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ABSTRACT

Detecting phishing attacks (identifying fake vs. real websites) and
heeding security warnings represent classical user-centered secu-
rity tasks subjected to a series of prior investigations. However, our
understanding of user behavior underlying these tasks is still not
fully mature, motivating further work concentrating at the neuro-
physiological level governing the human processing of such tasks.

We pursue a comprehensive three-dimensional study of phishing
detection and malware warnings, focusing not only on what users’
task performance is but also on how users process these tasks based
on: (1) neural activity captured using Electroencephalogram (EEG)
cognitive metrics, and (2) eye gaze patterns captured using an eye-
tracker. Our primary novelty lies in employing multi-modal neuro-
physiological measures in a single study and providing a near re-
alistic set-up (in contrast to a recent neuro-study conducted inside
an fMRI scanner). Our work serves to advance, extend and sup-
port prior knowledge in several significant ways. Specifically, in
the context of phishing detection, we show that users do not spend
enough time analyzing key phishing indicators and often fail at de-
tecting these attacks, although they may be mentally engaged in
the task and subconsciously processing real sites differently from
fake sites. In the malware warning tasks, in contrast, we show that
users are frequently reading, possibly comprehending, and eventu-
ally heeding the message embedded in the warning.

Our study provides an initial foundation for building future mech-
anisms based on the studied real-time neural and eye gaze features,
that can automatically infer a user’s “alertness” state, and determine
whether or not the user’s response should be relied upon.
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1. INTRODUCTION

Cyber-security is undoubtedly a topic of national importance.
While some cyber-attacks exploit the flaws in the system design
or implementation itself, others are successful due to the potential
negligence or mistakes of end users. This latter aspect of com-
puter systems security, commonly referred to as “user-centered se-
curity,” forms the central focus of our work. There exists a num-
ber of attacks and vulnerabilities underlying user-centered security
systems. For example, users are frequently subject to phishing at-
tacks (i.e., presented with malicious websites which may look very
similar to real websites), which they may fail to detect, eventually
undermining the privacy of their sensitive information. Similarly,
warnings are regularly shown to users in order to alert them against
potential security risks (e.g., while connecting to a potentially mali-
cious site), which they may not read or comprehend, or may simply
ignore.

There exists a large body of recent literature focusing on user-
centered security (e.g., [9, 17, 18, 20, 32, 34, 39].), However, our
understanding of end user performance in user-controlled security
tasks is still not fully mature at this point. In this light, there is a
need for a detailed, root-level, neuro-physiological investigation of
human behavior pertaining to user-centered security.

In this paper, we concentrate on two classical user-centered se-
curity tasks: (1) phishing detection — distinguishing fake sites from
real sites, and (2) malware warnings — heeding malware warnings
shown by modern browsers when connecting to potentially mali-
cious sites. We pursue a comprehensive three-dimensional study of



not only what users’ performance is in these security tasks (first di-
mension: task performance) but also on how users actually process
these tasks based on (1) neural activity (second dimension) cap-
tured using Electroencephalogram (EEG) cognitive metrics, and (2)
eye gaze patterns (third dimension) captured using an eye-tracker.
An additional dimension we incorporate in our study is a user’s
individual personality traits measured with simple questionnaire.

Our Contributions: We believe that we make measurable progress
towards advancing the science of user-centered security. We are re-
porting on a first triangular study of users’ neural response (EEG),
eye focus and dynamics, and task performance, with respect to
phishing detection and malware warnings. Our work makes sev-
eral contributions.

1. We pursue a novel methodology that combines multi-modal
neuro-physiological measures in a single study shedding light
on multiple facets of human processing of phishing detec-
tion and malware warnings tasks. This methodology might
be generally applicable to other user-centered security tasks.

2. We employ a neuroimaging technique (EEG) complementary

to the one employed in a recent “neuro-only” study (fMRI) [26].

The most notable advantage of using EEG (and a wireless
EEG headset) is that the participants can pursue the tasks
in a more realistic web browsing scenario. In contrast, the
study of [26] was conducted inside a scanner, under a supine
posture, and with “constrained” interfaces.

3. Our work advances, extends and supports prior studies in
several significant ways (our results summary is below). On
many fronts, it also serves to independently re-affirm the
findings of previous work and provides further support to the
existing knowledge in user-centered security.'

Summary of Key Results: Our study provides several interesting
insights and results. A detailed listing of our results, positioned
with respect to prior results, is provided in Section 8. In the phish-
ing detection task, we found that the users’ task accuracy is low,
which is mirrored by their gaze activity that concentrated more on
the “login region” and/or “company logo region”, and less on the
“URL region”, the key indicator of the authenticity of a website.
At the same time, however, users’ neural activity shows that they
were exhibiting high workload and were highly engaged in making
the real-fake decisions (and more engaged than distracted or sleep-
prone). In addition, there were some differences, neurologically,
in the way they processed the real sites and the fake sites. This
three-way result suggests that users may not be fully aware of, and
equipped to fully analyze, the main parameter indicative of the le-
gitimacy of a site, but they were certainly making an active effort
in this task (i.e., not ignoring it) and subconsciously processing the
real sites differently from the fake sites. This clearly underscores
the importance of continued training and education against phish-
ing attacks, and also suggests the possibility of detecting phishing
attacks programmatically based on users’ neural patterns.

The way users respond to and process malware warnings seems
to be good news all-around. The gaze patterns show that users are
reading the warnings, the neural activity shows that users are un-
dergoing high workload (more so when subject to casual news ab-
stracts) and are highly engaged (more engaged than distracted or

'Reproducing the results of prior user-centered security studies in
independent settings is believed to be science in itself, constituting
an established line of research in premier user-centered security
venues, such as SOUPS.

sleep-prone) when warnings were displayed, and the task accuracy
shows that users heed warnings on a large majority of occasions.
This may constitute a proof that users are reading, understand-
ing and acting upon malware warnings as stipulated, and empha-
sizes the continued importance of warnings as an effective means
of communicating potential security risks to users in real-time.

Finally, there exists a direct impact of users’ “attention control”
on their accuracy of phishing detection (the higher the attention
control, the higher the accuracy). This suggests that users’ suscep-
tibility to phishing attacks is a function of their personality traits
(besides their level of awareness).

Implications of Our Work: We believe that our study provides
a concrete foundation for building future mechanisms based on
real-time neural and eye gaze data, that can automatically detect
whether users are in “attentive” or “inattentive” states, i.e., whether
or not they are performing the security task as stipulated. Such
mechanisms can be developed using machine learning techniques.
“Fusing” neural and ocular features may provide a robust detection
mechanism (resulting in low error rates).

Another important insight from our study, in the context of phish-
ing detection, is that users’ mental activity may be implicitly in-
dicative of whether a given website is real or fake (although users’
eventual decision may be incorrect), i.e., users process fake and real
sites differently — this suggests that the system could automatically
detect a phishing site based on a users’ neural activity.

2. BACKGROUND & RELATED WORK
2.1 Overview: EEG and Eye-Tracking

Electroencephalography (EEG) is a non-invasive method of mea-
suring postsynaptic brain activity from the surface of the scalp as-
sociated with task-related or internal stimulation. The temporal res-
olution of EEG is superior to many other methods of brain imag-
ing. While other methods may experience a delay on the order of
seconds or minutes (e.g., fMRI — functional magnetic resonance
imaging), EEG is able to depict changes within milliseconds. Be-
cause of its higher temporal resolution, EEG is often used to eval-
uate the time course changes in brain activation across different
brain regions. This neuroimaging modality is also a good choice
as an investigative tool for assessing cognitive states (i.e., cognitive
overload and lapses in focused attention) which are not visible to
the observer’s eye, and may be overlooked or forgotten by the par-
ticipant in a self-report [11-13,21]. Many commercial scale EEG
monitoring devices exist today. In our study, we use a wireless and
lightweight EEG headset (see Section 4).

Eye-tracking is the process of measuring the point of gaze and
movement of the eye. The technology has been commonly de-
ployed in many different domains including medical science, mar-
keting research, and psychology to understand users’ gaze trail dif-
ferent tasks. Many types of eye-tracking techniques are used today.
A popular set of eye trackers uses video captured by a webcam ca-
pable of recording infra-red light and mounted on an external dis-
play, without the need for any physical contact with the user. In our
study, we employ such an eye-tracker (see Section 4).

2.2 Related Work

Task Performance Studies: Closely relevant to the phishing com-
ponent of our study is study by Dhamija et al. [17]. Their results
indicated that users do not perform well at phishing detection and
make incorrect choices 40% of the time. Recently, Neupane et



al. [26] obtained very similar results based on an fMRI experiment.
Our task performance data also yielded similar results.

The malware warnings fMRI study by Neupane et al. [26], and a
field study based on real-world browser telemetry data by Akhawe
and Felt [9], both suggest that users heed malware warning mes-
sages with a high likelihood. The malware warnings task perfor-
mance results in our study are consistent with these prior studies.

Many other studies, focusing on SSL warnings and security in-
dicators (e.g., [9, 17, 18,20, 32, 34]) and measuring the users’ task
performance, generally suggest that users do not perform well at
these security tasks.

Neural Activity and Personality Studies: Neupane et al. [26]
conducted the first study of users’ neural activity, measured with
fMRYI, in phishing detection and malware warnings. They showed

that users exhibit higher activation in brain regions governing decision-
making, attention, and problem-solving (phishing and malware warn-

ings) as well as language comprehension (malware warnings). Our
neural results are in line with these findings albeit using a different
neuroimaging technique (EEG), and in a much more realistic set-up
(outside scanner).

Neupane et al. [26] also showed a negative relationship between
brain activation and impulsive personality traits under both phish-
ing and warnings, although such traits did not influence task perfor-
mance. Our study, in contrast, reveals a direct (positive) impact of
attention control on users’ task performance in the phishing task.

The study by Vance et al. [36] employed EEG to measure risk-
taking behavior in an independent psychological task (Iowa Gam-
bling Task) and predicted users’ task performance in the warnings
task. It argued that such EEG-based measures could predict warn-
ings task performance. Unlike the fMRI study [26] and our current
study, the work of [36] does not directly measure users’ neural re-
sponse in the security tasks themselves. The most recent study by
Andersen et al. [14] used fMRI and mouse tracking to argue that
polymorphic warnings can reduce the effect of warning habitua-
tion.

Eye Gaze Studies: There are also previous studies employing eye-
trackers to study whether users look at security indicators [10, 37].
Whalen et al. [37] argued that users do not look at these indica-
tors in general, but did not provide any quantitative results. Ari-
anezhad et al. [10] provided a similar insight in the specific context
of “single-sign-on” applications, based on gaze patterns (fixations
and durations in areas of interest). Our study, in contrast, focuses
on users’ gaze patterns (fixations and durations, and movement dy-
namics) when subject to phishing detection and malware warnings
tasks.

3. DESIGN OF EXPERIMENTS

The designs of our phishing detection and malware warnings ex-
periments are in line with the ones previously employed in [17,26]
(phishing) and [26] (warnings). The fMRI experiments [26] had
certain limitations, however. Specifically, participants had to lie
down inside the scanner in a supine posture, look at low-resolution
website images shown on a small screen (640x480) inside the scan-
ner, and provide responses using a primitive button response system
(i.e., output-input interfaces were very constrained). Thus, the par-
ticipants’ neural activity and task performance in this set-up might
not have reflected their neural activity and task performance in the
real-world. In this light, we felt the need for a much more realistic,
EEG-based, set-up to measure users’ cognitive states and perfor-
mance, simulating a near real-world browsing experience.

3.1 Real World Browsing Experience

We designed in-house software to execute the phishing detection
and malware warnings tasks in the Firefox browser (the study was
limited to Firefox given its popularity). The participants interacted
with websites displayed in the browser very much like a real-world
environment. A lightweight wireless EEG headset was used emu-
lating a minimally invasive browsing experience. The eye-tracker
was placed directly below computer screen, centered on the screen.
Figure 3 provides a snapshot of our experimental set-up.

3.2 Phishing Detection Experiment

Phishing involves stealing a users’ private credentials by show-
ing them fake replica of real websites. Fully in line with the design
of prior phishing detection studies [17,26], our experiment assumes
that the users are explicitly asked to identify fake sites from real
sites, and our focus is then to determine users’ performance, neural
activity and eye gaze activity in making the real-vs-fake decisions.
In our experiment, we presented the participants with real and fake
versions of popular websites, such as Amazon, eBay, PayPal, Face-
book and Citibank. The participants’ task was to distinguish be-
tween real and fake websites.

Experiment Design and Implementation: Fake websites (denoted
“Fake”) were created by modifying the URL, logo and layout of
the corresponding real websites, or by borrowing the phishing web-
sites from phishtank.com. In order to protect the privacy of partic-
ipants, while being subjected to real-world phishing sites, we pre-
downloaded these sites for offline use and hosted them on our local
web-server. The fake websites, which differ from the real web-
sites (denoted “Real”) only in the URL, are called “difficult fake
(DFake)”, assuming they might be difficult to detect. The other
fake websites, which differ from real websites in more than one
factor, such as layout, logo, fonts and URL, were referred to as
“easy fake (EFake)”, assuming these might be easier to detect.

Instruction
30s

Rest Page
10s
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Figure 1: (left) flow chart of entire phishing experiment; (right)
components of a trial page

There were 37 randomized trials in this experiment: 13 corre-
sponding to real, and 12 each corresponding to easy fake and dif-
ficult fake websites. We set the number of trials consulting the
thumb rule of EEG experiments design [24, 38], and previous rel-
evant neuro-physiological studies [14,26,36]. Multiple trials are
necessary in such experiments to achieve a high signal-to-noise ra-
tio. The experiment started with the Firefox browser loading the
instructions page (explaining the terms “real” and “fake”, and spec-
ifying the tasks participants were to perform), which lasted for 30
seconds. This was followed by the trials pages, each displayed for
10s. Each trial consisted of a webpage (corresponding to a fake/real



website) shown for 6s, followed by a 4s long response page. The
response page had a dialog box with the question, “Do you think
the shown website is real?” and the “Yes” and No” buttons. A rest
page of 2s (+ sign shown at the center of a blank page), after each
trial was added, during which participants were asked to relax. The
experiment ended after 37 trials with the goodbye note, displayed
for 5s. The process flow diagram of the experiment is shown in
Figure 1.

3.3 Malware Warnings Experiment

Malware is malicious software aimed to obtain unauthorized ac-
cess to computer resources and collect a users’ private information.
As a user visits a malicious website, such malware may infect the
user’s computer. However, modern browsers have devised warning
mechanisms to alert the users in case they visit a potentially sus-
picious web site, relying upon users’ input to proceed. Whether
or not users read (measured via eye-tracker), understand (measured
via EEG cognitive metrics) and heed (measured via task perfor-
mance) these warnings, are the key questions we are exploring in
this work. The EEG cognitive metrics were calculated using the
data acquired from three baseline conditions (Section 5.3 provides
details). In our experiment, participants were shown the real warn-
ings employed by Firefox (sample shown in Appendix A).

Instruction
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Rest Page Abstract
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. Yes Warning No
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Full News Why this page was blocked?
s Or Meozilla Home Page

Good-Bye Page

Figure 2: (left) flow chart of entire warnings experiment;
(right) flow chart of components of a trial page

Experiment Design and Implementation: We extracted diverse in-
teresting news samples from popular websites, including BBC, NY-
Times, Daily Mirror, and CNN, and published them following our
own news presentation template. The news samples were divided
into two sections, Abstract and Full News. The abstract had a “read
more” link which pointed to the corresponding full news. The pri-
mary task of the participants was to read the abstract of the news.
Some of the news items were randomly intermixed with malware
warnings. The warnings were unexpectedly displayed when partic-
ipants were reading the abstract, or when they clicked on the read
more link. Upon ignoring the warning, full news was displayed.
The two buttons on the warnings mimicked the ones on real Fire-
fox malware warnings. That is, the “Get me out of here” button
linked to the home page of Firefox, and the “Why this page was
blocked” button linked to the page providing the details as to why
the page was blocked.

In this experiment, there were 20 randomized trials: 10 each
for the warning and non-warning trials. Similar to the phishing
detection experiment, we set the number of trials following the
thumb rule of EEG experiments design [24, 38] and previous rel-
evant neuro-physiological studies [14, 26, 36]. The non-warning

trials are those in which full-news is shown immediately after the
abstract. The experiment started with the instructions page which
lasted for 30s, followed by trials, each 30s long. Each trial con-
sisted of an abstract along with the read more link. Similar to the
phishing detection experiment, the rest (+ sign) page of 2s, after
each trial were added. The experiment ended with the goodbye
note shown for 5s. The flow chart of the malware warning experi-
ment is shown in Figure 2.

4. REPEATED MEASURES AND
EXPERIMENTAL SET-UP

In our experiments, we recorded each participant’s response, re-
sponse time, neural (EEG) activity, and eye gaze activity while
he/she performed the phishing detection and malware warnings tasks.
The goal of the experiments was to measure the participants’ task
performance, cognitive states, and gaze patterns.

Task Performance: We created a custom software-hardware con-
figuration that enabled us to log participants’ responses and re-
sponse times.

Neural Activity and Gaze Patterns: For measuring neural activ-
ity, we used a wireless EEG sensor B-Alert headset, X10-Standard,
developed by Advanced Brain Monitoring (ABM) [1]. This EEG
system, shown in Figure 3 (right), provides a lightweight (less than
3 0z.) means to acquire and analyze 10 channels of high-quality
EEG data. The sensors of this EEG headset follow the 10-20 inter-
national system of placement. It uses the Fz, F3, F4, C3, Cz, C4,
P3, POz, P4 sites to collect EEG data at 256 Hz (Figure 3 (left)).
The portable unit worn on the back of the head (Figure 3 (right))
contains miniaturized electronics that amplify, digitize, and trans-
mit the EEG data to the host computer over Bluetooth. The sensors
require no scalp preparation; however, water soluble gel had to be
applied at electrode sites for better conductance of signals between
the skull and sensors. The headset provided a comfortable sensor-
scalp interface for 8-12 hours of continuous use.

For measuring gaze patterns, we used EyeTech DS TM3 (remote
desk mounted) eye tracker system with a frequency of 60 Hz. The
TM3 uses infra-red lights to illuminate the eyes and provide ref-
erence points for the eye tracker. Data is captured for both eyes
including X/Y gaze coordinates, timestamp, image pixel data, and
location and size of pupils within the image.

System Set-Up: Our experimental set-up comprised of a collection
of four computers: (1) “Survey Computer” to administer the sur-
veys (described in Section 5.2), (2) “Stimuli Computer” to present
experiment tasks (and collect eye-gaze data), (3) “Data Collection
Computer” to collect neural data and (4) “Data Visualization Com-
puter” to remotely monitor neural data to ensure its quality. The
Stimuli Computer was a laptop with a 15.6 inch screen at a resolu-
tion of 1600 x 900.

Figure 3: (left) B-Alert electrode arrangement; (right) experi-
mental set-up



S. STUDY PROCEDURES

Our study followed a within-study design, i.e., all participants per-
formed the same set of (randomized) trials.

5.1 Ethical and Safety Considerations

The study was approved by our University’s IRB. The participation
in the study was strictly voluntary. The participants were given
the option to withdraw from the study at any point of time. The
standard best practices were followed to protect the confidentiality
and privacy of participants’ data (survey responses, task responses,
EEG and eye tracker data) acquired during the study.

5.2 Recruitment and Preparation Phase

The participants were recruited by distributing the study adver-
tisements across our University’s campus and on online-media (Face-
book & Twitter). Twenty-five healthy participants were recruited
for the study. Due to the EEG component of our study, the partici-
pants were excluded from the study if they had a history of neuro-
logical disorders, anxiety disorder, schizophrenia, and if they were
on any psychotropic drugs. Each participant took about a total of
2 hours to complete the study, and was compensated with $40 cash
for their time.

Appendix C provides participants’ demographics. The majority
of our participants were young, students and males. However, our
sample was fairly diversified. In particular, none of the participants
were computer scientists, but rather had diverse backgrounds, such
as engineering, education, medical science, physics, and physical
health. There were 28% working professionals and non-working
people. 35% were above the age of 27, and 36% were females.
Future studies might be needed to further validate our results with
broader participant samples.

During the preparation phase of the study, informed consent was
obtained from each participant.  In this phase, we also admin-
istered two surveys to our participants to measure their person-
ality traits: (1) impulsivity using the Barrat’s Impulsivity Scale
(BIS) [27], and (2) attention control using the Attention Control
Scale (ATTC) [16]. BIS is a 30-question-set questionnaire. The
higher the BIS score, the higher the impulsivity. ATTC is a 20-
question-set questionnaire used to assess executive control of indi-
viduals over their attention. The higher the ATTC score, the higher
the attention control in an individual. For each of BIS and ATTC,
we calculated aggregated scores derived from all of the questions
as stipulated in [16,27].

5.3 Testing (Data Collection) Phase

A measurement of each participant’s head was first taken to deter-
mine the best size of the B-Alert headset that would fit that partic-
ipant (our headset came in three sizes: small, medium and large).
The EEG headset was then placed on the participant’s head, and
the participants were moved to Data Collection Computer for an
impedance check to ensure the quality of the EEG data.

The participants next completed a 15-minute baseline EEG ses-
sion that included three 5-minute baseline conditions, namely, stan-
dard Eyes-Closed, Eyes-Open, and proprietary 3-Choice Vigilance
Task (3C-VT) (developed by ABM [23]). In 3C-VT, participants
had to discriminate between one primary and two secondary geo-
metric shapes with stimulus presentation interval of 1.5 to 3s. In
the Eyes-Open task, the participants had to respond to visual probe
every 2 seconds. In the Eyes-Closed task, they had to respond to
audio probe every 2 seconds. These tasks defined the classes of dis-
traction/relaxed wakefulness (DIS), low engagement (LENG), and
high engagement (HENG), respectively [23]. The class of sleep
onset (SO) is derived using stepwise linear regression using data

from these three tasks. The baseline session data is used to create
individualized EEG profiles required for the calculation of cogni-
tive state metrics (i.e., SO, DIS, LENG, HENG, referred to as the
cognitive states, and Workload) [23].

In our Stimuli Computer, calibration of the eye-tracker was done.
Once the participant was ready to perform the experiment, the BAS
data acquisition button in the Data Collection Computer, eye tracker
gaze points capture module and in house software to execute the
tasks were triggered. The phishing detection and malware warn-
ings experiments were executed in random order for different par-
ticipants. This was done to ensure none of the experiments yield
biased results based on the order of their execution.

Impedance, noises and EEG signals were continuously moni-
tored on the Data Visualization Computer to confirm the quality
of the data collected. Eye-tracker calibration check was done af-
ter each experiment to ensure optimal functioning. A 5-minute gap
between the two tasks was provided so participants could rest.

5.4 Post-Test Phase

After completing the security tasks, each participant was asked to
fill out a post-test questionnaire (presented on Survey Computer).
This questionnaire was designed to determine participants’ knowl-
edge of computer security, and to learn how they performed the
security tasks they participated in. For example, the participants
were asked if they had heard about phishing attacks and malware
warnings, and whether they read the warnings and what the warn-
ing said. After the post-test questionnaire, the participants were
provided with their cash reward.

6. ANALYSIS PROCEDURES & METRICS
6.1 Neural Data

The BAS software included real-time artifact removal for fast and
slow eye blinks, muscle movement, and environmental/electrical
interference such as spikes and saturations [29]. The data from two
of our participants was excluded due to the presence of excessive
noise, leaving us with the good quality data from 23 participants.
We then used the B-Alert Lab (BAL) Software provided by ABM
to conduct the offline data analysis.

We synchronized the EEG data collected during the experiments
with the trial presentation time and order. The BAL software then
took the synchronized data and the baseline model as its input, and
classified each 1-second of EEG data, referred to as an epoch, into
one of four cognitive states: high engagement (HENG), low en-
gagement (LENG), distraction (DIS), and sleep onset (SO) [29]
(see Appendix B for details). For example, for a 6-second time pe-
riod when a participant was viewing a webpage during the phish-
ing experiment, the BAL software produced 6 mental state values
(HENG, LENG, DIS, or SO) for each of the 6 seconds that the
participant viewed the webpage. ENG, either HENG or LENG, de-
notes the state in which users are paying attention to the informa-
tion they are provided [12,23]. It reflects information-gathering, vi-
sual scanning and sustained attention of participants during a given
task. DIS is the state when participants shift their attention from
the primary task to focus on another activity [12,23]. SO reflects
the state in which people may be able to respond to stimuli but still
not able to integrate all information and features [12,23].

Mental workload (WL) [11, 12] was also calculated for each
epoch using the BAL software (Appendix B). WL reflects the
amount of neural effort and resources required for a given task.
WL increases with increasing working memory load, and under
problem-solving, integration of information and analytical reason-
ing, reflecting brain’s executive functioning.



Based on these measures, we computed the average cognitive
workload (WL) and average percentage of frequency (pfr) for which
the participants were engaged (pfrENG), distracted (pfrDIS), and
under sleep onset (pfrSO), corresponding to different types of trial.
WL is calculated on a scale of 0-1; higher values denote higher
workloads. Percentage frequency in a trial represents the fraction
of the duration for which the participant was in a given mental state
(ENG, DIS or SO) in that trial. For example, if someone was highly
engaged for 2 epochs, lowly engaged for 2 epochs, distracted for 1
epoch and under sleep onset for 1 epoch, during the 6 second trial,
the percentage frequency of engagement will be 4/6 (.67), percent-
age frequency of distraction will be 1/6 (.17), and percentage fre-
quency of sleep onset will be 1/6 (.17).

6.2 Eye Tracking Data

The gaze data collected during the experiments was used to com-
pute the mean number of fixations and mean gaze duration of par-
ticipants in specific areas of the websites, referred as Areas of In-
terest (AOI). Fixation is defined as a pause made by a user look-
ing at a specific area to extract meaningful information. We used
a dispersion-based technique, dispersion-threshold algorithm [30],
to compute fixations. This algorithm identified fixations as a group
of consecutive points within a particular dispersion and duration
threshold [30].

6.3 Statistical Testing

All statistical results in this paper are reported at the significance
level () of .05. The Friedman test was used to test for the existence
of differences within the groups, and, if it succeeded, the Wilcoxon
Singed-Rank Test (WSRT) was used to examine in which pairs the
differences occurred. The effect size of WSRT was calculated us-
ing the formula r = Z/ VN , where Z is the value of the z-statistic
and NN is the number of observations on which Z is based. The sta-
tistically significant pairwise comparisons are reported with Holm-
Bonferroni corrections for multiple testing. Correlations between
different conditions were measured using the Spearman’s rank cor-
relation coefficient, with Holm-Bonferroni corrections.

7. RESULTS AND ANALYSIS
7.1 Phishing Detection Experiment

To recall, in the phishing detection task, the participants were asked
to identify whether a given website is real or fake. We analyzed
the neural data, gaze data, and the task performance data collected
during the experiment, and studied their interrelationships with one
another and with participants’ personality scores.

7.1.1 Neural Activity Results

As described in Section 6.1, we computed the average cognitive

workload (WL) and average percentage of frequency for which the
participants were engaged (pfrENG), distracted (pfrDIS), and under
sleep onset (pfrSO), for our different trials (Real, Fake, EFake and
DFake). The results are shown in Table 1.
From Table 1 (column 1), we see that the average workload exhib-
ited by our participants in identifying the websites as real or fake is
high (more than 0.5) for all types of trials. Upon using the Fried-
man test to test for differences in workload among different types
of trials, we did not find a statistically significant difference.

Considering the cognitive state results (columns 2-4), we see that
the participants frequency of being engaged was high (at least 50%
in all trials except DFake), and their frequency of being distracted
or under sleep onset was low (at most 30%). This suggests that the

Metric — WL pfrENG | pfrDIS pfrSO
Trials | (o) u (o) u (o) u (o)
Real .65 (.08) | .61 (.18) | .13 (.12) | .25(.17)

Overall | .64 (.08) | .50(.03) | .20 (.06) | .28 (.06)
Fake | EFake 64 (.08) | .62(.17) | .11 (.09) | .25(.I7)
DFake | .64 (.08) | .39(.18) [ .29 (.14) | .30 (.14)
Overall .64 (.08) | .54 (.05) | .18 (.06) | .27 (.08)

Table 1: Neural Results for Phishing Detection: Average cogni-
tive workload and average percentage of frequency of engage-
ment, distraction and sleep onset.

participants were actively engaged, and lowly distracted or sleep-
prone, during the experiment.

We noticed a statistically significant difference in the means of
overall pfrENG, overall pfrDIS and overall pfrSO upon testing with
the Friedman test (x*(2) = 34.6, p < .0005). Upon performing
pairwise comparisons using WSRT between the means of the three
metrics, overall pfrENG, overall pfrDIS and overall pfrSO, sta-
tistically significant differences were found between pfrENG and
pfrDIS (p < .0005) and pfrENG and pfrSO (p < .0005), both with a
large effect size (r = .61). This pattern was visible upon performing
pairwise comparisons using WSRT among the means of pfrENG
and pfrDIS, and the means of pfrENG and pfrSO, across the Real
trials and the EFake trials (all with p<.0005), all with a large ef-
fect size(r > .5); we did not see a statistically significant difference
in pairwise comparison of these metrics across the DFake trials,
however. All these pairwise differences remained statistically sig-
nificant even when applying Holm-Bonferroni correction.

This analysis shows that the participants’ frequency of being in
an engaged state was higher than their frequency of being in dis-
tracted state or sleep-onset state in the phishing task for all types
of trials (except DFake). This means that the participants were ac-
tively involved in making fake vs. real decisions (not getting dis-
tracted by it or ignoring it).

Finally, we contrasted different categories of trials (rows of the
Table 1.) with respect to our metrics. We found statistically signifi-
cant differences in the means of pfrENG, pfrDIS and pfrSO among
the different types of trials, with Friedman test (x3(11) = 141.5,
p < .001). Further, upon comparing pfrENG in Real trials with
pfrENG in Fake trials with WSRT, we saw a statistically significant
difference (p = .026) with a medium effect size (r = .32). In ad-
dition, we found a statistically significant difference in pfrENG for
Real trials and pfrENG for DFake trials (p = .013), with a medium
effect size (r = .36). We also found a statistically significant differ-
ence in pfrDIS in Fake trials and pfrDIS in Real trials (p = .031)
with a medium effect size (r = .37), and between pfrDIS in DFake
trials and pfrDIS in Real trials (p = .005) with a medium effect
size (r = .41). However, we did not see any statistically significant
difference in pfrENG and pfrDIS between Real and EFake trials.

This analysis suggests that participants may have been more en-
gaged and less distracted when processing real websites as opposed
to fake, or difficult fake, websites. Except of difficult fake pfrDIS
and real pfrDIS, these differences do not remain statistically signif-
icant upon applying Holm-Bonferroni correction. No statistically
significant differences were found in pfrSO across different types
of trials.

The last set of results shows that there might be differences in
the processing of real and fake websites in human brain. Our par-
ticipants may have been more engaged and less distracted when
dealing with real websites when compared to fake or difficult fake
websites. Real websites, because of the fact they were real (al-
though participants did not know about it), might have triggered



more engagement or less distraction at a subconscious level. The
prior fMRI phishing detection study by Neupane et al. [26] also
showed significant differences in activation of specific brain re-
gions while participants were viewing real vs. fake (and difficult
fake) websites. As a classical analogy, Huang et al. [22] found an
increased activity in certain brain areas while subjects identified
real-fake Rembrandt paintings.

7.1.2  Eye Gaze Results

Through the eye-tracking component of our experiment, we wanted

to see whether participants look at the key areas of a website and
how much time they spent on those areas. The prior studies [17,34,
39] suggest that users may not pay attention to security indicators,
based on their low task performance in phishing detection. Our
goal was to evaluate this hypothesis based on users’ gaze patterns.
We marked the URL, logo and login form of a website as our ar-
eas of interest (AOI), since these are some specific locations or arti-
facts which people may examine while making real-fake decisions.
Logo denotes the logo of the website/company, and login form de-
notes the small form where the user is to input the username and
password to login to the site. Both logo and login form are not the
true indicators of the legitimacy of a website, given phishers can
spoof them relatively easily. For each of our AOIs, we computed
mean number of fixations (#fix) and mean gaze durations (dur), as
described in Section 6.2. The results are shown in Table 2.

AOIs — URL Logo Login Form
# fix dur (ms) # fix dur (ms) # fix dur (ms
Trials | p(o) | p(o) wio) | pu(o) (o) | pu(o)
Real 1.02 376 .56 427 2.8 1370
(1.09) | (449) (.34) | (198) (1.32) | (514)
Overall| 1.03 345 1.28 705 3.70 1527
Fakel (1.01) | (349) (.66) | (310) (1.79) | (568)
EFake | 0.98 373 .99 613 4.00 1585
(1.03) | (389) (.53) | (310) (.98) | (596)
DFake | 1.09 317 1.57 797 34 1469
(1.09) | (325) (.92) | (341) (1.83) | (604)
Overall 1.03 355 1.04 612 342 1475
(1.01) | (378) (.52) | (258) (1.59) | (536)

Table 2: Gaze Results for Phishing Detection: Average number
of fixations and average gaze durations in Areas Of Interests

From Table 2, we generally see a lower average number of fixa-
tions and average gaze duration at URL compared to logo and login
form. The gaze duration seems the highest for the login form. And,
this pattern seems to be similar across different types of trials.

Friedman test showed the presence of a statistically significant
difference in mean gaze duration among URL, Logo and Login
Form (x%(3) = 32.7, p < .0005) in Real trials and Fake (EFake
and DFake) trials. Further, comparing mean gaze durations across
different AOIs using WSRT, we saw a statistically significant dif-
ference between the overall Logo and overall URL ( p = .004) with
a medium effect size (r = .43), overall Login and overall URL (p <
.0005) with a large effect size (r = .59), and overall Login and over-
all Logo (p < .0005) with a large effect size ( r = .61). Statistically
significant differences were also seen between mean gaze durations
of Login and URL, and Login and Logo, with respect to all types
of trials (p < .0005 for all comparisons), with a large effect size (r
> .5 for all comparisons). We also found a statistically significant
difference between mean gaze durations of Logo and URL corre-
sponding to Fake trials (p=.001) with a medium effect size (r =
.49), EFake trials (p=0.015) with a medium effect size ( r = .35),
and DFake trials (p<.0005) with a large effect size (r = .57). All
these differences remained statistically significant when applying

Holm-Bonferroni correction. No significant difference was found
between mean gaze duration in Logo and URL for the Efake trials.

Next, we analyzed the mean number of fixations. This metric
also generally follows the same pattern as gaze durations, i.e., it
seems participants were fixating the most on the login region, fol-
lowed by the logo and URL regions. We found a statistically signif-
icant difference among the mean number of fixations in URL, Logo
and Login Form across Real, and Fake (EFake and DFake) with
Friedman test (x*(14) = 182.7, p<.0005). Further, using WSRT,
we found a statistically significant difference between overall Lo-
gin and overall URL (p < .0005) with a large effect size (r = .57)
and overall Login and overall Logo (p < .0005) with a large effect
size (r = .61), whereas overall Logo and overall URL difference
was not statistically significant. The exact same pattern was ob-
served with respect to different types of trials. Statistically signif-
icant differences were also observed in the number of fixations in:
Login and URL (p = .00I) with a large effect size (r = .50) and
Login and Logo (p = .001) with a large effect size (r = .60) in Real
trials, and Login and URL (p<.0005) with a large effect size (r =
.57) and Login and Logo ( p<.0005) in Fake trials, EFake trials
and DFake trials, with a large effect size (r > .6 for all compar-
isons); whereas Logo-URL difference was not statistically signif-
icant. All these differences remained statistically significant after
Holm-Bonferroni corrections.

Based on the above analysis, we can conclude that participants
were fixating more, and spending more time, at the Login and/or
Logo regions compared to the URL region, for all categories of
trials. This confirms our hypothesis that users may not be spend-
ing enough time analyzing the key indicators of phishing attacks.
The users were actually looking more at the Login region than the
Logo region, which means they may have regarded the login form
as a better indicator of the legitimacy of the site than its logo. This
insight helps to explain why their real-fake decisions were not ac-
curate, as our task performance results show below.

When testing for differences between different categories of tri-
als (rows of Table 2) with respect to number of fixations and gaze
duration using WSRT, no statistically significant differences emerged.

Finally, we performed correlation analysis, using Spearman’s
correlation method, to elicit relationships in the mean gaze dura-
tions across different AOIs. We found a statistically significant pos-
itive correlation between mean duration in Login (overall trial) and
mean duration in Logo (overall trial) (rcorr =.606, p =.002), mean
duration Login( Fake) and mean duration Logo (Fake) (rcor =.591,
p=.003), mean duration Login and mean duration Logo (EFake)
(Feor =.569, p=.005), mean duration Login (Real) and mean du-
ration Logo (reor = .551, p=.006) and between mean duration in
Login (DFake trial) and mean duration in Logo (DFake trial) (rcor=
.567, p=.005). These differences remained statistically significant
upon correcting with Holm-Bonferroni correction, and suggest that
participants who spent more time at Login also spent more time at
Logo overall (and in DFake trials). The other pairs did not show
any significant relationship.

7.1.3  Task Performance Results

We calculated the response times and the percentage of correctly
identified websites out of the total responses given by the partic-
ipants (referred to as accuracy), for different types of trials. The
response was counted as correct/incorrect only if the response was
provided (6.15% of trials were not responded to and are excluded
from our calculations). Table 3 summarizes our results.

The overall accuracy of correctly identifying a website is around
70%. It seems the highest for the real websites and the lowest for
the difficult fake websites. Our average accuracy results are in line



Metric — Accuracy (%) | Response Time (ms)
Trial | u (o) (o)
Real 83.24 (17.28) 1594 (339)
Overall | 62.31 (20.62) | 1663 (231)
Fake | EFake | 68.35 (21.68) 1667 (263)
DFake | 55.94 (25.30) 1655 (294)
Overall 69.69 (16.64) 1641 (257)

Table 3: Task Performance in Phishing Detection: Average ac-
curacy and response time

with, but slightly better than, the results of [17,26]. They are further
supported by our gaze pattern analysis which showed participants
were spending more time looking at the login field and/or logo than
analyzing the URL.

The Friedman test showed a statistically significant difference
in mean accuracies across Real trials, Fake trials, EFake trials and
DFake trials (x%(3) = 32.7, p<.0005). On further contrasting the
accuracy rates across different types of trials with WSRT, we found
that participants identified real websites with a statistically signifi-
cantly higher accuracy than fake websites ( p <.0005), with a large
effect size (r =.53). This seems to conform to our neural data anal-
ysis, which showed participants were seemingly more engaged, and
less distracted, in real trials than they were in fake trials. We also
found that the participants identified Real trials with statistically
higher accuracy than EFake trials (p=.003), with a medium effect
size (r = .44) and DFake trials (p < .0005), with a large effect size
(r = .54). Further, we found the accuracy for EFake trials to be sta-
tistically significantly higher than the accuracy of DFake websites
(p =.017) with a medium effect size (r = .34).

Difficult fake websites had a different URL, disguised to look
like the original one, with the layout of the original (real) website.
Each easy fake website, in contrast, had a URL and logo or layout
different from the corresponding real website. Therefore, it is natu-
ral that people were less accurate with difficult fake websites. This
difference, however, did not remain statistically significant when
using Holm-Bonferroni correction; all others were still statistically
significant.

Post-Test Survey Analysis: 52% of our participants reported that
they had not heard about phishing attacks. The other 48% defined
these attacks as, “Attacks from unsecured websites and they cause
viruses to occur”; “ someone trying to get your information with-
out you knowing; information can be stolen”; “Tracks cookies, pri-
vacy is reduced”; “steal your private information, lose money, 1D
stolen”. This suggests that participants had some, but not very pre-
cise, understanding of phishing, which may help explain the overall

low accuracy.

7.1.4 Correlations

Upon using Spearman’s correlation, we found a large, statisti-
cally significant decrease in the overall accuracy of phishing detec-
tion with the increase in the overall mean gaze duration in the login
area of websites (7cor=-.592, p = .003). This correlation remained
statistically significant even when applying Holm-Bonferroni cor-
rection. It suggests that the participants who spent more time look-
ing at the login form had lower accuracy rates. We did not find a
statistically significant correlation of accuracy with gaze duration
in URL or logo regions.

Spearman’s correlation did not reveal significant correlations be-
tween task performance & neural metrics, and between neural met-
rics & gaze metrics.

We next explored correlation between task performance & per-
sonality traits. Neupane et al. [26] showed that users’ individ-

ual personality traits might affect how they process security tasks.
They specifically showed that impulsive persons had lower activa-
tion in certain decision-making regions of their brains. However,
they did not report any direct significant effect of users’ personality
traits on their task performance [26]. In our experiment, Spear-
man’s correlation revealed a medium, statistically significant, pos-
itive relationship between participants’ ATTC personality scores
and their task accuracy (rcor = .477, p = .021). This correla-
tion remained statistically significant even after applying Holm-
Bonferroni correction. BIS did not yield any statistically significant
relationship, however. This means that attention control has a posi-
tive effect on the performance of the users in the phishing detection
task. Training to improve users’ attention level, along with educa-
tion, might therefore help them identify phishing attacks better (we
will discuss this aspect in Section 9).

7.2 Malware Warnings Experiment

To recall, in the malware warnings task, participants were ran-
domly exposed to malware warnings while reading abstracts of
news items. As in the phishing detection experiment, we analyzed
the neural data, gaze data, and task performance data collected dur-
ing the malware warnings experiment.

7.2.1 Neural Activity Results

We computed average WL, and average pfrENG, pfrDIS and
pfrSO, for the three trials — abstract, malware warning and full
news. Our results are summarized in Table 4.

Metric — | WL pfrENG | pfrDIS pfrSO
Trial | p |pe | p@ | u@
Abstract .65 (.08) | .63 (.17) | .13 (.13) | .22(.14)
Warning .69 (.09) | .60 (.21) | .13 (.60) | .25 (.17)
Full News .67 (.11) | .65(.20) | .12 (.16) | .22 (.16)

Table 4: Neural Results for Malware Warnings: Average cog-
nitive workload and average percentage frequency of engage-
ment, distraction and sleep onset.

From Table 4 (column 1), we observe that the average workload
values across abstract, warnings and full news trials are all high
(greater than .65). We also see a higher average workload in pro-
cessing warnings when compared to abstract and full news. The
Friedman test revealed a statistically significant difference among
the mean workloads of the abstract, warning and full news trials (>
(2) = 6.0, p = .048). Further, upon using WSRT for pair-wise com-
parisons, we found a statistically significant difference between the
warnings and abstracts trials (p=.005), with a medium effect size (r
= .41); the other two pairs of trials did not show up any statistically
significant difference. This pairwise difference remained statisti-
cally significant even when applying Holm-Bonferroni correction.

This demonstrates that our participants were possibly exerting
more effort on their memory and neural resources when subject to
warnings in contrast to reading casual abstracts.

Considering the cognitive state metrics (columns 2-4), we see
that the participants frequency of being engaged was high (at least
60% in all trials), and their frequency of being distracted or un-
der sleep onset was low (at most 25%). This suggests that the
participants were actively engaged, and less distracted or sleep-
prone, during the experiment, including warnings. The Friedman
test indicated the difference among the means of pfrENG, pfrDIS
and pfrSO as significant (x?(2) = 26.9, p<.0005). Upon perform-
ing pairwise comparisons between the means of the three metrics
across the warnings trials using WSRT, statistically significant dif-
ferences were found between pfrENG and pfrDIS (p < .0005) with



a large effect size (r = .59) , pfrENG with pfrSO (p < .0005) with
a large effect size (r =.517) and pfrDIS with pfrSO (p =.027) with a
medium effect size (r = .32). This pairwise difference, apart from
pfrDIS with pfrSO, remained statistically significant even when ap-
plying Holm-Bonferroni correction.

This analysis demonstrates that, when processing warnings, par-
ticipants’ frequency of being in an engaged state was higher than
their frequency of being in the distracted state or sleep onset state.
The high task performance results (discussed later in this section)
conform to this high engagement level and high workload.

Last, we contrasted the different categories of trials (rows) with
respect to our cognitive state metrics (pfrENG, pfrDIS and pfrSO)

using the Friedman test. However, no significant differences emerged.

7.2.2  Eye Gaze Results

Our primary goal of employing gaze tracking in the warnings
experiment was to determine if the participants actually read the
message embedded within the warning, or just ignore it.

To this end, we considered the “red dialog box” of the warning
page, called the warning area (see Appendix A), as our AOIL, and
calculated the average number of fixations (#fix) and average gaze
duration (dur) inside it (just like the phishing detection task).

The participants spent almost 2.5s inside the warning area on
average (Table 5). This means that participants’ primary focus was
inside the warning dialog.

Metric — | #fix dur (ms)
Trial | k(o) w (o)
Warning 7.4 (2.67) | .63(.17)

Table 5: Gaze Results for Malware Warnings: Average number
of fixations and average total gaze duration

To further understand how users processed the warnings while fo-
cusing on the warning window, we plotted the fixations in the first
warning trial of all participants, in a scatterplot, overlaid on top of
the warning (shown in Figure 4). The scatterplot has more fixa-
tion points in the middle of the plot, representing dense gaze points
inside the warning area. These dense gaze points show that partic-
ipants spent maximum percentage of their time inside the warning
area, spread consistently across the sentences/tabs in the warning
message. Furthermore, the fixation points in the scatterplot are
flowing along the sentences in the warning area (as shown by sam-
ple snapshots in Appendix D), representing the movement of gaze
points and demonstrating the “warning reading flow”. This gaze
pattern analysis shows that participants were not just fixating inside
the warning window but actually reading the warning message. A
similar pattern was observed across other warning trials. We also
calculated the correlation between the trial number and the number
of fixations (time spent) within the warning area. We only found
a statistically significant negative correlation corresponding to two
of our participants (r = -.661, p = .038,; and r = -.72, p = .019).
This suggests that these participants spent lesser time in process-
ing the warnings as the experiment proceeded. On average across
all participants, however, no statistically significant correlation was
found.

To our knowledge, no prior study has looked at eye gaze analy-
sis in the context of warnings (malware or otherwise). Akhawe and
Felt [9] showed that people are likely to heed warnings based on
browser telemetry data. Neupane et al. [26], in their fMRI-based
malware experiment, showed activity in language comprehension
areas of the brain when subjects were exposed to warnings. We pre-
sented an analysis of the flow of fixation points over time, and val-
idated that users are in fact reading warnings, which may serve to

explain their high heeding rates and comprehension-relevant neural
activity [26].

Figure 4: The flow of fixation points over the 1st Warning trial
of all participants (others trials had a similar effect)

7.2.3 Task Performance Results

To measure the task performance in the warnings experiment, we
recorded the participants’ responses (and response time) when they
were subject to warnings. We were mainly interested in determin-
ing the rate at which the participants may ignore the warning - the
fraction of the time they hit the “Ignore this warning” button.

Metric — | Ignoring Rate (%) | Response Time (ms)
Trial | 1 (0) 1 (o)
Warning 14.10 (27.79) 2580 (655)

Table 6: Task Performance in Malware Warnings: Average
rate of ignoring warnings, and response time

Table 6 summarizes these results. We observe that almost 15%
of the time, participants ignored the warnings (i.e., they heeded
the warning almost 85% of the time). This result is well-aligned
with prior studies [17,26]. Both these studies suggest that users
are highly likely to heed malware warning messages. The high
level of workload and engagement reflected in our neural analysis,
and the “reading effect” highlighted in our gaze analysis justify
participants’ heeding behavior.

Post-Test Questionnaire Analysis: Our post-experiment survey re-
sults further confirm that our participants read the warnings. 84%
of them said they read the warnings. Following are a few excerpts
of what information they read in the warnings: “That the website
was a potential threat, if I wanted to continue”; “Possible danger
on the website”; “They asked if I wanted to “Get Me Out of Here!”
or figure out why the page I was visiting had been blocked.” 72% of
our participants reported that they had heard about malware attacks.

7.2.4 Correlations

Spearman’s correlation did not reveal statistically significant cor-
relations between neural metrics, gaze metrics and task performance
(heeding rate). It did not reveal statistically significant relationships
between personality scores and heeding warning rates.

8. SUMMARY AND KEY INSIGHTS

The primary findings and insights from our study, with respect to
our different dimensions, are itemized below. Whenever applica-
ble, our results are positioned with respect the prior results.



Task Performance

e The users fail to identify phishing websites more than 37%
of the time. This result is well-aligned with the results of
several prior studies (e.g., [17,26]).

e The users are likely to heed warnings about 85% of the time.
This serves to further validate the results of two recent stud-
ies [9,26].

Neural Activity

e The users’ exhibit a high cognitive load in the two security
tasks. The cognitive load in processing warnings is more
than the cognitive load in processing casual abstracts of news
articles. Moreover, users’ frequency of being in an “engaged”
state is more than their frequency of being in “distracted”” and
“sleep-prone” states for both tasks. This means that users are
paying attention and making an active effort while perform-
ing these tasks (and not ignoring them). Although this level
of involvement translated into high heeding rates in the warn-
ings task, the phishing detection task accuracy is still quite
low (as listed above). This result is in line with the find-
ings presented in [26], but is based on a complementary neu-
roimaging technique having high temporal resolution (EEG
vs. fMRI) and accomplished under a near ecologically valid
setting (e.g., out-scanner vs. in-scanner, sitting vs. supine).

o At a subconscious level, there might be hidden differences
in how users detect real and fake websites (in line with iden-
tifying real and fake paintings [22]). Real websites, which
possibly simulate a more trustworthy environment, may have
a higher frequency of engagement, and a lower frequency
of distraction, compared to fake websites. This means that
the computer system could use these subtle implicit cues to
determine whether the site is fake (even though users may
eventually fail to detect it).

Eye Gaze Patterns

e Eye gaze analysis in the phishing detection task shows that
users do not spend enough time looking at the key areas of
websites (less time on URL; more time on “login field” or
“website logo”) for identifying its trustworthiness. A prior
work [37] made a similar conclusion regarding security indi-
cators in general, but did not provide any quantitative results.
The work of [10] provided a similar insight but in the context
of “single-sign-on” applications, not phishing detection.

e The correlation of gaze “fixations” with phishing detection
accuracy shows that users who look longer at the login field
are likely to have lower accuracy. Also, users who look
longer at the login field are more likely to look longer at the
website logo (not an authentic indicator of the real website).

e Gaze pattern analysis of malware warnings shows that users
are fixating inside the warning dialog and actually reading
the warnings (also reflected in their high task performance).
This is the first work that shows the warning “reading ef-
fect”. Prior work [17,26] showed that users heed warnings
(based on task performance data) and may trigger “language
comprehension” activity in their brains. Overall, our work
corroborates the previous findings demonstrating that users
(1) read (based on eye gaze analysis), (2) understand (based
on neural activity) and (3) heed (based on task performance)
warnings on a large majority of occasions.

Personality Traits

e The difference in users’ personal characteristics can have an
effect on how well they perform in a security task. A user
with high attention control (measured via a simple question-
naire [16]) is more likely to identify the real and fake web-
sites correctly. Our study demonstrates a direct impact of
personality traits on security task performance. The work
of [26] showed a correlation between personality traits with
neural activity, not task performance. Beyond raising peo-
ple’s awareness to phishing attacks, interventional training
programs that can improve people’s attention control [4, 5,
15,35] may therefore help reduce the impact of these attacks.

9. DISCUSSION

Implications of Our Work: A broader implication of our work
is in leveraging real-time brain monitoring and eye tracking tech-
niques to inform the design of user-centered security systems. The
current user-centered security practices unconditionally rely upon
users’ input whether or not users pay attention. The use of real-
time “brain-eye” measures, we investigated in this paper, could be
used to build an automated mechanism where the system can de-
termine whether user’s response is reliable or not. For example, if
the gaze patterns show that the user did not sufficiently look at the
URL when connecting to a website, or did not read the message
provided by a warning, the user’s response would most likely not
be reliable. Similarly, if neural features show that the user was not
engaged, or was under a distracted state, when subject to a security
task, the user’s response may not be valid. In contrast, if eye gaze
dynamics show that the user reads the warning and neural activity
reveals that the user was highly engaged, a user’s response can be
deemed legitimate.

To formalize a bit, we are suggesting a mechanism based on real-
time neural and eye gaze data, that can detect whether users are in
an “attentive” or “inattentive” state, i.e., whether or not they are
performing the security task as stipulated. Such mechanisms can
be developed using machine learning techniques. “Fusing” neu-
ral and ocular features may provide a robust detection mechanism
(resulting in low error rates).

While traditional security approaches either rely on machines
alone or humans alone, what we are proposing is a hybrid approach
where machines and humans work in conjunction with each other,
possibly complementing each other’s strengths and weaknesses in
meaningful ways. This approach could be generally applicable
to many security applications including other warnings (e.g., SSL
warnings [34] or app permissions warnings [19]), user-aided de-
vice pairing [31], security and privacy indicators (e.g., webcam
lights [28]), and more.

Although the design and evaluation of such a mechanism re-
quires a comprehensive future investigation, we believe that our
work lays out the necessary foundation at least in the realm of
phishing detection and malware warnings. Given the rise of eye-
tracking and neuroimaging devices in the commercial sectors, such
as the adoption of eye-trackers in smart-glasses [7, 8] and gaming
BCI headsets [2, 6] it seems feasible that such a mechanism could
be used in practice once shown effective, especially in high-security
settings (such as defense applications).

A malicious application having access to brain-eye measures could
similarly be used for offensive purposes. For example, a user could
be attacked at an opportune moment, i.e., when he/she is in the
inattentive state as inferred by eye-brain features (e.g., when the
user is sleep-prone or otherwise distracted). Commercial BCI de-
vices have already been shown vulnerable to privacy attacks where



a malicious app can infer sensitive user information (e.g., their PIN
digits) based on recorded brain signals [25]. A similar attack model
seems applicable to eye trackers. The attack vector we are envision-
ing aims to infer a user’s neuro-physiological state so as to optimize
the timing of the occurrence of the attack.

Strengths and Limitations: We believe that our study has several
strengths. The neuro-physiological sensors chosen for our study —a
lightweight and wireless EEG headset, and a remote desk mounted
eye-tracker — allowed us to collect data almost transparently just
like in day-to-day computer use. Also, we simulated a near real-
world web browsing experience where participants interacted with
a popular browser and actual websites.

Similar to any other study involving human subjects, our study
also had certain limitations. The study was conducted in a lab,
which might have impacted the performance of participants since
they might not have felt the real security risks, similar to other prior
lab studies. Due to the neuro-physiological focus of the study, it
does not currently seem feasible to conduct such a study online or in
field conditions. Although our EEG headset was very lightweight,
performing the tasks with the headset on might have affected the
experience of some participants.

Our participant sample comprised of a majority of young stu-
dents. This represents a common constraint underlying many Uni-
versity lab studies, especially those involving neuro-physiological
scanning due to logistical challenges (e.g., costly equipment, rig-
orous exclusion criteria and lengthy protocols), such as the recent
fMRI study [26] (N=25; mostly students), the eye-tracking study [37]
(N=16; students, faculty and staff) and the eye-tracking study [10]
(N=19; mostly youth). However, our sample exhibited some diver-
sity with respect to educational backgrounds (especially, no partic-
ipant had a computer science background). Moreover, our sample,
especially in terms of age, was closer to the group of users who use
Internet frequently [3] and who are supposedly more vulnerable to
phishing attacks [33]. Also, our result demonstrating subconscious
differences in brain activation while processing real and fake web-
sites may persist despite age differences. Indeed, we saw subcon-
scious differences in the participants belonging to each of the 19-22
age group and 30 plus age group. Future studies might be needed
to further validate our results with broader participant samples.

One limitation of our study pertains to the number of trials pre-
sented to the participants. Although multiple trials is a norm in
EEG (and neuro-imaging) experimental design [24,38] to achieve a
good quality signal-to-noise ratio, the participants may hardly face
many security-related trials in a short span of time in real life. Our
behavioral results, in the malware warnings experiment, are still
well-aligned with a previous large-scale real life study [9].

Another limitation relates to the participants’ motivation to dis-
regard the warning. The reward for ignoring the warning might not
have been high enough for our study participants, since they could
only read full news on disregarding the warning. On the other hand,
since the participants were performing the experiments on a lab
computer, they could have ignored the warning more often when
compared to using their own laptop in real-world. This suggests
that the warning heeding rates may be higher than 85% in a real-
life scenario, which is also reflected in the field study of [9].

Finally, in the phishing detection task, our participants were ex-
plicitly asked to identify a website as real or fake. However, in a
real-world attack, the victims are driven to a phishing website from
some primary task (e.g., reading email) and the decision about the
legitimacy of the site needs to be made implicitly. Nevertheless, in
any case, the users ultimately have to make the decision about the
legitimacy of the site. Our results show that, despite being asked

explicitly, users are not able to detect the legitimacy of the web-
sites accurately, and therefore the result may be even worse in a
real world attack where the decisions are to be made implicitly.
The subconscious differences in real-fake processing, due to their
implicit nature, may still persist.

10. CONCLUSIONS AND FUTURE WORK

We pursued a triangular study of phishing detection and malware
warnings, measuring users’ neural activity, eye gaze patterns, task
performance, and inter-relationships thereof. In the realm of phish-
ing detection, our results showed that users do not spend enough
time looking at key phishing indicators and often fail at detecting
these attacks, although they may be highly engaged in the task and
subconsciously processing real sites differently than fake sites. In
the malware warning tasks, on the other hand, our results demon-
strated that users frequently read and eventually heed the message
embedded within the warning. We also found that a user’s person-
ality traits (specifically, attention control) directly impact his/her
phishing detection accuracy. This suggests that users may detect
phishing attacks better if they could be trained to exercise attention
control (beyond phishing awareness training). Further work is nec-
essary to understand the effect of such interventional training on
users’ performance in the phishing detection task.

Based on our work, we suggested the possibility of building fu-
ture automated mechanisms applying a fusion of real-time neural
and eye gaze features that can infer users’ “alertness” state, and de-
termine whether or not users’ responses should be relied upon. The
proposed mechanism may be used to “sanitize” a user’s response
and enhance the credibility of human decisions in a user-centered
security system, serving as a closed-loop between humans and ma-
chines. Future research is needed to design and validate such mech-
anisms in different security domains.
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APPENDIX
A. SAMPLE WARNING

B. NEURAL METRICS

The B-Alert headset measures and records the electrical activ-
ity in the brain with sensors placed on the scalp. These signals
are first decontaminated from any noises, e.g., the presence of eye-
blinks, spikes, and muscle movement. The B-Alert cognitive met-
rics were obtained from ABM’s four-class B-Alert quadratic dis-
criminant function classification algorithm (see Berka et al. [29]
and B-Alert User Manual for further details) for each second of
data, referred to as epoch. It gives the mean probability of classi-
fications for the four classes: high engagement, low engagement,
distraction and sleep in a given epoch. The class with the greatest
mean probability is the winning class. This is the class assigned to
the epoch. For example, if an epoch is classified as high engage-
ment with probability .45, low engagement as .30, distraction as
.20 and sleep onset as 0.05, then the final class of the epoch will be
high engagement. The workload was derived from a two-class Lin-
ear discriminant function algorithm (range 0.0 to 1.0) [11,12,29].

C. PARTICIPANT DEMOGRAPHICS

[ Participant Size (N = 25) |

Gender (%)
[ Male [ 64]
| Female [ 36 ]
Age (%)
19-22 years 44
23-26 years 20
27-30 years 16
31-34 years 8
>35 years 12

Background (%)
Students (undergrads and grads from different fields) | 72
Working Professionals 16
Others 12

Table 7: Participant Demographics Distribution Summary

D. WARNING READING EFFECT

The sample frames from one of the participants, shown in Figures
D.1-D.8, demonstrate the warning message reading effect (most
other participants had a similar effect)

Figure D.1: Gaze plot Frame 1

Figure D.2: Gaze plot Frame 2

Figure D.3: Gaze plot Frame 3.

Figure D.4: Gaze plot Frame 4
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Figure D.5: Gaze plot Frame 5

Figure D.6: Gaze plot Frame 6

Figure D.8: Gaze plot Frame 8



