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ABSTRACT

Cryptanalysis of the Schliisselzusatz

Nitesh Saxena

Telecipher machines were developed in the early part of this century. Their
function was to encipher messages - to secret or mask their contents - prior
to transmission over media which could be monitored by unauthorized par-
ties. It was believed that encipherment of messages might prevent an enemy
learning the information in a message.

Germany developed three such machines - the Schliisselzusatz, the Enigma
and the Geheimfernschreiber. The Schliisselzusatz (key attachment in Ger-
man) was developed by Lorenz in the year 1940 and thus called SZ40. It
became an essential part of the German Forces during the World War II.

The Thesis consists of two parts : SZ40 encipherment and the crypt-
analysis. A set of equations are formulated to carry out the key generation
and encipherment. A statistical model based on cribbing is presented that
cryptanalyzes the machine.
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1 The Taxonomy of Codes

The use of encipherment is detected as early as 480 BC in Greece. Often,

the means of secreting messages was only to physically conceal them.

An alphabet A = {ag,a1,--,am} is a finite set of symbols appropri-
ately referred to as letters; examples include

1. m=2": (0,1)-sequences of fixed length r

Zry =A{z = (zo, 21, -, 2r1) 12, =0,1,0 < i < 7};
2. m =27 : the ASCII character alphabet;

3. m = 26 : the alphabet of upper case latin letters : {A,B,---,Z}.

Text is formed by concatenating letters from A; an n-gram (ag, a1, - - -, Gpq)
with a; € A is a concatenation of n letters. We do not insist that the text

be understandable or to be grammatically correct in a natural language;

thus

Good_Morning  vUI*_9Uiing8

are both examples of text.

Encipherment or encryption is a transformation process; T transforms

the plaintext x = (o, %1, -+, Tn) into ciphertext y = (Yo, ¥, Yn)



It is not necessary that the plaintext and ciphertext be written using
the same alphabet of symbols nor that encipherment preserve the length
of text. The only requirement on T is the obvious one; it must be pos-
sible to reverse the process of encipherment - termed decipherment or
decryption - by means of a transformation T~! to recover the plaintext

x = (an Ty, axnfl) from the C’[;ph@?”t@.’l)t y= (yOa Y1, - ,ynfl)-

When a pair of communicating users wants to hide the content of their
transmissions, the encipherment transformation must be specific to the

users. A cryptographic system is a family 7 = {7} : k € K} of crypto-

graphic transformations. The key space K is the totality of key values; a
key k is a label identifying a transformation in the family 7. The sender
and receiver agree on a particular £ and encipher their messages using the

transformation 7.

David Kahn’s book [KAH67] provides a thorough description of the

evolution of codes and the role of cryptography in history.

Originally encipherment and decipherment involved pen-and-pencil cal-
culations. Giovanni Battista Porta (1535-1615) made contributions to as-
trology, optics, meteorology, magic and cryptography. His four volume
work Magiae Naturalis was published in 1585 but he is renowed for the

sequel, his one volume work divided into twenty books magnus opus pub-



lished four years later. His book De Furtivis Literarum Notis published in
1563 described digraphic substitution and transposition and is considered
one of the first serious work in cryptography. Porta’s book Traicté des

Chiffres published in 1586 described a variety of encryption systems.

World War I and II forced the creation of new and faster automated

methods to secret messages.

A code is essentially a synthetic language invented to conceal the mean-
ing of a message. One type of code uses a codebook, a dictionary of artificial

codewords which is used to replace the plaintext message.

A cipher is another type of cryptosystem enciphering the plaintext by

letter replacement - substitution - and rearranging the order of the letters

- transposition.

In the 1918 a cipher system with perfect secrecy was invented. The

one-time pad or one-time tape enciphers using a key stream, a sequence of

(alphabetic) symbols. These are produced by independent random trials
using the uniform distribution. The key stream is combined additively
with the plaintext symbols; one key symbol per plaintext symbol. The
term one time is applied since each (key) symbol is used to encipher only

one (plaintext) letter. When this encryption recipe is strictly followed,



the ciphertext symbols completely hides the plaintext and encipherment

achieves perfect secrecy.

If on the other hand, the key stream symbols are re-used, the perfect

secrecy property will fail to hold, as the USSR learned in World War II.

Unfortunately, the sender and receiver must both have a copy of the
one-time pad. The delivery of the key stream, say from the sender to

receiver is the key exchange process, a basic aspect in the successful use of

cryptography.

Often, a government distributes the key on a CD or a tape to a consulate
or embassy by an alternate secure path, for example, a courier. In some
military operations, this is not feasible and a list of keys for a fixed period
is often issued in advance to each military group. The logistics of updating

these key tables is formidable.

The Enigma machine! used a protocol wherebye the key tables were

used only to exchange a session key on-the-fly.

The Key to Rebecca by Ken Follett is spy novel with a cryptographic
subplot. The spy Cicero uses a book code to transmit secret messages; the

triplet (P,L,W) points to a page #, line # (L) and word # (W) in some

!Enigma was initially invented in 1918 for commercial applications, until it was
adopted by the German Army for military encipherment.



book. Encipherment is like the one-time system; the ciphertext is the XOR
of the plaintext with the key stream derived from the book’s text starting

at the point (P,L,W) in the (secret) book.

Claude Shannon’s basic paper [SHA49] set forth the foundations of cryp-

tographic system design identifying two building blocks of secrecy systems:

o Substitution
Deriving ciphertext by substituting for the plaintext letters
x = (To, 1, -+, %) with letters in a ciphertext alphabet
(Zos T1, -5 Tn1) = (Yos Y157, Yn1)-

Shannon referred to substitution as confusion.

e Transposition
Deriving ciphertext by rearranging (or transposing) the positions of
the letters in the plaintext

T: (o, T1, s Tpt) = (Tagy Ty **» T,y ) Where T = (g, W1, + +y Tyt )

is a permutation of 0,1,---,n—1.

Shannon referred to transposition as diffusion. He suggested that an
effective encipherment system might be built by interleaving the operations

of diffusion and confusion.



The science of codes is cryptology or cryptography, the latter term is

derived from the Greek words kryptos (hidden) and graphien (to write).

The effectiveness of an encipherment process T, with £ € K depends

on the three factors:

1. the size of the key space K,

2. secrecy of the key, and

3. the complexity of the transformation T}, from plaintext to ciphertext.

The term cryptanalysis is applied to the variety of techniques used to

e recover the plaintext from the ciphertext without the key, and

e recover the key from the ciphertext

It is assumed that the cryptosystem 7 is known and that additional

(side) information may be available, for example,

e the subject of the plaintext;

e some of the plaintext.

Cryptography is a contest between two adversaries; the designer of the

code and the cryptanalyst.



1.1 Cipher Machines

As attractive as the one-time system is cryptographically, its use is limited
due to the need for large amounts of keying material. In its place, crypto-
graphic system designers have opted for systems in which a small amount of
keying material is used to generate a larger operational key. The designers
of cryptographic systems in the first half of the twentieth century used me-
chanical means to generate the key stream. Under general conditions, the
output of a finite-state machine is periodic; the designers sought mechanical
devices to generate key streams with gigantic periods in order to emulate
the one-time system. Starting with a key of N symbols, a mechanical device
generates a periodic sequence of symbols of length M >> N. The designer
hoped that key expansion N — M would offer secrecy comparable to that

of the one-time system.

This process accelerated in World War I, with combatants devising de-
vious ciphers and their adversaries cryptanalyzing them. Codebreaking
proved to have a strong influence on the course of the war. The need to
speedup and automate the processes of encoding and decoding led to the in-

vention of cipher machines. They were designed to speed-up encipherment

while using complex mechanisms so that the encipherment process would

be impossible for the adversary to break. These cipher machines became



an important part of the defense programs of the countries using them.
Germany developed three cipher machines for its Army, Air Force and
Navy; the Enigma (1918), Geheimfernschreiber?(1930) and Schliisselzusatz
(1940/42). The Japanese also introduced mechanical devices in the 1930s

given the color names RED, PURPLE and JADE (by Americans).

We can regard a cipher machine of a given design or architecture as a
device that converts the input plaintext (X) into ciphertext (Y) using a key

(K) by means of a function f such that Y = f(X,K).

1.2 The Vernam System

An important additive cipher system, often referred to as Vernam cipher,

was invented during the First World War by two American cryptographers,

Gilbert Vernam of AT&T and Colonel Joseph O. Mauborgne/.

Teleciphers were typewriters connected to a transmission system (ra-
dios, telex and telephone); they could (i) encode and transmit messages
and (7)) receive, decode and print them. They were natural extensions
of the nineteenth-century telegraph technology introduced after the turn
of the century. Teleciphers used a digital transmission scheme, with two

different electrical signals sent to represent a binary value of ”1” or ”70”.

2Geheimfernschreiber means secret telegraph in German



Teleciphers encoded plaintext often using the 5-bit Baudot code?®, to
represent different characters. This coding scheme was a natural successor
to the Morse code which uses a variable number of bits to encode some

alphabet.

Although five bits are able to only represent 32 states, two of the
Baudot-codes are reserved for shift between two sets of characters, much
like the modern Caps Lock key on a typewriter keyboard. This allows the
Baudot code to encode more than 32 characters. The Baudot code allows

plaintext written with

1. upper-case characters A B--- Z

2. digits 0 1---9

3. punctation characters , " ; 7 !

4. special characters # $ + & BS (space), Bell and

5. teletype control characters LF (line feed) CR (carriage return).

Table 1.1 lists the Baudot Code; two plaintext characters are listed for

each 5-bit Baudot code;

1. the left-most character is in the letter group;

3Baudot Code was invented by French scientist Jean Maurice Emile Baudot in 1880



00011 A - | 11000 O 9
11001 B ? 110110 P 0
01110 C : | 10111 Q 1
01001 D $ | 01010 R 4
00001 E 3 | 00101 S BELL
01101 F ! | 10000 T 5
11010 G & | 00111 U 7
10100 H # | 11110 V ;
00110 I 8 | 10011 W% 2
01011 J ’ 11011 * *
01111 K ( | 11101 X /
10010 L ) | 10101 Y 6
11100 M .| 10001 Z 7
01100 N , | 00010 LF LF
00000 @ @ | 01000 CR CR
00100 SP SP | 11111 + +

CF : carriage return SP : white space

LF : line feed BELL : bell

+ : letters-numbers * numbers-letters

@ : undefined

Table 1.1: Baudot Codes

2. the right-most character is in the digit group.

The Baudot code is not very efficient and has largely been replaced by

the 7-bit ASCII (American Standard Code For Information Interchange).

A telecipher encipers binary codes using a key stream; when the Baudot

encoding of plaintext characters is used, a key stream consisting of 5-bit

key (B-bytes is XORed to the 5-bit plaintext. Encipherment is a two step

process:

10




1. encode : each plaintext character is replaced by its 5-bit Baudot code;

2. encipher : combine the encoded plaintext character by a bit-by-bit

XOR with a 5-bit key B-byte.

For example

plaintext : 10011
X0R key : 00110
ciphertext 10101

The plaintext is recovered from ciphertext if the key B-byte is XORed

to the ciphertext.

Vernam’s key stream was written on a paper tape in blocks of 5-bits
with the ends of the paper tape glued together to form a loop yielding a

periodic running key k = (ko, k1, - - -) of period r (say). See Figure 1.1.

Realizing that the reuse of the key k; = k; (moduio ) might weaken the
encipherment, Vernam suggested combining several tapes whose periods
{r;} were relatively prime to each other. The composite tape thereby has a
period equal to the product of » =[], r;. By this process, Vernam converted
a total of }°, r; key values into a periodic key with a potentially much larger

period. See Figure 1.2.

11



Teletypewriter

Baudot Plaintext

XOR

Ciphertext

Paper Tape
(Key)

Figure 1.1: Vernam Encipherment Technique (using one paper tape)

Teletypewriter

Baudot Plaintext

Ciphertext

XOR —_— =

Paper Tape #n

Figure 1.2: Vernam Encipherment Technique (using n paper tapes)
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Figure 2.1: SZ40 : The Actual Machine

2 Description of the Schliisselzusatz

2.1 The Pin-Wheels

The architecture of the SZ40 is described in the book by F. Hinsley and A.
Stripp [HiSt01].
The SZ40 generated a key stream using pin-wheels in place of tapes

as in the Vernam system. A pin-wheel is a mechanical implementation

13



o Active Pin

O ———  InactivePin

Figure 2.2: Pin Wheel

of a tape, generating a sequence of 0’s and 1’s. A pin-wheel of length L
contains L pins equally spaced arranged around its circumference; a pin is

either active or inactive.

e when a pin is active (present), the pin-wheel output is 1;

e when a pin is inactive (absent/folded down), the pin-wheel utput is

0.

The SZ40 had 12 pin-wheels divided into three sets:

1. K1-K5 : five x pin-wheels {x; : 1 <17 < 5} of lengths {T;}.

xi~wheel
i 1 2 3 4 5
T; | 41 | 31 29 | 26 | 23

2. S1-S5 : five 9 pin-wheels {1.1 < i < 5} of lengths {S;}.

Y;-wheel
i 1 2 3 4 5
S; |43 | 47 | 51 | 53 | 59

3. M1-M2 : two motor pin-wheels

14



— a p pin-wheel of length 37;

— a 7 pin-wheel of length 61.

The x and ¥ pin-wheels XORed bits to the plaintext just as in the

2-tape Vernam system. In the two step process

1. the output of the x pin-wheels is first XORed (bit-by-bit) to the 5-bit

Baudot plaintext;

2. the output of the ¥ pin-wheels is next XORed (bit-by-bit) to the 5-bit

output of the xy-wheels.

If this was the complete description of the SZ40-encipherment, it would
provide little in the way of secrecy. The German Cipher Bureau under-
stood the limitations of Vernam-Vigenére encipherment. Even with multi-
ple tapes, a cryptanalysis is possible as described in [TUC70| . This was
proved in 1918 by W. F. Friedman in the US, who solved such a system.
By introducing key-dependent irregular motion in the second tape, the

Germans believed that a significant increase in secrecy would result.

2.2 The Motion of the Pin-Wheels

The pin-wheels either

15



e rotated one position (counterclockwise) after the encipherment of

each plaintext character or

e remained stationary - did not rotate.

The rules governing rotation of the pin-wheels are:

1. each of the five x pin-wheels rotated one position (counterclockwise)

after the encipherment of each plaintext character;

2. each of the five ¢ pin-wheels rotated (counterclockwise) one position
after the encipherment of each plaintext character if and only if the

current u pin-wheel output was 1;

3. the p pin-wheel rotated (counterclockwise) one position after the en-
cipherment of each plaintext if and only if the current m pin-wheel

output was 1;

4. the 7 pin-wheel rotated (counterclockwise) one position after the en-

cipherment of each plaintext character.

2.3 SZ40 Keys

The SZ40 key had two components;

1. the 501 bits determining the active pins on the pin-wheels;

16



2. the initial positions of the 5 x, 5 ¥ and 2 motor pin-wheels p and 7.

The first component was originally changed each month; it was intended
that the second component was to be changed with each message. Initially,
an SZ40 message began with an indicator transmitted in the clear consist-
ing of 12 alphabetic characters, for example HQIBPEXEZMUG. A character
translated into a 12-tuple of integers in {0,1,-- -, 25} specifying the initial
settings of the 12 pin-wheels so that not all initial settings were possible.
Subsequently, the indicator was replaced by an entry in a codebook which

was translated into initial wheel settings.

2.4 Key Generation
We introduce the following notation:
X (j) : the j* plaintext character;
X;i(j) : i™ bit of the j™ 5-bit Baudot-coded plaintext-block;
Y;(5) : i bit of the j** 5-bit SZ40 ciphertext-block;
K;i(j) : i™ bit of the j™ 5-bit SZ40 key-block.
The variables X;(j), Y;(j) and K;(j) are related by

Yi(4) = (Xi() + Ki(j)) (modulo2); 1<i<5 0<j<N

17



where N is the length of the plaintext.

The key generated is the XOR of the output signals from y and %

pin-wheels.
Ki(j) = OBl +:(Qild]) (modulo2) 1<i<535=0,1,2,---,N-1

where

P[] : position of the i x pin-wheel for the j-plaintext-block;

Qi[j] : position of the i 1) pin-wheel for the j"*-plaintext-block;
e U[j] : position of the u pin-wheel for the j*-plaintext-block;

V[4] : position of the 1) pin-wheel for the j*-plaintext-block.

2.5 SZ40 Encipherment Steps

1. encode the j™-plaintext letter X (j) using the 5-bit Baudot code to

(Xl(])vXQ(J)v o 7X5(.7))a

2. XOR bit-by-bit (X;(j), X2(j),---, X5(j)) with the current x pin-
wheel

output (x1(P1[s]); X2(F2[J]), - - -, x5(F5[4])) producing the intermedi-

ate

ciphertext-block (X;(5), X2(5), - -, X5(5));

18



3. XOR bit-by-bit the intermediate ciphertext (X (), X2(5), - - -, X5(j));

with the current ¢ pin-wheel output (11 (Q1[4]), ¥2(Q2[7]), - - -, ¥5(Q5[4]))

producing the 5-bit ciphertext-block (Y1(j), Y2(j),- -, Y5(4));

4. Move the pin-wheels according to the following equations :
Bilj+1] = (Blj]+1) (moduloT;) 1 <i <55 =1,2--+
Qilj+1] = (Qi[(5) + n(U[5])) (modulo S;) 1 <1 <55 =1,2--+
Ulj+1] = (U[(4) + 7 (V[5])) (modulo 37) j = 1,2--

VIj+1] = (V[j] + 1) (modulo 61) j =1,2---

The above steps are repeated until all the letters in the plaintext have

been processed. Figure 2.3 shows the operation of SZ40.

19



I ‘55
..__.--41{( I_--'H;El .":‘x_ 2_-_3}__ l._ K '-]EI
i | iy T
'fi / - 29 - 754
;f:-. Sy A /ey
/ *'I”m 39 ' -.."rfé'a " :
2‘-’ B .-'"'H " - [ [

;__.- ; . ) -"':é.z--"{x 51..-__. -...____._
ANPUT AL w1 fus 8 y
Rt N A N T pb = =l AT !

eeed g _.-".'U ,___FS.T ":.\_.l_-___.-"'
.-__.- -l .-_. I ),
XOR - 1y .-1:3!__’{.-.....
T :..r !\. o
.-'ll e . e - -
;o (M2 XOR S
A MY N
AN Ve f - QUTPUT
A ' TR
. ) /
- i
I e
" DRIVE

Figure 2.3: Operation of SZ

2.6 Initial Positions

To further complicate the SZ40 encipherment process, the initial positions

of the pin-wheels could be set.

2.7 SZ40 Encipherment Example

Initial pin-wheel settings are all 0.

20



x1-Wheel

1

0

X2-Wheel

x3-Wheel

X4-Wheel

01010

X5-Wheel

wl—Wheel

1

1
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wg—Wheel

0[01]0

1

07(010]0

3-Wheel

4-Wheel

1

15-Wheel

0

071010

0

1
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-Wheel

m-Wheel
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Plaintext : MERRY CHRISTMAS
11100 00001 01010 10101 10101 00100 01110 10100
01010 00110 00101 10000 11100 00011 00101

Operation :

Character | Baudot | x-Wheel | Input to | ©-Wheel | Output
Code | Outputs | »-Wheels | Outputs
M 11100 10101 01001 00110 01111
E 00001 01010 01011 01001 00010
R 01010 00110 01100 11000 10100
R 01010 11100 10110 01011 11101
Y 10101 00101 10000 00101 10101
00100 01101 01001 10001 11000
C 01110 10100 11010 11001 00011
H 10100 00110 10010 11001 01011
R 01010 11111 10101 01100 11001
I 00110 10010 10100 11000 01100
S 00101 11111 11010 11111 00101
T 10000 11111 01111 11111 10000
M 11100 11101 00001 11111 11110
A 00011 11101 11110 01110 10000
S 00101 11111 11010 01110 10100

Ciphertext : 01111 00000 10100 11101 10101 11000 00011 01011
11001 01100 00101 10000 11110 10000 10100

24




3 Chronology of the Fish Traffic

SZ40 ciphertext traffic was referred to as fish as described in [TUT98] .
Both the cryptographic device and the special processors built to carry out
the cryptanalysis of the SZ40 were referred to as tunny as in [SATO1]; these
first generation processors were designed by the British General Communi-
cations Headquarters (GCHQ) located in Bletchley Park outside of London

where the SZ40 cryptanalysis activities took place.

e 1941 : The first regular transmission for the fish ciphertext were
intercepted on an experimental German Army link between Vienna

and Athens in the middle of 71941.

e 1942 : The fish traffic proliferated steadily from the middle of 1942.
The first success against the fish keys, the solution of the Athens-
Vienna experimental link in the spring of 1942, was made by hand
methods and it was by these methods that overcoming various crypto-
graphic and procedural improvements made by the Germans, Global
Command and Control System GC&CS kept abreast of the still lim-
ited number of fish links until May 1943. By December 1942, it was
clear that the German program for increasing the security of the ci-

phers would win unless high speed processing devices were developed.

25



The first stage was the Heath Robinson®, a mechanical device using
two tapes driven by a pulley system. It was used to evaluate the
Boolean functions. A complete description of the machine can be

found in [SAHO1].

e 1948 : By July 1943, there were six links, by autumn 1943 ten links.
In May 1943, the first prototype of the Heath Robinson machine
became available and was then superseded by Collossus® Mark I de-
scribed in [ANDO1] , which came into use from the end of 1943. Alan
Turing was the architect of the Collussi series; the machines were
built by the UK Post Office Research Station Dollis Hills (London)
for for the Government Code and Cipher School. Mark I contained
1500 thermionic vales (electronic tubes); each character was coded
with the 5-bit Baudot teleprinter code, read by an optical character
reader and punched on a paper moving at the rate of 5000 charac-
ters/s. It began analyzing ciphertext at Bletchley Park in December
1943. Its successor, Colossus Mark II (1944) contained 2500 valves
allowed conditional branching but did not implement the internal

program store central to the concept of a computer.

“Heath Robinson is the name of a British cartoonist who was renowned for his draw-
ings of outlandish machines, like Rube Goldberg in the United States.

5Tt was primarily to break the cipher of SZ40 that the British devised what is now
considered the world’s first electronic computing machine, the Collossus.

26



e 1944-45 : From early in 1944 the fish traffic comprised twenty six
links, each using different settings, between Berlin and the chief Army
Commands. The decryption was also increasingly successful; with
two serious interruptions, in February 1944 and from June to Oc-
tober 1944, GC&CS solved a growing proportion of the ciphers and
decrypted more or less regularly the growing volume of traffic pass-
ing in them. On June 1, 1944 Collossus Mark II was brought into
commission. The number of decrypted transmissions rose from an
average of only three hundred a month in 1943, so that more were
decrypted in the six months from October 1944 to March 1945 than

in all the period from the summer of 1942 to September 1944.

A more detailed description of above events can be found in [HiSt01] and

[SAF01]
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4 Cryptanalysis

Once the structure of the SZ40 has been diagnosed by GCHQ at Bletch-
ley Park, the cryptanalysis could be undertaken. Various versions of the

cryptanalysis problem exist of which the following is the most challenging:

e Problem #1

Given a ciphertext Y, determine the plaintext X. A solution involves
determining all pin-wheel parameters - active pins and initial posi-

tions.

This is an #ll-posed problem since an initial setting together with a
pin-wheel determines an equivalent pin-wheel with zero initial setting. Ad-
ditional complications include (i) the unknown density of active pins and
(1) the key management employed by the Germans. [CAR97] describes the

method used by the British in cryptanalyzing SZ40.

4.1 Key Determination by Cribbing

Depth occurs when two or more SZ40 ciphertexts Y,; (i = 1,2,---) were

intercepted in a period

e during which the pin-wheels were unchanged and
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e both messages were identified the same indicator.

In this case Y, = X, + K for ¢ = 1,2,---. Computing the differences

Y, +Y, =AY, gives AX, , = X, + X, since the differenced key is 0.

The differenced plaintext can be searched for probable words (cribs);

for example,

e German cipher-clerks often prefaced their messages with SPRUCHNUMMER®,

and

e messages might contains references to various organizations LUFTWAFFE,

WEHRMACHT. OBERKOMMANDQO.

To search for the crib SPRUCHNUMMER, the crib is slid across the differ-

enced ciphertext. In each position j, the crib is XORed with the differenced

ciphertext

X, : - 8 P .o M E

Xy 10 Xo(d) Xo(j+1) o Xo(j+8) Xo(j+9)
AX o 0 o0 S+Xo(f) P+Xo(j+1) -+ M+Xp(j+8) E+Xp(j+9)

The result of the XOR of the crib and the differenced plaintext at po-

sition j give putative plaintext

6Spruchnummer means message number in German.
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Xo(4), Xa(G+1), -+, Xo(j+8), X2(j+9), Xo(j+10)

If the putative plaintext is readable text, a hit is obtained, which gener-
ally reveals additional plaintext. With good luck, both plaintexts X; and

X, may be discovered and from (either) the (common) key K.

Early in the SZ40-cryptanalysis, an interception of the near-repeat of
message of 4000 characters using the same indicator (and pin-wheel set-

tings) was received providing the entire key stream.

When cribbing is successful, a segment of the (common) key stream

{K(j)j=0,1,---, N—1} is uncovered.

We will illustrate the solution of a second cryptanalysis problem:

e Problem #2

Given a key stream K generated by the machine, determine the active

pins on all pin-wheels.

Problem #2 does not have a unique solution since complementing the

x and v pin-wheel values leads to the same key stream.

4.2 A Statistical Model of Pin Motion

In this section we present a solution to the Problem #2.
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We define the SZ40 parameters

e ( : the averaged density of active pins on 1) pin-wheels;

e v : the average probability that a v pin-wheel rotates.

The values of ¢ and v are unknown and must be guessed and later

refined as a result of the cryptanalysis.

For the pin-wheel parameters in the §2.7 example, v ~ 0.8 and ¢ ~ 0.8.
The graph in Figure 4.1 shows the motion of the ¢ pin-wheel rotates for
several initial positions.

The parameters q and v can be used to define a statistical model of
the 1), pin-wheel rotation. Let d(; ;) be the probability that ¢, (j,j+1) =
(W1 (Q1(5)), ¥1(Q1(j +1))) = (a,b) with (a,b) € {(0,0),(0,1),(1,0), (1,1)}.
Assuming that the motion of the pin-wheels at all positions are approxi-

mately independent and identicially distributed leads to the formulae

5(0’0) =v(l— q)2 +(1-v)(1—-q) =0.072;

da,y =vg®+ (1 —v)g =0.672;

S0,y =v(1 —¢q)g =0.128

5a,0) = v(1 — q)g =0.128.
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This statistical model of pin-wheel motion implies that in a large sample
of R positions, there will be ~ Rq,s) values of j for which 9,(j,j+1) =

(a,b).

4.3 Finding Active Pins on y Wheels

We make use of the above observation and the periodicity of the x wheels

to identify the pins on all pin-wheels from the key stream.
The notation K;(j,j+1) = (K;(j), K(j+1)) is used below.

for (each position) j do
begin
for (each wheel) 7 do
begin
Count the number of times KCount j)[a, b], the key bits K;(j, j+1) is
equal to (a,b) for each of the four pairs (a,b) € {(0,0),(0,1),(1,0),(1,1)}
for the key stream at positions j,j + T;, j 4+ 215, - - -, j + (ki—1)T; where k;

depends on the length of the known key stream.

end
end

4.4 Example

The key is generated using the same parameters as in §2.8. In the tables

that follow for j = 0(1)4 the unknown values of ¥)Count; ;)[a, b], defined as
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the the number of times the pair ¢;(j, 7+1 is equal to (a, b) for each of the
four pairs (a,b) € {(0,0), (0,1), (1,0), (1,1)} for the key stream at positions
g, g+ T g+ 2T;,---, 5+ (k;—1)T; where k; depends on the length of the

known key stream is tabulated.

Testing Position 0
KCountig | [0,0] 1| [0,1] 11 | [L0] 1] (L1 0
Count(rg | [0,0] 1| [0,1] 0 | [1,0] 1| [L,1] 11
KCount(o) | [0,0] 4| [0,1] 1 | [1,0] 12 | [L,1] 0
Countag | [0,0] 1| [0,1] 4| [1,0] 0] [1,1] 12
KCountsg) | [0,0] 1| [0,1] 15 | [1,0] 2| [L,I] 0
pCountsgy | [0,0] 2 | [0,1] 0 | [1,0] 1] [L1]] 15
KCount | [0,0] 1 | [0,1] 3 | [1,0] 14 | [1,1] 2
YCount(sg | [0,0] 3| [0,1] 1| [1,00 2| [11] 14
KCount(sg) | [0,0] 1| [0,1] 14 | [1,0] 4| [L1] 3
Count(sg) | [0,0] 4| [0,1] 3| [1,0] 1] (L1 14
Testing Position 1
KCountipy | [0,0] 0] [0,]] 2 [L0] 1| [1,1] 10
Y Count 4y | [0,0] 0] [0,1] 2 | [1,0] 1] [1,1] 10
KCountp1) | [0,0] 2 | [0,1] 14 | [1,0] 1 | [1,1] 0
yCounta,y | [0,0] 1] (0] 0] [L0] 2| [1,1] 14
KCount(sy | [0,0] 2| (0] 1| [1,0] 14 | [1,1] 1
yCountgs,yy | [0,0] 1] (0] 2| [1,0] 1] [1,1] 14
KCountyy | [0,0] 14 | [0,1] 1 | [1,00 0| [1,1] 5
¢Count(qy | [0,0] 5| [0,1] 0| [1,00 1| [1,1] 14
KCount(s 1y | [0,0] 3| [0,1] 2 | [1,0] 2| [1,1] 15
YCountsq) | [0,0] 3| [0,1] 2 |[1,0] 2| [1,1] 15

34



Testing Position 2

KCount(1 | [0,0] 0] [0,1] 1[50 91,1 3
yCounta | [0,0] 1] [04] 0] [L,0] 3| [1,1] 9
KCountz) | [0,0] 3 | [0,1] 0| [1,0] 13 | [1,]] 1
yCountzz | 0,00 0| [0,1] 3| [1,0] 1| [1,1] 13
KCount(s» | [0,0] 15 | [0,1] 1 | [1,0] 0 | [1,1] 2
pCountss | 0,0] 2| [0,1] 0| [L0] 1|[1,1] 15
KCount(s | [0,0] 0 | [0,1] 14 | [1,0] 4 | [1,1] 2
Countsz | [0,0] 4| [0,1] 2| [1,0] 0| [1,1] 14
Kcount(,) 0,0 2101 3][L0] 2|[L1] 15
Countsz | 0,0] 2| [(0,1] 3| [1,0] 2| [1,1] 15
Testing Position 3
KCount 5 | [0,0] 1| [0,1] 8| [1,00 1] [1,1] 3
YCount( gy | [0,0] 1 |[0,1] 3| [10] 1] [1,1] 8
KCounts) | [0,0] 3 | [0,1] 13 | [1,0] 0| [1,1] 1
Countpz | 0,0] 0| [0,1] 1| [1,0] 3| [1,1] 13
KCount(s 3 | [0,0] 13 | [0,1] 2 | [1,0] 1| [1,1] 2
yCount(ss | [0,0] 2| [0,1] 1| [1,0] 2| [1,1] 13
KCounts) | [0,0] 4| [0,1] 0| [L0] 1| [1,1] 15
pCountyy | 0,0] 4| [0,1] 0| [L0] 1|[1,1] 15
KCount(ss | 0,00 1] [0,1] 3| (1,00 17 | [1,1] 1
YCountssy | [0,0] 3| [0,1] 1 |[1,0] 1] [1,1] 17
Testing Position 4
KCount1q | [0,0] 0] [0,1] 2 [ (1,0] 1] [1,1] 10
%Count(rg | [0,0] 0| [0, 2 [ [1,0] 1| [L,1] 10
KCount(y4 | [0,0] 0| [0,1] 2 | [1,0] 13 | [1,1] 1
pCountag | 0,00 2| [0,1] 0| [1,0] 1] [1,1] 13
KCount(s.qy | [0,0] 13 | [0,1] 1 | [1,0] 2 | [1,1] 2
Countsg | [0,0] 2| [(0,1] 2 | [1,0] 1] [1,1] 13
KCountss | [0,0] 4 | [0,1] 1| [1,0] 0 | [1,1] 15
Countiaa | 0,00 4| [0,1] 1| [1,0] 0] [L,1] 15
KCount(s4 | [0,0] 17 | [0,1] 1| [1,00] 4| [1,1] O
yCount(sp | [0,0] 0] (0,1 4| [L0] 1| [L1] 17
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4.4.1 Step 1 : Inference of the xi(j,j+1)-Value

The hypothesis x1(j,j+1) = (A, B) is tested as follows;

— define [a,b] by KCount j)[a,b] = max KCount j[c, d]

— [A,B] is uniquely determined by the condition [A,B] + [a,b] =

1,1].

How do we reconcile the uniqueness of xi(j,7+1) with the asserted

nonuniqueness of the solution to Problem #27

With the parameters in §4.1.3 (¢ ~ 0.8 and v ~ 0.8), we have (1) =
I(r:zgc d(r,s)- When the x and ¢ pin-wheel values are complemented g ~ 0.2
and v ~ 0.8 so that 5(0,0) = I(rizgc g(,,s) where the tilde denotes computation
with ¢ ~ 0.2. Note that §¢1) = 5(0,0). The correct value of (A,B) will be

defined by (A,B) + (a,b) = (0,0).
Note that [1,1] is the most frequently occurring pair. If j = 4, then

— KCount(4)[1, 0] is the maximum of KCount(, 4)[a, b];

—(0,1) + (1,0) = (1,1)

The process just described recovers the x;(j) pin-wheel values. It re-
mains to find the v;(j) pin-wheel values. These values are partially ob-

scured by the action of the motor pin-wheels.
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4.4.2 Step 2 : Inference of the 1, (Q[j])-Value

Tables 4.1-4.5 that follow list for j = 0(1)199

e the unknown move indicator (MI(j)) with values (M/N) specifying

whether or not the 7 pin-wheels moved;
— equal to M if u(Ql[j]) = 1;

— equal to N if u(Q[j]) = 0;
e the unknown true position of the 1; pin-wheel;
e the inferred x(j,7+1) and ¥(Qs[j], Qi[5 +1]);
e the 5-bit known key obtained from cribbing;

e an inference of the unknown move indicator (M/M?);

— equal to M if for at least one index 7, we have
Vi(Qil]) # ¥i(Qul+1]);

— equal to M7 if for allindices i, we have 1;(Q;[j]) = ¥ (Q:[7+1])-
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i | MIG) | x ) K M?
0 | M(0) | 10101 | 00110 | 10011 | M
1| M(1) | 01010 | 01001 | 00011 | M
2 | M(2) | 00110 | 11000 | 11110 | M
3| M(3) | 11100 | 01011 | 10111 | M
4| M(4) | 00101 | 00101 | 00000 | M
5| M(5) | 01101 | 10001 | 11100 | M
6 | M(6) | 10100 | 11001 | 01101 | M?
7| M(7) | 00110 | 11001 | 11111 | M
8 | M(8) | 11111 | 01100 | 10011 | M
9 | M(9) | 10010 | 11000 | 01010 | M

10 | N(10) | 11111 | 11111 | 00000 | M?

11 | N(10) | 11111 | 11111 | 00000 | M?

12 | M(10) | 11101 | 11111 | 00010 | M

13 | N(11) | 11101 | 01110 | 10011 | M?

14 | M(11) | 11111 | 01110 | 10001 | M

15 | M(12) | 11111 | 11111 | 00000 | M

16 | M(13) | 11111 | 01111 | 10000 | M

17 | M(14) | 11111 | 10110 | 01001 | M

18 | M(15) | 11111 | 01111 | 10000 | M

19 | N(16) | 11111 | 11111 | 00000 | M?

20 | M(16) | 11111 | 11111 | 00000 | M

21 | N(17) | 11111 | 10100 | 01011 | M?

22 | M(17) | 11111 | 10100 | 01011 | M

23 | N(18) | 11111 | 11110 | 00001 | M?

24 | N(18) | 11110 | 11110 | 00000 | M?

25 | N(18) | 11110 | 11110 | 00000 | M?

26 | N(18) | 11100 | 11110 | 00010 | M?

27 | M(18) | 11111 | 11110 | 00001 | M

28 | M(19) | 11111 | 10111 | 01000 | M

29 | M(20) | 11100 | 11111 | 00011 | M?

30 | M(21) | 11000 | 11111 | 00111 | M?

31 | N(22) | 10001 | 11111 | 01110 | M?

32 | M(22) | 11100 | 11111 | 00011 | M?

33 | M(23) | 10111 | 11111 | 01000 | M?

34 | M(24) | 11111 | 11111 | 00000 | M?

35 | M(25) | 10111 | 11111 | 01000 | M?

36 | M(26) | 11111 | 11111 | 00000 | M?

37 | M(27) | 10111 | 11111 | 01000 | M?

38 | M(28) | 10001 | 11111 | 01110 | M?

39 | N(29) | 11101 | 11111 | 00010 | M?

Table 4.1: Infering ) Wheels (continued)
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J X (0 K M?
40 10111 | 11111 | 01000 | M?
41 11111 | 11111 | 00000 | M?
42 01111 | 11111 | 10000 | M?
43 01111 | 11111 | 10000 | M?
44 11111 | 11111 | 00000 | M?
45 01111 | 11111 | 10000 | M?
46 01111 | 11111 | 10000 | M?
47 11110 | 11111 | 00001 | M?
48 01110 | 11111 | 10001 | M?
49 11110 | 11111 | 00001 | M?
50 11111 | 11111 | 00000 | M?
51 11111 | 11111 | 00000 | M?
52 11100 | 11111 | 00011 | M?
53 11110 | 11111 | 00001 | M?
54 11111 | 11111 | 00000 | M
55 11100 | 01111 | 10011 | M?
56 11101 | 01111 | 10010 | M?
57 11101 | 01111 | 10010 | M?
58 11101 | 01111 | 10010 | M
59 11011 | 11111 | 00100 | M?
60 11011 | 11111 | 00100 | M
61 11111 | 01111 | 10000 | M
62 10111 | 00111 | 10000 | M
63 11111 | 11111 | 00000 | M?
64 10101 | 11111 | 01010 | M
65 11101 | 10111 | 01010 | M
66 10111 | 11111 | 01000 | M?
67 11011 | 11111 | 00100 | M
68 10111 | 00111 | 10000 | M?
69 10111 | 00111 | 10000 | M?
70 11110 | 00111 | 11001 | M
71 10110 | 10011 | 00101 | M
72 0) | 11110 | 11011 | 00101 | M
73 1) | 11111 | 01001 | 10110 | M
74 2) | 11111 | 11101 | 00010 | M
75 3) | 11110 | 01011 | 10101 | M?
76 3) | 11110 | 01011 | 10101 | M?
77 3) | 11111 | 01011 | 10100 | M?
78 3) | 11100 | 01011 | 10111 | M
79 4) | 11111 | 11001 | 00110 | M

Table 4.2: Infering ¢y Wheels (continued)




J | MIG) | x ¥ K MY
80 | M(15) | 11101 | 01001 | 10100 | M
81 | M(16) | 11101 | 11100 | 00001 | M
82 | M(17) | 11101 | 11001 | 00100 | M
83 | M(18) | 01101 | 10100 | 11001 | M
84 | M(19) | 01101 | 11101 | 10000 | M
85 | M(20) | 11111 | 11111 | 00000 | M
86 | M(21) | 01111 | 10111 | 11000 | M
87 | M(22) | 01111 | 11111 | 10000 | M
88 | N(23) | 11011 | 10111 | 01100 | M?
89 | M(23) | 01011 | 10111 | 11100 | M
90 | M(24) | 11101 | 11110 | 00011 | M?
91 | M(25) | 11101 | 11110 | 00011 | M
92 | M(26) | 11111 | 11111 | 00000 | M
93 | M(27) | 10110 | 11100 | 01010 | M
94 | M(28) | 11110 | 11111 | 00001 | M?
95 | M(29) | 10110 | 11111 | 01001 | M
96 | M(30) | 11011 | 11110 | 00101 | M
97 | M(31) | 10111 | 11111 | 01000 | M?
98 | M(32) | 11110 | 11111 | 00001 | M
99 | M(33) | 10110 | 11110 | 01000 | M?
100 | M(34) | 10111 | 11110 | 01001 | M
101 | M(35) | 11110 | 11111 | 00001 | M?
102 | M(36) | 10111 | 11111 | 01000 | M?
103 | N(37) | 11111 | 11111 | 00000 | M?
104 | M(37) | 11101 | 11111 | 00010 | M?
105 | N(38) | 11111 | 11111 | 00000 | M?
106 | N(38) | 11111 | 11111 | 00000 | M?
107 | M(38) | 11101 | 11111 | 00010 | M?
108 | M(39) | 11101 | 11111 | 00010 | M?
109 | M(40) | 11101 | 11111 | 00010 | M?
110 | N(41) | 11101 | 11111 | 00010 | M?
111 | M(41) | 11111 | 11111 | 00000 | M?
112 | M(42) | 11111 | 11111 | 00000 | M
113 | N(0) | 11111 | 01111 | 10000 | M?
114 | M(0) | 11111 | 01111 | 10000 | M?
115 | N(1) | 11111 | 01111 | 10000 | M?
116 | M(1) | 11100 | 01111 | 10011 | M
117 | M(2) | 11000 | 11111 | 00111 | M
118 | M(3) | 11110 | 01111 | 10001 | M?
119 | M(4) | 11111 | 01111 | 10000 | M

Table 4.3: Infering ) Wheels (continued)
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j | MIG) | x ¥ K MY
120 | M(5) | 11111 | 11111 | 00000 | M?
121 | N(6) | 11110 | 11111 | 00001 | M?
122 | M(6) | 11110 | 11111 | 00001 | M?
123 | M(7) | 11111 | 11111 | 00000 | M
124 | M(8) | 00110 | 00111 | 00001 | M
125 | M(9) | 01011 | 11111 | 10100 | M?
126 | M(10) | 10111 | 11111 | 01000 | M
127 | M(11) | 01111 | 01111 | 00000 | M
128 | M(12) | 00111 | 10111 | 10000 | M
129 | M(13) | 11111 | 00111 | 11000 | M
130 | M(14) | 00101 | 11111 | 11010 | M
131 | N(15) | 10111 | 01111 | 11000 | M?
132 | M(15) | 11111 | 01111 | 10000 | M
133 | M(16) | 10101 | 11111 | 01010 | M
134 | M(17) | 11101 | 11011 | 00110 | M?
135 | M(18) | 11101 | 11011 | 00110 | M?
136 | M(19) | 11101 | 11011 | 00110 | M
137 | M(20) | 11111 | 11111 | 00000 | M
138 | M(21) | 11111 | 11001 | 00110 | M
139 | M(22) | 11110 | 10001 | 01111 | M
140 | M(23) | 11110 | 11011 | 00101 | M
141 | M(24) | 11110 | 11101 | 00011 | M
142 | M(25) | 11101 | 10001 | 01100 | M
143 | M(26) | 11101 | 11101 | 00000 | M
144 | M(27) | 11110 | 10101 | 01011 | M
145 | M(28) | 11110 | 11101 | 00011 | M?
146 | M(29) | 11011 | 11101 | 00110 | M
147 | M(30) | 11110 | 11111 | 00001 | M?
148 | M(31) | 11111 | 11111 | 00000 | M
149 | M(32) | 11111 | 11110 | 00001 | M
150 | M(33) | 11111 | 11111 | 00000 | M
151 | N(34) | 11111 | 11110 | 00001 | M?
152 | M(34) | 11111 | 11110 | 00001 | M
153 | N(35) | 11111 | 11111 | 00000 | M?
154 | M(35) | 11011 | 11111 | 00100 | M?
155 | M(36) | 10111 | 11111 | 01000
156 | M(37) | 11101 | 11101 | 00000
157 | N(38) | 10111 | 11111 | 01000 | M?
158 | M(38) | 11111 | 11111 | 00000 | M?
159 | N(39) | 10101 | 11111 | 01010 | M?

Table 4.4: Infering ¢y Wheels (continued)
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J | MIG) | x [ K M?
160 | M(39) | 11101 | 11111 | 00010
161 | N(40) | 10101 | 11110 | 01011 | M?
162 | N(40) | 10100 | 11110 | 01010 | M?
163 | M(40) | 11110 | 11110 | 00000 | M?
164 | M(41) | 10110 | 11110 | 01000 | M
165 | M(42) | 01111 | 11111 | 10000 | M
166 | M(0) | 01111 | 01110 | 00001 | M
167 | M(1) | 11110 | 01111 | 10001 | M
168 | N(2) | 01100 | 11111 | 10011 | M?
169 | M(2) | 01101 | 11111 | 10010 | M
170 | M(3) | 11110 | 01110 | 10000 | M
171 | M(4) | 01111 | 01111 | 00000 | M
172 | M(5) | 11111 | 11111 | 00000 | M
173 | M(6) | 11111 | 11110 | 00001 | M?
174 | M(7) | 11111 | 11110 | 00001 | M
175 | M(8) | 11011 | 01111 | 10100 | M
176 | M(9) | 11111 | 11111 | 00000 | M?
177 | N(10) | 11111 | 11111 | 00000 | M?
178 | M(10) | 11111 | 11111 | 00000 | M
179 | M(11) | 11111 | 01111 | 10000 | M
180 | M(12) | 11111 | 10111 | 01000 | M
181 | M(13) | 11111 | 01111 | 10000 | M
182 | M(14) | 11101 | 11111 | 00010 | M
183 | M(15) | 11011 | 01111 | 10100 | M
184 | M(16) | 11111 | 10111 | 01000 | M?
185 | M(17) | 11100 | 10111 | 01011 | M
186 | M(18) | 10100 | 11111 | 01011 | M?
187 | M(19) | 11100 | 11111 | 00011 | M?
188 | M(20) | 10101 | 11111 | 01010 | M?
189 | M(21) | 11111 | 11111 | 00000 | M?
190 | M(22) | 10110 | 11111 | 01001 | M?
191 | M(23) | 11110 | 11111 | 00001 | M?
192 | M(24) | 10111 | 11111 | 01000
193 | M(25) | 10110 | 11011 | 01101
194 | M(26) | 11101 | 10011 | 01110
195 | N(27) | 10101 | 11011 | 01110 | M?
196 | M(27) | 11111 | 11011 | 00100
197 | N(28) | 11111 | 11111 | 00000 | M?
198 | N(28) | 11111 | 11111 | 00000 | M?
199 | N(28) | 11111 | 11111 | 00000 | M?

Table 4.5: Infering ¢y Wheels (continued)
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4.4.3 Step 3 : Inference of the 1(j) Pin-Wheel Values

Whenever the inferred move indicator is M, a value of ¢;(Q;[j]) is deter-

mined. The j-M-block B;

e starts when the inferred move indicator is equal to M and

e ends when the inferred indicator is equal to M?

We list the blocks and t-values in the next three tables (Table 4.6 t0 4.8).
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742622322426“24322232363
O~ | O |D= < |00 ||~ | (0|0 |+ [ |00 [O|CN | O | |© |
= AN O O (O [|[O [~ D= |00 O |0 |O | | [ | | [N | D
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Table 4.6: M-Blocks
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M-Blocks

P, L;

J J

B;

25

136 10

11111111

26

146

27

148

28

152

29

155

30

160

31

164

32

169

33

174

34

178

== OO
—_
—_

0101

35

185

36

192

37

196

38

200

39

204

40

206

41

214

42

218

43

220

44

225

45

230

46

238

== O
[a)
SR Y =Y

47

242

48

245

49

WININ|WoO| TN DNWIN AN =N ~J W OO DN W N &=~ DN

255

e Dl Rl Rl Bl R B el B M e Ml ) Bl e B e ) B M e e B el B M el B

1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
1
1
0
1
1
1
1

1

Table 4.7: M-Blocks (continued)
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Jo
L
>

a0

258

o1

262

52

266

93

273

o4

275

95

277

26

281

S7

292

28

296

29

298

60

300

61

302

62

306

63

308

111

64

317

65

322

66

327

= O = =
[N IR SN () W—

1101

67

336

68

338

69

342

70

351

71

353

72

356

73

DO DO DO DO DO x| D[ O| O O CO| DO DO DO DO DO | Q| =T i | DO| DO | =J| Qo | |7

358

74

el el e el Rl R B = e = E e e Ml Rl Bl B B Bl Bl B B =) R e R B

367 13

11111001001

Table 4.8:

M-Blocks (continued)
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To carry out the inference of the 1 (Q1[j]) pin-wheel values, the results
in the previous tables are placed in a more revealing tabular format; In the

tables that follow:
1. the first row lists the blocks By, By, - - - separated by a ?;
2. the starting position P; of the 5t -block B; is in the second row;
3. the length L; of the j*-block B; is in the third row;
4. the bound M; ;) = Py + Ljyn — (Pj+ Lj — 1) in row 4.
Note that

m ) = Q[P + Ljn] — Q[P+ Lj+1] < M i)

coo0t1001171011? 107?” 0101017 117 11
0 7 12 14 20 22
7 4 2 6 2 2

The unknown values ?

e between blocks By and B;

e between blocks By and B,

gives rise to the following ways of concatenating these blocks:

B

Bo
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B

48

M1y =0: 00100117017
Bo
B2
—~
m(lyg):—lz \1_9,1_10
Ba
Ba
A~
m(l,g)ZOI 1_9/1_110
B1
B2
A
may=1: 1011710 ?€{0,1}
By
? 111 7?2 10?7 01?7 10017 107 0110107
27 54 o8 60 67 70
3 2 2 4 2 6
3 24 2 0 3 1 2
010111111117 117 11117 1117 117
78 89 91 95 98
11 2 4 3 2
0 0 0 0 0
11 7 1070 107 017 1017 1010107
100 112 116 119 123 126
2 2 3 2 3 6
10 2 0 2 0 0
0107 11111111117 117 11117 117
132 136 146 148 152
3 10 2 4 2
1 0 0 0 1
11117 117 110017 100117 1017
155 160 164 169 174
4 2 5 ) 3
1 2 0 0 1



10101017 117 11117
178 185 192
7 2 4

4.4.4 M-Block Concatenation : Finding (j)

The problem is to concatenate the M-blocks and by doing so to identify

the unknown 7 v (Q1[j]) values.

A program tests all possible values of the unknown bits 77 in an attempt
to find the best match between pairs of blocks. The matching program

yields the following results:

0-54 : QOr10011101101010111ﬂ1111111111111111f11111

54-115 : 10010011101101010111111111111111111111111111001

115-150 : '1()0111011010101111ﬁ11111111111111111f

From these results, the values of ;(j) can be seen.

4.4.5 Step 4 : Inference of 7(j)

When the 1, pin-wheel is determined, the values in the move indicator

column in Tables 4.1 to 4.5 are known and as well as all v;(j) pin-wheels
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values.
To infer the 7(j) pin-wheel values, we begin by observing
pU]) = 1= MI(j) =M
p(Ulf]) = 0= MI(j) =N
Ulj] = (Uli=1] + =(V[j]) (modulo 37)
Thus MI(j) =M and MI(j+1) =N = n(V[j]) =1
MI(j) = N and MI(j+1) = M = «(V[j]) = 1
The values of j for which 1 = 7(j (modulo 41)) inferred by this algo-

rithm with 0 < j < 65 are given in Table 4.9.

Continuing this process a sufficient number of steps will reveal all values
of j with 0 < j < 61 for which 7 (j) = 1; the remaining values of 7(j) are

0. If 7(4) is incorrectly inferred, an inconsistency will result.
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j | MI(G) MI(j+1) | j(mod61) =(j(mod 61))
9 M N 9 1
11 N M 11 1
12 M N 12 1
13 N M 13 1
18 M N 18 1
19 N M 19 1
20 M N 20 1
21 N M 21 1
22 M N 22 1
26 N M 26 1
30 M N 30 1
31 N M 31 1
38 M N 38 1
40 N M 40 1
o4 M N o4 1
57 M N 57 1
o8 M N 58 1
99 M N 59 1
60 N M 60 1
62 M N 1 1
63 M N 2 1
65 M N 4 1

Table 4.9: Infering m Wheel
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4.4.6 Step 5 : Inference of p(j)
We again start with the idea leading to 7 (j); with complete (?) knowledge
of m(j), inferences of the values of u(U[j]) and U[j] may be made.

W(UL]) = 1 = MI(j) =M

p(Ul]) = 0= MI(j) =N

Ulj]l = Wi —1] + 7 (V[j]) (modulo 37)

This leads to the p(j)-inference rules in which U[j +1] = (U[j] +

Slj]) (modulo 37):

MI@) MIG+1) #(VIG]D) | #(UG]) pUG+1]) S3G)
M N 1 1 0 1
M N 0 Impossible
M M 1 1 1 1
M M 0 1 1 0
N M 1 0 1 1
N M 0 Impossible
N N 1 0 0 1
N N 0 0 0 0

Table 4.10: Infering 1 Wheel
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5 Conclusion

We have presented a method to solve the cryptanalysis problem #2 for
Schliisselzusatz; given the key, find the active pins on all the wheels. The
key can be obtained using cribbing as described. The method can be used

to decrypt all the messages generated using the same key.

The method is based on making good guesses for the values of the model
parameters q and v. This involves prior knowledge of the type of messages
usually sent by the sender. Also, the method is supposed to work well when
d¢i, ) is much higher for one pair of (i,j) than the rest. Moreover, to get
the pin wheel settings on all the wheels, a sufficiently long key is required
otherwise we will have inconsistencies in our solution. As stated before, the
problem #2 doesn’t have a unique solution. The method gives one of the
solutions; the other solution can be similarly found by complementing the

values of ¥ and x wheels.
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