivering the DCG captcha frames to the human-solver and sending the human-solver’s
mouse interactions, such as drag/drop, mouse clicks and positions, to the attacker. The attacker then sim-
ply forwards the log of this interaction between the human-solver and the game to the server. Finally, the
server would run the detection algorithm on this log, and responds back by rejecting (or accepting) the
attacker. Due to network latency, our hypothesis is that the human-solver may suffer from degradation of
the game quality at his/her end. This degradation would decrease the game performance of DCG captcha.
More importantly, it would make the solver interaction with the game distinguishable from the interac-
tion between the legitimate user and the game (as in the normal setting), and thereby make it possible for
the server to detect the relay attack.

5.2.1. Study Design, Goal and Process

MTurk workers were hired for the Stream Relay attack study. The MTurk workers (serving the role
of human-solvers) were asked to connect to a computer residing at our university and connected to our
university wireless network through a VNC java applet (serving the role of the attacker’s machine). The
workers were then asked to fill demographics form, play four games (40 FPS, 6 objects) variant of each
game instance (ordered based on 4 x4 Latin Square), and fill a survey form about their experience.

We used three different experiments to test various relay attack scenarios, the demographics of the
participants are shown in the columns 5 to 7 of Table 1, as described below:

1. High-Latency Relay: The first scenario involved collecting data from participants residing outside
the US. Since in a typical relay attack, the human-solvers are normally hired from sweatshops in
remote countries (e.g., India or China) by an attacker residing in the US, this setting reflects a
real-life relay attack scenario. We collected data from 40 participants as part of this scenario.
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Table 7
Completion times, and error rates in Stream Relay attack scenarios
‘ High-Latency Relay ‘ Small Game Relay ‘ Low-Latency Relay

Game Successful Error Drag Error Successful Error Drag Error Successful Error Drag Error
Type Time (s) Rate Rate Time (s) Rate Rate Time (s) Rate Rate
mean (std) mean mean mean (std) mean mean mean (std) mean mean
Ships 29.98 (13.00) 0.15 0.45 22.82 (8.17) 0.40 0.27 16.28 (13.39) 0.05 0.25
Animal | 34.04 (13.52) 0.33 0.43 37.11 (8.21) 0.40 0.29 17.54 (11.71) 0.20 0.35
Parking | 25.61 (15.79) 0.38 0.75 20.43 (13.20) 0.25 0.57 14.13 (13.67) 0.10 0.46
Shape 21.53 (12.79) 0.23 0.43 26.86 (10.86) 0.10 0.51 15.25 (14.76) 0.05 0.21

2. Small Game Relay: The second attack scenario involved testing a case when an attacker tries to
minimize communication between the attacker and the solvers by reducing the game size. This was
achieved by presenting games with 1/4 of the normal size to the subjects, i.e., a game with size
180x65. To evaluate this scenario, we collected data from 20 participants residing outside US.

3. Low-Latency Relay: In the last scenario, we tested a setting in which the attacker launches the attack
from a machine that is in close proximity to the solvers (e.g., both the attacker and solvers are
located in the US). To evaluate this scenario, we collected data from 20 participants located within
US.

5.2.2. Study Results
In this subsection, we will report the study results and compare them to the MTurk usability study.

Completion Time and Error Rates: The results for the first, High-Latency Relay, scenario are shown
in first column of Table 7. The games played as part of this scenario took significantly longer than
that performed with usability study. On average, we found that completing DCG captchas with High-
Latency Relay took approximately 61% longer than that for usability study. Furthermore, upon com-
paring the mean time taken to complete the games (Successful Time) between the MTurk usability and
High-Latency Relay using Mann-Whitney U test with Bonferroni correction, we found a statistically
significant difference, with p < 0.001, for each of the four games. The error rates were also significantly
higher than those exhibited in the MTurk usability study, on an average of 84%. The drag error rate was
40% higher for High-Latency Relay attack compared to usability study. The longer game completion
time and higher error rates might be attributed to high network latency between the attacker’s machine
and the human-solvers’ machines.

To overcome the issues presented by network latency for the participants outside the US, in the second
scenario (Small Game Relay), we reduced the game size by 1/4, to 180x65 pixels. However, the results, as
shown in the second column of Table 7, were still comparable to that of stream relay attack with normal
game size, with longer gameplay time and higher error rates compared to the MTurk usability study. The
successful game completion time was approximately 60% longer, while the error rate was 76% higher
on average than that for usability study. The drag error rate was 16% higher than that for usability study.
Analyzing the mean time using Mann-Whitney U test with Bonferroni correction, we found statistically
significant difference between the mean time between all pairs of games from usability and Small Game
Relay with p < 0.001. Although reduced size may have resulted faster game transmission, smaller game
size may have made it difficult for the users to play the game.

Our last stream relay experiment, Low-Latency Relay, tested the Stream Relay attack performance
when the attacker and the solver reside relatively nearby (both within the US). The results of this experi-
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ment are depicted in the third column of Table 7. The results show huge improvement over the previous
two scenarios. The time taken to complete the game is on average about 40% lower compared to the
time taken by participates in High-Latency and Small Game Relay scenario. Analyzing the data using
Mann-Whitney U test with Bonferroni correction, we found statistically significant difference between
the mean time of the Ships game and its correspondent in the usability study: p = 0.048. However, we
did not find statistically significant difference between the mean times of the rest of the games and their
correspondents in the usability study. It appears that relatively lower latencies between the attacker’s ma-
chine and solvers’ machines in this scenario improved the game performance, but it was still at a lower
level compared to that exhibited in the usability study. The error rates and drag error rate were 41% and
1% higher for Low-Latency Relay attack compared to usability study.

User Experience: The mean of the SUS for the first, second and third relay attack scenarios came to be
59 (standard deviation = 12.83), 57 (standard deviation = 14.97) and 65.11 (standard deviation = 18.42),
respectively, which is consistently lower than the mean SUS score obtained from the usability study.
Comparing SUS score between the MTurk usability study and each of the three relay attack scenarios,
using Mann-Whitney U test with Bonferroni correction, we found statistically significant difference be-
tween usability study and High-Latency Relay (p < 0.0001) and between usability study and Small
Game Relay (p = 0.004). Low-Latency Relay did not turn out to be significantly different from the
usability study statistically in terms of user experience.

5.2.3. Stream Relay Attack Detection

In the previous subsection, we have demonstrated that the DCG captcha game performance (comple-
tion timings and error rates) in the usability study setting and the game performance in each of the Stream
Relay attack scenarios differs in the average case. In this section, we set out to investigate whether it is
possible for the captcha service, based on the different gameplay features and behavioral data, to identify
whether an individual gameplay event (captcha solving instance) conducted by a legitimate user or to
human-solver in the Stream Relay attack.

A continuous key-press track may not correspond to a drag track when the mouse misses to grab a
moving object. Such a key-press track is called an invalid mouse drag. When an invalid mouse drag
occurs to a legitimate user, he/she can usually realize it immediately and take appropriate corrective
actions. Consequently, an invalid mouse drag track will end relatively quickly, resulting in relatively few
timestamps on the track. In contrast, when the same situation happens during Stream Relay attack, the
remote human-solver may be slow in response due to the network communication delay, which may be
reflected as either a longer invalid mouse drag track, or a slow-motion mouse movement that generates
many timestamps, or both.

There are 7 features extracted from the users’ gameplay data, used as input to train a classifier to
differentiate legitimate users from relay attackers and tested with different machine learning methods.

1. PlayDuration: overall gameplay time (in seconds).

Successful drag rate: the ratio of the number of successful drags/drops to the total number of
drag/drops.

Number of attempts: the number of times the mouse status changes from “up” to “down”.

Average dragging time: the sum of time duration of drags divided by the number of drags.

The maximum duration among all invalid mouse drags in a gameplay instance.

Number of timestamps in the invalid mouse drag with the longest duration.

The product of Features 5 and 6.

0

Nk w
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Table 8

Results of using the optimal feature subset for each game in classification of legitimate user and (High- and Low-Latency and
Small Game) relay attacker

Game Feature Method Average Average Average
Name Subset Accuracy | Precision Recall
Ships 2,3,4,5,7 C-SVC rad 0.83 0.73 0.87
P 2,3,4,5,6,7 | nu-SVC rad 0.83 0.73 0.87
. 7 C-SVCrad 0.85 0.75 0.97
Animal
7 nu-SVC rad 0.85 0.75 0.97
Parking 4,5 C-SVC rad 0.74 0.65 0.76
2,3,4,5 KNN min 0.78 0.66 0.75
Shape .
2,3,4,5,7 KNN min 0.78 0.66 0.75

Both Support Vector Machine (SVM) [10] and K-Nearest Neighbors (KNN) [16] are tested on 127
(27 —1) feature subsets with 6 (2 SVM types, namely C-SVC, Support Vector Classification, and nu-SVC,
with 3 different kernel functions, linear, polynomial, and radial basis functions) and 2 (i.e., Euclidean
distance or Minkowski metric) parameter configurations in SVM and KNN, respectively. In total, 1016
(127 x 8) different test cases were tested for each game prototype.

In the classification task, the positive class corresponds to a legitimate user and the negative class
corresponds to human-solver relay attacker as denoted below:

True Positive (TP): legitimate user correctly classified as legitimate user.
True Negative (TN): relay attacker correctly classified as relay attacker.
False Positive (FP): a relay attacker misclassified as legitimate user.
False Negative (FN): a legitimate user misclassified as a relay attacker.

Three different measures are used to evaluate the classifier’s performance, namely precision, recall, and
accuracy, as defined in Equations 1, 2 and 3. Of these, recall is the most important because low recall leads
to a high rejection rate of legitimate users, causing user frustrations and compromising usability. The
desired classification result should demonstrate a sufficiently high recall and a reasonably high precision.

Precision =TP/(TP + FP) (1)
Recall =TP/(TP + FN) ()
Accuracy = (TP+TN)/(TP+ FP+TN + FN) 3)

To measure the overall classification accuracy and recall of our model, we built a classifier for each of
the four game types using all the collected data from usability study and the three relay attack scenarios.
The average measurement values are shown in Table 8, suggesting that the best average accuracy and
average recall are achieved for the Animal and Ships games, followed by the Shape game and then
the Parking game. This suggests that increasing the number of the required drags/drops improves the
classification performance.
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6. Hybrid Attack

Relay attacks as shown in section 5 are easily detectable. Automated attack is effective, however, it
has some weaknesses, such as:

1. The auto-attack framework cannot detect the target area that overlap the activity area.

2. Dragging and dropping a moving object always follows a straight line-path, which doesn’t work for
more complex paths.

3. The learning phase requires too many drags/drops which may be detectable by the server.

In this section, we propose two models of hybrid attacks for attacking DCG captcha that combine the
strengths of both of the automated and relay attack and overcome their weakness. A key component of
both models in our framework is robust object tracking that preserves the synchronization between the
game and the bot, which we discuss next.

6.1. Real-Time Object Tracking

Real-time tracking on moving objects of a game challenge plays an important role in keeping syn-
chronization between the game and the bot. The tracking efficiency affects whether a timely completion
of a game challenge by the bot could be done like human, which becomes one of the key factors that
determines the success rate. In this section, we introduce a simple and efficient color code histogram
based tracker.

Based on the characteristics of DCG prototypes introduced in Section 2.2, namely, (1) the background
is static, and (2) the moving objects have unchanging appearance, we propose a simple and efficient
tracking algorithm, named color code histogram based tracker (denoted as CCH) that generates the fore-
ground mask by utilizing the detected background, and associates the track to the same object based
on color code features [41]. We used 6-bit color code instead of 8-bit (e.g., gray image) or 24-bit (e.g.,
RGB/HSV/Lab image), which is an approximate color representation that consists of the top two bits of
each RGB channel, in order to reduce the computation cost. Moving objects as well as the game scene
are represented as a normalized 64-bin color code histogram. The tracking task is thereby simplified as
a histogram matching task in the subsequent frames by using histogram intersection [36] that is known
to be robust against scaling and rotation. To alleviate the segment merging problem caused by objects
occlusion, CCH will abandon the current foreground mask if fewer segments than the number of tracks
can be found. The extent of tolerance to partial occlusion relies on tuning the similarity threshold in
histogram intersection.

Such a simple design also exposes two weaknesses: (1) The quality of the foreground mask in each
frame completely relies on the quality of the detected background; and (2) Tracking may become inac-
curate when multiple objects have similar color histograms. Future research may consider other clues in
matching, such as motion, to alleviate this problem.

6.2. Auto-attack with offline learning

Model I of our proposed hybrid attack framework (Figure 4), Auto-attack with Offline human Learning
(AOffL), attacks a known game with the help of real-time tracking and offline knowledge. In the learning
phase of AOffL, the necessary knowledge related to a game scene is learned in advance from a remote
human-solver.
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Fig. 4. Hybrid attack model I: Auto-attack with Offline human Learning

First, the bot starts the game and keeps scanning the game frame images. Second, the bot performs
initial analysis to detect the game background, moving objects and potential target areas, and keeps
tracking the moving objects. Third, similar to the relay attack against a text-based CAPTCHA, only one
frame image is sent from the bot to the human-solver. The solver task is draw line(s) from the answer
object(s) to its/their corresponding target object(s). These lines provide several clues for attacking the
game: (1) The start and the end points of each line label the locations of the answer object and its
corresponding target object, respectively; (2) The end portion of each line (e.g., the portion connected
to the target object) can also be used as the basic entry path to the target object if straight-line paths are
not workable in this game. For example, 40% of each hand-drawn dragging path (starting from the end
point) is treated as the basic entry path. Therefore, an answer object can always be dragged to the start
point of the entry path first, and follow the entry path to the target finally. If a complex path, is required,
a curvature threshold could be defined to identify those critical turning points with curvatures larger than
the threshold, which finds the key points that must be passed in turn in a new path. Finally, the above
clues together with the initial analysis, i.e., background and foreground detection, will be recorded in the
knowledge base. Answer objects as well as the background are represented in color code histograms. A
continuous learning from the game server is required to build an up-to-date dictionary.

The attacking phase consists of the following steps (as shown in Figure 4). The initial analysis is
performed (Step 1) followed by submitting a query to the knowledge base (Step 2). If a match is found,
the bot will drag an answer object from its current location provided by the real-time tracking to its
corresponding target object (Step 3). The drag/drop attempt iterates until completing the game (Step
4). If a match is not found, which indicates that the game or the answer objects are completely new,
the framework will learn the game as the dictionary based auto-attack framework mentioned in Section
4. Moreover, the attacking phase is converted into offline learning just in case that brute-force based
learning cannot work out the puzzle.

6.3. Auto-attack with online learning

Model II of our hybrid attack framework (Figure 5), Auto-attack with Online human Learning (AOnL),
attacks any game, seen or unseen, with the help of real-time tracking and online knowledge. Compared
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with AOffL, a human-solver must be available when the game starts, similar to what is required in relay
attacks. Moreover, there is no knowledge base for future attacking as the remote solver provides the
required knowledge in real-time.

As indicated in Figure 5, when attacking a game challenge, the bot keeps receiving frames from the
server (Step 1), and performs initial analysis (i.e., detect background and foreground) on the game with-
out drag/drop attempts (Step 2). Meanwhile, it sends one frame image to the solver once the game starts
(Step 3). The solver performs the same operation as the learning phase in AOffL (Step 4). Once the
solver submits his/her responses, the bot can learn the answer objects and the dragging paths for this
particular challenge based on the initial analysis and the solver’s response (Step 5), and complete the
game automatically with the help of real-time tracking (Step 6). One concern in AOnL is that the success
rate for completing a game relies heavily on correctness and efficiency of the solver’s response (the same
concern underlies the relay attack on text-based and DCG captchas).

6.4. Hybrid Attack Usability Study

6.4.1. Study Design, Goal and Process

In order to evaluate the performance for the users’ drawing operation and thereby the performance of
our hybrid attack, we conducted a user study in which we recruited 40 MTurk workers. We asked the
participants to fill a demographics form, then provide them with 4 static images that represent snapshot
to the four DCG explained in Section 2.2 and asked them to draw lines from the answer object(s) to
its/their corresponding target(s), the order of representing the images to the participants followed the
standard 4x4 Latin square. The interface has two buttons “undo”, which clears the previously drawn
lines, and “done”, which the participant should press after drawing all the lines from the answer objects
to the targets. Finally, the participants were asked to fill a survey form consists of the 10 standard System
Usable Scale (SUS) questions. The demographics of the participants is presented in the last column of
Table 1.

6.4.2. Study Results
In this subsection, we will report the study results and compare them to the MTurk usability study.
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Completion Time and Error Rates: The average time taken by the participants and the error rates
are shown in Table 9. The shortest average completion time and the minimum error rate were for the
Shapes game. The average time taken by the participants to complete the challenges is higher than its
correspondence in the usability study, however it is still considerably short (around 13s on average).
Comparing the completion time of all the games with their respective in MTurk based usability study
using Mann-Whitney U test with Bonferroni correction, we found significant difference between each
of the games and its correspondence in the usability study Animal (p = 0.0035), Parking (p < 0.001),
Shape (p = 0.0163) and Ships (p = 0.0215). Some of the participants drew extra lines, which are
represented in the drag error rate in Table 9. The drag error rate on average is less than the drag error rate
committed by the participants in the usability study, this can be due that the participants are allowed to
delete the previously drawn lines by pressing the “undo” button in case they committed errors. However,
the overall error rate is higher than its correspondence in the usability study as there is no instant feedback
if the drawn lines are correct or incorrect and whether the game is completed successfully or not.

User Experience: The SUS score came to be on average 68.00 (standard deviation = 16.17), which is
lower than the SUS score for the usability study but better that all the tested variants of relay attacks.

Table 9
Drag error rates, game error rate and completion time Hybrid attack
Game Type | completion Time(s) | Error Rate Drag Error Rate

mean (std) mean mean
Ships 11.78 (5.39) 0.28 0.00
Animals 19.65 (10.48) 0.08 0.30
Parking 12.56 (7.93) 0.20 0.31
Shapes 10.57 (4.77) 0.05 0.45

Summary of Hybrid Attack Analysis: The two models of the hybrid attack framework have their re-
spective advantages. AOffL can complete a known game efficiently and effectively, but it requires contin-
uously updating the knowledge base for unseen games or answer objects. The delay issue in the manual
learning phase is not a problem in AOffL due to its offline nature. Therefore, AOffL is a significant threat
to DCGs that do not have a large database (e.g., manually extended database), but has a low tolerance
on completion time. On the other hand, AOnL is insensitive to the database size. That is, it is possible
for AOnL to complete a game challenge even if the game has never been seen before, largely attributed
to the instant solution provided by the solver. However, response delay from the solver may be a bit of
a bottleneck for AOnL (as shown in the hybrid attack usability study, users took more time to complete
the drawing task comparing to the playing time in the usability studies). In the current settings, the bot
wait till the human-solver draws all the lines and sends them to the attacker. The bot then starts drag-
ging/dropping the answer objects to their corresponding targets according to the response of the human-
solver. Therefore, according the collected data in the user study explained above the bot would wait in
average 13s before it starts playing the game). Therefore, AOnL could be a significant threat to those
DCGs that has a relatively high tolerance on playing time. Using the gameplay features other than the
play duration to detect hybrid attacks is a challenging task as the bot is the one who is playing the games
and it would be able to mimic the human mouse interactions with the games.
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7. Related Prior Work

The term CAPTCHA was first introduced in 2000 [2], describing a test that can differentiate humans
from malicious computer programs. CAPTCHA s are deployed by many online services, such as account
registration, ticket selling, and search engines, to limit the scale of different types of attacks (e.g., denial-
of-service or password dictionary attacks) involving automated bots. Most CAPTCHAs are largely based
on visual challenges, such as involving users to identify alphanumeric characters in distorted images, but
many other variants have also been proposed [22,39].

A wide variety of CAPTCHAs have been proposed over the last decade or so. The most commonly uti-
lized CAPTCHA involves challenging the users to recognize alphanumeric characters embedded within
an image, such as Gimpy, Yahoo, reCapthca [38], Baffle [12], handwritten [32] and PayPal, or within a
video such as NuCaptcha and emergent CAPTCHA [39]. CAPTCHAs that challenge the users to rec-
ognize or classify objects in images, such as collage CAPTCHA [34], implicit CAPTCHA [5], Asirra
CAPTCHA [24], PIX, and ESP-PIX [37], have also been proposed. Some video-based CAPTCHAs,
such as content-based tagging of YouTube videos [26], and audio based CAPTCHA, such as Google,
eBay, ReCaptcha, Slashdot and Math-function [21] audio CAPTCHAs, have also been introduced.

Unfortunately, existing CAPTCHA technology suffers from several problems. The distortions that
are used to hide the underlying content of a puzzle from computers can also severely degrade human
usability [8,40]. Challenges based on spoken words suffer from similar issues due to sound distortion
[20]. Moreover, CAPTCHAs are not foolproof, and many CAPTCHAs used in real-world have been
successfully attacked. The task of solving CAPTCHA has been made easier by commercial solving
services that attackers often utilize [30]. These services offer two categories of attacks: automated attacks
and relay attacks. Automated attacks (e.g., [17,23,25]) normally utilize image processing algorithms to
solve the CAPTCHA, while relay attacks [30] utilize the human intelligence of third-party, remotely
located human-solvers.

Relay attack involves outsourcing the CAPTCHA solving process to human labor, either opportunisti-
cally or via sweatshops [30]. An attacker could launch a website that attracts visitors by providing some
free service, and then opportunistically engage them in solving third-party CAPTCHAs. Alternatively, an
attacker could hire people to solve CAPTCHA and pay them a certain amount of money per successful
attack. A relay attack against a text CAPTCHA, for instance, involves the attacker to forward the image
that contains the CAPTCHA to a human-solver; the solver then solves the CAPTCHA in real-time, and
provides the solution, which the attacker relays back to the server.

Although automated attacks seem to be a natural option to bypass the security offered by CAPTCHA:s,
developing programs to solve CAPTCHA with human-like accuracy is often very complicated and costly
[30]. In contrast, paid solvers are willing to solve as many as 1000 CAPTCHAs for just $1, making relay
attack an overall more attractive, effective and economical option [30]. While the traditional CAPTCHA
research has focused mainly on developing, or preventing, automated CAPTCHA attacks, attackers in
the wild have gone on to break existing CAPTCHA schemes via relay attacks [30].

Most, if not all, existing CAPTCHAs are vulnerable to relay attacks, and do not provide a reliable
mechanism to distinguish a remote human-solver from a legitimate user. Subjecting textual CAPTCHAs
to relay attacks is very simple — the attacker simply forwards the challenge image to the solver, who pro-
vides the response which the attacker simply forwards to the service. Effectively detecting such attacks
does not seem feasible. One way to avoid them is to set a timeout for solving the CAPTCHA. How-
ever, timing alone is not a robust method for detecting an attack. A comprehensive study on CAPTCHA-
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solving services presented in [30] concludes that 70% of the CAPTCHA submissions are correct, and
are submitted within 30 seconds, which is well within the CAPTCHA timeout set by most websites.

Attacking video CAPTCHA [39] is straightforward as well. The CAPTCHA video file can be for-
warded to a human-solver. Alternatively, a new video can be created by taking multiple snapshots of the
video CAPTCHA, and sent to the human-solver.

Image-based CAPTCHAs require users to perform an image recognition task, e.g., selecting only the
images of cats in a grid of images. This kind of CAPTCHA can also be easily attacked by relaying. The
image can be transferred to a solver, and solver can send back the coordinates of the mouse clicks to the
attacker. The attacker’s bot can then replicate the action performed by the solver.

The fact that most captchas are static and do not require multiple interactions from a user makes attack-
ing them by relaying to a human-solver an easy task. DCG captcha is perhaps the first step towards cre-
ating interactive and dynamic captcha capable of defeating relay attacks. A commercial implementation
of DCG captcha, called “are you a human,” [4] is also available.

8. Conclusions and Future Work

We investigated the security and usability of game-oriented captchas in general and DCG captchas in
particular. Our overall findings are mixed. On the positive side, our results suggest that DCG captchas,
unlike other known captchas, offer some level of resistance to relay attacks. We believe this to be a pri-
mary advantage of these captchas, given that other captchas offer no relay attack resistance at all. Fur-
thermore, the studied representative DCG captcha category demonstrated high usability. On the negative
side, however, we have also shown this category to be vulnerable to a dictionary-based automated attack
and hybrid attacks.

An immediate consequence from our study is that further research on DCG captchas could concen-
trate on making these captchas better resistant to automated attacks while maintaining a good level of
usability. One of the main weaknesses of the DCG captcha instances is that the underlying game back-
ground is static, which is utilized by our attack framework to extract the foreground objects from the
game frames thereby undermining the captcha security. One direction to remedy this problem is to design
DCG CAPTCHAS variations that incorporate different forms of dynamic background. The variations
design may involve random noises , objects with dynamically changing color and luminance, object oc-
clusion, and dynamically changing background, and combinations thereof. Such variations would resist
our proposed attack, however they may be prune to other more sophisticated attacks as well they may
have low level of usability. Further work is needed to investigate the security as well as the usability of
such variations.

Further study is also needed to find the best/optimal method for selecting the moving and target objects.
For example, an attack can be developed on the challenges that is based on shape matching that can solve
the challenges by finding the similarities between the moving and target objects, and then for each of
the target objects the moving object with highest similarity could be considered to be its corresponding
answer object.
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