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ABSTRACT
Existing captcha solutions on the Internet are a major source of user
frustration. Game captchas are an interesting and, to date, little-
studied approach claiming to make captcha solving a fun activity
for the users. One broad form of such captchas – called Dynamic
Cognitive Game (DCG) captchas – challenge the user to perform a
game-like cognitive task interacting with a series of dynamic images.
We pursue a comprehensive analysis of a representative category of
DCG captchas. We formalize, design and implement such captchas,
and dissect them across: (1) fully automated attacks, (2) human-
solver relay attacks, and (3) usability. Our results suggest that the
studied DCG captchas exhibit high usability and, unlike other known
captchas, offer some resistance to relay attacks, but they are also vul-
nerable to our novel dictionary-based automated attack.

1. INTRODUCTION
The abuse of the resources of online services using automated

means, such as denial-of-service or password dictionary attacks, is a
common security problem. To prevent such abuse, a primary defense
mechanism is CAPTCHA [2] (denoted “captcha”), a tool aimed to
distinguish a human user from a computer based on a task that is
easier for the former but much harder for the latter.

The most commonly encountered captchas today take the form of
a garbled string of words or characters, but many other variants have
also been proposed (we refer the reader to [31], [7], [17] which pro-
vide excellent review of different captcha categories). Unfortunately,
existing captchas suffer from several problems. First, successful au-
tomated attacks have been developed against many existing schemes.
For example, algorithms have been designed that can achieve char-
acter segmentation with a 90% success rate [18]. Real world attacks
have also been launched against captchas employed by Internet gi-
ants [15, 19, 28].

Second, low-cost attacks have been conceived whereby challenges
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are relayed to, and solved by, users on different web sites or paid
human-solvers in the crowd [10, 13, 16]. In fact, it has been shown
that [23] such relay attacks are much more viable in practice than
automated attacks due to their simplicity and low economical costs.

Third, the same distortions that are used to hide the underlying
content of a captcha puzzle from computers can also severely de-
grade human usability [9,32]. More alarmingly, such usability degra-
dation can be so severe on many occasions that users get frustrated
and give up using the services that deploy captchas. Consequently,
companies lose customers and suffer economic losses [25].

Given these problems, there is an urgent need to consider alterna-
tives that place the human user at the center of the captcha design.
Game captchas offer a promising approach by attempting to make
captcha solving a fun activity for the users. These are challenges that
are built using games that might be enjoyable and easy to play for
humans, but hard for computers.

In this paper, we focus on a broad form of game captchas, called
Dynamic Cognitive Game (DCG) captchas. This captcha challenges
a user to perform a game-like cognitive task interacting with a se-
ries of dynamic images. Specifically, we consider a representative
DCG captcha category which involves objects floating around within
the images, and the user’s task is to match the objects with their re-
spective target(s) and drag/drop them to the target location(s). A
startup called “are you a human” [4, 27] has recently been offering
such DCG captchas.

Besides promising to significantly improve user experience, DCG
captchas are an appealing platform for touch screen enabled mobile
devices (such as smartphones). Traditional captchas are known to
be quite difficult on such devices due to their small displays and
key/touch pads, while touch screen games are much easier and al-
ready popular. Motivated by these unique and compelling advantages
of DCG captchas, we set out to investigate their security and usabil-
ity. Specifically, we pursue a comprehensive study of DCG captchas,
analyzing them from three broad yet intersecting dimensions: (1) us-
ability, (2) fully automated attacks, and (3) human-solver relay at-
tacks. Our main contributions are as follows:

1. We formalize, design and implement four instances of a repre-
sentative category of DCG captchas. (Sections 2 and 3)

2. We conduct a usability study of these instances, evaluating
them in terms of time-to-completion, error rates and perceived
usability. Our results indicate the overall usability to be very
good. (Section 4)

3. We develop a novel, fully automated framework to attack these
DCG captcha instances based on image processing techniques
and principles of unsupervised learning. The attack is compu-
tationally efficient and highly accurate, but requires building a
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dictionary to be effective. (Section 5)
4. We explore different variants of human-solver relay attacks

against DCG captchas. Specifically, we show that the most
simplistic form of relay attack (in line with traditional captcha
relay attack) reduces to a reaction time task for the solver, and
conduct a user study to evaluate the performance of this attack.
In general, our results indicate that DCG captchas with mobile
answer objects offer some level of resistance to relay attacks,
differentiating them from other captchas. Our user study may
also be of independent interest in other human-centered com-
puting domains. (Section 6)

2. BACKGROUND
We use the term Dynamic Cognitive Game (DCG) captcha to de-

fine the broad captcha schemes that form the focus of our work. We
characterize a DCG captcha as having the following features: (1)
dynamic because it involves objects moving around in image frames;
(2) either cognitive because it is a form of a puzzle that relates to
the semantics of the images or image recognition because it involves
visual recognition; and (3) a game because it aims to make captcha
solving task a fun activity for the user. In this section, we discuss the
security model and design choices for DCG captcha, and present the
DCG captcha category and associated instances studied in this paper.

2.1 Security Model and Design Choices
The DCG captcha design objective is the same as that of captcha:

a bot (automated computer program) must only be able to solve captcha
challenges with no better than a negligible probability (but a human
should be able to solve with a sufficiently high probability).1

A pre-requisite for the security of a DCG captcha implementation
(or any captcha for that matter) is that the responses to the challenge
must not be provided to the client machine in clear text. For example,
in a character recognition captcha, the characters embedded within
the images should not be leaked out to the client. To avoid such
leakage in the context of DCG captchas, it is important to provide a
suitable underlying game platform for run-time support of the imple-
mented captcha. Web-based games are commonly developed using
Flash and HTML5 in conjunction with JavaScript. However, both
these platforms operate by downloading the game code to the client
machine and executing it locally. Thus, if these game platforms were
directly used to implement DCG captchas, the client machine will
know the correct objects and the positions of their corresponding tar-
get region(s), which can be used by the bot to construct the responses
to the server challenges relatively easily. This will undermine the se-
curity of DCG captchas.

The above problem can be addressed by employing encryption and
obfuscation of the game code which will make it difficult for the
attacker (bot) on the client machine to extract the game code and thus
the correct responses. Commercial tools, such as SWF Encrypt [3],
exist which can be used to achieve this functionality. This approach
works under a security model in which it is assumed that the bot does
not have the capability to learn the keys used to decrypt the code and
to deobfuscate the code. A similar model where the attacker has
only partial control over the client machine has also been employed
in prior work [29].

In our model, we assume that the implementation provides con-
tinuous feedback to the user as to whether the objects dragged and
dropped to specific target region(s) correspond to correct answers or
not. The server also indicates when the game successfully finishes,
or times out. This feedback mechanism is essential from the usability
perspective otherwise the users may get confused during the solving

1For example, target thresholds might limit bot success rates below
0.6% [33], and human user success rates above 90% [11].

(a) Ships Game (b) Shapes Game

(c) Parking Game (d) Animals Game

Figure 1: Static snapshots of 4 game instances of a representative
DCG captcha analyzed in this paper (targets are static; objects are
mobile)

process. The attacker is free to utilize all of this feedback in attempt-
ing to solve the challenges, but within the time-out. We also assume
that it is possible for the server to preclude brute force attacks, such
as when the attacker tries to drag and drop the regions within the
image exhaustively/repeatedly so as to complete the game success-
fully. Such a detection is possible by simply capping the number of
drag/drop attempts per moving object.2

In addition to automated attacks, the security model for DCG captchas
(and any other captcha) must also consider human-solver relay at-
tacks [10, 23]. In fact, it has been shown that such relay attacks are
much more appealing to the attackers than automated attacks cur-
rently due to their simplicity and low cost [23]. In a relay attack,
the bot forwards the captcha challenges to a human user elsewhere
on the Internet (either a payed solver or an unsuspecting user access-
ing a web-site [14]); the user solves the challenges and sends the
responses back to the bot; and the bot simply relays these responses
to the server. Unfortunately, most, if not all, existing captcha so-
lutions are insecure under such a relay attack model. For example,
character recognition captchas are routinely broken via such relay at-
tacks [23]. For DCG captchas to offer better security than existing
captchas, they should provide some resistance to such human-solver
relay attacks (this is indeed the case as we demonstrate in Section 6).

2.2 Game Instances and Parameters
Many forms of DCG captchas are possible. For example, they

may be based on visual matching or semantic matching of objects,
may consist of multiple target objects or none at all, and may involve
static or moving targets. In this paper, we focus on one represen-
tative category, and four associated instances, of DCG captcha with
static target(s) (see Figure 1). Specifically, our studied DCG captcha
instances involve:

1. single target object, such as place the ship in the sea (the Ships
game).

2. two target objects, such as match the shapes (the Shapes game).
3. three target objects, such as feed the animals (the Animals

game).
4. no target objects, such as park the boat (the Parking game),

where the target area does not consist of any objects.

The Shapes game is based on visual matching whereas the other
games involve semantic matching.

2The “are you a human” DCG captcha implementation claims to
adopt a sophisticated (proprietary) mechanism, based on mouse
events, to differentiate human game playing activity from an auto-
mated activity. We did not implement such a human-vs-bot behav-
ioral analysis component because our paper’s goal is to examine the
underlying captcha scheme only. A behavioral component can be
added to other captchas also and represents a topic orthogonal to our
work. Besides, it is not clear if behavioral analysis would add secu-
rity; it may instead degrade usability by increasing false negatives.
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For each of these 4 instances, different parameterizations affect
security and usability. These include: (1) the number of foreground
moving objects, including answer objects and other “noisy” objects;
and (2) the speed with which the objects move. The larger the num-
ber of objects and higher the speed, the more difficult and time con-
suming it might be for the human user to identify the objects and
drag/drop them, which may degrade usability. However, increasing
the number and speed of objects may also make it harder for a com-
puter program to play the games successfully, which may improve
security. Thus, for our analysis of the DCG captcha, we will evalu-
ate the effect of these parameters for captcha usability and captcha
security (against automated as well as relay attacks).

3. DESIGN AND IMPLEMENTATION
Due to legal considerations, we did not resort to directly evalu-

ate an existing DCG captcha implementation (e.g., “are you a hu-
man” DCG captchas). In particular, developing automated attacks
against these captchas directly violates the company’s asserted terms
and conditions [5]. Instead, we designed and implemented our own
equivalent and generalized versions of DCG captchas from scratch,
and analyzed these versions. Developing our own versions also al-
lowed us to freely vary the game parameters, such as the number
and speed of objects, and investigate the DCG captcha security and
usability with respect to these parameters.3

We created four instances of games as specified in Section 2.2 us-
ing Adobe Flash.

The game image/frame size is 360 x 130 pixels, which can eas-
ily fit onto a web page such as in a web form. Each game starts
by placing the objects in certain pre-specified locations on the im-
age. Then, each object picks a random direction in which it will
move. A total of 8 directions were used, namely, N, S, E, W, NE,
NW, SE and SW. If the chosen direction is one of E, W, S, or N, the
object will move (across X or Y axis) by 1 pixel per frame in that
direction. Otherwise, the object will move

√
2 = 1.414 pixels per

frame along the hypotenuse, corresponding to 1 pixel across both X
and Y axes. This means that on an average the object moves 1.207
[= (1 ∗ 4 + 1.414 ∗ 4)/8] pixels per frame. The object continues in
the current direction until colliding with another object or the game
border, whereupon it moves in a new random direction.

The game starts when the user presses a “Start” button on the
screen center. Each game briefly explains to users their task, e.g.,
“Place the ships on the sea.” The game ends when the user clicks/drags
all the correct objects onto their corresponding target(s), in which
case a “Game Complete” message is provided. To successfully match
an object with its target, the user clicks inside the bounding box
across the shape of the object, drags the object and drops it by re-
leasing it inside the bounding box across the respective target. The
game must be successfully completed within a fixed time (we allow
60s); the user gets feedback on the correctness of every drag-drop,
by a star on success and a cross on failure (Figure 6, Appendix A).

For each of the 4 games, we set 5 parameterizations, choosing
object speed (low, medium, high) as (10, 20, 40) frames per second
(FPS), and number of moving objects as (4, 5, 6). (These frame
rates translate into average object speeds of 12.07, 24.14 and 48.28
pixels/second, resp., given the objects move 1.207 pixels/frame.) For
each game, we used 5 combinations of speed and number of objects:
(10 FPS, 4 objects); (20 FPS, 4 objects); (20 FPS, 5 objects); (20
FPS, 6 objects); and (40 FPS, 4 objects). This resulted in a total of
20 games in our corpus.

3Although our implementation and analyses does not directly involve
the “are you a human” captchas, it is generalized enough for our
results to be applicable to these captchas also (i.e., the ones that fall
under the categories evaluated in our work).

4. USABILITY
In this section, we report on a usability study of our representative

DCG captcha category.

4.1 Study Design, Goals, and Process
Our study involved 40 participants who were primarily students

from various backgrounds. (For demographics, see Appendix A, Ta-
ble 9). The study was web-based and comprised of three phases.
The pre-study phase involved registering and briefly explaining the
participants about the protocols of the study. In particular, the par-
ticipants were shown “consent information,” which they had to agree
before proceeding with the study. This was followed by collecting
participant demographics and then the participants playing the differ-
ent DCG captcha games. This actual study phase attempted to mimic
a realistic captcha scenario which typically involves filling out a form
followed by solving captcha. To avoid explicit priming, however, we
did not mention that the study is about captcha or security, but rather
indicated that it is about assessing the usability of a web interface.
In the post-study phase, participants answered questions about their
experience with the tested DCG captchas. This comprised the stan-
dard SUS (Simple Usability Scale) questions [8], a standard 10-item
5-point Likert scale (‘1’ represents “Strong disagreement” and ‘5’
represents “Strong agreement”). SUS polls satisfaction with respect
to computer systems [6], in order to assess their usability. Addition-
ally, we asked several other questions related to the games’ usability.

In the actual study phase, each participant played 20 instances as
discussed in Section 3, aimed at understanding how different param-
eterizations impact users’ solving capabilities. The order of games
presented to different participants involved a standard 20x20 Latin
Square design to counter-balance learning effects. Via our study, our
goal was to assess the following aspects of the DCG captchas:

1. Efficiency: time taken to complete each game.
2. Robustness: likelihood of not completing the game, and of in-

correct drag and drop attempts.
3. Effect of Game Parameters: the effect of the object speed and

number on completion time and error rates.
4. User Experience: participants’ SUS ratings and qualitative feed-

back about their experience with the games.

For each tested game, completion times, and errors were automat-
ically logged by our web-interface software.

4.2 Study Results
We now provide the results from our usability study, including

time to completion and error rates, as well as perceived qualitative
aspects of the methods based on user ratings.
Completion Time: Table 1 shows the completion time per game
type. Clearly, all games turned out to be quite fast, lasting for less
than 10s on an average. Users took longest to solve the Animals
game with an average time of 9.10s, whereas the other games took
almost half of this time. This might have been due to increased se-
mantic load on the users in the Animals game to identify three target
objects and then match them with the corresponding answer objects.
Moreover, we noticed a decrease in the solving time (equal to 3.84s)
when the target objects were decreased to 2 (i.e., in the Shapes game),
and this time was comparable to games which had 1 target object in
the challenge (Ships and Parking). A one-way repeated-measures
ANOVA test showed significant difference (at 95% confidence) in
the mean timings of all 4 types of games (p < 0.0001, F = 79.98).
Aalyzing further using pairwise paired t-tests with Bonferroni cor-
rection, we found significant difference between the mean times of
following pairs: Animals and Parking (p < 0.001), Ships and Shapes
(p < 0.0005), Animals and Ships (p < 0.001), Animals and Shapes
(p < 0.001), and Parking and Shapes (p = 0.0024).
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Table 1: Error rates per click and completion time per game type
Game
Type

Completion Time (s)
mean (std dev)

Error Rate Per Click
mean

Ships 4.51 (1.00) 0.04
Animals 9.10 (0.96) 0.05
Parking 4.37 (0.90) 0.09
Shapes 5.26 (0.59) 0.03

Error Rates: An important result is that all the tested games yielded
100% accuracy (overall error rate of 0%). In other words, none of
the participant failed to complete any of the games within the time
out. This suggests our DCG captchas instances are quite robust to
human errors.

Next, we calculated the likelihood of incorrect drag and drop at-
tempts (error rate per click). For example, in the Animals game, an
incorrect attempt would be to feed the monkey with a flower instead
of a banana. We define the error rate per click as the number of in-
correct objects (from the pool of all foreground objects) dragged to
the target area divided by the total number of objects dragged and
dropped. The results are depicted in Table 1. We observe that the
Shape game yields the smallest average per click error rate of 3%.
This suggests that the visual matching task (as in the Shapes game)
is less error prone compared to the semantic matching task (as in the
other games). The game challenge which seemed most difficult for
participants was the Parking game (average per click error rate 9%).
Since objects in this game are relatively small, participants may have
had some difficulty to identify them.
Effect of Object Speed and Number: Table 2 shows the perfor-
mance of the game captchas in terms of per click error rates and
completion time as per different object speeds. We can see that
the maximum number of per click errors were committed at 10 FPS
speed. Looking at the average timings, we find that it took longest
to complete the games when the objects move at the fastest speed
of 40 FPS, while 20 FPS yielded fastest completion time followed
by 10 FPS. ANOVA test revealed statistical difference among the
mean completion time corresponding to three speeds (p = 0.0045,
F = 5.65). Further analyzing using the t-test with Bonferroni cor-
rection, we found statistical difference between the mean timing cor-
responding to the following pair of speeds only: 10 FPS and 20 FPS
(p = 0.0001).

Table 2: Error rates per click and completion time per object speeds
Object
Speed

Completion Time (s)
mean (std dev)

Error Rate Per Click
mean

10 FPS 5.74 (2.11) 0.06
20 FPS 4.90 (2.22) 0.05
40 FPS 6.53 (2.87) 0.04

Another aspect of the usability analysis included testing the effect
of increase in the number of objects (including noisy answer objects)
on the overall game performance. Table 3 summarizes the per click
error rates and completion time against different number of objects.
Here, we can see a clear pattern of increase, albeit very minor, in av-
erage completion time and average rate with increase in the number
of objects. This is intuitive because increasing the number of ob-
jects increases the cognitive load on the users which may slow down
the game play and introduce chances of errors. ANOVA test did not
indicate this difference to be significant, however.
User Experience: Now, we analyze the data collected from the par-
ticipants during the post-study phase. The average SUS score came
out to be 73.88 (standard deviation = 6.94). Considering that the av-
erage SUS scores for user-friendly industrial software tends to hover
in the 60–70 range [21], the usability of our DCG game captcha in-
stances can be rated as high.

Table 3: Error rates per click & completion time per # of objects
# of Objects Completion Time (s)

mean (std dev)
Error Rate Per Click
mean

6 6.58 (1.69) 0.06
5 5.30 (2.28) 0.05
4 4.90 (2.22) 0.04

In addition to SUS, we asked the participants a few 5-point Likert
scale questions about the usability of the games (‘1’ means “Strong
Disagreement”). Specifically, we asked if the games were “visu-
ally attractive” and “pleasurable,” and whether they would like to
use them in “practice.” Table 4, shows the corresponding average
Likert scores. We found that 47% percent participants felt that the
games were visually attractive and 45% said that it was pleasurable
to play the games. These numbers indicate the promising usabil-
ity exhibited by the games. We further inquired users if they noticed
change in speed or number of objects in the games. 27.5% noticed no
change (increase and/or decrease) in speed of objects, whereas only
22.5% noticed no change in number of objects (see Table 5). Thus,
the change in the number of objects and speed (within the limits we
tested) was noticeable by a large fraction of participants.

Table 4: User feedback on game attributes
Attribute Likert Score

mean (std dev)
Visually Attractive 3.18 (0.94)
Pleasurable 3.33 (0.96)

Table 5: % of users noticing change in speed and number of objects
Object Speed (%)
Moved faster 30
Moved slower 5
No change 27.5
Both slower and faster 37.5
Number of objects (%)
Increased 47.5
Decreased 2.5
No change 22.5
Both increase and decrease 27.5

Summary of Usability Analysis: Our results suggest that the DCG
captcha representatives tested in this work offer very good usability,
resulting in short completion times (less than 10s), very low error
rates (0% per game completion, and less than 10% per drag and drop
attempt),4 and good user ratings. We found that increasing the object
speed and number is likely to degrade the game performance, but up
to 6 objects and up to 40 FPS speed yield a good level of usability.
Although our study was conducted with a relatively young partici-
pant pool, given the simplcity of the games (involving easy matching
and clicking tasks), the game performance would generally be in line
with these results, as shown by our parallel study with Mechanical
Turk participants [22].

5. AUTOMATED ATTACKS
Having validated, via our usability study, that it is quite easy for

the human users to play our DCG captcha instances, we next pro-
ceeded to determine how difficult these games might be for the com-
puter programs. In this section, we present and evaluate the perfor-
mance of a fully automated framework that can solve DCG captcha
challenges based on image processing techniques and principles of
unsupervised learning. We start by considering random guessing at-
tacks and then demonstrate that our framework performs orders of
magnitude better than the former.
4When contrasted with many traditional captchas [9], these timings
are comparable but the accuracies are better.

4



5.1 Random Guessing Attack
An attacker given a DCG captcha challenge can always attempt to

perform a random guessing attack. Let us assume that the attacker
knows which game he is being challenged with as well as the location
of the target area (e.g., the blue region containing the target circle
and pentagon in the Shapes game) and the moving object area (e.g.,
the white region in the Shapes game within which the objects move).
Although determining the latter in a fully automated fashion is a non-
trivial problem (see our attack framework below), an attacker can
obtain this knowledge with the help of a human solver.

However, the attacker (bot) still requires knowledge of: (1) the
foreground objects (i.e., all the objects in the moving object area)
and (2) the target objects (i.e., the objects contained within the target
area). A randomized strategy that the attacker could adopt is to pick
a random location on the moving object area and drag/drop it to a
random location on the target area. More precisely, the attacker can
divide the moving object area and the target area into grids of reason-
able sizes so as to cover the sizes of foreground moving objects and
target objects. For example, the moving object area can be divided
into a 10 pixel x 10 pixel grid and target region can be divided into
a 3 pixel x 3 pixel grid (given that the target area size is roughly 3
times the object area size). If there are a total of r target objects, the
total number of possibilities in which the cells (possibly containing
the answer objects) on the object area can be dragged and dropped
to the cells on the target area are given by t = C(100, r) ∗ P (9, r).
This is equivalent to choosing r cells in the object area out of a total
of 100 cells, and then rearranging them on to 9 cells in the target area.
Thus, the probability of attacker success in solving the challenge in a
single attempt is 1/t. For the DCG captcha instances targeted in this
paper, r is 3, 2 and 1, resulting in the respective success probabilities
of 0.00000123%, 0.000281% and 0.1%. Each attempt corresponds
to r drag-and-drop events. Even if the attacker is allowed a limited
(3-4) number of attempts to solve the captcha, these probabilities are
still much lower than the target probabilities for a real-world captcha
system security (e.g., 0.6% as suggested by Zhu et al. [33]).

While this analysis suggests that such DCG captchas are not vul-
nerable to naive guessing attacks, the next step is to subject them to
more sophisticated, fully automated attacks, as we pursue below.

5.2 Our Automated Attack and Results
Our attack framework involves the following phases:
1. Learning the background image of the challenge and identify-

ing the foreground moving objects. A background is the can-
vas on which the foreground objects are rendered. The fore-
ground objects, for example, in the Ships game, as shown in
Figure 1(a), are bird, ship, monkey, and squirrel.

2. Identifying the target area and the target area center(s). For
example, the sea in the Ships game, and the animals in the
Animals game.

3. Identifying and learning the correct answer objects. For exam-
ple, the ships in the Ships game.

4. Building a dictionary of answer objects and corresponding tar-
gets, the background image, the target area and their visual
features, and later using this knowledge base to attack the new
challenges of the same game.

5. Continuously learning from new challenges containing previ-
ously unseen objects.

Next, we elaborate upon our design and matlab-based implemen-
tation per each attack phase as well as our experimental results. We
note that, on a web forum [1], the author claims to have developed an
attack against the “are you a human” captcha. However, unlike our
generalized framework, this method is perfected for only one simple
game that has one single target area and a fixed set of answer objects.
It is not known whether or how easily this method can be adapted to

handle different games, games with multiple instances that carry dif-
ferent sets of answer objects, and those with multiple target objects.
Since only one game is cracked, one needs to keep refreshing the
game page, if allowed, until that specific game appears. Since no
technical details are provided in [1], we can only doubt if any back-
ground learning or object extraction is implemented by observing the
short time it takes to finish the attack.
(1) Background & Foreground Object Extraction: To extract the
static background of a DCG challenge, the intuitive way is to su-
perimpose some sampling frames that cross a valid period (e.g., 40
frames captured at a fixed time interval (0.2s)), then select the most
frequent color value (dominant color) from each pixel as the back-
ground color for that pixel. This is based on the assumption that
the background image is static and the foreground objects are con-
stantly moving, such that the true background color almost always
appears as the most frequent (or consistent) color observed for a
pixel. By subtracting the background image from a video frame, the
foreground moving objects become readily extractable. To further
reduce the computational cost, a 6-bit color code5, rather than a 24-
bit or 3-byte representation of a color value, is used to code the video
frame, the learned background image, and the learned foreground
objects.

However, one drawback of this preliminary method is that if the
moving speed of the foreground objects is too slow, especially when
some foreground objects hover over a small area, the dominant color
values of most pixels in that area will be contributed by the fore-
ground objects instead of by the background. A shadow of fore-
ground objects may appear as pseudo patches in the background im-
age as shown in Figure 2(b) for the Shapes game of Figure 2(a),
indicated by the dashed rectangle. Using more sampling frames for
initial background learning could alleviate this problem, but result-
ing in a time-consuming learning procedure. Our preliminary experi-
ment indicates that an average 30.9s, generated by running the above
learning method 15 times per game challenge, is needed for learning
a game background completely.

In our new method, we overcome the conflict between the number
of sampling frames and the pseudo patch effect by actively chang-
ing the location of one moving object per sampling frame. In the
first step, a few frames N1 (e.g., 10 frames captured in 0.3s interval)
are collected to generate the initial background that is used to ex-
tract the foreground object (through background subtraction) in the
next step. Because the number of sampling frames is very limited,
pseudo patches may exist. The second step, called active learning, is
to actively drag-and-drop each moving object to a specified destina-
tion, which aims to speed up the object movement in order to reduce
the pseudo patch effect. Then, N2 (N2 > N1) sampling frames are
re-collected whenever a moving object is actively dragged to a new
location. Because of the high efficiency of the moving object detec-
tion and the latter mouse operations, enough sampling frames (e.g.,
N2 = (30, 50)) without/with minor hovering effect could be collected
within a short period. The new background is detected again based
on the dominant color of the collected frames. Figure 2(c) and 2(d)
show the detected background with non-trivial pseudo patches and
with a minor patch, resp., by applying the 1st and 2nd steps of the
new active learning method on the Shapes game of Figure 2(a). Mi-
nor patches could affect the detection of a complete object, but since
the affected area is minor, partial matching could still be used in the
latter identification of the answer object.

Each learned background image is saved in the database. After
removing the extracted background from 5-8 equally distant frames
from the collected frames, the objects in each of the selected frame
are extracted. The objects below a certain size threshold were dis-
carded as noise. The frame with the maximum number of objects
5http://en.wikipedia.org/wiki/Color_code
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Figure 2: Detected backgrounds. (a) original frame image; (b)
detected background with pseudo patches by using preliminary
method; (c) detected background with pseudo patches after perform-
ing the 1st step of the proposed method; (d) detected background
with a minor patch after performing the 2nd step of the proposed
method.

was then selected to extract various objects. Using multiple frames
for object extraction also helped us discard the frames in which the
objects overlapped each other and were hence detected as a single
object instead of distinct individual objects.

According to our experimental results, the likelihood of observing
such pseudo patches is sufficiently low (< 7%). However, pseudo
patches may not pose a big issue. Even though the existence of
pseudo patches may result in over-segmented foreground objects when
they overlap each other, a partially detected object can still be used
to extract visual features and later to locate an object that matches
the visual features at the time of attacking.

As the final step as part of this phase, the visual features, coded as
color code histograms (a visual feature commonly used to describe
the color distribution in an image), of the foreground objects and the
background image, are stored in the database, together with some
other meta-data such as the object size and dimensions.
(2) Target Area Detection: Identifying the target area requires anal-
ysis of the background extracted in the previous phase. For this pur-
pose, we implemented two alternative approaches, namely the Min-
imum Bounding Rectangle (MBR) [12] method and the Edge-based
method, and compared and contrasted them with regard to detection
accuracy and time efficiency.

The MBR-based method is based on the observation that the ac-
tivity/moving area of foreground objects has no or very little over-
lap with the target area. Therefore, by detecting and removing the
foreground moving area from the background image, a reasonable
estimate of the target area can be obtained. As the first step of this
approach, the selected 5-8 frames and their foreground object masks
from the previous phase are used to identify the foreground moving
area mask. More specifically, the foreground mask is generated by
identifying those pixels that have a different color code value than
that of the corresponding pixels in the background image. Then, a
Minimum Bounding Rectangle (MBR) is generated that bounds the
area where the foreground objects are detected in the current frame
(Figure 3). The final estimate of the foreground moving area, denoted
as MBRfinal, is the superimposition of all the MBRs extracted
from the sample frames, also represented as a minimum bounding
rectangle (see Figure 3(c)).

After the removal of the entire area bounded by MBRfinal from
the background image, the remaining background is divided into
eight sub-areas as shown in Figure 4. The sub-area with the largest
area (e.g., sub-area #2 in Figure 4) is identified as the target area,
and its centroid is the target center. It is worth noting that the com-
putational cost of this method is very low (O(MN), where N is
the number of pixels in a game scene, M is the number of sample
frames, and M � N ) since the foreground object masks are read-
ily available as part of the output from the previous phase. In other
words, the most time consuming part, which is the extraction of fore-
ground objects (O(MN2)) from sample frames, has been covered in
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Figure 3: Target Detection. (a) The detected background for the
Parking challenge; (b) One sample frame represented in color code;
(c) Detected foreground objects from (b) and their MBR.

the previous phase.6
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Figure 4: Eight sub-areas generated according to moving area of
foreground objects

The Edge-based method employs a different design principle than
MBR-based method. It is based on the hypothesis that there are
strong edges in the target area because of the likely presence of ob-
jects in the target area, such as the dog and the squirrel in the Animals
game. The steps involved in the edge-based method are listed below:

1. Collect a sequence of frames and learn the background image
as in the MBR-based method.

2. Detect edge pixels on the background image. Group connected
edge pixels into edge segments.

3. Remove trivial edge segments that have too few pixels by a
user-input threshold.

4. The mean of all the centroids of remaining segments is used as
the target area center.

The comparison results of the MBR-based and Edge-based meth-
ods are shown in Figure 5. The solid square dot in each game scene
in Figure 5(a) is the MBR-detected target area center for that chal-
lenge. Also displayed in Figure 5(a) are the detected foreground ob-
ject moving areas, namely MBRfinal, displayed as a black rect-
angle in each game scene. According to our experimental results,
MBR-based method was able to detect the correct target area center
in all the challenges. In contrast, for the edge-based method, it is
difficult to find a global threshold that works for all the challenges.
Rather, we need to adjust the threshold for a specific game in order
to achieve “reasonably good” results, and this method is also sensi-
tive to the existence of texts in the background. Figure 5(b) shows
the “optimal” edge detection result for each challenge with a manu-
ally tuned threshold which is different for each challenge. As shown
in Figure 5(c), some target area centers are incorrectly detected be-
cause some edge segments belong to the texts that are part of the
background but not of the target area. This means that the accuracy
of the edge-based method could be significantly undermined by the
presence of strong edges in the background that are not part of the
target area (e.g., presence of texts) and the absence of objects in the
6We also implemented an alternative design, called the exclusion
method (see Appendix B), which detects the target area by simply
removing foreground object pixels accumulated from all the sample
frames. However, while this method is slightly faster than the MBR-
based method, it is less robust.
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Figure 5: Comparison of the target area center detection results be-
tween the MBR-based and the edge-based methods. (a) Results from
MBR-based method (solid square dot represents the target area cen-
ter and black rectangle represents the object moving area); (b) cen-
troids of non-trivial edges from the edge-based method; and (c) final
target area centers from the edge-based method.

target area (e.g., the absence of objects in the target area of the Ships
Game). As for efficiency, the MBR-based method has a time com-
plexity of O(MN) where M is a constant in the range of 5-8, while
the time complexity of the edge-based method is O(NL+N2) where
L is a constant in the range of 3-8 estimated based on the typical time
complexity of a non-combining edge detection method [30]. Over-
all, this shows that the MBR method outperforms the Edge method
on several aspects.
(3) Answer Object & Target Location Detection: Once the target
area is identified, the next step is to identify the correct answer ob-
jects and their respective matching sub-target areas. Since a game
can not have too many sub-target areas (otherwise, usability will
be compromised), we divide the entire probable target area into 9
equal-sized blocks, each represented by its area centroid, drag each
foreground object to each of the 9 centroids, and stop and record
the knowledge learned whenever there is a “match.” A match occurs
when an answer object is dragged to its corresponding sub-target area
(e.g., a “bone” dragged onto a “dog”). This is detected by monitor-
ing the change of the area summation of all the foreground objects,
since an answer object, once dragged to its correct target location,
will stay in the target area and therefore result in a reduction of the
foreground area. In our experiments, this method has proven 100%
effective when applied to all four games. As for efficiency, while
the worst case upper bound is O(N), where N is the total number
of foreground objects, in practice, much less number of drags are
required. Our experimental results show that, with 5 foreground ob-
jects for each game (the maximum setting) and 15 training runs for
each game, the average number of drags needed for a game is 9,
i.e., less than 2 drags per each object on average. In case the server
imposes a strict limit on drag/drop attempts, this process can be re-
peated over mutiple runs.
(4) Knowledge Database Building and Attacking: The background,
target area, and learned answer objects as well as their correspond-
ing sub-target areas together constitute the knowledge database for a
game. After learning about sufficient number of games, whenever a
new game challenge is presented, the knowledge base is checked for
the challenge. The target area of the currently presented challenge
is matched with the target areas present in the database to identify
the challenge. If a match is found, the extraction of objects from
the foreground follows. The visual features such as the color code
histogram of the currently extracted objects are matched with that of
the answer objects in the database for that challenge. The extracted
objects identified as correct answer objects are then dragged to their
corresponding sub-target areas. To measure the performance of our

approach, we ran this attacking module 100 times for each game in-
stance, and the average successful attacking time is 6.9s with the
number of foreground objects ranging from 4 to 6. The maximum
successful attacking time is 9.3s, observed for an instance of the An-
imal game with 6 foreground objects. These timings are in line with
those exhibited by honest users in our usability study, which will
make it impossible for the captcha server to time-out our attack.
(5) Continuous Learning: During attacking, if a challenge matches
a game in our database but contains previously unseen answer ob-
ject(s) (e.g., a new ship object in a Ships game instance), the attack
will not terminate successfully. Whenever such a situation arises, an
answer object learning module that is similar to the aforementioned
module is activated, but differs from the latter in that it only needs
to drag a potential answer object to each of the previously learned
sub-target areas that have matching answer objects in the database.
The newly learned answer objects and their corresponding sub-target
area centroids are then added to the knowledge base for that game.

5.3 Discussion and Summary
There are two benefits in the background learning. First, the learned

background can be used to quickly extract foreground moving ob-
jects. Second, the learned background can be used to locate the tar-
get area where foreground answer objects need to be dragged to. The
proposed active learning is tested on all 36 game challenges (i.e., 3
(speeds), 3 (# of objects), 4 (game prototypes)). N1 is set to be 10.
The shape objects in the Shape Game have larger size than objects
in other games, which easily result in pseudo patch effect when 6
moving objects exist in the game window with limited size. There-
fore, N2 is set to be 50 for the Shape Game challenges with 6 objects
while 30 frames is used for all the other game challenges. In total, a
complete background can be extracted in average 9.04s that is about
three times faster than the preliminary method mentioned earlier (i.e.,
30.9s).

The adoption of a large image database for each answer object
could pose a challenge to our approach since it allows for the cre-
ation of many different foreground answer object configurations for
the same game. In the worst case, a challenge may contain none of
the previously learned answer objects for that particular game. Con-
tinuous learning will be activated in such cases and can also be used
as a way for auto attacking in the run time. Such cases fall into the
category of “known foreground answer objects and known target ob-
jects,” and the success rate can be estimated using the number of
foreground objects (o), number of answer objects (t), and number
of drag and drop attempts allowed for each object (a). For exam-
ple, if o = 5, t = 3 and a = 2, the success rate is approximately

23

C(5,3)3!
= 13%. Though as low as it seems, the rate itself is not

affected by the image database size.
During attacking, there is a time lapse between selecting a fore-

ground object and verifying whether it is an answer object. Both fea-
ture extraction and database lookup (through feature matching) take
time. In our implementation, we chose to click and hold a selected
object until a match with an answer object in the database is regis-
tered. In doing so, we guarantee that an answer object, once verified,
can be readily dragged and dropped, thus to avoid dealing with the
issue of constantly moving objects. However, this approach may fail
if a constraint is added by the captcha implementation that limits the
amount of time one can hold an object from moving. A less invasive
attacking method would be to utilize parallel processing, in which
one thread is created to perform feature extraction and comparison,
and another parallel thread is used to track and predict the movement
of the object currently under verification.
Summary of Automated Attack Analysis: Our attack represents a
novel approach to breaking a representative DCG captcha category.
Attacking captcha challenges, for which the knowledge already ex-
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ists in the dictionary, is 100% accurate and has solving times in line
with that of human users. However, building the dictionary itself
is a relatively slow process. Although this process can be sped-up
as we discussed, it may still pose a challenge as the automated at-
tack may need to repeatedly scan the different captcha challenges
from the server to continuously build an up-to-date dictionary. The
defense strategies for the DCG captcha designers may thus include:
(1) incorporating a large game database as well as large object im-
age databases for each game; and (2) setting a lower game time-out
(such as 20-30s) within which human users can finish the games but
background learning does not fully complete. Since our attack relies
on the assumption that the background is static, another viable de-
fense would be to incorporate a dynamically changing background
(although this may significantly hurt usability). It is also important
to note that, as per the findings reported in [23], the use of fully auto-
mated solving services represent economical hurdles for captcha at-
tackers. This applies to traditional captchas as well as DCG captchas.
Eventually, this may make automated attacks themselves less viable
in practice [23], and further motivates the attacker, similar to other
captchas, to switch to human-solver attacks against DCG captchas.

6. RELAY ATTACKS
Human-solver relay attacks are a significant problem facing the

captcha community, and most, if not all, existing captchas are com-
pletely vulnerable to these attacks routinely executed in the wild [23].
In this section, we assess DCG captchas w.r.t. such attacks.

6.1 Difficulty of Relaying DCG captchas
The attacker’s sole motivation behind a captcha relay attack is

to completely avoid the computational overhead and complexity in-
volved in breaking the captcha via automated attacks. A pure form
of a relay attack, as the name suggests, only requires the attacker
to relay the captcha challenge and its response back and forth be-
tween the server and a human-solver. For example, relaying a textual
captcha simply requires the bot to (asynchronously) send the image
containing the captcha challenge to a human-solver and forward the
corresponding response from the solver back to the server. Similarly,
even video-based character recognition captchas [24,31] can be bro-
ken via a relay attack by taking enough snapshots of the video to
cover the captcha challenge (i.e., the distorted text within the video)
which can be solved by remotely located humans. They can also be
broken by simply taking a video of the incoming frames and relaying
this video to the human-solver.

In contrast, DCG captchas offer some level of resistance to relay
attacks, as we argue in the rest of this section. In making this ar-
gument, we re-emphasize that the primary motivating factors for a
human-solver relay attacker are simplicity, low economical cost and
practicality. As such, a relay attack that requires sophistication (e.g.,
special software, complexity and overhead), is likely not viable in
practice [23].

There appears to be a few mechanisms using which DCG captchas
could potentially be subject to a relay attack. First, if the server sends
the game code to the client (bot), the bot may simply ship the code
off to the human-solver, who can complete the game as an honest
user would. However, in the DCG captcha security model (Section
2.1), the game code is obfuscated and can be enforced to be exe-
cutable only in a specific domain/host (e.g., only the client machine
challenged with the captcha) authorized by the server using existing
tools7, which will make this attack difficult, if not impossible.

The second possibility, called Stream Relay, is for the bot to em-
ploy a streaming approach, in which the bot can synchronously relay
the incoming game stream from the server over to the solver, and
then relay back the corresponding clicks made by the solver to the

7http://www.kindi.com/swf-encryption.php

server. Although the Stream Relay attack might work and its pos-
sibility can not be completely ruled out, it presents one main obsta-
cle for the attacker. Streaming a large number of game frames over
a (usually) slow connection between the bot (e.g., based in the US)
and the solver’s machine (e.g., based in China) may degrade the game
performance (similar to video streaming over slow connections), re-
ducing solving accuracy and increasing response time. Such differ-
ences from an average honest user game play session may further be
used to detect the attack with high accuracies, as shown in our recent
work [22].

These challenges associated with the above relay attack approaches
motivate us to consider another much simpler and more economi-
cal relay attack approach called Static Relay. Here, the bot asyn-
chronously relays a static snapshot of the game to a human-solver
and uses the responses (locations of answer objects and that of the
target objects) from the solver to break the captcha (i.e., drag and
drop the object locations provided by the solver to the target object
locations provided by the solver).

The Static Relay attack approach is very simple and in line with a
traditional captcha attack (and thus represents a viable and economi-
cal relay attack). However, it is expected to have poor success rates.
The intuitive reason behind this is a natural loss of synchronization
between the bot and the solver, due to the dynamic nature of DCG
captchas (moving objects). In other words, by the time the solver
provides the locations of target object and the answer objects within
a challenge image (let us call this the nth frame), the objects them-
selves would have moved in the subsequent, kth, frame (k > n),
making the prior responses from the solver of no use for the bot cor-
responding to the kth frame. Recall that the objects move in random
directions and often collide with other objects and game border, and
therefore it would not be possible for the bot to predict the location
of an object in the kth frame given the locations of that object in the
nth frame (n < k). Such a loss of synchronization will occur due to:
(1) communication delay between the bot and human solver’s ma-
chine, and (2) the manual delay introduced by the solver him/herself
in responding to the received challenge.

A determined Static Relay attacker (bot) against the DCG captcha
can, however, attempt to maximize the level of synchronization with
the solver. Although it may not possible for the attacker to minimize
(ideally, eliminate) the communication delays (especially for bots po-
tentially thousand of miles away from human solvers), it may be pos-
sible to minimize the manual delay via the introduction of carefully
crafted tasks for the human-solver. In the rest of this section, we
report on an experiment and the results of an underlying user study
in order to evaluate the feasibility of Static Relay attack against our
DCG captcha instances. This novel experiment takes the form of a
reaction time or reflex action task for the human-solver. A reaction
time task involves performing some operation as soon as a stimulus is
provided. A common example is an athlete starting a race as quickly
as a pistol is shot. The subject of reaction time has been extensively
studied by psychologists (see Kosinski’s survey [20]).

6.2 Reaction Time Static Relay Experiment
Our hypothesis is that DCG captchas will be resistant to the Static

Relay attack, and so we give the attacker a strong power in the fol-
lowing sense: our tests eliminate the communication delay between
the bot and the human solver, by putting them on the same machine.
The focus of the experiment then shifts towards motivating human-
solvers to perform at their best by employing meaningful interfaces
and by framing the underlying task in a way that is amenable to these
solvers. In particular, since attacker’s goal is to minimize the delay
incurred by the human solver in responding to the challenges, we
model human-solver attack as a reaction time [20] task described be-
low. Our Section 6.3 study further facilitates the attacker with human
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solvers having low response times and quick reflex actions, such as
youths in their 20s [20].
Experimental Steps: The reaction time Static Relay attack experi-
ment consists of the following steps:

1. A snapshot of the game challenge is extracted by the bot (B),
and the human solver (H) is asked to identify/mark a target ob-
ject for that game challenge (e.g., the dog in the Shapes game).

2. For each target object identified above, H is asked to identify
one answer object in the snapshot specific to the game chal-
lenge (e.g., bone for the dog in the Shapes game). However,
since B wants to minimize the delay between the time the chal-
lenge snapshot is given and the response is received from H,
a stimulus will be associated with the snapshot. We make use
of a combination of (1) a visual stimulus (the border across
the game window flashes in Red) and (2) an audio stimulus (a
beeping sound). The task for H is to identify an answer object
in the image as soon as the stimuli are provided.

3. B will emulate the dragging and dropping of the objects based
on the response of H (simply use the pixel values provided by
H as the coordinates of the objects and respective targets).

4. Steps 2-3 are repeated until all answer objects for a given target
object are identified by H and dragged/dropped by B.

5. Step 1 is repeated until all target objects have been covered.

The experiment succeeds if the captcha game completes success-
fully, i.e., if all answer objects are dragged to their respective targets
by B per input from H.
Experimental Implementation: Our implementation of the above
experiment consists of a user interface (UI) developed in Java that
interacts with the human solver and a bot. The core of this imple-
mentation is designed using an algorithm following which the screen
captures are updated and displayed on the screen as well as an algo-
rithm used to make the mouse drag and drop of the objects.

The game starts by the bot capturing an image of the game chal-
lenge from the browser (i.e., the captcha challenge that the bot re-
ceived from the server) and displays that image in the UI. The solver
is then asked to click on a target object within that image. After se-
lecting the target, the solver is instructed to click a “Next” button,
wait for a flashing and a beep (our stimuli), followed by clicking the
object that matches with that target. Once the solver has clicked on
the object, the bot takes control of the mouse by clicking and drag-
ging the object to the target in the flash game. The solver must be
able to identify and choose the correct object before the object has
moved too far in the flash game displayed in the browser. Whether
the click is successful or not, a new screen capture is retrieved from
the game on the browser. If the solver has chosen the object in time
on the UI, then he/she can pick a new target if one exists by clicking
on the “New Target” button. If the solver has missed clicking on the
object fast enough (i.e., if the click was not successful), the solver
will automatically get another attempt to choose the correct object
followed by the flashing and the beep. Figure 7, Appendix A depicts
the UI of our implementation.

6.3 Static Relay Attack User Study
We now report on a user study of the aforementioned reaction time

relay attack experiment presented in Section 6.2.

6.3.1 Study Design, Goals and Process
In the relay attack study, users were given the task to play our 4

game instances through the UI (described above). The study com-
prised of 20 participants, primarily Computer Science university
students. This sample represents a near ideal scenario for an attacker,
given that young people typically have fast reaction times [20], pre-
sumably optimizing the likelihood of the success of the relay attack.

The demographics of the participants are shown in Appendix A, Ta-
ble 10. The study design was similar to the one used in our usability
study (Section 4). It comprised of three phases. The pre-study phase
involved registering and briefly explaining the participants about the
protocols of the study. This was followed by collecting participant
demographics and then the participants playing the games via our in-
terface. The participants were told to perform at their best in playing
the games. The post-study phase required the participants to respond
to a set of questions related to their experience with the games they
played as part of the interface, including the SUS questions [8].

Each participant was asked to play the relay versions correspond-
ing to each of the 20 variations of the 4 DCG captcha games as in
Section 3; we used ordering based on Latin squares, as in the usabil-
ity study. The specific goal of our study was to evaluate the reaction
time experiment UI in terms of the following aspects:

1. Efficiency: time taken to complete the games (and succeeding
at the relay attack).

2. Robustness: likelihood of not completing the game (relay at-
tack failure), and incorrect drags/drops.

3. User Experience: quantitative SUS ratings and qualitative feed-
back from the participants.

4. Reaction time: Time delay between the presentation of the
stimuli and the response from the participant. This is a fun-
damental metric for the feasibility of the attack. If reaction
time is large, the likelihood of attack success will be low.

Another important goal of our user study was to compare its per-
formance with that of the usability study. If the two differ signifi-
cantly, the relay attack can be detected based on this difference.

For each tested game, completion times and errors were automati-
cally logged by the our web-interface software. In addition, we main-
tained “local logs” of the clicks made by the participants on our game
interface to measure the reaction timings.

6.3.2 Study Results
We present various mechanical data, i.e., time to completion and

error rates as part of the relay attack study. We further analyze the
local logs for the reaction time analysis.
Completion Time and Error Rates: Table 6 shows the time taken
and error rates to play the games for each game type by different par-
ticipants. Unlike our usability study, many game instances timed out,
i.e., the participants were not able to always complete these game in-
stances within the time out of 60s. In this light, we report two types
of timings: (1) successful time, which is the time only corresponding
to the games that the participants were able to complete successfully
within the time out, and (2) overall time, which is the time corre-
sponding to both the game instances completed successfully within
the time out and those which timed out (in which case we consider
the timing to be 60s). The overall time therefore will effectively be
higher.

All games turned out to be quite slow, and much slower than that of
the usability study where the games lasted for less than 10s on an av-
erage (Section 4). As in our usability study, we found that users took
longest to solve the Animals (overall average: 46.51s), whereas the
other games took slightly less time. This might have been due to the
increased semantic load in the Animals game due to the presence of
3 target objects. We observed that the error rates were the highest for
the Animals game (40%), and the least for the Shapes games (9%)
although the corresponding per click error rates were high (56%).
The Ships and Parking games had comparable overall error rates be-
tween 20-30%. We analyzed and further compared the mean time
for different game categories. Using the ANOVA test, the games
showed statistically different behavior from each other (F = 12.85,
p < 0.0001). On further analyzing the data, we found the following
pairs of games to be statistically different from each other: Shapes
and Ships (p = 0.027) and Animals and all other games (p < 0.001).
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To analyze errors better, we investigated error rates per click, i.e.
for each drag attempt whether the object being dragged was dropped
at the correct position or not. The error rate per click was the least
for the Ships game (17%), much lower compared to all other games
(50-70%), the latter itself being much higher than observed during
the usability study. This suggests that the server could prevent the
relay attack against Animals, Parking and Shapes games by simply
capping the number of drag/drop attempts.

Table 6: Error rates and completion time per game type

Game
Type

Overall Time
(s)

Successful
time (s)

Error
Rate

Error Rate
Per click

mean (std dev) mean (std dev) mean mean
Ships 30.92 (5.91) 22.25 (5.04) 0.26 0.17
Animals 46.51 (5.05) 37.93 (4.91) 0.40 0.65
Parking 28.16 (7.36) 20.45 (5.04) 0.22 0.66
Shapes 26.19 (1.59) 22.94 (1.74) 0.09 0.56

Reaction Time: We now analyze the reaction time corresponding
to different games during the relay attack experiments. We consider
two types of reaction times, one corresponding to all clicks made
by the participants, and the other corresponding to only the correct
clicks (i.e., those that resulted in a correct drag and drop). The aver-
aged results for the two types of reaction times for each game type are
summarized in Table 7. We can see that the average reaction time (all
clicks) for all game categories was more than 2s and the least for the
Shapes game (2.17s). The average reaction time (correct clicks) is
slightly lower than reaction time (all clicks), but still higher than 1.5s
and still lowest for the Shapes game (1.62s). Neither types of reaction
times change significantly across different game categories. ANOVA
test, however, did find significant difference between the mean reac-
tion time (all clicks) of the four games (F = 13.19, p < 0.01). On
further analyses using paired t-tests with Bonferroni correction, we
found that there was a significant difference between the Animals
and Parking games (p < 0.01). Similarly, using the ANOVA test, we
found significant difference between the mean reaction time (correct
clicks) (F = 3.24, p < 0.027). Further, we found a significant dif-
ference between the Shape and Ship games (p < 0.005) with respect
to mean reaction time (correct clicks).

Table 7: Reaction times per game type
Game
Type

Reaction Time
All Clicks (s)

Reaction Time
Correct Clicks (s)

mean (std dev) mean (std dev)
Ships 2.27 (0.34) 2.06 (0.17)
Animals 2.58 (0.35) 1.85 (0.23)
Parking 2.50 (0.51) 2.00 (0.31)
Shapes 2.17 (0.2) 1.62 (0.11)

User Experience: We now consider the data collected via direct user
responses during the post-study phase. The average SUS score from
the study came out to be only 49.88 (std dev = 5.29). This is rather
low given that average scores for commerical usable systems range
from 60-70 [21], and suggests a poor usability of the system. This
means that it would be difficult for human users to perform well at
the relay attack task and implies that launching relay attacks against
DCG captchas can be quite challenging for an attacker.

Table 8 shows the 5-point Likert scores (‘1’ is “Strong Disagree-
ment”; ‘5’ is “Strong Agreement”) for the visual appeal and pleasur-
ability of the games. Although the former average ratings are on the
positive side (more that 3), the latter ratings are low, suggesting the
participants did not find the games to be pleasurable. In our games,
we made use of visual and audio stimuli to which the users had to
respond. In order to understand what type of stimulus worked best
for the participants, we asked them to what extent the audio, visual or
both stimuli together was useful as an indicator to respond fastest to

the game. These ratings are depicted in Table 8. The responses were
on average in favor of the visual stimulus, followed by the two stim-
uli together, and finally the audio stimulus. 35% participants found
audio stimulus and visual stimulus to be sufficient whereas 45% par-
ticipants agreed or strongly agreed with the statement that both visual
and audio stimulus are necessary to play the game. We further per-
formed the ANOVA test for responses corresponding to the three –
visual, audio and visual+audio – stimuli, but did not find a statisti-
cally significant difference. Finally, 80% of the participants felt that
training will help them play the games better with an average score
of 3.95. This suggests an attacker might improve success in relay
attack through advance training of human solvers.

Table 8: Participant Feedback Summary
Features Likert Mean (std dev)
Visually Attractive 3.20 (0.92)
Pleasurable 2.85 (0.99)
Visual Stimulus 3.20 (1.17)
Audio Stimulus 2.95 (0.93)
Both Audio and Visual 3.10 (1.25)
Need Training 3.95 (1.01)

Summary of Relay Attack Analysis: Our analysis suggests that sub-
jecting the DCG captcha to relay attacks poses certain challenges in
practice. Specifically, for the Static Relay attack to succeed, the hu-
man solvers have to perform a reaction time task (average reaction
time is more than 2s). This task, except for the Shapes game, takes
much longer (> about 30s on average), is significantly more error
prone (error rates more than 20%; per click error rates more than
50%), and much harder for the users when compared to directly play-
ing the games by honest users under a non-relay attack setting. In real
life, where the communication delays between the bot and solver’s
machine will be non-zero and average solver population samples are
used (unlike our attack set-up), the timings and error rates might be
higher and launching a relay attack might be even more difficult. Al-
though our experiments were conducted on our 4 DCG captcha in-
stances, we believe that our analysis is generally applicable to other
DCG captcha types involving moving answer objects.

7. CONCLUSIONS AND FUTURE WORK
This paper represents the first academic effort towards investigat-

ing the security and usability of game-oriented captchas in general
and DCG captchas in particular. Our overall findings are mixed. On
the positive side, our results suggest that DCG captchas, unlike other
known captchas, offer some level of resistance to relay attacks. We
believe this to be a primary advantage of these captchas, given that
other captchas offer no relay attack resistance at all. Furthermore,
the studied representative DCG captcha category demonstrated high
usability. On the negative side, however, we have also shown this
category to be vulnerable to a dictionary-based automated attack.

An immediate consequence from our study is that further research
on DCG captchas could concentrate on making these captchas better
resistant to automated attacks while maintaining a good level of us-
ability.8 Moreover, our paper focused on “pure automated” and “pure
relay attacks” (in line with traditional captchas). However, hybrid at-
tacks can also be envisioned, which combine the computing power
and human knowledge. Future research is necessary to investigate
how well hybrid attacks work, and how they alter the economics
of captcha-solving (following up [23]). Finally, the results of our
user study on reaction-time task performance may have general ap-
plications in human-centered computing (security and non-security)
domains. For instance, these results may rule out the possibility of
usable captcha schemes themselves based on reaction-time tests.
8The modifications made to the original DCG captchas to resist au-
tomated attacks, such as a dynamic background, may further make
relay attacks more difficult.
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APPENDIX
A. ADDITIONAL FIGURES AND TABLES

(a) A star indicating correct ob-
ject match

(b) A cross indicating incorrect
object match

Figure 6: User Feedback per Game Interaction

B. TARGET AREA DETECTION USING THE
EXCLUSION METHOD

A design alternative for target area detection, called the exclusion
method is to detect the target area by simply removing foreground
object pixels accumulated from all the sample frames. However,
while this alternative is slightly faster but still at about the same time
efficiency as the MBR-based method, it is less robust than the latter
especially when the objects are moving slow such that the remaining
area, i.e., the detected target area, may include too much of the fore-
ground object moving area that has not had a chance to be covered
by the footprints of foreground objects extracted from the limited
set of sample frames. Figure 8 shows our experimental results for
this design alternative applied to four different challenges, where the
blue dots represent the detected target area centers. This alternative
method failed to detect the correct target center in all four cases.
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(a) The solver is asked to choose a
target object

(b) The solver is asked to choose the
next answer object, if any

(c) The solver is asked to select a new
target object, if any

Figure 7: User interface implementing the reaction time relay exper-
iment (95 represents the User ID; the red rectangle in (c) represents
our visual stimulus)
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Figure 8: The target area centers (blue dots) detected by exclusion
method

Table 9: Usability Study Participant Demographics

N=40
Gender (%)
Male 50
Female 50
Age (%)
18 - 24 80
25 - 35 20
Education (%)
Highschool 45
Bachelors 27.5
Masters 22.5
Ph. D. 5
Profession / field of study (%)
Computer Science 60
Engineering 5
Science, Pharmaceuticals 10
Law 2.5
Journalism 2.5
Finance 2.5
Business 5
Others 12.5

Table 10: Relay Attck User Study Participant Demographics

N=20
Gender %
Male 70
Female 30
Age %
18 - 24 35
25 - 35 60
35 - 50 5
Education %
Highschool 25
Bachelors 45
Masters 30
Ph. D. 0
Profession / field of study %
Computer Science 90
Engineering 5
Medicine 5
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