
SMASheD: Sniffing and Manipulating Android Sensor Data

Manar Mohamed
University of Alabama at

Birmingham
1300 University Boulevard

Birmingham, Alabama
manar@uab.edu

Babins Shrestha
University of Alabama at

Birmingham
1300 University Boulevard

Birmingham, Alabama
babins@uab.edu

Nitesh Saxena
University of Alabama at

Birmingham
1300 University Boulevard

Birmingham, Alabama
saxena@uab.edu

ABSTRACT
The current Android sensor security model either allows only re-
strictive read access to sensitive sensors (e.g., an app can only
read its own touch data) or requires special install-time permis-
sions (e.g., to read microphone, camera or GPS). Moreover, An-
droid does not allow write access to any of the sensors. Sensing-
based security applications therefore crucially rely upon the sanity
of the Android sensor security model.

In this paper, we show that such a model can be effectively cir-
cumvented. Specifically, we build SMASheD, a legitimate frame-
work under the current Android ecosystem that can be used to
stealthily sniff as well as manipulate many of the Android’s re-
stricted sensors (even touch input). SMASheD exploits the Android
Debug Bridge (ADB) functionality and enables a malicious app
with only the INTERNET permission to read, and write to, multiple
different sensor data files at will. SMASheD is the first framework,
to our knowledge, that can sniff and manipulate protected sensors
on unrooted Android devices, without user awareness, without con-
stant device-PC connection and without the need to infect the PC.

The primary contributions of this work are two-fold. First, we
design and develop the SMASheD framework. Second, as an of-
fensive implication of the SMASheD framework, we introduce a
wide array of potentially devastating attacks. Our attacks against
the touchsensor range from accurately logging the touchscreen in-
put (TouchLogger) to injecting touch events for accessing restricted
sensors and resources, installing and granting special permissions
to other malicious apps, accessing user accounts, and authenticat-
ing on behalf of the user — essentially almost doing whatever the
device user can do (secretively). Our attacks against various phys-
ical sensors (motion, position and environmental) can subvert the
functionality provided by numerous existing sensing-based security
applications, including those used for (continuous) authentication,
and authorization.

1. INTRODUCTION
Sensing-enabled computing is rapidly becoming ubiquitous.

With mobile device manufacturers embedding multiple, low-cost
hardware sensors onto the devices and mobile OS providers adding
full software support for developing applications using these sen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 09-11, 2016, New Orleans, LA, USA
c© 2016 ACM. ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857749

sors, there is a transformational growth in the adoption of mobile
devices.

The most common categories of sensors available on the current
breed of mobile devices, smartphones, smartwatches and smart-
glasses, include: (1) user input sensor (touchscreen and hard-
ware buttons), (2) audio-visual sensors (microphone and camera),
(3) navigational sensors (e.g., GPS), (4) motion sensors (e.g., ac-
celerometer and gyroscope), (5) position sensors (e.g., magnetome-
ter and proximity), and (6) environmental sensors (e.g., pressure,
and temperature). Mobile device sensors are a cornerstone of a
wide range of security and privacy applications, including those
geared for authentication and authorization (e.g., [6, 7, 15, 20]).

Since mobile sensors provide potentially sensitive information
about the host device, the device’s user or the device’s surround-
ings, protecting sensor data from abuse by malicious applications
becomes paramount. Consequently, most mobile platforms have
established a sensor security access control model. Specifically,
Android, one of the most popular mobile OSs and the subject of
this paper, follows a model where read access to many sensitive
sensors is very restrictive (e.g., an app can only read its own touch
data) or requires special install-time permissions granted by the
user (e.g., to access microphone, camera or GPS). The read ac-
cess to most other sensors, including motion, position and environ-
mental sensors, is not restricted within this model because Android
may not consider these sensors as explicitly sensitive. Moreover,
Android security model does not allow write access to any of the
sensors. Clearly, the sensing-based applications therefore crucially
rely upon the sanity of the Android sensor security model.

In this paper, we demonstrate that the current Android sensor
security model can be effectively circumvented to a large extent.
Specifically, we build SMASheD, a legitimate systems framework
under the current Android ecosystem that can be used to stealthily
sniff (read) as well as manipulate (write to) many of the Android’s
restricted sensors. To be precise, SMASheD can be used to: (1) di-
rectly sniff the touchsensor, (2) directly manipulate the touch, mo-
tion, position and environmental sensors, and (3) indirectly, using
the touch inject capability, sniff the audio-visual and navigational
sensors. SMASheD does not require the device to be rooted.

SMASheD exploits the Android Debug Bridge (ADB) function-
ality and enables a malicious app with only the INTERNET per-
mission to read from, and write to, multiple sensor data files at will.
ADB is a functionality designed to allow Android app developers
with extended permissions to systems resources that are otherwise
protected by the Android sensor security model. This workaround
is legitimate and has been used by many apps in Google Play Store
such as screenshot apps [9], sync and backup apps [3], and touch
record/replay apps [22]. All of these apps ask the user to connect
her device to a PC via USB, launch ADB and run a native service

with ADB privilege. The app then communicates with this service
to obtain access to the resources which Android deems as protected.

As part of SMASheD, we develop a service that provides read
and write sensor events functionality. This functionality can be
hidden inside any service that requires the ADB workaround, e.g.,
a screenshot service. When installing an app, the user is usually
made aware of the permissions that she is granting to the app.
However, while installing and executing the service through ADB,
the user is completely oblivious as to what permissions the ser-
vice might have. Also, SMASheD can be published for debugging
or any other benign purposes but can contain malicious code that
will utilize the functionality provided by the service for malicious
purposes. Moreover, such services can be exploited by malicious
apps in a similar way as presented in [11]. Our SMASheD platform
encompasses a native service and an Android app.

Our Contributions: In this paper, we expose the vulnerability un-
derlying the ADB workaround allowing us to read from and write
to many Android sensors currently protected by the Android access
control model. Equipped with this powerful capability, we then go
on to present the offensive implications in many security contexts.
The research contributions of our work are outlined below:

1. A Framework to Sniff & Manipulate Android Sensors (Sec-
tion 3): We design and develop the SMASheD framework to
sniff and manipulate many restricted Android sensors.

2. Powerful Adversarial Applications (Section 4): As a signifi-
cant offensive implication of the SMASheD framework, we in-
troduce a broad array of potentially devastating attacks. Our
attacks include the following:

(a) Logging the touchscreen input, leading to the first full-
fledged, highly accurate TouchLogger.

(b) Injecting touch events for accessing restricted sensors and
resources (e.g., microphone, camera or GPS), installing
and granting special permissions to other malicious apps
(translating into many known malware schemes, such as
[17, 23, 24], without the need for the user to grant special
permissions), accessing user accounts and authenticating
on behalf of the user – essentially almost doing whatever
the device user can do (secretively).

(c) Manipulating various physical sensors (motion, position
and environmental) in order to subvert the functionality
provided by many sensing-based security applications, in-
cluding those used for (continuous) authentication (e.g.,
[6, 7]), and authorization (e.g., [10, 20]).

2. BACKGROUND: ANDROID SENSOR
SECURITY MODEL

Android’s core security principle is to protect user data, system
resources and apps from malicious apps. Android utilizes the Linux
approach of process isolation to enforce the isolation of apps and
operating systems components. This isolation is achieved by as-
signing each app a unique User Identifier (UID) and Group Identi-
fier (GID) at the app installation time. Therefore, each app is en-
forced to run in a separate Linux process, called Application Sand-
box, and the Linux process isolation ensures that an app cannot
interfere with other apps or access system resources unless permis-
sions are explicitly granted. In order to allow apps to communicate
with each other and access system resources, Android provides a
secure Inter-Process Communication (IPC) protocol.

Discretionary Access Control (DAC) is the typical access con-
trol employed in Linux. In DAC, the owner/creator of the data
sets the access permissions of the data to three types of users: the

owner, the users in the same group and all other users. When an
app is installed, Android creates a home directory for the app (i.e.,
/data/data/app-name) and allows only the owner to read from and
write to this directory. The apps signed with the same certificate
are able to share the data among each other.

File system permissions are also used to restrict the access of
system functionality. For example, /dev/cam permission is set to
allow only the owner and the users in the camera group to read and
write to the camera sensor as shown in Listing 1. When an app re-
quests the CAMERA permission, and if the permission is granted,
the app is assigned the camera Linux GID, which would allow it to
access /dev/cam. The mapping between the Linux groups and per-
mission labels are set in platform.xml, and ueventd.rc is responsible
for setting the owners and groups for various system files.

Some Android resources do not require any permission. In par-
ticular, reading motion, position and environmental sensors is glob-
ally permitted. Most of the other resources require read-write per-
missions, and these permissions have four levels:

1. Normal: The app needs to request the access, however, the sys-
tem grants the permission automatically without notifying the
user (e.g., vibrate).

2. Dangerous (protection level 1): The system grants the permis-
sion to the app only if the user approves granting this permission
(e.g., accessing camera, microphone, or GPS).

3. Signature (protection level 2): The system grants the permission
to the app only if the requesting app is signed with the same cer-
tificate as the app that declared the permission, without notifying
the user (e.g., allowing two apps signed by the same developer
to access each other components, inject event).

4. SignatureOrSystem (protection level 3): The system grants the
permission only to the apps that are in the Android system im-
age or that are signed with the same certificate as the app that
declared the permission (e.g., system reboot).

In any Linux system, an executable runs with same permission
as the process that has started it. ADB shell is already assigned to
several groups (graphics, input, log, adb, sdcard_rw, etc). There-
fore, any executable that starts through the ADB shell is granted
the same level of access to the resources which belong to any of
these groups. As shown in Listing 1, since the directory “/dev/in-
put/*” which contains the sensor files, belongs to “input” group,
and the ADB shell has read-write access to all the resources asso-
ciated with “input” group, any executable that is initiated by ADB
shell can read from and write to the “/dev/input/*” resources. This
is the key idea upon which our SMASheD framework is based, al-
lowing us to sniff and manipulate many of the Android’s sensors.

Listing 1: ueventd.rc file

. . .
/ dev / i n p u t /∗ 0660 r o o t i n p u t
/ dev / eac 0660 r o o t a u d i o
/ dev / cam 0660 r o o t camera
. . .

3. SMASHED DESIGN, IMPLEMENTA-
TION AND THREAT MODEL

In this section, we explain the design, implementation and threat
model of our proposed SMASheD framework.

3.1 Design Overview
As mentioned in Section 2, the current Android security model

considers many resources as sensitive and thus limits the access

of these resources only to the apps that are signed by the sys-
tem (protection level 3 for the permissions declared by the sys-
tem and protection level 4). These protected resources include:
injecting user events into any window (INJECT_EVENTS), tak-
ing screen shots (READ_FRAME_BUFFER), and reading system
log files (READ_LOGS). However, Android allows access to these
resources through the ADB shell for development purposes, by as-
signing the ADB shell to the groups that can access these resources.
For example, the ADB shell is assigned to the input group which
allows any process with the ADB shell privilege to read from and
write to any of the files in the /dev/input/ directory. This directory
contains the files associated with user input, motion, position and
environmental sensors.

Moreover, Android’s current directory structure has the /data/lo-
cal/tmp/ directory which is assigned to shell user and shell group,
and gives read, write and execute permission to the shell user and
any user in the shell group. This folder allows the user to run exe-
cutable files on their Android devices through ADB shell.

Many developers have exploited these capabilities given to the
ADB shell to grant permissions to their apps that are not other-
wise allowed. This ADB workaround is performed by developing
a native service, pushing it into the /data/local/tmp/ directory and
running the service through the ADB shell. This way the native
service grants all the permissions that are granted to the shell. Fi-
nally, to allow other apps to communicate with the service, both
the app and the service open sockets and communicate through it.
This approach has been utilized by many apps that are already pub-
lished in Google Play Store such as apps that allow the users to
take screenshots programmatically [9], sync and backup [3], USB
tethering [2], and touch record/replay [22].

The above design allows any app with only the INTERNET per-
mission to communicate with the service. Hence, the app with only
the INTERNET permission will obtain access to the resources that
the service provides without the user’s knowledge. This vulner-
ability has been explored in [11], focusing mainly on screenshot
apps published in Google Play Store. The authors developed an
app, Screenmilker, which communicates with the native services
of many screenshots apps. They showed that Screenmilker is able
to collect user’s sensitive data, such as user’s credentials on many
banking apps by sending requests to the screenshot’s native service
to take screenshots while the user is inputting her credentials. (A
detailed comparison of our SMASheD framework with related prior
work is later provided in Section 6).

In this paper, we are exploring and extending this vulnerability
further, and with potentially much broader consequences. We focus
on INJECT_EVENTS permission. There are already some apps in
Google Play Store, such as FRep – Finger Replayer [22], which
allow users to record their touch interactions with their devices and
replay them later. FRep has already been installed by 100,000 to
500,000 users. These apps also utilize the ADB workaround, sim-
ilar to the screenshot apps, in order to gain access to the read and
inject touchscreen data. Also, as the communication between the
touch repeater app and its native service is done through a socket,
the native service becomes accessible to any app installed on the
phone with only the INTERNET permission. Therefore, if the user
installs any malicious apps with the INTERNET permission, these
apps can also communicate with the service and read/inject touch
events maliciously.

We implement the SMASheD framework which encompasses
three components: SMASheD server: a native service that provides
the sensor data reading and injection capabilities, scripts: two sim-
ple scripts used to copy the SMASheD server to the device and to
start the server, and SMASheD app: an app that runs a status detec-

Figure 1: The architecture of SMASheD

tion module in the background, and depending on the phone’s sta-
tus and the desired functionality, it sends requests to the SMASheD
server to read or inject sensor events. Figure 1 depicts the overall
SMASheD architecture.

3.2 SMASheD Server
Our system works with the sensors whose events are made avail-

able to apps through low-level event interface and have files un-
der the directory /dev/input/, and not through system services (e.g.,
camera, microphone, and GPS). This includes user input, motion,
position and environmental sensors. For each of these sensors, a
corresponding file named eventx exists in the directory /dev/input/.
Android allows reading and injecting sensor events through ADB
commands getevent and sendevent, respectively.

Each hardware event generates multiple input events. Each input
event encompasses time, type, code and value.
• time represents the time at which the event occurred.
• value represents the value of the event.
• code is the event code and it precisely defines the type of the

event. For example, REL_X, REL_Y, REL_Z represent relative
changes in X, Y and Z axes, respectively.

• type is the event type, which groups the event’s codes under a
logical input construct. Each event type has a set of applica-
ble event codes. For example, EV_ABS represents the absolute
axis value changes, EV_REL represents the relative axis value
changes. A special event type, EV_SYN, is used to separate in-
put events into packets of input data changes occurring at the
same moment in time.
For a complete list of the applicable events’ types and codes, we

refer the reader to linux/input.h1.
As an example, a simple touchscreen press-release event gen-

erates around 19 input events. Listing 2 in Appendix A dis-
plays a sample output of executing getevent command, pressing
on the screen at point (946,1543), and then releasing the touch.
BTN_TOUCH DOWN and BTN_TOUCH UP indicate the be-
ginning and the end of the touch, ABS_MT_POSITION_X and
ABS_MT_POSITION_Y represent the touch’s x and y positions.

We implemented a native service designed in C with code sim-
ilar to Android’s getevent and sendevent for reading and in-
jecting the sensor events. First, the service scans /dev/input/ di-
rectory to find out what sensors are available in the device. Al-
though the file names in the directory are event0, event1, etc, we
use EVIOCGVERSION ioctl function to retrieve the name of the
sensor that corresponds to each file. To read from and write to the
sensors’ files, we use read() and write() functions.
1https://github.com/torvalds/linux/blob/master/include/uapi/linux/
input.h

To allow other apps to communicate with the service, the service
creates a socket. The socket keeps on listening to the incoming
requests. In the current implementation, the service accepts three
kinds of requests: read, stop and inject.
• read: The service reads the input events from all the sensors. We

can limit the read to a subset of sensors to improve the efficiency.
The service continues reading until it receives a stop request.

• stop: The service stops reading the sensor events. Then, it either
writes the events to a file, and sends the file name as a response
to the request or sends all the read input events.

• inject: Inject needs to have a file name or a list of sensors events
as an argument. The service injects the sensors events in the
incoming list or in the file to their corresponding sensors files.

3.3 Scripts
We wrote two shell scripts to start the service. The first shell

script is responsible for pushing the native service and the second
script to /data/local/tmp/ folder on the device, and for starting the
second script. The second script starts running the service. In this
way, the service will run with the same privileges as the shell user.
The service will then keep running until the phone is switched off
or it gets killed by the user.

3.4 SMASheD App
We implemented an Android app, which only requires the IN-

TERNET permission. The app connects to the SMASheD server
through socket and sends requests to read and inject events. For
example, it may send read touch events when a banking app is
open to retrieve the password input by the user.

In order to determine whether a specific app that the attacker
might be interested in is running, our app has a service that starts
when the app is launched and keeps running in the background.
The service runs ps command periodically, every 100 ms, until the
app that the attacker is interested in is launched (status detector
shown in Figure 1). Once the app under attack is running and on
the foreground, SMASheD app connects to the SMASheD server
through socket and sends read request with the list of sensors (e.g.,
touchscreen data only, all sensors, etc). Once the user exits the app
or moves out of the app, SMASheD app sends stop request to the
SMASheD server. In case the purpose of reading is to replay the
sensor events later in the same device, to reduce the communica-
tion between the SMASheD server and app, the SMASheD server
stores the read events in a file and only sends the file name to the
SMASheD app. Otherwise, the SMASheD server sends all the sen-
sor events.

Also, the SMASheD app can send inject request along with a list
of sensor events to inject or a file name previously acquired from
the service, whenever it wants to inject sensor events.

3.5 Threat Model
Our threat model is highly realistic, facilitated under three sce-

narios:
1. Already Installed Benign ADB Services: Apps that read and

inject touch events (e.g., FRep [22]) are already available in
Google Play Store and installed by many users. Given such an
already installed benign app, our attacks that read/inject touch
events work under the exact same threat model as [11] by using
a malicious app that communicates with the service associated
with the already installed app.

2. Future Benign ADB Services: Benign developers can publish
an app/service that reads/injects sensors events for providing
some benign functionality (e.g., debugging or testing). Once
such an app is installed, attacker will launch our attacks similar
to [11].

3. Malicious ADB Services: The attacker can create a benign-
looking (malicious) screenshot app, adding read/inject sensor
events functionality to its service. The attacker just needs to
fool users into installing this app. Note that when user installs
a service using ADB, he/she is not notified about the resources
the service is accessing. Therefore, the user will not be able to
differentiate between services that only take screenshots from
services with added malicious functionality. Moreover, if the
attacker can gain physical access to an unlocked Android de-
vice, the attacker can quickly install the malicious service on
the device (e.g., in a lunch-time attack) [16].

The first and second threat model scenarios exploit the vulner-
ability of the services that expose their ADB functionalities to all
the apps installed on the same device with INTERNET permission
(same as [11]). The last scenario exploits Android’s vulnerability
of granting all the shell privileges to any service installed via ADB
without notifying the user.

SMASheD works on unrooted devices, and does not require an
infected PC (unlike [8]) or a constant connection between the de-
vice and a PC (e.g., unlike monkeyrunner 2).

4. ATTACKS USING SMASHED
In this section, we present various attacks that can be performed

based on the sensor data reading-writing capability provided by
SMASheD. The entire spectrum of attacks that SMASheD can en-
able, especially those involving touch injection, is possibly very
broad. As such, our exposition is not exhaustive. However, we
introduce some of the most interesting and potentially devastating
attacks targeting both real-world applications and research systems.

4.1 Sniffing Touchscreen Input (Touchlogger)
We will demonstrate how SMASheD can be used as a TouchLog-

ger in order to sniff a user’s sensitive information. According to
Android security model, an app cannot read touch events performed
by the user on other apps [6]. However, we will show how it is pos-
sible to infer the keys that the user has pressed, and therefore extract
sensitive information efficiently and with 100% accuracy. We note
that SMASheD is not only able to detect user key presses but it can
also log any interaction of the user with the touchscreen.

The SMASheD app can send read request to the SMASheD server
to obtain all the events the user performs on the touchscreen. How-
ever, getting only the raw touch events is not enough to hamper the
user privacy. Moreover, the attacker will be interested only in a
small subset of these events. For example, an attacker will be inter-
ested in learning the password of the user on banking apps but not
the input corresponding to user’s interaction with a game.

According to the information the attacker wants to learn about
the user, the attacker can modify the service in the SMASheD app so
it sends read request when the app corresponding to the data the at-
tacker wants to collect is launched. Moreover, if the attacker wants
only to learn the keys the user presses while the app is running, he
can send the read request when both the app and the keyboard are
on the phone’s foreground.

To evaluate the ability of SMASheD to extract the username and
password from various banking apps, we repurposed the original
SMASheD app. When the SMASheD app is launched, it gets the
list of installed apps on the device using getPackageManager API.
Note that no permission is required to get the list of installed apps.
Then, the SMASheD app looks for the apps that are already installed
and are of interest to the attacker. The SMASheD app also finds the
soft keyboards installed. The SMASheD app starts running its status
2http://developer.android.com/tools/help/monkeyrunner_concepts.
html

detection service in the background, which regularly executes ps
command to find out the list of running applications. Once any of
the apps that the attacker wants to collect user data from appears
in the output of the execution ps command, the service gets that
app process ID, PIDapp. The service also gets the process ID of
the keyboard, PIDkb from the execution of the ps command. The
service then executes ps − tPIDapp command, which returns the
list of threads of that process; whenever an app is on the foreground,
the list of threads of that app has a thread named “GL updater”.

If the app is running the “GL updater” thread, the service also
checks if the keyboard is running “GL updater” thread. If both
the app and the keyboard app have “GL updater” thread running,
SMASheD detects that both of them are in the foreground and sends
read request to the SMASheD server. When user exits the app
or the keyboard (which can be detected by checking if the app is
no longer in the list returned by executing the ps command, or
if “GL updater” is not in the list of the thread running for either
the app or the keyboard), the SMASheD app sends stop request
to the SMASheD server. As a response to the stop request, the
SMASheD server sends all the touch events to the SMASheD app.
The SMASheD app parses the events and extracts the events with
event type ABS_MT_POSITION_X and ABS_MT_POSITION_Y
(Listing 2 in Appendix A). Finally, it maps the x and y coordinates
to keys (keyboard layout can be detected by determining which soft
keyboard the user is using, the orientation of the device and the
screen dimensions) and sends the text typed, for example, to the
attacker’s web service via HTML request, or via other methods as
we will discuss in Section 4.2.3.

4.2 Manipulating Touchscreen Sensor
The ability of injecting touch events could be extremely danger-

ous. In essence, it will allow the malware to do whatever the user
can do with her device. The primary challenge for the attacker is
to be stealthy. To do so, the attacker should inject the touch events
while the user might not be attending to the phone, such as when
the user is asleep or the phone is left inside a pocket or a purse.
Such contextual scenarios can be determined by monitoring vari-
ous motion and environmental sensors on the phone, as shown by
prior research [14]. For example, the attacker can monitor the prox-
imity and light sensors to infer when the phone is inside a pocket or
placed in dark [25]. Moreover, SMASheD can change the phone set-
tings, e.g., decrease screen brightness, mute sound and erase logs/-
traces to make the attacks “user-invisible.”

Following subsections layout some of the attacks that SMASheD
can perform given its capability to inject touch events.

4.2.1 Installing Apps Bypassing Permissions
SMASheD can install apps (benign or malicious) with extended

permissions, available from Google Play Store, or any other web-
site by injecting touch events on the infected device. To do so,
SMASheD first sends an intent either to open the URL of the web-
site where the malicious app resides, or to Google Play Store’s app
page. As the interface of the Google Play Store app is standard,
SMASheD can inject touch events on the install button and then the
accept button to grant the app with the requested permission. The
position of the touch events can be calculated based on the screen
dimensions. SMASheD can then close the Play Store app and clean-
up any installation-related notifications. Similarly, SMASheD can
open the malware-hosting website, download the APK, install the
malware by clicking on the downloaded APK, grant the malware
the desired permissions, and clean-up the traces. The installed mal-
ware apps can then do whatever they are designed to do against the
phone or the user.

4.2.2 Permission Escalation
SMASheD can utilize already installed apps to compromise

user’s privacy. For example, SMASheD can open the camera app
and collect images of the user’s surroundings to learn sensitive in-
formation about the user, similar to PlaceRaider [23], but without
asking the user to grant the CAMERA permission to the SMASheD
app. Similarly, SMASheD can open an audio recording app and
monitor the ambient audio. Also, SMASheD can open any installed
app having the GPS permission, acquire the location of the user,
and take a screenshot of the app displaying the location by pressing
and holding down the Power and Volume Down buttons. SMASheD
then can either send the snapshot to the attacker or perform simple
image processing to extract the user location, given that SMASheD
knows the app’s layout and the screen dimensions.

Other possible attacks include: making phone call to premium
rate numbers by opening the phone dialer and pressing the calling
button, sending SMSs via a messaging app, sending the contact list
of the user by opening the contact app, and sharing all the contacts
via email or SMS with a remote attacker, changing the phone set-
tings (such as toggling WiFi, GPS, etc) through the Settings app,
muting the phone, and so on.

4.2.3 Data Exfiltration
Whenever SMASheD needs to send any data to a remote at-

tacker (e.g., previously sniffed passwords, credit card numbers or
pictures), it can stealthily transmit this data utilizing other apps,
such as email or SMS. As some malware detection mechanisms
detect malicious apps based on abnormal data usage, SMASheD
can remain surreptitious and undetected by such systems. More-
over, SMASheD can delete the logs from the email and SMS apps
so that users cannot trace back. This simple strategy will prevent
SMASheD from being detected by either the device user or the anti-
virus apps. Such an exfiltration will also avoid the need for doing
any data processing on the infected device itself but rather allow
the attacker to outsource all processing to a remote machine.

4.2.4 Phone Unlock
In order to allow SMASheD to access any of the device resources

that require the device to be unlocked, SMASheD needs to unlock
the device first. To do that, SMASheD first utilizes the TouchLog-
ger presented in Section 4.1 to log the user’s PIN or pattern unlock
while the user unlocks his phone. Then, whenever SMASheD wants
to unlock the phone, it will simply inject the recorded PIN or pat-
tern unlock onto the touchscreen.

4.2.5 Accessing User Accounts
SMASheD can be used to open different apps that require au-

thentication, and log into user’s accounts. To do so, SMASheD will
first extract the user’s credentials for the target account by using the
TouchLogger described in Section 4.1. SMASheD will then utilize
this credential to log into the user account from her device. Access-
ing the user accounts from the SMASheD infected device is impor-
tant for several reasons. Many web services and banks implement
a second factor authentication approach which may only allow the
user to login from a registered device. Similarly, many banks re-
quire the user to answer security questions when she logs in from
a different device, and others send notification to the user specify-
ing the devices that are used to access her account. After having
logged into the user accounts, SMASheD can, for example, access
the account and perform any kind of the allowed banking transac-
tions, read user’s emails, send fake emails, forward the emails to a
remote attacker, or read user’s private data from or post messages
on social media sites — the possibilities are endless.

4.2.6 Attacking Biometric Authentication
Recently, a significant amount of research has been done to au-

thenticate a user transparently using biometrics. The touch-based
biometrics are applied either as a second factor authentication
mechanism during the device unlock or as a continuous authen-
tication mechanism when the user is performing some activity on
the device. Among these, some systems analyze the keystrokes of
the users to capture the biometrics while others analyze touch ges-
tures provided by the users. We now analyze a variety of these bio-
metrics systems proposed in the literature and provide a systematic
methodology to attack them using SMASheD.

Keystroke Biometrics: Maiorana et al. [13] present an approach
to authenticate users based on their typing habits on the smart-
phones. Their approach relies on the analysis of keystroke dynam-
ics. The system acquires and processes the time stamps generated
by the mobile phones related to key press and release. Using these,
the system further calculates different features such as Manhattan
distance, Euclidean distance and statistical features and generate a
template for each user. During the authentication, the system com-
putes the normalized distance and compares that with a threshold.

To authenticate against such system, SMASheD needs to learn
how the user types. During the learning phase, SMASheD can
record the user’s keystroke behavior and compute the features in
a similar way to the authentication system. After learning, it can
create the keystrokes such that the time interval SMASheD presses
and releases the keys closely correlates with that of the user. Note
that SMASheD can simply record and replay the user’s keystroke
without computing the features and the system may still fail to de-
tect such malicious input. However, creating new keystrokes after
learning the features is more detrimental to the user as the attacker
can recreate any events or activities he likes.

Touch Gesture Biometrics: Frank et al. [6] present “Touchalyt-
ics”, a continuous touch-based authentication system which utilizes
the strokes performed by the user while using her phone. Toucha-
lytics focuses on single touch gestures such as sliding horizontally
and vertically. To authenticate using touch, Touchalytics records
the touch coordinates, finger pressures, the screen areas covered by
each finger, and times. Touchalytics extracts 30 different features
from these raw inputs. Touchalytics uses these features to build a
profile of the user and utilizes it later to identify the user.

Since Touchalytics is monitoring and matching the touch with
the trained data for horizontal and vertical slides only but not with
other actions, SMASheD can perform tap/click and pinch without
getting detected. However, to navigate up/down or right/left where
SMASheD has to provide such horizontal/vertical slides, SMASheD
needs to record the previous authentic slides from the user, and later
inject them as desired. While outsider attacks using robots [18]
have previously been reported against Touchalytics, the SMASheD
attack represents the first known insider attack to our knowledge.

Shahzad et al. [19] present “GEAT” for screen unlocking based
on simple gestures. Along with the user touch input, GEAT uses
other features such as finger velocity, device acceleration, stroke
time, inter-stroke time, stroke displacement magnitude, stroke dis-
placement direction, and velocity direction. GEAT segments each
stroke into sub-strokes of different time duration where, for each
sub-stroke, the user has consistent and distinguishing behavior.
GEAT utilizes these features to train and later identify the user.

Since GEAT is only authenticating when user wants to unlock
the screen, SMASheD can record all the raw touch and device ac-
celeration data during the legitimate authentication by the user. It
can later just replay the touch providing the recorded data such that
the features would fully match.

Luca et al. [5] present another transparent authentication ap-
proach that enhances password patterns with an additional secu-
rity layer. They study the touch stroke gestures corresponding to
the horizontal slide and the pattern unlock. Their approach uses
dynamic time warping for the analysis of touch gestures using dif-
ferent features including XY-coordinates, pressure, size, time, and
speed of the touch.

SMASheD cannot only thwart the password pattern to unlock
the device but also foil the additional security layer provided by
this system. As discussed in the Section 4.1, SMASheD first sim-
ply sniffs the password pattern. In addition, SMASheD records the
pressure, size, time and speed of the touch when the legitimate user
performs the pattern unlock gesture. Now, when the SMASheD app
needs to unlock the device, it simply injects the previously recorded
touch events to circumvent the authentication functionality.

4.2.7 Attacking Touch-based Authorization
Roesner et al. [15] propose the user-driven access control system

where permission is granted using user actions rather than using
manifests or system prompts. It introduces access control gadgets
(ACGs). Each user-owned resource exposes UI elements, ACGs,
which are embedded by the apps. The user’s UI interaction with
the ACG grants the app permission to access the corresponding re-
sources. The system assumes that the kernel has complete control
of the display and the apps cannot draw outside the screen space
designated for them. Furthermore, it assumes that the kernel dis-
patches UI events only to the app with which the user is interacting.

The threat model of the system tries to restrict access such that
only one app gets the permission from the user interaction, while
other apps do not. It does not assume that the touch can be injected.
No app will have permission to use the resource until the user ex-
plicitly interacts with the ACGs embedded by the app. To attack
this system, SMASheD can provide the touch input to any app. For
example, if SMASheD wants to make a phone call, it needs to in-
teract with and provide touch to the phone calling ACG of the app.
Since the system receives the touch, it will permit the app to make
the phone call. In summary, SMASheD can fully bypass this system
by injecting simple touch events.

Chaugule et al. [1] present a defense against unauthorized ma-
licious behavior by utilizing the keypad or touchscreen interrupts.
The system differentiates between malware and human activity by
analyzing the presence of touch input which generates a hardware
interrupt. Their approach especially focuses on preventing unau-
thorized messaging. The system assumes that the operating system
is within the Trusted Computing Base and the hardware is not com-
promised. It assumes that the kernel memory interfaces are not ex-
ported to userspace so that userspace applications are not allowed to
write into kernel memory and alter kernel control flow. They claim
that there is no direct way in which the touchscreen interrupt han-
dler will be called from userspace code unless the operating system
is tampered with.

SMASheD can break this claim by providing the touchscreen in-
terrupt without tampering with the operating system. SMASheD
can provide touch screen input while sending the text message.
When the touch event is injected, it will provide the necessary hard-
ware interrupt that the system is looking for and hence any app will
be authorized to send the messages.

4.3 Manipulating Other Sensors
In this section, we first describe the systems which provide dif-

ferent security or non-security functionality based on the motion,
position and environmental sensors. Then, we provide an attack
scheme against each system using the sensor event injection capa-
bility of SMASheD.

Attacking these systems may not be straightforward. The best
scenario to manipulate the sensor readings is the one where the
current sensor readings are not being altered by the natural events.
For example, when the phone is in a pocket, the light sensor may
not change or report constant values. Since the sensor file will not
be altered by the natural environment in this case, the malware can
manipulate the sensor data as it likes. Also if the system is im-
plementing a statistical approach (such as based on mean, standard
deviation, etc., of the sensor data), the malware may not even need
to manipulate the sensors for the whole duration when the system
is monitoring the sensors. SMASheD can insert some values that
significantly changes these statistical features which causes the sys-
tem to misjudge the sensing context, thereby failing to provide its
intended security functionality. For the other systems, which im-
plement specialized algorithms based on continuous sensor data,
SMASheD needs to inject sensor readings at different timestamps
that correlate to the sensor values during benign case.

4.3.1 Attacking Authentication Systems
Conti et al. [4] propose a system that transparently authenticates

the user by analyzing her hand movement gesture while she is mak-
ing or answering a phone call. It uses accelerometer and orienta-
tion sensor to detect the proposed gesture. The system uses the
dynamic time warping distance (DTW-D) algorithm to verify if the
authorized user is making or answering the phone call.

To attack this system, SMASheD can record the accelerometer
and orientation sensor data when the user is making or receiving
a valid call. Later, when SMASheD wants to make a call (e.g.,
to premium rate numbers or to user’s contacts), it can replay the
previously recorded sensor data.

Gascon et al. [7] present an approach to continuously authenti-
cate users on smartphones by analyzing their typing motion behav-
ior. Along with touch input, it also records the timestamps when
the keys are pressed or released. The system uses different motion
and position sensors such as accelerometer, gyroscope and orienta-
tion sensors to capture behavioral biometrics so as to authenticate
the user. It extracts various features leading to a 2376-dimensional
vector representing the typing motion behavior of a user in a given
time frame. The system is trained with the linear SVM classifier.

To attack this system, SMASheD needs to learn how the user
presses each character, and then reproduce it later. During the
learning phase, SMASheD continuously records all the raw sensor
data until it gets necessary information used by the system for all
the keys during the legitimate key presses. Once the learning phase
is complete, SMASheD can provide the touch injects with proper
timings and the corresponding sensor readings. Since the motion
and position sensors are continuously recording the data from the
hardware, SMASheD may need to wait for a favorable time, e.g.,
when the phone is static, otherwise the natural readings may inter-
fere with the injected sensor readings possibly leading to rejection
by the system.

4.3.2 Attacking Authorization Systems
We now consider various systems that provide the authorization

functionality to access mobile device resources/services. The main
purpose of these systems is to differentiate a human user from a bot
so as to authorize access to the requesting app. To authorize human-
vs-bot actions, these systems capture different explicit and implicit
gestures provided by the user measured using multiple sensors.

Li et al. [10] present “Tap-Wave-Rub”. They propose multiple
gestures that can be used for the purpose of authorization. An im-
plicit gesture, such as tapping the phone with another device (tap),
is used to provide NFC permission to the requesting app. The sys-
tem uses accelerometer sensor to detect the tap gesture. An ex-

plicit gesture, such as waving a hand in front of the phone (wave)
or rubbing a finger near the proximity sensor (rub), is used to grant
permissions for the services where no implicit gesture can be used.
To detect wave and rub gestures, the system uses proximity sensor.
Shrestha et al. [21] also present “WaveToAccess”, in which another
mechanism for wave gesture detection is proposed. It utilizes the
light sensors to infer the fluctuation in light due to hand waving
and the accelerometer sensor to reduce the possibility of detecting
other events as hand wave. Both Tap-Wave-Rub and WaveToAc-
cess assume that the kernel is immune and the sensor data cannot
be manipulated by the malware.

SMASheD attacks the assumption made by these systems. To
generate the tap, wave or rub gesture, the attacker can record his
own gesture and later inject the recorded values via SMASheD. Al-
ternatively, SMASheD can record the gesture provided by the user
during the benign case and replay it later. A simpler attack can be
performed on wave and rub gestures in Tap-Wave-Rub, in which
SMASheD fluctuates the proximity sensor in quick succession so
that the system infers the corresponding gesture.

Shrestha et al. [20] later present a similar defense to mobile mal-
ware using transparent human gestures. The system uses the hand
movement gesture to prevent unauthorized access of the services
such as phone calling, picture snapping and NFC tapping. It looks
for multiple, motion, position and environmental sensor data to de-
tect the calling, snapping and tapping gestures. The assumption
that the system makes is the device is already infected with mal-
ware. However, the device kernel is healthy and is immune to the
malware infection, and also that the malware is not capable of ma-
nipulating the sensors.

SMASheD can attack the assumptions made by these systems.
The attacker can record the sensor data that is being used by these
systems to detect the gesture during call, snap or tap. Now, when
malware is trying to make a call, snap photo or tap NFC tag,
SMASheD can replay all these sensor data fooling the system to
believe that the user is performing the activity.

5. SMASHED MITIGATION
To protect against the adversarial applications of SMASheD (Sec-

tion 4), we suggest the following potential mitigation strategies.
Although these strategies may not fully prevent the attacks, they
may help reduce the impact of the underlying vulnerability.

First, we believe that it is important to raise people’s aware-
ness of the possible security risks associated with installing ser-
vices through the ADB shell. Second, we suggest following the
permission models of Android for native services that are executed
through the ADB shell. In the current model, any native service
that starts through the ADB shell is granted all the permissions that
the shell has without notifying the user. These permissions include
accessing logs, frame buffer, motion, position, environmental, and
user input sensors. An attacker may not reveal all the resources that
the service is accessing. For example, the attacker could publish
a service as a snapshot service while injecting code that accesses
sensor files as well. This may be prevented if the service is only
granted permissions after informing the user. Third, we suggest en-
forcing security policies for the communication between processes
running on the device through sockets. We recommend that An-
droid monitors the open sockets on the device and the apps that are
accessing those sockets. Whenever an unusual communication is
detected, Android should at least inform the user. Whether or not
users would pay attention to such notifications is an independent
concern. However, we believe that the potential risks should be
conveyed to the users.

6. RELATED WORK
Our paper is not the first to study the vulnerability underlying

the ADB workaround. Recently, Lin et al. [11] developed Screen-
milker, a malicious app that can glean sensitive information from
the mobile device’s screen (specifically passwords of banking apps)
by communicating with a snapshot service installed through ADB.
Screenmilker exploits the vulnerability of snapshot services of ex-
posing their ADB capabilities to any app with only INTERNET
permission installed on the same device.

Also, Hwang et al. [8] presented “Bittersweet ADB”, a set of
conceptual attacks using ADB ranging from private data leakage
to usage monitoring and behavior interference. The threat model
in [8] assumes that the user has enabled USB debugging on her
phone and forgot to disable it and later her PC got infected with a
malware such as the one explained in [12] which installs an ADB
service on the connected device. Then, whenever the user connects
her device to her infected PC, the malware on the PC installs a mali-
cious service with ADB capabilities on the user phone. The authors
also developed an app that can enable USB debugging without user
knowledge. Although Android 4.2.2 and higher display a dialog
asking the user to allow debugging via PC when the device is con-
nected to a PC, the authors assume that the users would just accept.
The authors proposed the use of static analyzer to detect the pro-
posed attacks. The static analyzer checks if the private information
resulted from executing ADB command is sent outside the Android
device via socket API.

In our paper, we extensively expanded the scope and the impact
of the ADB vulnerability to much more devastating, stealthy and
accurate attacks than the one proposed in [11] and with a weaker
(more realistic) threat model than [8]. We comprehensively and
systematically exposed the vulnerability of sniffing and manipulat-
ing many protected Android sensors, and translated it into a wide
spectrum of catastrophic attacks against real-world and research
systems. Our proposed framework is the first, to our knowledge,
that sniffs and manipulates protected sensors on unrooted Android
devices, without user awareness, without constant device-PC USB
connection (unlike the monkeyrunner tool) and without the need
for an infected PC (unlike [8]).

7. CONCLUSION AND FUTURE WORK
In this paper, we called the Android’s sensor security model into

question. We exploited Android’s ADB workaround to develop a
framework that can effectively sniff and manipulate many sensors
currently protected by Android’s access control model. Our frame-
work can be used to: (1) directly sniff the touchscreen sensor data,
(2) directly manipulate the touchscreen, motion, position and en-
vironmental sensor data, and (3) indirectly, using the touch inject
capability, sniff the audio-visual and navigational sensors. Based
on this framework, we introduced a wide spectrum of potentially
devastating attacks that can compromise user privacy and subvert
many security applications that rely upon different sensors.

We believe that our framework can facilitate many other applica-
tions beyond the ones we presented, which we also plan to explore
in our future work.

References
[1] A. Chaugule, Z. Xu, and S. Zhu. A specification based intrusion detection

framework for mobile phones. In Applied Cryptography and Network Security,
2011.

[2] ClockworkMod. Clockworkmod tether (no root). https://goo.gl/qg2e80.
[3] ClockworkMod. Helium. https://goo.gl/ceW329, 2013.
[4] M. Conti, I. Zachia-Zlatea, and B. Crispo. Mind how you answer me!:

transparently authenticating the user of a smartphone when answering or
placing a call. In ACM Symposium on Information, Computer and
Communications Security, 2011.

[5] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann. Touch me once
and i know it’s you!: Implicit authentication based on touch screen patterns. In
SIGCHI Conference on Human Factors in Computing Systems, 2012.

[6] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song. Touchalytics: On the
applicability of touchscreen input as a behavioral biometric for continuous
authentication. IEEE Transactions on Information Forensics and Security,
2013.

[7] H. Gascon, S. Uellenbeck, C. Wolf, and K. Rieck. Continuous authentication
on mobile devices by analysis of typing motion behavior. In Sicherheit, 2014.

[8] S. Hwang, S. Lee, Y. Kim, and S. Ryu. Bittersweet adb: Attacks and defenses.
In ACM Symposium on Information, Computer and Communications Security,
2015.

[9] E. Kim. No root screenshot it. https://goo.gl/hksbHY, 2013.
[10] H. Li, D. Ma, N. Saxena, B. Shrestha, and Y. Zhu. Tap-wave-rub: Lightweight

malware prevention for smartphones using intuitive human gestures. In ACM
conference on Security and privacy in wireless and mobile networks, 2013.

[11] C.-C. Lin, H. Li, X. Zhou, and X. Wang. Screenmilker: How to milk your
android screen for secrets. In Network and Distributed System Security
Symposium, 2014.

[12] F. Liu. Windows malware attempts to infect android devices.
http://goo.gl/x2Dwc2. Accessed: 2015-08-08.

[13] E. Maiorana, P. Campisi, N. González-Carballo, and A. Neri. Keystroke
dynamics authentication for mobile phones. In ACM Symposium on Applied
Computing, 2011.

[14] J.-K. Min, A. Doryab, J. Wiese, S. Amini, J. Zimmerman, and J. I. Hong.
Toss’n’turn: smartphone as sleep and sleep quality detector. In ACM conference
on Human factors in computing systems, 2014.

[15] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan.
User-driven access control: Rethinking permission granting in modern
operating systems. In IEEE Symposium on Security and Privacy (SP), 2012.

[16] D. Rogers. Mobile Security: A Guide for Users. lulu.com, 2013.
[17] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang.

Soundcomber: A stealthy and context-aware sound trojan for smartphones. In
Network and Distributed System Security Symposium (NDSS), 2011.

[18] A. Serwadda and V. V. Phoha. When kids’ toys breach mobile phone security.
In Conf. on Computer & Communications Security, 2013.

[19] M. Shahzad, A. X. Liu, and A. Samuel. Secure unlocking of mobile touch
screen devices by simple gestures: You can see it but you can not do it. In
Mobile Computing & Networking, 2013.

[20] B. Shrestha, M. Mohamed, N. Saxena, and S. Tamrakar. Curbing mobile
malware based on user-transparent hand movements. In Pervasive Computing
and Communications, 2015.

[21] B. Shrestha, N. Saxena, and J. Harrison. Wave-to-access: Protecting sensitive
mobile device services via a hand waving gesture. In Cryptology and Network
Security. Springer, 2013.

[22] strAI. Frep - finger replayer. https://goo.gl/2F5k7J, 2015.
[23] R. Templeman, Z. Rahman, D. Crandall, and A. Kapadia. Placeraider: Virtual

theft in physical spaces with smartphones. Network and Distributed System
Security Symposium (NDSS), 2013.

[24] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng. Stealthy video capturer:
a new video-based spyware in 3g smartphones. In ACM conference on Wireless
network security, 2009.

[25] J. Yang, E. Munguia-Tapia, and S. Gibbs. Efficient in-pocket detection with
mobile phones. In ACM conference on Pervasive and ubiquitous computing
adjunct publication, 2013.

APPENDIX
A. SAMPLE OUTPUT FROM GETEVENT
Listing 2: Sample output from running getevent for a single press release

[6 9 9 3 4 . 4 3 5 5 0 3] EV_ABS ABS_MT_TRACKING_ID 0000038 d
[6 9 9 3 4 . 4 3 5 5 3 3] EV_KEY BTN_TOUCH DOWN
[6 9 9 3 4 . 4 3 5 5 6 4] EV_ABS ABS_MT_POSITION_X 000003 b2
[6 9 9 3 4 . 4 3 5 5 6 4] EV_ABS ABS_MT_POSITION_Y 00000607
[6 9 9 3 4 . 4 3 5 5 9 5] EV_ABS ABS_MT_TOUCH_MAJOR 00000012
[6 9 9 3 4 . 4 3 5 5 9 5] EV_ABS ABS_MT_TOUCH_MINOR 00000009
[6 9 9 3 4 . 4 3 5 6 2 5] EV_ABS ABS_MT_WIDTH_MAJOR 00000002
[6 9 9 3 4 . 4 3 5 6 2 5] EV_ABS 003 c f f f f f f a 6
[6 9 9 3 4 . 4 3 5 7 7 8] EV_SYN SYN_REPORT 00000000
[6 9 9 3 4 . 4 5 2 1 0 5] EV_ABS ABS_MT_TOUCH_MAJOR 00000024
[6 9 9 3 4 . 4 5 2 1 0 5] EV_ABS ABS_MT_TO UCH_MINOR 0000001 b
[6 9 9 3 4 . 4 5 2 1 3 5] EV_ABS ABS_MT_WIDTH_MAJOR 00000008
[6 9 9 3 4 . 4 5 2 1 3 5] EV_ABS 003 c f f f f f f f d
[6 9 9 3 4 . 4 5 2 1 6 6] EV_SYN SYN_REPORT 00000000
[6 9 9 3 4 . 4 6 2 8 4 7] EV_ABS 003 c 00000000
[6 9 9 3 4 . 4 6 2 8 7 7] EV_SYN SYN_REPORT 00000000
[6 9 9 3 4 . 4 9 4 3 7 1] EV_ABS ABS_MT_TRACKING_ID f f f f f f f f
[6 9 9 3 4 . 4 9 4 4 0 2] EV_KEY BTN_TOUCH UP
[6 9 9 3 4 . 4 9 4 4 0 2] EV_SYN SYN_REPORT 00000000

