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Abstract—The current Android sensor security model either
allows only restrictive read access to sensitive sensors (e.g., an app
can only read its own touch data) or requires special install-time
permissions (e.g., to read microphone, camera or GPS). Moreover,
Android does not allow write access to any of the sensors. Sensing-
based security and non-security applications therefore crucially
rely upon the sanity of the Android sensor security model.

In this paper, we show that such a model can be effectively
circumvented. Specifically, we build SMASheD, a legitimate frame-
work under the current Android ecosystem that can be used
to stealthily sniff as well as manipulate many of the Android’s
restricted sensors (even touch input). SMASheD exploits the An-
droid Debug Bridge (ADB) functionality and enables a malicious
app with only the INTERNET permission to read, and write to,
multiple different sensor data files at will. SMASheD is the first
framework, to our knowledge, that can sniff and manipulate
protected sensors on unrooted Android devices, without user
awareness, without constant device-PC connection and without
the need to infect the PC.

The primary contributions of this work are two-fold. First,
we design and develop the SMASheD framework, and evaluate
its effectiveness on multiple Android devices, including phones,
watches and glasses. Second, as an offensive implication of the
SMASheD framework, we introduce a wide array of potentially
devastating attacks. Our attacks against the touchsensor range
from accurately logging the touchscreen input (TouchLogger)
to injecting touch events for accessing restricted sensors and
resources, installing and granting special permissions to other
malicious apps, accessing user accounts, and authenticating on
behalf of the user — essentially almost doing whatever the
device user can do (secretively). Our attacks against various
physical sensors (motion, position and environmental) can subvert
the functionality provided by numerous existing sensing-based
security and non-security applications, including those used for
(continuous) authentication, authorization, safety, and elderly care.

I. INTRODUCTION

Sensing-enabled computing is rapidly becoming ubiqui-
tous. With mobile device manufacturers embedding multiple,
low-cost hardware sensors onto the devices and mobile OS
providers adding full software support for developing applica-
tions using these sensors, there is a transformational growth in
the adoption of mobile devices.

The most common categories of sensors available on the
current breed of mobile devices, smartphones, smartwatches
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and smartglasses, include: (1) user input sensor (touchscreen
and hardware buttons), (2) audio-visual sensors (microphone
and camera), (3) navigational sensors (e.g., GPS), (4) motion
sensors (e.g., accelerometer and gyroscope), (5) position sen-
sors (e.g., magnetometer and proximity), and (6) environmental
sensors (e.g., pressure, and temperature). The mobile apps
utilizing these sensors have seen a widespread deployment
in many domains ranging from entertainment, navigation and
transportation (e.g., [16]) to elderly care (e.g., [10, 12]) and
safety (e.g., [39]), to name a few. In addition, mobile device
sensors are a cornerstone of a wide range of security and
privacy applications, including those geared for authentication
and authorization (e.g., [13, 14, 25, 31]).

Since mobile sensors provide potentially sensitive informa-
tion about the host device, the device’s user or the device’s
surroundings, protecting sensor data from abuse by malicious
applications becomes paramount. Consequently, most mobile
platforms have established a sensor security access control
model. Specifically, Android, one of the most popular mobile
OSs and the subject of this paper, follows a model where read
access to many sensitive sensors is very restrictive (e.g., an
app can only read its own touch data) or requires special
install-time permissions granted by the user (e.g., to access
microphone, camera or GPS). The read access to most other
sensors, including motion, position and environmental sensors,
is not restricted within this model because Android may
not consider these sensors as explicitly sensitive. Moreover,
Android security model does not allow write access to any of
the sensors [1]. Clearly, the sensing-based security and non-
security applications therefore crucially rely upon the sanity
of the Android sensor security model.

In this paper, we demonstrate that the current Android sensor
security model can be effectively circumvented to a large
extent. Specifically, we build SMASheD, a legitimate systems
framework under the current Android ecosystem that can be
used to stealthily sniff (read) as well as manipulate (write
to) many of the Android’s restricted sensors. To be precise,
SMASheD can be used to: (1) directly sniff the touchsensor,
(2) directly manipulate the touch, motion, position and envi-
ronmental sensors, and (3) indirectly, using the touch inject
capability, sniff the audio-visual and navigational sensors.
SMASheD does not require the device to be rooted.

SMASheD exploits the Android Debug Bridge (ADB) func-
tionality and enables a malicious app with only the INTERNET
permission to read from, and write to, multiple sensor data files
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at will. ADB is a functionality designed to allow Android app
developers with extended permissions to systems resources that
are otherwise protected by the Android sensor security model.
This workaround is legitimate and has been used by many
apps in Google Play Store such as screenshot apps [18], sync
and backup apps [8], and touch record/replay apps [34]. All of
these apps ask the user to connect her device to a PC via USB,
launch ADB and run a native service with ADB privilege. The
app then communicates with this service to obtain access to
the resources which Android deems as protected.

As part of SMASheD, we develop a service that provides
read and write sensor events functionality. This functionality
can be hidden inside any service that requires the ADB
workaround, e.g., a screenshot service. When installing an app,
the user is usually made aware of the permissions that she is
granting to the app. However, while installing and executing
the service through ADB, the user is completely oblivious as to
what permissions the service might have. Also, SMASheD can
be published for debugging or any other benign purposes but
can contain malicious code that will utilize the functionality
provided by the service for malicious purposes. Moreover, such
services can be exploited by malicious apps in a similar way
as presented in [20]. Our SMASheD platform encompasses a
native service and an Android app.
Our Contributions: In this paper, we expose the vulnerability
underlying the ADB workaround allowing us to read from
and write to many Android sensors currently protected by the
Android access control model. Equipped with this powerful
capability, we then go on to present the offensive implications
in many security and non-security contexts. The research
contributions of our work are outlined below:
1) A Framework to Sniff & Manipulate Android Sen-

sors (Section III): We design and develop the SMASheD
framework to sniff and manipulate many restricted Android
sensors, and evaluate its effectiveness on multiple Android
devices, including phones, watches and glasses.

2) Powerful Adversarial Applications (Section IV): As a
significant offensive implication of the SMASheD frame-
work, we introduce a broad array of potentially devastating
attacks. Our attacks include the following (selected attack
demos are available at https://androidsmashed.wordpress.
com/demos/):
a) Logging the touchscreen input, leading to the first full-

fledged, highly accurate TouchLogger.
b) Injecting touch events for accessing restricted sensors

and resources (e.g., microphone, camera or GPS),
installing and granting special permissions to other
malicious apps (translating into many known malware
schemes, such as [27, 35, 36], without the need for
the user to grant special permissions), accessing user
accounts and authenticating on behalf of the user –
essentially almost doing whatever the device user can
do (secretively).

c) Manipulating various physical sensors (motion, po-
sition and environmental) in order to subvert the
functionality provided by many sensing-based security
and non-security applications, including those used for
(continuous) authentication (e.g., [13, 14]), authoriza-

tion (e.g., [30, 31]), safety (e.g., [39]), and elderly care
(e.g., [10, 12]).

This paper is an extension of our previous work [23]. In
this extension, we provided a comprehensive implementation
of seven of the attacks, extend the scope of our attacks to non-
security applications including those used for safely, elderly
care and video authenticity, and tested SMASheD on various
android devices.

II. BACKGROUND: ANDROID SENSOR SECURITY MODEL

Android’s core security principle is to protect user data,
system resources and apps from malicious apps [1]. Android
utilizes the Linux approach of process isolation to enforce
the isolation of apps and operating systems components.
This isolation is achieved by assigning each app a unique
User Identifier (UID) and Group Identifier (GID) at the app
installation time. Therefore, each app is enforced to run in a
separate Linux process, called Application Sandbox, and the
Linux process isolation ensures that an app cannot interfere
with other apps or access system resources unless permissions
are explicitly granted. In order to allow apps to communicate
with each other and access system resources, Android provides
a secure Inter-Process Communication (IPC) protocol.

Discretionary Access Control (DAC) is the typical access
control employed in Linux. In DAC, the owner/creator of the
data sets the access permissions of the data to three types
of users: the owner, the users in the same group and all
other users. When an app is installed, Android creates a home
directory for the app (i.e., /data/data/app-name) and allows
only the owner to read from and write to this directory. The
apps signed with the same certificate are able to share the data
among each other.

File system permissions are also used to restrict the access
of system functionality. For example, /dev/cam permission is
set to allow only the owner and the users in the camera group
to read and write to the camera sensor. When an app requests
the CAMERA permission, and if the permission is granted, the
app is assigned the camera Linux GID, which would allow it
to access /dev/cam. The mapping between the Linux groups
and permission labels are set in platform.xml, and ueventd.rc
is responsible for setting the owners and groups for various
system files.

Some Android resources do not require any permission. In
particular, reading motion, position and environmental sensors
is globally permitted. Most of the other resources require read-
write permissions, and these permissions have four levels:
1) Normal: The app needs to request the access, however,

the system grants the permission automatically without
notifying the user (e.g., vibrate).

2) Dangerous (protection level 1): The system grants the
permission to the app only if the user approves granting this
permission (e.g., accessing camera, microphone, or GPS).

3) Signature (protection level 2): The system grants the per-
mission to the app only if the requesting app is signed with
the same certificate as the app that declared the permission,
without notifying the user. (e.g., allowing two apps signed
by the same developer to access each other components,
inject event).
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4) SignatureOrSystem (protection level 3): The system grants
the permission only to the apps that are in the Android
system image or that are signed with the same certificate as
the app that declared the permission (e.g., system reboot).

In any Linux system, an executable runs with same per-
mission as the process that has started it. ADB shell is
already assigned to several groups (graphics, input, log, adb,
sdcard rw, etc). Therefore, any executable that starts through
the ADB shell is granted the same level of access to the
resources which belong to any of these groups. Since the direc-
tory “/dev/input/*” which contains the sensor files, belongs to
“input” group, and the ADB shell has read-write access to all
the resources associated with “input” group, any executable
that is initiated by ADB shell can read from and write to
the “/dev/input/*” resources. This is the key idea upon which
our SMASheD framework is based, allowing us to sniff and
manipulate many of the Android’s sensors.

III. SMASHED DESIGN, IMPLEMENTATION AND THREAT
MODEL

A. Design Overview
As mentioned in Section II, the current Android secu-

rity model considers many resources as sensitive and thus
limits the access of these resources only to the apps that
are signed by the system (protection level 3 for the per-
missions declared by the system and protection level 4).
These protected resources include: injecting user events
into any window (INJECT EVENTS), taking screen shots
(READ FRAME BUFFER), and reading system log files
(READ LOGS). However, Android allows access to these
resources through the ADB shell for development purposes,
by assigning the ADB shell to the groups that can access these
resources. For example, the ADB shell is assigned to the input
group which allows any process with the ADB shell privilege
to read from and write to any of the files in the /dev/input/
directory. This directory contains the files associated with user
input, motion, position and environmental sensors.

Moreover, Android’s current directory structure has the
/data/local/tmp/ directory which is assigned to shell user and
shell group, and gives read, write and execute permission to the
shell user and any user in the shell group. This folder allows the
user to run executable files on their Android devices through
ADB shell.

Many developers have exploited these capabilities given to
the ADB shell to grant permissions to their apps that are not
otherwise allowed. This ADB workaround is performed by
developing a native service, pushing it into the /data/local/tmp/
directory and running the service through the ADB shell.
This way the native service grants all the permissions that
are granted to the shell. Finally, to allow other apps to
communicate with the service, both the app and the service
open sockets and communicate through it. This approach has
been utilized by many apps that are already published in
Google Play Store such as apps that allow the users to take
screenshots programmatically [18], sync and backup [8], USB
tethering [7], and touch record/replay [34].

The above design allows any app with only the INTERNET
permission to communicate with the service. Hence, the app

Fig. 1: The architecture of SMASheD

with only the INTERNET permission will obtain access to
the resources that the service provides without the user’s
knowledge. This vulnerability has been explored in [20], fo-
cusing mainly on screenshot apps published in Google Play
Store. The authors developed an app, Screenmilker, which
communicates with the native services of many screenshots
apps. They showed that Screenmilker is able to collect user’s
sensitive data, such as user’s credentials on many banking
apps by sending requests to the screenshot’s native service to
take screenshots while the user is inputting her credentials. (A
detailed comparison of our SMASheD framework with related
prior work is later provided in Section VI and Table I).

In this paper, we are exploring and extending this vulnera-
bility further, and with potentially much broader consequences.
We focus on INJECT EVENTS permission. There are already
some apps in Google Play Store, such as FRep – Finger Re-
player [34], which allow users to record their touch interactions
with their devices and replay them later. FRep has already been
installed by 100,000 to 500,000 users. These apps also utilize
the ADB workaround, similar to the screenshot apps, in order
to gain access to the read and inject touchscreen data. Also,
as the communication between the touch repeater app and its
native service is done through a socket, the native service
becomes accessible to any app installed on the phone with only
the INTERNET permission. Therefore, if the user installs any
malicious apps with the INTERNET permission, these apps
can also communicate with the service and read/inject touch
events maliciously.

RERAN [15] presents one of the benign use cases for the
apps that record and later replay sensor events by injecting
the events into the sensors. Such apps enable the developers
to test their apps and reproduce errors. However, rather than
implementing a native service for recording and replaying the
sensor events, RERAN employed a different methodology for
implementing their app. First, the user needs to connect her
device to the PC. Then, she launches a terminal and executes
the ADB getevent command. This command reads the sensor
events and stores them in a file. Finally, the user pushes the
file along with a native service to her device and runs the
service. This service reads the sensor events from the file and
injects them to their corresponding sensors. Once the phone is
disconnected from USB, the service stops running.
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We implement the SMASheD framework which encom-
passes three components: SMASheD server: a native service
that provides the sensor data reading and injection capabilities,
scripts: two simple scripts used to copy the SMASheD server to
the device and to start the server, and SMASheD app: an app
that runs a status detection module in the background, and
depending on the phone’s status and the desired functionality,
it sends requests to the SMASheD server to read or inject sensor
events. Figure 1 depicts the overall SMASheD architecture.

B. SMASheD Server
Our system works with the sensors whose events are made

available to apps through low-level event interface and have
files under the directory /dev/input/, and not through system
services (e.g., camera, microphone, and GPS). This includes
user input, motion, position and environmental sensors. For
each of these sensors, a corresponding file named eventx
exists in the directory /dev/input/. Android allows reading and
injecting sensor events through ADB commands getevent and
sendevent, respectively.

Each hardware event generates multiple input events. Each
input event encompasses time, type, code and value.
• time represents the time at which the event occurred.
• value represents the value of the event.
• code is the event code and it precisely defines the type of

the event. For example, REL X, REL Y, REL Z represent
relative changes in X, Y and Z axes, respectively.

• type is the event type, which groups the event’s codes under
a logical input construct. Each event type has a set of
applicable event codes. For example, EV ABS represents
the absolute axis value changes, EV REL represents the
relative axis value changes. A special event type, EV SYN,
is used to separate input events into packets of input data
changes occurring at the same moment in time.
For a complete list of the applicable events’ types and codes,

we refer the reader to linux/input.h1.
As an example, a simple touchscreen press-release event

generates around 19 input events. Listing 1 in Appendix A
displays a sample output of executing getevent command,
pressing on the screen at point (946,1543), and then re-
leasing the touch. BTN TOUCH DOWN and BTN TOUCH
UP indicate the beginning and the end of the touch,
ABS MT POSITION X and ABS MT POSITION Y repre-
sent the touch’s x and y positions, respectively.

We implemented a native service designed in C with code
similar to Android’s getevent and sendevent for reading and
injecting the sensor events. First, the service scans /dev/input/
directory to find out what sensors are available in the device.
Although the file names in the directory are event0, event1, etc,
we use EVIOCGVERSION ioctl function to retrieve the name
of the sensor that corresponds to each file. To read from and
write to the sensors’ files, we use read() and write() functions.

To allow other apps to communicate with the service, the
service creates a socket. The socket keeps on listening to the
incoming requests. In the current implementation, the service
accepts three kinds of requests: read, stop and inject.

1https://github.com/torvalds/linux/blob/master/include/uapi/linux/input.h

• read: The service reads the input events from all the sensors.
We can limit the read to a subset of sensors to improve the
efficiency. The service continues reading until it receives a
stop request.

• stop: The service stops reading the sensor events. Then, it
either writes the events to a file, and sends the file name as
a response to the request or sends all the read input events.

• inject: Inject needs to have a file name or a list of sensors
events as an argument. The service injects the sensors events
in the incoming list or in the file to their corresponding
sensors files.

C. Scripts
We wrote two shell scripts to start the service. The first

shell script is responsible for pushing the native service and
the second script to /data/local/tmp/ folder on the device, and
for starting the second script. The second script starts running
the service. In this way, the service will run with the same
privileges as the shell user. The service will then keep running
until the phone is switched off or it gets killed by the user.

D. SMASheD App
We implemented an Android app, which only requires the

INTERNET permission. The app connects to the SMASheD
server through socket and sends requests to read and inject
events. For example, it may send read touch events when a
banking app is open to retrieve the password input by the user.

In order to determine whether a specific app that the attacker
might be interested in is running, our app has a service that
starts when the app is launched and keeps running in the
background. The service runs ps command periodically, every
100 ms, until the app that the attacker is interested in is
launched (status detector shown in Figure 1). Once the app
under attack is running and on the foreground, SMASheD app
connects to the SMASheD server through socket and sends
read request with the list of sensors (e.g., touchscreen data
only, all sensors, etc). Once the user exits the app or moves out
of the app, SMASheD app sends stop request to the SMASheD
server. In case the purpose of reading is to replay the sensor
events later in the same device, to reduce the communication
between the SMASheD server and app, the SMASheD server
stores the read events in a file and only sends the file name to
the SMASheD app. Otherwise, the SMASheD server sends all
the sensor events.

Also, the SMASheD app can send inject request along with
a list of sensor events to inject or a file name previously
acquired from the service, whenever it wants to inject sensor
events.

E. Threat Model
Our threat model is highly realistic, facilitated under three

scenarios:
1) Already Installed Benign ADB Services: Apps that read

and inject touch events (e.g., FRep [34]) are already avail-
able in Google Play Store and installed by many users.
Given such an already installed benign app, our attacks that
read/inject touch events work under the exact same threat



5

model as [20] by using a malicious app that communicates
with the service associated with the already installed app.

2) Future Benign ADB Services: Benign developers can
publish an app/service that reads/injects sensors events for
providing some benign functionality (e.g., debugging or
testing). Once such an app is installed, attacker will launch
our attacks similar to [20].

3) Malicious ADB Services: The attacker can create a benign-
looking (malicious) screenshot app, adding read/inject sen-
sor events functionality to its service. The attacker just
needs to fool users into installing this app. Note that when
user installs a service using ADB, he/she is not notified
about the resources the service is accessing. Therefore, the
user will not be able to differentiate between services that
only take screenshots from services with added malicious
functionality. Moreover, if the attacker can gain physical
access to an unlocked Android device, the attacker can
quickly install the malicious service on the device (e.g.,
in a lunch-time attack) [26].

The first and second threat model scenarios exploit the vul-
nerability of the services that expose their ADB functionalities
to all the apps installed on the same device with INTERNET
permission (same as [20]). The last scenario exploits Android’s
vulnerability of granting all the shell privileges to any service
installed via ADB without notifying the user.

SMASheD works on unrooted devices, and does not require
an infected PC (unlike [17]) or a constant connection between
the device and a PC (e.g., unlike monkeyrunner 2).

F. SMASheD Advantages

The SMASheD framework has several advantages:

• Modularity and Expandability to Broad Attacks: Once the
user runs the script via the ADB shell to install the
SMASheD server, the device becomes vulnerable to the
attacks described in Section IV. The attacker only needs
to modify the SMASheD app so as to send the read and
inject requests according to the type of attack he wants to
perform.

• Stealthiness: SMASheD is very stealthy and hard to get
detected by anti-malware or intrusion detection systems.
This is because SMASheD does not consume much energy
compared to other apps that need to continuously monitor
the sensors (such as activity trackers), and it can utilize
other benign apps to send the collected information to a
remote attacker. Moreover, SMASheD can change the phone
settings, e.g., decrease screen brightness, mute sound and
erase logs/traces to make the attacks “user-invisible”, as we
will explain in Section IV-C.

• Mutli-Device Applicability: SMASheD is not limited to An-
droid phones, but rather it works on any Android device.
We tested reading and injecting sensor events on Android
phones (Samsung S4, Samsung S5 and Motorola Droid X2),
smartwatch (Samsung Gear Live) and Google Glass.

2http://developer.android.com/tools/help/monkeyrunner concepts.html

IV. ATTACKS USING SMASHED

In this section, we present various attacks that can be
performed based on the sensor data reading-writing capabil-
ity provided by SMASheD. The entire spectrum of attacks
that SMASheD can enable, especially those involving touch
injection, is possibly very broad. As such, our exposition
is not exhaustive. However, we introduce some of the most
interesting and potentially devastating attacks targeting both
real-world applications and research systems.

A. Overview of Attacks and Attack Presentation
To present our attacks, we follow an empirical-analytical

methodology. That is, we show the implementation and evalua-
tion of several of our attacks, and present the rest of the attacks
in an analytical way. The attacks that have been implemented
and empirically studied (7 in number) are:
• Touch-Logger: (1) Key-logger that can be utilized to extract

banking apps usernames/passwords, and (2) a general logger
that can record user’s touchscreen interactions.

• Touch Injection: (3) App installation bypassing permissions,
(4) Permission escalation (making unauthorized phone call),
(5) Phone unlock, and (6) Phone unlock bypassing biomet-
rics security, e.g., [11], by replaying user’s unlock-pattern.

• Sensor Manipulation: (7) Defeating a gesture-centric mo-
bile malware defense [30].
The other proposed analytical attacks can be implemented

similarly. We believe that it is not necessary to implement all
attacks and our empirical-analytical exposition is sufficient to
fully demonstrate the impact of the exposed vulnerability.

B. Sniffing Touchscreen Input (Touchlogger)
We will demonstrate how SMASheD can be used as a

TouchLogger in order to sniff a user’s sensitive information.
According to Android security model, an app cannot read
touch events performed by the user on other apps [13].
However, we will show how it is possible to infer the keys that
the user has pressed, and therefore extract sensitive information
efficiently and with 100% accuracy. We note that SMASheD is
not only able to detect user key presses but it can also log any
interaction of the user with the touchscreen, such as swiping,
and zooming.

Many researchers have proposed mechanisms to infer the
keys pressed by the users. These attacks require the user to
install a malicious app on her phone. These methods range
from utilizing motion sensors [2, 4, 37] and a combination
of camera and microphone [33] to taking screenshot while the
user is typing sensitive information, such as PINs or passwords
[20]. However, these attacks usually have a relatively low
accuracy and may be significantly affected by the way the
user types and/or holds the phone. Taking pictures or recording
audio may also trigger suspicion.

The SMASheD app can send read request to the SMASheD
server to obtain all the events the user performs on the
touchscreen. However, getting only the raw touch events is
not enough to hamper the user privacy. Moreover, the attacker
will be interested only in a small subset of these events. For
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example, an attacker will be interested in learning the password
of the user on banking apps but not the input corresponding
to user’s interaction with a game.

According to the information the attacker wants to learn
about the user, the attacker can modify the service in the
SMASheD app so it sends read request when the app corre-
sponding to the data the attacker wants to collect is launched.
Moreover, if the attacker wants only to learn the keys the user
presses while the app is running, he can send the read request
when both the app and the keyboard are on the foreground.

To evaluate the ability of SMASheD to extract the username
and password from various banking apps, we repurposed the
original SMASheD app. When the SMASheD app is launched,
it gets the list of installed apps on the device using getPack-
ageManager API. Note that no permission is required to get
the list of installed apps. Then, the SMASheD app looks for the
apps that are already installed and are of interest to the attacker.
The SMASheD app also finds the soft keyboards installed. The
SMASheD app starts running its status detection service in the
background, which regularly executes ps command to find out
the list of running applications. Once any of the apps that
the attacker wants to collect user data from appears in the
output of the execution ps command, the service gets that app
process ID, PIDapp. The service also gets the process ID of
the keyboard, PIDkb from the execution of the ps command.
The service then executes ps − tPIDapp command, which
returns the list of threads of that process; whenever an app is
on the foreground, the list of threads of that app has a thread
named “GL updater”.

If the app is running the “GL updater” thread, the service
also checks if the keyboard is running “GL updater” thread.
If both the app and the keyboard app have “GL updater”
thread running, SMASheD detects that both of them are in the
foreground and sends read request to the SMASheD server.
When user exits the app or the keyboard (which can be
detected by checking if the app is no longer in the list returned
by executing the ps command, or if “GL updater” is not in the
list of the thread running for either the app or the keyboard),
the SMASheD app sends stop request to the SMASheD server.
As a response to the stop request, the SMASheD server sends
all the touch events to the SMASheD app. The SMASheD
app parses the events and extracts the events with event
type ABS MT POSITION X and ABS MT POSITION Y
between BTN TOUCH DOWN and BTN TOUCH UP (List-
ing 1 in Appendix A), if between the down and up events,
the ABS MT POSITION X or ABS MT POSITION Y is
missing, the value of it is same as its correspondent in the
previous touch. Finally, it maps the x and y coordinates to keys
(keyboard layout can be detected by determining which soft
keyboard the user is using, the orientation of the device and the
screen resolution) and sends the text typed (if the user is using
a soft keyboard that is unknown to SMASheD, SMASheD can
send the name of the soft keyboard app, the x, y coordinates
of each touch and the screen resolution and orientation to the
attacker and the mapping can performed offline), for example,
to the attacker’s web service via HTML request, or via other
methods as we will discuss in Section IV-C3.

We tested the above attack on some banking applications,

such as Wells Fargo and Bank of America apps, and we could
learn the username and password with 100% accuracy. The
attack was tested on Samsung Galaxy S5 with Android OS
version 5.0 and Samsung Galaxy S1 with Android OS version
4.4.2, and can be easily adapted to other Android phone models
and even other devices such as smartwatches. Our attack is an
extremely powerful attack since all the input provided by the
user can be precisely and stealthily stolen, raising significant
concerns for users’ security and privacy.

C. Manipulating Touchscreen Sensor
The ability of injecting touch events could be extremely

dangerous. In essence, it will allow the malware to do whatever
the user can do with her device. The primary challenge for the
attacker is to be stealthy. To do so, the attacker should inject
the touch events while the user might not be attending to the
phone, such as when the user is asleep or the phone is left
inside a pocket or a purse. Such contextual scenarios can be
determined by monitoring various motion and environmental
sensors on the phone, as shown by prior research [22]. For
example, the attacker can monitor the proximity and light
sensors to infer when the phone is inside a pocket or placed
in dark [38]. Moreover, SMASheD can change the phone
settings, e.g., decrease screen brightness, mute sound and erase
logs/traces to make the attacks “user-invisible.”

Following subsections layout some of the attacks that
SMASheD can perform given its capability to inject touch
events.

1) Installing Apps Bypassing Permissions: SMASheD can
install apps (benign or malicious) with extended permissions,
available from Google Play Store, or any other website by
injecting touch events on the infected device. To do so,
SMASheD first sends an intent either to open the URL of
the website where the malicious app resides, or to Google
Play Store’s app page. As the interface of the Google Play
Store app is standard, SMASheD can inject touch events on
the install button and then the accept button to grant the
app with the requested permission. The position of the touch
events can be calculated based on the screen dimensions.
SMASheD can then close the Play Store app and clean-up
any installation-related notifications. Similarly, SMASheD can
open the malware-hosting website, download the APK, install
the malware by clicking on the downloaded APK, grant the
malware the desired permissions, and clean-up the traces.
This way SMASheD can bypass Android’s app security, which
requires the user to grant permissions to different Android
apps. The installed malware apps can then do whatever they
are designed to do against the phone or the user. We have
developed and tested such an auto app installer. A demo is
available at https://androidsmashed.wordpress.com/demos/.

2) Permission Escalation: SMASheD can utilize already
installed apps to compromise user’s privacy. For example,
SMASheD can open the camera app and collect images of
the user’s surroundings to learn sensitive information about
the user, similar to PlaceRaider [35], but without asking the
user to grant the CAMERA permission to the SMASheD app.
Similarly, SMASheD can open an audio recording app and
monitor the ambient audio. Also, SMASheD can open any
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installed app having the GPS permission, acquire the location
of the user, and take a screenshot of the app displaying the
location by pressing and holding down the Power and the
home button. This can be performed by writing press event
to both of the buttons’ files, waiting for 1 second and then
writing release event to both of the buttons’ files. SMASheD
then can either send the snapshot to the attacker or perform
simple image processing to extract the user location, given that
SMASheD knows the app’s layout and the screen dimensions.

Other possible attacks include: making phone call to pre-
mium rate numbers by opening the phone dialer and pressing
the calling button, sending SMSs via a messaging app, sending
the contact list of the user by opening the contact app, and
sharing all the contacts via email or SMS with the attacker,
changing the phone settings (such as toggling WiFi, GPS, etc)
through the Settings app, muting the phone, and so on.

3) Data Exfiltration: Whenever SMASheD needs to send any
data to a remote attacker (e.g., previously sniffed passwords,
credit card numbers or pictures), it can stealthily transmit this
data utilizing other apps, such as email or SMS. As some
malware detection mechanisms detect malicious apps based on
abnormal data usage, SMASheD can remain surreptitious and
undetected by such systems. Moreover, SMASheD can delete
the logs from the email and SMS apps so that users cannot
trace back. This simple strategy will prevent SMASheD from
being detected by either the device user or the anti-virus apps.
Such an exfiltration will also avoid the need for doing any
data processing on the infected device itself but rather allow
the attacker to outsource all processing to a remote machine.

4) Phone Unlock: In order to allow SMASheD to access
any of the device resources that require the device to be
unlocked, SMASheD needs to unlock the device first. To
do that, SMASheD first utilizes the TouchLogger presented
in Section IV-B to log the user’s PIN or pattern unlock
while the user unlocks his phone. Then, whenever SMASheD
wants to unlock the phone, it will simply inject the recorded
PIN or pattern unlock onto the touchscreen. We have built
and tested such an auto unlocker. A demo is available at
https://androidsmashed.wordpress.com/demos/.

5) Accessing User Accounts: SMASheD can be used to open
different apps that require authentication, and log into user’s
accounts. To do so, SMASheD will first extract the user’s
credentials for the target account by using the TouchLogger
described in Section IV-B. SMASheD will then utilize this
credential to log into the user account from her device. Ac-
cessing the user accounts from the SMASheD infected device
is important for several reasons. Many web services and banks
implement a second factor authentication approach which may
only allow the user to login from a registered device. Similarly,
many banks require the user to answer security questions when
she logs in from a different device, and others send notification
to the user specifying the devices that are used to access her
account. After having logged into the user accounts, SMASheD
can, for example, access the account and perform any kind of
the allowed banking transactions, read user’s emails, send fake
emails, forward the emails to a remote attacker, or read user’s
private data from or post messages on social media sites —
the possibilities are endless.

6) Attacking Biometric Authentication: Recently, a signifi-
cant amount of research has been done to authenticate a user
transparently using biometrics. The touch-based biometrics are
applied either as a second factor authentication mechanism
during the device unlock or as a continuous authentication
mechanism when the user is performing some activity on the
device. Among these, some systems analyze the keystrokes of
the users to capture the biometrics while others analyze touch
gestures provided by the users. We now analyze a variety of
these biometrics systems proposed in the literature and provide
a systematic methodology to attack them using SMASheD.

Keystroke Biometrics: Campisi et al. [5] present an approach
to authenticate users based on their typing habits on the
smartphones. Their approach relies on the analysis of keystroke
dynamics. The system acquires and processes the time stamps
generated by the mobile phones related to key press and
release. Using these, the system further calculates different
features such as Manhattan distance, Euclidean distance and
statistical features and generate a template for each user.
During the authentication, the system computes the normalized
distance and compares that with a threshold.

To authenticate against such system, SMASheD needs to
learn how the user types. During the learning phase, SMASheD
can record the user’s keystroke behavior and compute the
features in a similar way to the authentication system. After
learning, it can create the keystrokes such that the time interval
SMASheD presses and releases the keys closely correlates with
that of the user. Note that SMASheD can simply record and
replay the user’s keystroke without computing the features
and the system may still fail to detect such malicious input.
However, creating new keystrokes after learning the features
is more detrimental to the user as the attacker can recreate any
events or activities he likes.

Touch Gesture Biometrics: Frank et al. [13] present “Toucha-
lytics”, a continuous touch-based authentication system which
utilizes the strokes performed by the user while using her
phone. Touchalytics focuses on single touch gestures such as
sliding horizontally and vertically. Sliding horizontally is com-
mon when navigating between the screens or images, while
sliding vertical is common when reading email or documents.
To authenticate using touch, Touchalytics records the touch
coordinates, finger pressures, the screen areas covered by each
finger, and times. Touchalytics extracts 30 different features
from these raw inputs. Touchalytics uses these features to build
a profile of the user and utilizes it later to identify the user.

Since Touchalytics is monitoring and matching the touch
with the trained data for horizontal and vertical slides only but
not with other actions, SMASheD can perform tap/click and
pinch without getting detected. However, to navigate up/down
or right/left where SMASheD has to provide such horizon-
tal/vertical slides, SMASheD needs to record the previous
authentic slides from the user, and later inject them as desired.
While outsider attacks using robots [28] have previously been
reported against Touchalytics, the SMASheD attack represents
the first known insider attack to our knowledge.

Li et al. [19] present an unobservable re-authentication
system for smartphones using finger movement patterns. This
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system uses machine learning approach to authenticate the user
based on touch input. The system monitors user’s raw touch
event data and preprocesses it, which assembles every single
raw data into different gestures and then sends these to the fea-
ture extraction component. The predictor component consists
of an SVM classifier and multiple classification modules. The
system uses five different types of gestures: sliding up, sliding
down, sliding left, sliding right and tap. For the sliding gesture,
the system considers the properties such as first touch position,
first touch pressure, first touch area, first moving direction,
moving distance, duration, average moving direction, average
moving curvature, average curvature distance, average pres-
sure, average touch area, max-area portion and min-pressure
portion, while for the tap gesture, it considers average touch
area, duration and average pressure.

Attacking this system with SMASheD is simple as it is
only looking for five different gestures as described above.
SMASheD needs to learn how a user moves his finger for
these gestures recording all the finger movements. Similar to
attacking Touchalytics, SMASheD then repeats the recorded
authentic slides and tap gestures from the user whenever it
wants to perform certain activity on the phone.

Shahzad et al. [29] present “GEAT” for screen unlocking
based on simple gestures. Along with the user touch input,
GEAT uses other features such as finger velocity, device
acceleration, stroke time, inter-stroke time, stroke displace-
ment magnitude, stroke displacement direction, and velocity
direction. GEAT segments each stroke into sub-strokes of
different time duration where, for each sub-stroke, the user
has consistent and distinguishing behavior. GEAT utilizes these
features to train and later identify the user.

Since GEAT is only authenticating when user wants to
unlock the screen, SMASheD can record all the raw touch and
device acceleration data during the legitimate authentication
by the user. It can later just replay the touch providing the
recorded data such that the features would fully match.

Luca et al. [11] present another transparent authentication
approach that enhances password patterns with an additional
security layer. They study the touch stroke gestures corre-
sponding to the horizontal slide and the pattern unlock. Their
approach uses dynamic time warping for the analysis of touch
gestures using different features including XY-coordinates,
pressure, size, time, and speed of the touch.

SMASheD cannot only thwart the password pattern to unlock
the device but also foil the additional security layer provided
by this system. As discussed in the Section IV-B, SMASheD
first simply sniffs the password pattern. In addition, SMASheD
records the pressure, size, time and speed of the touch when
the legitimate user performs the pattern unlock gesture. Now,
when the SMASheD app needs to unlock the device, it simply
injects the previously recorded touch events to circumvent the
authentication functionality. As our demo for phone unlock
records the user interactions with her device while unlocking
the device, and then replays it, it would also defeat this
mechanism.

7) Attacking Touch-based Authorization: Roesner et al. [25]
propose the user-driven access control system where permis-
sion is granted using user actions rather than using manifests or

system prompts. It introduces access control gadgets (ACGs).
Each user-owned resource exposes UI elements, ACGs, which
are embedded by the apps. The user’s UI interaction with the
ACG grants the app permission to access the corresponding
resources. The system assumes that the kernel has complete
control of the display and the apps cannot draw outside the
screen space designated for them. Furthermore, it assumes that
the kernel dispatches UI events only to the app with which the
user is interacting.

The threat model of the system tries to restrict access such
that only one app gets the permission from the user interaction,
while other apps do not. It does not assume that the touch can
be injected. No app will have permission to use the resource
until the user explicitly interacts with the ACGs embedded
by the app. To attack this system, SMASheD can provide the
touch input to any app. For example, if SMASheD wants to
make a phone call, it needs to interact with and provide touch
to the phone calling ACG of the app. Since the system receives
the touch, it will permit the app to make the phone call. In
summary, SMASheD can fully bypass this system by injecting
simple touch events.

Chaugule et al. [6] present a defense against unauthorized
malicious behavior by utilizing the keypad or touchscreen
interrupts. The system differentiates between malware and
human activity by analyzing the presence of touch input
which generates a hardware interrupt. Their approach espe-
cially focuses on preventing unauthorized messaging. The
system assumes that the operating system is within the Trusted
Computing Base and the hardware is not compromised. It
assumes that the kernel memory interfaces are not exported
to userspace so that userspace applications are not allowed to
write into kernel memory and alter kernel control flow. They
claim that there is no direct way in which the touchscreen
interrupt handler will be called from userspace code unless
the operating system is tampered with.

SMASheD can break this claim by providing the touch-
screen interrupt without tampering with the operating system.
SMASheD can provide touch screen input while sending the
text message. When the touch event is injected, it will provide
the necessary hardware interrupt that the system is looking for
and hence any app will be authorized to send the messages.

D. Manipulating Other Sensors
In this section, we first describe the systems which provide

different security or non-security functionality based on the
motion, position and environmental sensors. Then, we provide
an attack scheme against each system using the sensor event
injection capability of SMASheD.

Attacking these systems may not be straightforward. The
best scenario to manipulate the sensor readings when the
current sensor readings are not being altered by the natural
events. For example, when the phone is in a pocket, the light
sensor may not change. Since the sensor file will not be altered
by the natural environment in this case, the malware can
manipulate the sensor data as it likes. Also if the system is
implementing a statistical approach (such as based on mean,
standard deviation, etc., of the sensor data), the malware may
not need to manipulate the sensors for the whole duration when
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the system is monitoring the sensors. SMASheD can insert
some values that significantly changes these statistical features
which causes the system to misjudge the sensing context. For
the other systems, which implement specialized algorithms
based on continuous sensor data, SMASheD needs to inject
sensor readings at different timestamps that correlate to the
sensor values during benign case.

1) Attacking Authentication Systems: Conti et al. [9] pro-
pose a system that transparently authenticates the user by
analyzing her hand movement gesture while she is making or
answering a phone call. It uses accelerometer and orientation
sensor to detect the proposed gesture. The system uses the
dynamic time warping distance (DTW-D) algorithm to verify
if the authorized user is making or answering the phone call.

To attack this system, SMASheD can record the accelerom-
eter and orientation sensor data when the user is making or
receiving a valid call. Later, when SMASheD wants to make
a call (e.g., to premium rate numbers or to user’s contacts), it
can replay the previously recorded sensor data, thereby fooling
the system to believe that the user is making the call.

Gascon et al. [14] present an approach to continuously
authenticate users on smartphones by analyzing their typing
motion behavior. Along with touch input, it also records the
timestamps when the keys are pressed or released. The system
uses different motion and position sensors such as accelerom-
eter, gyroscope and orientation sensors to capture behavioral
biometrics so as to authenticate the user. It extracts various
features leading to a 2376-dimensional vector representing the
typing motion behavior of a user in a given time frame. The
system is trained with the linear SVM classifier.

To attack this system, SMASheD needs to learn how the user
presses each character, and reproduce it. During the learning
phase, SMASheD continuously records the raw sensor data un-
til it gets necessary information used by the system for all the
keys during the legitimate key presses. Once the learning phase
is completed, SMASheD can provide the touch injects with
proper timings and the corresponding sensor readings. Since
the motion and position sensors are continuously recording
the data from the hardware, SMASheD may need to wait for
a favorable time, e.g., when the phone is static, otherwise the
natural readings may interfere with the injected sensor readings
possibly leading to rejection by the system.

2) Attacking Authorization Systems: We now consider var-
ious systems that provide the authorization functionality to
access mobile device resources/services. The main purpose
of these systems is to differentiate a human user from a bot
so as to authorize access to the requesting app. To authorize
human-vs-bot actions, these systems capture different explicit
and implicit user’s gestures measured using multiple sensors.

Shrestha et al. [30] present “Tap-Wave-Rub”. They propose
multiple gestures that can be used for the purpose of autho-
rization. An implicit gesture, such as tapping the phone with
another device (tap), is used to provide NFC permission to
the requesting app. The system uses accelerometer sensor to
detect the tap gesture. An explicit gesture, such as waving
a hand in front of the phone (wave) or rubbing a finger near
the proximity sensor (rub), is used to grant permissions for the
services where no implicit gesture can be used. To detect wave

and rub gestures, the system uses proximity sensor. Shrestha
et al. [32] also present “WaveToAccess”, in which another
mechanism for wave gesture detection is proposed. It utilizes
the light sensors to infer the fluctuation in light due to hand
waving and the accelerometer sensor to reduce the possibility
of detecting other events as hand wave. Both Tap-Wave-Rub
and WaveToAccess assume that the kernel is immune and the
sensor data cannot be manipulated by the malware.

SMASheD attacks the assumption made by these systems.
To generate the tap, wave or rub gesture, the attacker can
record his own gesture and later inject the recorded values
via SMASheD. Alternatively, SMASheD can record the gesture
provided by the user during the benign case and replay it
later. A simpler attack can be performed on wave and rub
gestures in Tap-Wave-Rub, in which SMASheD fluctuates the
proximity sensor in quick succession so that the system infers
the corresponding gesture.

To test the validity of our attack, as a proof of concept,
we implemented the algorithm used to detect Tap-Wave-Rub’s
wave and rub gestures following the instructions in [30]. The
system detects the wave and rub gestures, when the proximity
sensor changes for certain number of times (6 times) within
certain period (1.5 seconds). In our attack, we recorded the
valid wave and rub gestures and replayed them. SMASheD was
able to deceive the system successfully. A demo is available
at https://androidsmashed.wordpress.com/demos/.

Shrestha et al. [31] later present a similar defense to mobile
malware using transparent human gestures. The system uses
the hand movement gesture to prevent unauthorized access
of the services such as phone calling, picture snapping and
NFC tapping. It looks for multiple, motion, position and
environmental sensor data to detect the calling, snapping and
tapping gestures. The assumption that the system makes is the
device is already infected with malware. However, the device
kernel is healthy and is immune to the malware infection, and
the malware is not capable of manipulating the sensors.

SMASheD can attack the assumptions of these systems. The
attacker can record the sensor data that is being used by these
systems to detect the gesture during call, snap or tap. Now,
when malware is trying to make a call, snap photo or tap
NFC tag, SMASheD can replay all these sensor data fooling
the system to believe that the user is performing the activity.

3) Attacking Video Authenticity: Rahman et al. [24] develop
“Movee”, a system to authenticate the ownership of the video
content based on accelerometer. When the original video
is recorded, the motion of the device as reported by the
accelerometer should correspond to the inferred motion from
the captured video. Movee verifies such “liveness” of the video
streams by checking the correlation between the data from the
accelerometer sensor and the data from the camera.

SMASheD can attack this system in two different ways.
First, it can alter the sensor data of the original videographer’s
device such that the system falsely accuses him of plagiarism.
Second, it can manipulate the accelerometer data such that
plagiarising videographer is falsely credited as the owner of
the video. The former can be achieved by randomly injecting
noise to the accelerometer readings such that the data from
the accelerometer sensor and the data from the camera do
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not corroborate. In contrast, to do the latter, the attacker must
use SMASheD in combination with video motion analyzer that
provides the required accelerometer changes corresponding to
the video. While the attacker is recording the video from
another device, SMASheD will inject the reading provided by
video motion analyzer into the attacker’s device. Note that the
attacker will try to minimize the accelerometer changes from
the natural movements by keeping the device stationary.

4) Subverting Safety Applications: Smartphones sensors
have been used by myriad of apps to provide functionalities
other than security, such as context modeling and activity
recognition. Although these apps are not directly related to
security, these apps still provide functionality for the safety
and well-being of the users. SMASheD can subvert many of
these systems based on Android sensors.

Falls are a major health hazard for elderly people degrading
their quality of life, or even resulting in death, if assistance
is not provided on time. Dai et al. [10] present “PerFallD”
utilizing mobile phones as the platform for a fall detection
system for elderly people. Fang et al. [12] also present a fall
detection system. Both of these systems utilize accelerometer
and orientation sensors to detect the fall events. While Bai et
al. [3] use 3-axis accelerometer sensor only in smartphone to
design and implement a fall monitor system.

SMASheD can manipulate sensor data to trigger false alarms
by injecting sensor readings that correspond to a fall. If
SMASheD has previously detected the sensor readings for
which the fall detection alarm was triggered, then it can simply
replay those readings and defeat the above systems.

You et al. [39] present the “CarSafe” app. This work utilizes
both rear and front cameras on the smartphones to provide
driver safety. The frames from the front camera are used to
identify if the driver is not paying attention to the road, or is
drowsy, whereas the frames from the rear camera are used
to identify the dangerous driving events such as tailgating,
or drifting by analyzing the front vehicle following distance
and the lane trajectory. Since currently only one camera can
be accessed at a time on smartphones and there is a cost of
switching the camera, the system has a blind spot and can
potentially miss some dangerous events. To overcome the blind
spot, it uses motion sensors in conjunction with the GPS data
to get the hints about the blind spot. For example, if the motion
sensor data infers turning or lane change while road trajectory
from GPS indicates no turn, it might imply a dangerous event
such as a lane change. This hint is used to activate the rear
camera to analyze if the lane change event has occurred.

To attack this system, SMASheD can falsely alter the motion
sensor data such that the system alarms the user even when
he is alert, annoying the user and possibly leading the user
to disable the app. Alternatively, SMASheD can manipulate
the motion sensors such that the readings corresponds to the
trajectory followed by the vehicle, as reported by the GPS,
and the system fails to predict unintentional lane change,
compromising the safety of the driver. The SMASheD app can
access the GPS location by using another app that has GPS
permissions (as suggested in Section IV-C2).

V. SMASHED MITIGATION

To protect against the adversarial applications of SMASheD,
we suggest the following potential mitigation strategies. Al-
though these strategies may not fully prevent the attacks, they
may help reduce the impact of the underlying vulnerability.

First, we believe that it is important to raise people’s aware-
ness of the possible security risks associated with installing
services through the ADB shell. Second, we suggest following
the permission models of Android for native services that are
executed through the ADB shell. In the current model, any
native service that starts through the ADB shell is granted
all the permissions that the shell has without notifying the
user. These permissions include accessing logs, frame buffer,
motion, position, environmental, and user input sensors. An
attacker may not reveal all the resources that the service is
accessing. For example, the attacker could publish a service
as a snapshot service while injecting code that accesses sensor
files as well. This may be prevented if the service is only
granted permissions after informing the user. Third, we suggest
enforcing security policies for the communication between
processes running on the device through sockets. We recom-
mend that Android monitors the open sockets on the device
and the apps that are accessing those sockets. Whenever an
unusual communication is detected, Android should at least
inform the user. Whether or not users would pay attention
to such notifications is an independent concern. However, we
believe that the potential risks should be conveyed to the users.

VI. RELATED WORK

Our paper is not the first to study the vulnerability underly-
ing the ADB workaround. Recently, Lin et al. [20] developed
Screenmilker, a malicious app that can glean sensitive infor-
mation from the mobile device’s screen (specifically passwords
of banking apps) by communicating with a snapshot service
installed through ADB. Screenmilker exploits the vulnerability
of snapshot services of exposing their ADB capabilities to any
app with INTERNET permission installed on the same device.

Also, Hwang et al. [17] presented “Bittersweet ADB”, a set
of conceptual attacks using ADB ranging from private data
leakage to usage monitoring and behavior interference. The
threat model in [17] assumes that the user has enabled USB
debugging on her phone and forgot to disable it and later her
PC got infected with a malware such as the one explained
in [21] which installs an ADB service on the connected
device. Then, whenever the user connects her device to her
infected PC, the malware on the PC installs a malicious service
with ADB capabilities on the user phone. The authors also
developed an app that can enable USB debugging without
user knowledge. Although Android 4.2.2 and higher display
a dialog asking the user to allow debugging via PC when
the device is connected to a PC, the authors assume that the
users would just accept. The authors proposed the use of static
analyzer to detect the proposed attacks. The static analyzer
checks if the private information resulted from executing ADB
command is sent outside the Android device via socket API.

In our paper, we extensively expanded the scope and the
impact of the ADB vulnerability to much more devastating,
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TABLE I: Comparison between SMASheD, Screenmilker and Bittersweet ADB. SMASheD threat model is realistic, and its attack practicality
level is high, very similar to that of Screenmilker, and SMASheD attack impact, accuracy and stealthiness is higher than that of Screenmilker.
Bittersweet ADB threat model is much stronger, and its practicality is much lower compared to both Screenmilker and SMASheD.

Threat Model Practicality Attacks Enabled Attack Stealthiness Attack Accuracy

Screenmilker [20]

User installs a screenshot service
which exposes its functionality to
all apps on the same device with
INTERNET permission

High (highlighted by
the high number of
current installations of
screenshot apps)

Keystroke logging,
password extraction and
contact info collection

Sends the extracted
info to the malware
owner via http
requests, which can
be detectable

Keystroke logging accuracy
is about 30-80%. Password
extraction requires around 2.5
rounds to succeed. Contact
info collection is accurate.

Bittersweet ADB [17]

• User enables USB debugging
and forgets to disable it, OR
user’s device is infected by a
malware that turns on USB
debugging, AND

• User connects her device to a
PC that is infected with a
malware that installs an ADB
service on the device

Low (requires a pair
of infected PC and
device, and/or a
neglectful user who
accepts “USB
debugging is being
turned on”
notification)

Private data leakage,
usage monitoring and
behavior interference

The attacks can be
detected utilizing
code static analyzer
[17]

Can be accurate (evaluations
were not reported in [17])

SMASheD

• User installs an ADB service
that provides sniff/inject
functionality and exposes this
functionality to all apps on the
same device with INTERNET
permission, OR

• User installs any ADB service
that provides any benign ADB
functionality and adds
sniff/inject functionality without
informing the user

High (as highlighted
in Section III-E)

All the attacks enabled
by Screenmilker and
Bittersweet ADB.
Various other
devastating attacks
based on injecting touch
and physical sensors
events

Consumes few
resources, utilizes
various channels to
send the extracted
data to the malware
owner, and wipes out
all attack traces with
touch injects (Section
IV-C3)

Highly accurate

stealthy and accurate attacks than the one proposed in [20]
and with a weaker (more realistic) threat model than [17].
We comprehensively and systematically exposed the vulner-
ability of sniffing and manipulating many protected Android
sensors, and translated it into a wide spectrum of catastrophic
attacks against real-world and research systems. Our proposed
framework is the first, to our knowledge, that sniffs and
manipulates protected sensors on unrooted Android devices,
without user awareness, without constant device-PC USB
connection (unlike the monkeyrunner tool) and without the
need for an infected PC (unlike [17]). Table I provides a
summary of comparison between SMASheD, Screenmilker [20]
and Bittersweet ADB [17].

VII. CONCLUSION AND FUTURE WORK

In this paper, we called the Android’s sensor security model
into question. We exploited Android’s ADB workaround to
develop a framework that can effectively sniff and manipulate
many sensors currently protected by Android’s access control
model. Our framework can be used to: (1) directly sniff the
touchscreen sensor data, (2) directly manipulate the touch-
screen, motion, position and environmental sensor data, and
(3) indirectly, using the touch inject capability, sniff the audio-
visual and navigational sensors. Based on this framework, we
introduced a wide spectrum of potentially devastating attacks
that can compromise user privacy and subvert many security
and non-security applications that rely upon different sensors.
Since the scope of our attacks is extremely broad, we provided
demonstrations for a selection of schemes and presented an
analytical exposition of several other schemes.

We believe that our framework can facilitate many other
applications beyond the ones we presented, which we also plan
to explore in our future work.
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APPENDIX
Listing 1: Sample output from running getevent for a single press
release

[ 6 9 9 3 4 . 4 3 5 5 0 3 ] EV ABS ABS MT TRACKING ID 0000038 d
[ 6 9 9 3 4 . 4 3 5 5 3 3 ] EV KEY BTN TOUCH DOWN
[ 6 9 9 3 4 . 4 3 5 5 6 4 ] EV ABS ABS MT POSITION X 000003 b2
[ 6 9 9 3 4 . 4 3 5 5 6 4 ] EV ABS ABS MT POSITION Y 00000607
[ 6 9 9 3 4 . 4 3 5 5 9 5 ] EV ABS ABS MT TOUCH MAJOR 00000012
[ 6 9 9 3 4 . 4 3 5 5 9 5 ] EV ABS ABS MT TOUCH MINOR 00000009
[ 6 9 9 3 4 . 4 3 5 6 2 5 ] EV ABS ABS MT WIDTH MAJOR 00000002
[ 6 9 9 3 4 . 4 3 5 6 2 5 ] EV ABS 003 c f f f f f f a 6
[ 6 9 9 3 4 . 4 3 5 7 7 8 ] EV SYN SYN REPORT 00000000
[ 6 9 9 3 4 . 4 5 2 1 0 5 ] EV ABS ABS MT TOUCH MAJOR 00000024
[ 6 9 9 3 4 . 4 5 2 1 0 5 ] EV ABS ABS MT TO UCH MINOR 0000001 b
[ 6 9 9 3 4 . 4 5 2 1 3 5 ] EV ABS ABS MT WIDTH MAJOR 00000008
[ 6 9 9 3 4 . 4 5 2 1 3 5 ] EV ABS 003 c f f f f f f f d
[ 6 9 9 3 4 . 4 5 2 1 6 6 ] EV SYN SYN REPORT 00000000
[ 6 9 9 3 4 . 4 6 2 8 4 7 ] EV ABS 003 c 00000000
[ 6 9 9 3 4 . 4 6 2 8 7 7 ] EV SYN SYN REPORT 00000000
[ 6 9 9 3 4 . 4 9 4 3 7 1 ] EV ABS ABS MT TRACKING ID f f f f f f f f
[ 6 9 9 3 4 . 4 9 4 4 0 2 ] EV KEY BTN TOUCH UP
[ 6 9 9 3 4 . 4 9 4 4 0 2 ] EV SYN SYN REPORT 00000000
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