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1Abstract— The security of computer systems often relies 

upon decisions and actions of end users. In this paper, we set out 

to investigate users’ susceptibility to cybercriminal attacks by 

concentrating at the most fundamental component governing 

user behavior – the human brain. We introduce a novel 

neuroscience-based study methodology to inform the design of 

user-centered security systems as it relates to cybercrime.

Specifically, we report on an fMRI study measuring users’ 

security performance and underlying neural activity with respect 

to two critical security tasks: (1) distinguishing between a 

legitimate and a phishing website, and (2) heeding security 

(malware) warnings. We identify neural markers that might be 

controlling users’ performance in these tasks, and establish 

relationships between brain activity and behavioral performance 

as well as between users’ personality traits and security behavior.

Our results provide a largely positive perspective on users’ 

capability and performance vis-à-vis these crucial security tasks. 

First, we show that users exhibit significant brain activity in key 

regions associated with decision-making, attention, and problem-

solving (phishing and malware warnings) as well as language 

comprehension and reading (malware warnings), which means 

that users are actively engaged in these security tasks. Second, we 

demonstrate that certain individual traits, such as impulsivity 

measured via an established questionnaire, are associated with a

significant negative effect on brain activation in these tasks. 

Third, we discover a high degree of correlation in brain activity 

(in decision-making regions) across phishing detection and 

malware warnings tasks, which implies that users’ behavior in 

one task may potentially be predicted by their behavior in the 

other. Fourth, we discover high functional connectivity among 

the core regions of the brain while users performed the phishing 

detection task. Finally, we discuss the broader impacts and 

implications of our work on the field of user-centered security, 

including the domain of security education, targeted security 

training, and security screening.

I. INTRODUCTION 

 Computing has become increasingly common in many 
spheres of users’ daily lives. At the same time, the need for 
securing computer systems has become paramount. To enable 
secure on-line interactions, actions performed and decisions 
made by human users need to be factored into system design –
a principle sometimes referred to as “human in the loop” [9].
Two such prominent user-centered security tasks are: (1) 
distinguishing between a legitimate and a fake website 
(phishing detection task), and (2) heeding warnings provided 
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by modern browsers when connecting to potentially malicious 
websites (malware warnings task). 

The field of user-centered security has received 
considerable attention recently but is still in its infancy. As 
such, researchers’ understanding of end user performance in 
real-world security tasks is neither very precise nor very clear. 
Previous computer lab-based studies focusing on security 
warnings and security indicators (e.g., [10, 12, 13, 14, 15, 16, 
17]) have concluded that users do not perform well at these 
tasks and may often ignore them. This general wisdom has 
been called into question however by a large-scale field study 
of browsers’ tasks relating to phishing, SSL and malware 
warnings [11] which showed a high likelihood users actually 
heeded the warnings they received.   

User attitudes, perceptions, acceptance and use of 
information technology have been long-standing issues since 
the early days of computing. Users’ personal characteristics 
are also identified as one of the important factors affecting 
phishing detection and malware warnings interactions (e.g., 
[60, 61, 62, 63]). In this light, it is important to understand 
users’ behavior and personality characteristics pertaining to 
the execution of security tasks, and users’ potential 
susceptibility to attacks.  

Our goal in this paper was to enhance current knowledge
in, and address fundamental questions pertaining to, user-
centered security from a neuropsychological standpoint. The 
primary questions driving our research included: (1) what 
brain regions are activated and functionally connected while 
performing security tasks?; (2) how well do users perform  
these tasks?; (3) do certain personality traits (like impulsivity, 
or attention control) influence users’ security behavior and 

performance?; and (4) are users’ behavior in one security task 
related to their behavior in another.

 To answer these inquiries, we developed a novel 
methodology for studying user-centered security that involves 
neuroimaging. Using this general methodology, our 
overarching goal was to delineate the nature of cognitive and 
neural processes that underlie user-centered security decisions 
and actions. This specific goal was achieved via fMRI 
(functional Magnetic Resonance Imaging) scanning. fMRI is a 
Blood Oxygen Level Dependent function measure, and is 
derived from a combination of stimulus-induced changes in the 
local cerebral blood flow, local blood volume, and local 
oxygen consumption rate [5,6]. fMRI provides a unique 
opportunity to examine in-vivo brain responses mediating user 
decisions during human-computer security interactions. As a 
first line of investigation into our novel methodology, our 
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fMRI-based study sheds light on end users’ behavior and 

performance with respect to the important tasks of phishing 

detection and responding to malware warnings. 

Contributions: Our main contributions in this paper are 
summarized as follows: 

1. Novel Methodology to Study User-Centered Security: We 
propose a new methodology for studying neurological 
patterns governing users’ performance and behavior with 
respect to user-centered security tasks. 

2. fMRI Study of Phishing, and Malware Warnings: As a 
specific use case of our methodology, we designed and 
developed in-scanner fMRI experiments for phishing 
detection and malware warnings tasks (Section III), and 
conducted a user study by recruiting and scanning 25 
individuals performing these tasks. (Section IV) 

3. Comprehensive Neural and Behavioral Analysis: We 
provide a comprehensive analysis of neuroimaging and 
behavioral data, not only evaluating the phishing and 
malware warnings experiments independently but also 
contrasting them with each other. We also perform functional 

connectivity analysis to identify the interaction among 
different brain regions corresponding to tasks relating to 
phishing detection and responding to malware warnings. 
(Section V-VIII)

This paper is an extension and consolidation of our NDSS 
2014 paper [7]. From our previous analysis, we identified the 
regions of interest (ROI) -- brain areas activated when 
completing tasks in phishing detection and control, and 
responding to malware warnings. In our extension, we 
systematically investigated the functional connectivity among 
these ROIs (see Section VI). We performed (1) whole-brain 
analysis, where the functional connectivity of one ROI with 
the rest of the brain was examined; (2) region of interest 
analysis, in which we examined functional connectivity 
among ROIs, and (3) brain-behavior analysis, which 
examined the functional connectivity of each ROI and 
impulsivity as a co-variate. We found strong functional 
connectivity in the phishing detection task compared to the 
phishing control task. This result confirms findings of our 
original analysis. The stronger level of functional connectivity 
suggests greater coordination among brain areas while 
identifying phishing websites. We did not find any statistically 
significant results during analyses of responses to malware 
warnings, however. 

Finally, we discuss the broader impacts and implications 
of our work for the field of user-centered security, including 
the domain of security education, targeted security training, 
and security screening. (Section VIII) 

II. RELATED WORK

Our study centers on phishing detection and malware 
warnings. Most closely relevant to the phishing component of 
our study is the lab study reported by Dhamija et al. [10] with 
22 participants who were asked to distinguish between real 
and fake websites. Results indicated that users do not do well 

at this task as they made incorrect choices 40% of the time. 
Our behavioral data yielded similar results. However, our 
neuroimaging data show that users exhibited significant brain 
activation during the fake or real website identification task. 
This suggests that although the outcome of participants’ 

efforts to differentiate between fake and real websites may not 
be good (perhaps because they did not know what to look for 
on the sites to make a decision), they seemed to be 
undertaking considerable effort in solving the puzzles as 
reflected by activity in appropriate brain regions during the 
decision-making process. 

A recent large scale field study reported by Akhawe and 
Felt [11] used modern browsers’ telemetry frameworks to 

record users’ real-world behavior when interacting with 
malware, as well as phishing and SSL, warnings. Unlike 
previously conducted lab-based studies of security warnings 
and security indicators (see below), this study demonstrated 
that users heeded warnings most of the time. Specifically, 
Akhawe and Felt found that users ignored Chrome’s and 

Firefox’s phishing and malware warnings between 9% and 
23% of the time, and ignored Firefox’s SSL warnings 33% of 

the time. These results are very much in line with results of
our study, which provides neurological proof of users’ ability 

to process and heed malware warnings.  

For over a decade, many lab studies have focused on 
different browser security indicators (passive indicators, and 
active warnings for phishing and SSL attacks) [12, 13, 14, 15, 
16, 17]. All of these studies suggested that users seldom act 
upon warnings and security indicators. (We refer to Akhawe 
and Felt [11] who provide an excellent survey of the results of 
these studies). Akhawe and Felt [11] attributed the stark 
difference in the results of prior lab studies focusing on 
warnings, and their own field study mainly to changes in the 
nature of browser warnings.  

Users’ personal characteristics are also identified as one of 
the important factors affecting their susceptibility to phishing 
attacks [60, 61, 62, 63]. Viswanathan et al. [59] argued that 
different attributes of email messages such as source, body 
content, attention to urgency, attention to title, computer self-
efficacy, and amount of emails received, affect detection of 
phishing emails. The Communication-Human Information 
Processing model proposed by Wogalter [60] defines the 
sequence of warnings effect, and assumes attention, memory, 
attitudes, motivation and behavior as several factors affecting 
it. The information processing model process studied by 
Mayhorn et al. [61] showed that personality factors like 
impulsivity, trust/distrust, anxiety, and calmness measured 
using standard questionnaires, affect detection of phishing 
emails. Pattison et al. [62] found that less impulsive 
individuals are better at identifying and managing phishing 
emails. Both of these studies used a role-based method [48] to 
study phishing detection. Wogalter and Mayhorn [63]
discussed the need to tailor warnings to accommodate 
differences in individual characteristics, situations, experience, 
and skill level. In our study, we wanted to see how neural 
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responses of users with different personal characteristics differ 
while identifying phishing websites. 

A previous neuroimaging study somewhat relevant to our 
work was performed by Craig et al. [18]. This study aimed at 
understanding users’ behavior when viewing advertisements, 
including the level of suspicion aroused by deceptive 
advertising. Their study found activation of the precuneus and 
superior temporal sulcus brain regions while participants 
processed different levels of deceptive stimuli. This has 
relevance to user-centered online security interactions, as 
users may become suspicious when they encounter phishing 
sites or connect to malware-prone websites. While Craig et al. 
point to the cognitive dangers associated with moderately 
deceptive materials, our phishing task presented participants 
with a “real life” online security scenario where they had to
determine whether the website was malicious or real.  

There have been other studies that applied neuroscience 
principles to computer security problems, [19, 20, 52, 53]. 
Bojinov et al. [19] proposed a neuroscience-inspired approach 
to coercion-resistant authentication. Thorpe et al. [52], and 
Chung et al. [53] explored user authentication using EEG 
devices. Martinovic et al. [20] explored the feasibility of side 
channel attacks with commodity brain-computer interfaces.  

TABLE I. SAMPLE LIST OF WEBSITES USED IN THE PHISHING EXPERIMENT

Website URL

Amazon http://www.amazon.1click.com/exec/flex-sign-in.com.ch

WellsFargo www.vvellsfargo.com

eBay http://91.109.13.183/~ebay/security/

Twitter https://twitter.login.com

Facebook
http://securitycenter.3dn.ru/facebook/warning/account/su
spend/index.html

Gmail https://accounts-google.com/servicelogin?service=mail

III. DESIGN OF EXPERIMENTS

 Our phishing detection and malware warnings tasks were 
implemented using E-Prime software (Psychology Software 
Tools Inc., Pittsburgh) [2].

A. Phishing Detection and Phishing Control 

Phishing is the act of deceiving people by presenting a fake 
website that resembles a real one. For this experiment, we 
identified popular websites and took snapshots of the sites’ 

login pages. We then modified the login pages to create 
fraudulent replications and took snapshots of them as well.
The snapshots were then categorized into two types: “real” 

and “fake.” The fake website snapshots were further divided 

into two categories: “easy” and “difficult.” The “easy” sites 
were those for which we modified both the URL and the logo 
of the companies; keeping the layout of the webpages intact; 
or we changed the URL of the webpages to an IP address. The 
“difficult” sites were those for which we modified just the 
URL keeping the security icons and parameters intact. Table I 
provides a sample list of the websites used in the experiment 
along with their URLs (we obtained some of the URLs from 
the website www.phishtank.com). The design of fake 

websites, for this experiment, was similar to the design 
adopted in the previous study on phishing detection reported 
by Dhamija et al. [10]. Figure 1 provides a sample of a fake 
website. 

Fig 1: Sample Easy Fake (logo and URL different compared to real)

1) Experiment Design (Phishing): The phishing experiment 
followed an event-related (ER) design. In an ER design, each 
trial is presented as an event with longer inter-trial-interval as 
a recovery time is needed for the hemodynamic response to 
decline between trials. This was done with the goal of 
isolating fMRI response to each item separately. ER designs 
allow different trials to be presented in random sequences, 
eliminating potential confounds such as habituation, 
anticipation, set, or other strategy effects [51]. In this 
experiment, we had 39 trials (12 easy fake, 13 difficult fake 
and 14 real), out of which 3 trials (1 difficult fake and 2 real) 
presented at the beginning of the experiment, were considered 
as practice trials to familiarize the subjects with the task. The 
following instruction was given to the participants: “In this 

experiment, you will see several websites. You have to respond 

whether the website is real or fake via the response page”.

The experiment also had a fixation baseline condition, each of 
which lasted for 10s. Fixations, in the context of an fMRI 
experiment, are short blocks of time when the participants are 
asked to look at a cross on the screen and relax. They are 
considered as windows of baseline brain activity. Each trial 
displayed a website snapshot for 6s followed by a gap of 6s. 
The experiment started with the set of instructions followed by 
a fixation for 10s, and after every 6 trials, a fixation of 10s 
was displayed on the screen. Thus, in total, there were 7 
fixations and 39 trials and the experiment lasted for 553s. The 
trials were presented to each participant in a randomized order 
and the participants had to express whether the site depicted in 
the snapshot was “real” or “fake” by pressing the designated 

joystick button. We recorded the response given by users and 
the corresponding response time.  

(2) Experiment Design (Phishing Control): The phishing 
control experiment was designed as a control for the stimuli 
presented in the phishing experiment. This experiment was 
identical to the phishing experiment, except that participants 
were instructed to just look at the images displayed on the 
screen, and not to engage in an active task. Thus, this 
experiment had all the visual demands of the phishing 
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experiment except for the decision-making (real or fake 
website) aspect.  

In this experiment, 20 snapshots of login pages of 
different websites, including: Citibank, USPS, Orkut, hi5, 
6pm.com, Google, BankofAmerica, LinkedIn, Chase, 
Instagram, Coupons, Spotify, onlineshoes, Hotmail, BestBuy, 
Yahoo, Discover, AT&T, and Apple and a portal for our 
university, were shown to participants. We used different 
websites than those used in the phishing detection task, as we 
did not want to influence participants’ decisions of real-fake 
identification based on the websites they had seen in this 
experiment. In total, we had 4 fixations (1 in the beginning of 
the trials and 3 after every 6 trials) and 20 trials, and the 
experiment lasted for 268s.  

B. Malware Warnings 

Malware is software created to obtain unauthorized access to 
computer resources and collect private information. We 
wanted to identify the neural patterns when people responded
to warnings associated with malware. Modern browsers use 
these warning mechanisms to alert users in case they visit a 
likely suspicious website and rely upon users’ input to proceed

[11]. Our malware warnings experiment consisted of several 
snapshots of news samples and pop-ups of two types: non-

warnings and warnings. A non-warning pop-up contained 
casual information or questions in it like, “CNN is a pretty 
popular news website. We have found that 65% of the people 
like reading news on CNN. We want to know how you feel 
about it. Do you like CNN?”, and a warning pop-up that 
contained details about the malware threat. In this way, the 
non-warning pop-up served as a control condition for the 
warning pop-up. The article itself served the purpose of a 
primary task in which the user was engaged. The news 
samples were collected from popular news websites such as 
CNN, BBC, LA Times, ABC News, and Slashdot.org. We 
collected news items from major categories at the sites  
including entertainment, sports, politics, and general news. 
We recreated the webpages on our own as the fMRI video 
screen only supports a resolution of 640*480 formatted in 
Bitmap configuration. This task required that the subject read 
a series of articles. While reading the articles, they were 
randomly interrupted by a pop-up asking a specific question 
(non-warning), or by a pop-up warning (about a malicious 
threat). 

Experiment Design (Malware Warnings): The experiment 
started with a set of instructions followed by a fixation trial of 
10s. After the fixation, the abstract was presented for 10s, 
followed by a pop-up (warning or non-warning randomly 
presented) for 6s asking the user if he/she wanted to proceed. 
If the user chose not to proceed, a blank screen was displayed 
for 10s; otherwise, a full news article was shown for 10s. 
Fixation of 10s duration was displayed after each trial. This 
was an event-based design and the user gave his input of 
yes/no by pressing the appropriate button on a joystick. We 
incorporated the malware warnings of popular web browsers 
like Chrome, Internet Explorer, Opera, and Mozilla [11]. It 
was difficult to display all the details of warnings shown by 

these browsers but we kept, to the extent possible, the excerpts 
similar to the warnings of these browsers (see Figure 2). In 
total, there were 10 fixations, 20 trials, and the experiment 
lasted for 751s.

Fig 2: A Snapshot of Warning 

C. Our Experimental Set-Up

Throughout the project, fMRI data were acquired using the 
3T Siemens Allegra Scanner available to us at the University 
of Alabama at Birmingham. An MRI compatible IFIS-SA
(Invivo Corp., Gainesville, FL) auditory and visual system was
used for stimulus presentation. However, in our experiments 
only visual information was presented. This system consists of 
two computers: one for stimulus presentation and another for 
experimental control and analysis. A master control unit is 
used to interface the two computers. We used E-Prime [2]
software run on the IFIS-SA system to present visual stimuli. 
The visual display in the magnet utilizes an IFIS-SA LCD 
video screen of size 640 * 480 located behind the head-coil that 
is viewed through a mirror attached to the radio frequency (RF)
coil. MRI compatible response boxes (e.g., joysticks and 
button boxes) are used to receive user responses. The E-Prime 
IFIS-SA systems record reaction times as well as participant 
responses to each stimulus item presented and creates data files
titled e-dat and t-dat.

All fMRI tasks followed the same data acquisition 
protocol, as follows. For structural imaging, initial high 
resolution T1-weighted scans were acquired using a 160-slice 
3D MPRAGE (Magnetization Prepared Rapid Gradient Echo) 
volume scan with TR = 200 ms, TE = 3.34 ms, flip angle = 
1210, FOV = 25.6 cm, 256 x 256 matrix size, and 1 mm slice 
thickness. For functional imaging, we used a single-shot 
gradient-recalled echo-planar pulse sequence that offers the 
advantage of rapid image acquisition (Repetition Time = 1000 
ms, Echo Time = 30 ms, flip angle = 60 degrees, Field of 
View = 24 cm, matrix = 64 x 64). This sequence covers most 
of the cortex (seventeen 5-mm thick slices with a 1 mm gap) 
in a single cycle of scanning (1 TR) with an in-plane 
resolution of 3.75 x 3.75 x 5 mm3. 

IV. STUDY PROCEDURES

Our fMRI study followed a within-subjects design, 
whereby each participant performed all the three tasks, 
phishing control, phishing detection, and malware warnings. 
All tasks were performed in one single fMRI scanning session. 
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In our experiments, only visual stimuli were presented. The 
study, including participant recruitment and MRI scanning, 
ran for a period of about 6 months.  

A. Ethical and Safety Considerations 

Our study was approved by the Institutional Review Board 
(IRB) at our university. Care was taken to maximize the safety 
of the participants while being scanned by following standard 
practices. Their participation in the study was strictly 
voluntary. They were given the option to withdraw from the 
study at any point in time. Best practices were followed to 
protect the confidentiality and privacy of participants’ data 

acquired during the study by de-identifying the collected data. 

B. Participant Recruitment & Demographics 

Twenty five healthy university students (14 males and 11 
females; mean age: 21.5 years) participated in our fMRI study.  
Participant demographic information is summarized in Table 
II. The participating students were enrolled in various 
educational programs, including Biology, Music, Athletics, 
Psychology, Physical Education, Biomedical Engineering,
Mathematics, Medicine, and other programs, resulting in a
diverse sample of majors.

TABLE II. PARTICIPANT DEMOGRAPHICS SUMMARY

N=25

Gender 14 male;  11  female

Age Range 19 – 32 years

Handedness 24 right-handed; 1 left-handed

Race 13 Caucasian; 5 Hispanic; 6 
Asian; 1 African American

Non-Native English Speakers 7

Participants were not included if they indicated having metal 
implanted in their bodies (either surgically or accidentally), 
indicated they were possibly pregnant or were currently 
breastfeeding, or indicated having a history of kidney disease, 
seizure disorder, diabetes, hypertension, anemia, or sickle cell 
disease. Individuals were also excluded if they were taking 
psychotropic medications, had claustrophobia, or had hearing 
problems. Participants were not recruited if they indicated a 
history of a developmental cognitive disorder, anxiety 
disorder, schizophrenia, or obsessive-compulsive disorder.  

C. Pre-Scanning Phase  

The scans were performed at the neuroimaging facility 
available to us at our university. Participants signed an 
informed consent form approved by our university’s 

Institutional Review Board. In addition, participants filled out 
an Edinburgh Handedness form [54], an MRI safety 
questionnaire, and a Barratt’s Impulsivity questionnaire [1]. 
The purpose of the Edinburgh form was to determine 
handedness because handedness may relate to the 
lateralization of hemispheric activity in the participants (right-
handed individuals may be more left-lateralized). The purpose 
of the impulsivity questionnaire was to determine the trait
impulsivity level of the participants (details in Section V.B).

Prior to the scan, each participant was shown sample 
images for both the tasks in the form of images on paper. We 

also explained that the participant was to use the button 
response system in the MRI scanner during the tasks. But we
did not tell the participants before the fMRI scan as to what 
they are supposed to be doing in the experiments.

D. Scanning Phase  

fMRI data was collected using a Siemens 3.0 T Allegra 
head-only scanner (as discussed in Section III.C). For each 
participant, we set the order of the phishing and malware 
warnings tasks randomly, but always left the phishing control 
as the first task as we did not want the decision making aspect 
of the phishing detection task and malware warnings task to 
affect the phishing control task. We gave appropriate 
instructions to the participants via an intercom before each 
experiment started. Instructions were also provided visually on 
the display screen in the MRI scanner at the beginning of each 
task. Each task was run through the IFIS System Manager.

After the scanning phase was over, we compensated the 
participant with either course credits or a $50 cash reward, 
depending on their status.    

V. ANALYSIS AND STUDY RESULTS

A. Behavioral Data Analysis 

Phishing Detection Experiment: During the phishing 
experiment, we recorded the response made by the 
participants and the corresponding response time.   

TABLE III: ACCURACY(%) AND RESPONSE TIME (MILLISECOND)

Trials μacc    (σacc) μtime   (σtime)

Real 76.68 (18.84) 3323 (1066)

Fake 46.48 (20.58) 3276 (584)

Easy Fake 56.57 (23.29) 3077 (625)

Difficult Fake 33.98 (23.61) 3538 (645)

All 60.42 (13.99) 3347 (654)

Based on the recorded data, we collected statistics for 
participant accuracy (acc) and response time (time) for 
different types of trials (see Table III). Accuracy is defined as 
the fraction of times a particular trial was correctly identified 
out of the total number of occurrences for that trial. 

We observed that, on average across all trials, participants 
took 3.35 seconds to make their decisions, but their accuracy 
was only about 60%, only slightly better than a random guess. 
Prior work by Dhamija et al. [10] reported very similar results 
based on their computer-based lab study. We used repeated 
measure ANOVA with Greenhouse-Geisser correction, and 
determined that the mean response times for real, easy fake 
and difficult fake trials were statistically significantly different 
(F(1.91, 40.20) = 10.14, p<.001). On further analysis using 
paired t-tests with Bonferroni correction, we found that users 
spent statistically significantly more time in real websites as 
compared to easy fake websites (t(21) = 3.307, p=.003), and in 
difficult fake websites as compared to easy fake websites 
((t)21) = 4.05, p=.001). Similarly, we found that a statistically 
significant difference existed among accuracies for these trials 
(F(1.92, 40.51) = 48.13, p <.001). On further analysis using 
paired t-tests with Bonferroni correction, we found statistically 
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significantly higher accuracy of real websites than fake 
websites (t(21) = 7.5, p=.000), easy fake websites (t(21) = 
4.86, p=.000) and difficult fake websites (t(21) = 9.098, p = 
.000). We also found statistically significantly higher accuracy 
of easy fake websites compared to difficult fake websites 
(t(21) = 5.44, p = .000).  

We did not find statistically significant correlation of 
phishing detection task performance with users’ personality 
characteristics and gender. 

Malware Warnings Experiment: Similar to the phishing 
experiment, we collected statistics for subjects’ accuracy (acc) 

and response time (time) for the different malware warning 
conditions (see Table IV). Accuracy is defined as the fraction 
of times a participant pressed “No” for a warning or non-
warning condition out of its total number of occurrences. 

TABLE IV:ACCURACY(%) AND RESPONSE TIME (MS)

Condition μacc       (σacc) μtime   (σtime)

Non-Warnings 67.49 (26.57) 4228 (664)

Warnings 88.71  (28.62) 3715 (1141)

An important observation is that subjects’ accuracy in heeding 
the warnings was quite high (about 89%), which means that 
participants paid attention to these warnings and chose not to 
“click-through” most times. This result is in line with the 

results from a recent large-scale field study of Akhawe and 
Felt [11]. It is also validated by the high brain activation in 
regions associated with language comprehension, visual 
attention and decision making as shown by our neuroimaging 
analysis (Section V. B.) 

We did not find any statistically significant correlation of
users’ task performance in the phishing detection and malware 
warnings tasks. 

B. Neuroimaging Data Analysis 

All acquired fMRI images were converted from DICOM 
(Digital Imaging and Communications in Medicine) format to 
NIFTI (Neuroimaging Informatics Technology Initiative) 
format using the Free Surfer software 
(http://surfer.nmr.mgh.harvard.edu/). Data was preprocessed 
using SPM8 software (Wellcome Trust Centre for 
Neuroimaging, London, United Kingdom) within MATLAB 
and an in-house software. Functional data preprocessing 
started with slice time correction to account for the interleaved 
pattern of scan slice acquisition. All slices were realigned to 
the mean image in the scan. All images were then normalized 
to the EPI template provided by SPM8 using a 2mm3

resampling voxel. Head motion was examined in three 
translational directions x, y, and z, and three rotations: pitch, 
roll, and yaw. A cut off point of 1 mm in any direction was 
kept as the criteria for motion. After these quality control 
measures, data from three participants from the phishing 
experiment were discarded resulting in 22 usable datasets for 
that experiment and also for the phishing control experiments. 
All participants’ datasets were used for the malware warnings.

Finally, all normalized images were smoothed using a 
Gaussian filter of 8mm full width half maximum.  

Statistical analyses were performed on individual and 
group data using the General Linear Model (GLM). In GLM 
analysis, each voxel in the brain will have a signal time-series 
for a given experiment based on how that voxel behaves in 
response to a specific task. The GLM formula is Y = X*β+ε, 

where Y is the fMRI signal at various time points at a single 
voxel, X is several components (the design matrix with 
different conditions, such as real, fake, or malware) that can 
explain the observed fMRI signal, β is the parameter that 

defines the contribution of each component of the design 
matrix to the value of Y, and ε is the difference between the 

observed data (Y) and that predicted by the model (X*β). 

Group analyses were performed using a random-effects 
model. Regions of interest (ROIs) with statistically significant 
activation were identified using a t-statistic on a voxel by 
voxel basis. Separate regressors were created for real, fake, 
and fixation stimuli in the phishing experiment, and abstract, 
warning, and no-warning for the malware experiment by 
convolving a boxcar function with the standard hemodynamic 
response function as specified in SPM. Statistical maps were 
superimposed on normalized T1-weighted images. All data 
were intensity-thresholded at p=.001, with a cluster size 
correction per region for a family wise error (FWE) rate of 
.05. To determine the voxel threshold for significance, a 
minimum cluster thresholding operation was performed using 
the AlphaSim software package in AFNI (Analysis of 
Functional Neuroimages) [56]. Ten thousand Monte Carlo 
simulations were generated to maintain the FWE rate at .05 
for the whole brain. Thus, for a given region to be considered 
significantly active, it would need to have a minimum cluster 
size of 64mm3 [21]. 

TABLE V. ABBREVIATIONS FOR BRAIN REGIONS

Acronym Brain Region

MPFC Medial Prefrontal Cortex

RIFG/LIFG Right/Left Inferior Frontal Gyrus

RMFG/LMFG Right/Left Middle Frontal Gyrus

ROFC/LOFC Right/Left Orbitofrontal Cortex

RMTG/LMTG Right/Left Middle Temporal Gyrus

RSTG /LSTG Right/Left Superior Temporal Gyrus

RIPL/ LIPL Right/ Left Inferior Parietal Lobule

ROC/LOC Right/Left Occipital Cortex

SMA Supplementary Motor Area

(1) Phishing Control vs Phishing Detection Task 

To examine the overlapping and unique activity associated 
with the phishing task and a visual control task, we compared 
the phishing with the phishing control experiment using a
paired sample t-test. Both tasks elicited significantly increased 
activity in the visual cortex, perhaps in line with the visual 
demands of the stimuli (p < .05, FWE corr.). However, the 
phishing task showed significantly greater and unique 
activation in various brain regions, such as RMFG and 
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bilateral insula (see Figure 3), a pattern not seen in the 
phishing control experiment (p < .05, FWE corr.). 

The anterior insula has been implicated in a variety of 
functions, such as affective and cognitive judgments. 
Activation in anterior insula, along with MFG, has been 
associated with making choices [44, 45]. The middle frontal 
gyrus also has been found to be playing a critical role in 
cognitive control especially in selecting an appropriate choice 
of action [46]. The activation of these important decision-
making regions of the brain in the phishing experiment (vs. 
the control experiment) suggested that the participants were 
conscientiously making an effort as to differentiate “fake” 

websites from “real” websites.

Fig 3: Phishing vs. Phishing Control Activation. Both tasks show 
significant activity in the visual cortex. Phishing shows greater and unique 

activation in the right middle frontal gyrus (RMFG) and bilateral insula. (The 
top right corner brain image only shows little activation). 

(2) Phishing Detection Experiment Results: In the phishing 
task (Section IIIA), participants could be looking at the 
website address or the symbols or logos on the snapshot to 

make their decision of real or fake.  

Fig 4: Contrast of “Real” and “Fake” Activation. Fake vs. Real activation 
regions include right middle, inferior, and orbital frontal gyri (RIFG/RMFG), 
and left inferior parietal lobule. Real vs. Fake activation regions include left 
precentral gyrus, right cerebellum, left cingulate gyrus, and occipital cortex. 

 Direct subtraction of real trials from fake trials, and fake 
trials from real trials revealed statistically significant activity 
in several areas of the brain that are critical in, and specific to, 
making “real” or “fake” judgments (p < .05, FWE corr.). For
websites that the participants identified as “fake” (contrasted 
with “real”), participants activated the right middle, inferior, 

and orbital frontal gyri, and left inferior parietal lobule (see 
Figure 4) (p < .05, FWE corr.). On the other hand, when “real”
websites were identified participants showed increased 
activity in several regions, including the left precentral gyrus, 
right cerebellum, left cingulate gyrus, and the occipital cortex 
(p < .05, FWE corr.). 

All participants of this study also completed the Barratt’s 

Impulsiveness Scale (BIS), a 30 item self-report instrument 
designed to assess the personality/behavioral construct of 
impulsiveness [1]. Studies have shown that BIS possesses 
reliability and criterion-related validity across samples [65].
Impulsive responding can result in behavioral errors, and such 
responses can be critical in computer security interactions 
where the consequences can be costly. Thus, our goal was to 
examine the impact of impulsive decisions on phishing task 
performance and identifying the neural circuitry underlying 
such behavior. A regression analysis involving BIS scores 
from participants as a covariate with whole brain activation 
during all trials revealed a statistically significant negative 

relationship in the MPFC (p < .05, FWE corr.) (See Figure 5).  

Fig 5 Impulsivity vs. MPFC Activation: There exists a negative relationship 
between impulsivity and brain activity in medial prefrontal cortex (MPFC). 

Interpretation and Discussion (Phishing Detection):
Increased activation was found in the right frontal and left 
parietal regions of participants while deciding that a given 
website was “fake” (Figure 4). At one level, this is evidence of 
a strategic and controlled approach to completing a more 
difficult task (identifying fake websites). These findings are,
however, consistent with at least one previous fMRI study 
[24], where participants were asked to identify whether a 
series of Rembrandt paintings were real or fake. This study 
found increased activity in RMFG when participants identified 
fake paintings. Fake websites may pose more of a challenge to 
participants as they may have to spend more time thinking 
about different attributes, sometimes recalling from memory. 
Middle frontal, inferior frontal, and inferior parietal areas have 
also been implicated in working memory [25]. Identifying real 
websites activated precentral, cerebellum, cingulate and visual 
areas of the brain (Figure 4). In addition to their motor 
functions, the cerebellum and precentral gyrus have 
topographically organized feedforward and feedback 
projections [26]. This network may mediate the decision-
making process of whether a given website is real. 

Yet another finding from the present study pertains to a 
brain-behavior relationship. Personality traits, such as 
impulsivity, may prove vital in the way an individual 
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approaches a cognitively demanding task. The present study 
found an inverse relationship between impulsivity and MPFC 
activity during phishing decisions (Figure 5). Evidence from 
previous studies suggests MPFC’s executive/regulatory 

function mediates competing and conflicting cognitive 
operations and scenarios [27, 28, 29, 30, 31]. Studies 
involving animal models suggest a pivotal role of MPFC in 
impulsive decision-making [32]. Functional MRI studies of 
delay discounting have found inverse correlations between 
participants’ impulsive choice of decisions and activity in 

regions like MPFC [33, 34]. Delay discounting refers to 
giving future consequences less weight relative to more 
immediate consequences (e.g., [35]). In other words, delay 
discounting can be construed as the tendency to choose a 
smaller, sooner occurring reward over a larger, later occurring 
reward. Similar finding of inverse correlations in the present 
study suggests the conflict and difficulty involved in making 
real or fake decisions during the phishing task for impulsive 
individuals. 

(3) Malware Warnings Experiment Results: In this 
experiment (section IIIB), there were three experimental 
conditions: abstract, warning, and non-warning.
Comprehending a warning, relative to comprehending the 
news abstracts, elicited a statistically significant increase in 
activation in several regions of the right hemisphere, such as 
the RIPL, RMTG/RSTG, and cuneus (see Figure 6).
Processing non-warning pop-ups, relative to news item 
abstracts, also elicited similar general patterns of brain 
activation, albeit with some differences depending on the 
condition. There was bilateral activation in middle/superior 
temporal cortex in this contrast. In addition, the right parietal 
activation was relatively more anterior, in the postcentral 
gyrus. 

Fig 6: (Warning or Non-Warning) vs. Abstract Activation. Activation 
regions include right inferior parietal lobule (RIPL), right middle/superior 

temporal gyrus (RMTG/RSTG), and cuneus, as well as bilateral 
middle/superior temporal cortex, and right parietal in the postcentral gyrus. 

(The second column brain images do not show any activation; they are 
included for the sake of completeness) 

One of the main goals of this study was to examine the 
brain areas that may mediate how people approach malware 
warnings. Our study participants showed significant increases 
in brain activity in several areas while processing warnings, 
compared to non-warnings. These regions included LIFG and 

LMTG, both primarily associated with processing language.  
There were also increases in activity in regions such as the 
MPFC, and in the bilateral occipital cortices (p < .05, FWE 
corr.) (see Figure 7). On the other hand, we did not find any 
increase in brain activity for the non-warning condition, 
compared to the warning condition. 

Fig 7: Warning vs. Non-Warning Activation. Activation regions include left 
middle temporal gyrus (LMTG), left inferior frontal gyrus (LIFG) as well as 

medial prefrontal cortex (MPFC), and bilateral occipital cortices. 

To examine personality traits and their impact on 
computer security decisions, as in the phishing data analysis, 
we used impulsivity scores as a covariate in a regression 
analysis with brain activity while reading security warnings. 
This analysis revealed significant negative relationship 
between impulsivity and brain activity in MPFC and 
precuneus (p < .05, FWE corr.) (See Figure 8).

Fig 8: Impulsivity vs. Activation: There is a negative relationship between 
impulsivity and brain activity in medial prefrontal cortex and precuneus 

Interpretation and Discussion (Malware Warnings):

In this study, reading warnings as contrasted to reading 
news abstracts generated significant brain activity in regions 
such as the RIPL and RMTG/RSTG (Figure 6). This 
activation pattern provides further evidence of the role of 
these regions in different aspects of language comprehension 
(see [36, 37, 38]). Activation in these areas suggests that the 
participants in the present study were progressing through the 
warnings to understand the conveyed message and make a 
decision. 

There were also qualitative differences in activation 
between processing warning and non-warning pop-ups. 
Warnings generated statistically significant increase in activity 
in the language comprehension areas of the brain, such as 
LIFG and LMTG and in decision making areas like MPFC 
(Figure 7). In addition, there was a statistically significant 
activation in bilateral occipital cortices, which may provide 
evidence of how much visual attention and inspection 
participants were engaging in during warnings. On the other 
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hand, non-warnings, which usually were not a threat, did not 
generate any extra activation when compared with the warning 
condition.  

Impulsive decisions can affect user safety and security in a 
computer security interaction (as we demonstrated in the case 
of phishing). We found trait impulsivity in our participants, 
measured by the Barratt’s Impulsivity Scale, to negatively 

predict brain activity in MPFC and the precuneus while 
paying attention to security warnings (Figure 8). Thus, more 
impulsive participants had less activity in these regions during 
the malware task. This finding is consistent with findings from 
several previous neuroimaging studies. For example, the 
precuneus was found to be negatively correlated with 
measures of impulsivity in a response inhibition task [42]. 
MPFC grey matter volume has also been found to be 
negatively correlated with impulsivity [43].  

VI. FUNCTIONAL CONNECTIVITY ANALYSIS

Functional connectivity (the synchronization of the time-
course of activity across different brain areas) was also 
examined to understand coordination among different brain 
regions in accomplishing phishing decisions2. The regions of 
interest (ROIs) for all analyses consist of the bilateral inferior 
frontal gyrus (LIFG, RIFG), inferior parietal lobule (LIPL, 
RIPL), middle frontal gyrus (LMFG, RMFG), middle 
temporal gyrus (LMTG, RMTG), occipital cortex (LOC, 
ROC), orbitofrontal cortex (LOFC, ROFC), superior temporal 
gyrus (LSTG, RSTG), and medial prefrontal cortex (MPFC). 
These ROIs were chosen based on the group activation for the 
entire task vs. the fixation contrast. This was done to insure it 
represented the activation pattern in individual subjects, rather 
than resorting to anatomical ROIs. Seeds were created using 
spherical binary masks (6mm-radius) and residual time-series 
were extracted from each study condition (phishing and 
phishing control), thus enabling the comparison of functional 
connectivity between the two. To reduce the number of ROI 
pairwise comparisons and control for Type I error, the 
functional ROIs were grouped into 4 different anatomical 
networks based on the lobe to which they belong: Frontal 
(LIFG, RIFG, LMFG, RMFG, LOFC, ROFC, MPFC), 
Parietal (LIPL, RIPL), Temporal (LMTG, RMTG, LSTG, 
RSTG), and Occipital (LOC, ROC). This grouping allowed us 
to examine connectivity across these four networks. 

Our first analysis consisted of examining functional 
connectivity of a specific ROI with the entire brain (whole-
brain analysis). This analysis served to examine functional 
connectivity from one specific region with every other region 
in the brain as a measure of global connectivity. For this, we 
chose four ROIs: LMFG, RMFG, LIPL and RIPL, the regions 
activated when participants were involved in phishing 
decision-making. In addition, these regions have also been 
implicated in several cognitive tasks such as decision- making, 

                                                          

2 A similar analysis was performed for the malware warning 
task. However, no statistically significant results were 
obtained and are thus not reported in this paper. 

attention-shift, and visual processing, including our previous 
study (See Section V.B).

  Using the residual time courses, these were correlated with 
every other voxel in the brain for every participant. A Fisher’s 

r to z transformation was applied to the correlation maps for 
each participant before averaging and computing statistical 
maps for each seed. We then statistically compared Phishing 
vs. Phishing Control using AFNI’s 3dttest++ (paired-sample t-
tests). To correct for multiple comparisons, 10,000 Monte 
Carlo simulations were computed to obtain a cluster-size-
corrected threshold of p < .05 family wise error (FWE). We 
also examined the relationship between each functional 
connectivity map derived from whole-brain analysis with the 
measure of impulsivity from each participant, and correction 
for multiple comparisons was performed as described above.
Our second analysis of functional connectivity consisted of 
examining connectivity among all ROIs and networks listed 
above, also known as ROI analysis, where correlation 
coefficients were calculated across the residual time courses 
and were subsequently z-transformed using an inverse 
hyperbolic tangent function, followed by direct comparison of 
the z-transformed correlations between Phishing and Phishing 
Control using paired-sample t-tests. 

Whole-Brain Analysis Results: During the Phishing task, 
strong functional connectivity was detected in middle frontal, 
occipital, superior parietal, SMA, and superior temporal 
regions across all four seeds (p < .05, FWE corr.; LMFG, 
RMFG, LIPL, RIPL). On the other hand, during Phishing
Control task, the same pattern was observed, although less 
robustly (Figure 9). This pattern of reduced connectivity 
during Phishing Control task was corroborated by the results 

of statistical comparison between the two tasks.  

Fig 9.a: Connectivity of LMFG with rest of the brain 

Fig 9.b: Connectivity of RMFG with rest of the brain 
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Fig 9.c: Connectivity of LIPL with rest of the brain 

Fig 9.d: Connectivity of RIPL with rest of the brain 

Fig 9: Phishing vs Phishing Control, Strong functional connectivity was 
detected in middle frontal, occipital, superior parietal, SMA, and superior 

temporal regions across all four seeds.

Using the LMFG seed, stronger functional connectivity 
was found with left calcarine sulcus, right angular gyrus, left 
middle occipital gyrus, right SMA, left and right IFG, RMFG, 
and right thalamus (p < .05, FWE corr.). No inverse effects 
were found (control > phishing). The RMFG seed showed 
stronger functional connectivity during phishing compared to 
phishing control with bilateral occipital gyrus, bilateral IFG, 
right thalamus, left superior medial gyrus, left hippocampus, 
right insula lobe, and RMFG (p < .05, FWE corr.); and 
stronger functional connectivity during phishing control 
compared to phishing with right supramarginal gyrus (p <.05, 
FWE corr.). The LIPL seed also showed stronger connectivity 
with left middle occipital gyrus, left caudate nucleus, right 
middle cingulate cortex, right precentral, and left SMA during 
Phishing Task (p < .05, FWE corr.). No inverse effects were 
found (control > phishing). Finally, the RIPL seed showed 
stronger connectivity with left occipital gyrus, left 
hippocampus, right thalamus, and left SMA (p < .05, FWE 
corr.); and stronger functional connectivity during phishing 
control compared to phishing with right supramarginal gyrus 
(p < .05, FWE corr.).

Region of Interest and Network Analysis Results: This 
analysis revealed stronger functional connectivity during 
phishing compared to phishing control in the following ROI 
pairs: LIFG: LIPL (p = .03), RIFG: LMTG (p = .04), RIFG: 
LOCC (p = .03), RIFG: ROCC (p = .03), RMFG: LOCC (p = 
.0006), RMFG: ROCC (p = .004), LMTG: LSTG (p = .009), 
LMTG: RSTG (p = .008), RMTG: LSTG (p = .002), RMTG: 

RSTG (p = .0007), RMTG: MPFC (p = .03), LOFC: ROFC (p 
= .006), LOFC: MPFC (p = .02), and LSTG: MPFC (p = .02) 
(see Figure 10). No inverse effects (phishing control > 
phishing) were detected. However, these results did not 
survive multiple comparisons correction; therefore caution is 
advised when interpreting these results. On the other hand, 
after grouping the ROIs into their respective anatomical 
networks (See Methods), stronger functional connectivity was 
found during phishing compared to phishing control task in 
Frontal: Parietal (p = .02), Temporal: Occipital (p = .03), and 
Parietal: Occipital (p = .0004). Parietal: Occipital functional 
connectivity was the only significant result that survived 
multiple comparisons correction (Bonferroni correction, p < 
.05/6 = .008). No inverse effects (Phishing Control > 
Phishing) were detected.

Fig 10: Phishing vs. Phishing Control, Functional connectivity detected in 
different pairs of Regions of Interests. 

Fig 11: Brain-behavior correlations, Negative correlation between 
Impulsivity and functional connectivity across four ROIs. 

Brain-Behavior Correlations: Using the functional 
connectivity map derived for each condition from all four 
ROIs, we found significant relationships (FWE corrected) 
with Impulsivity scores measured by the Barratt 
Impulsiveness Scale [1,4]. The RIPL seed showed negative 
correlations with left cerebellum (r = -0.7, p = .0002) and the 
RMFG seed also showed negative correlations with left 
cerebellum (r = -0.77, p = .0002) during phishing (Figure 11).
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Interpretation and Discussion: Using two frontal and two 
parietal ROIs as seeds of interest, we found increased 
connectivity of this frontal-parietal network with the rest of 
the brain when engaged in phishing task. The phishing task is 
more complex and demanding, than the passive viewing 
involved in the phishing control task, thus eliciting stronger 
coordination among core regions of the executive network of 
the brain. The four seed regions in the present study are part of 
the frontal-parietal control system, which is usually engaged 
in tasks that require controlled processing, problem-solving, 
and decision-making [31,57,41]. The frontal-parietal control 
system is particularly engaged in tasks that elicit controlled 
processing related to the simultaneous consideration of 
multiple interdependent contingencies [58], conflicting 
stimulus-response mappings [40], and integrating working 
memory with attentional resource allocation [8]. 

During the phishing task, the RIPL and RMFG seeds 
showed negative correlations with left cerebellum on brain-
behavior correlations (see Figure 11). Regions such as RIPL 
and RMFG have been shown to be functionally connected 
with cerebellum and have an important role in supramodal 
cognitive [64]. Therefore, it is possible that individuals who 
have higher impulsivity may have decreased functional 
connectivity between these regions during the phishing 
condition.

VII. CROSS-EXPERIMENT ANALYSIS

A. Phishing vs. Malware 

Both phishing and malware tasks in our study involved 
decision-making, perhaps in slightly different ways. At the 
neural level, we examined the correlation between these two 
tasks in terms of the brain activity in two regions, LMFG and 
RMFG, which are associated with decision-making. We found 
a significant positive correlation in both LMFG and RMFG 
activity, particularly in the RMFG region (see Figure 12).  

Fig 12: Correlation in Phishing and Malware in RMFG Activation 

At the UI level the two tasks are different – warnings 
involve reading and comprehension, while phishing detection 
involves explicit decision making. Still, these results suggest 
that both phishing detection and malware warnings involve 
similar, higher level cognitive and neural processes. We may 
thus infer that participants’ behavior in these two distinct yet 

related tasks may be well-aligned in that one’s ability to heed 

malware warnings may be associated with his/her decisions 
about the legitimacy of websites and vice versa. 

VIII. DISCUSSION: STUDY INSIGHTS AND IMPLICATIONS 

Our neuroimaging data showed that users exhibited 
significant brain activation and connectivity in areas of the 
brain associated with decision making, problem solving, 
attention and visual search during the phishing detection task, 
while their accuracy in this task, as determined by behavioral 
data, was only slightly better than making a random guess (in 
line with a prior lab study [10]). This suggests that although 
the eventual decision made by the participants to differentiate 
between fake and real websites may be far from accurate, they 
expended considerable effort in making this decision as 
reflected by their brain activity in regions correlated with 
higher order cognitive processing. Perhaps this was because 
many of the participants did not know what markers (e.g., 
URL or logo) to look for on the sites to make their decisions. 
We note that a large fraction of our participants were majoring 
in a non-technical (non-computer) field. Overall, these 
findings further justify the need for specialized education and 

training for everyday users that focuses on phishing in 
particular (such as the efforts of [47, 48]) and security in 
general (such as [49, 50]). These training and awareness 
programs may help to improve users’ phishing detection 

performance and reduce the chances of their susceptibility to 
other attacks. At the same time, the findings also demonstrate 
the need for continued research on designing phishing 
resistant software solutions and user interfaces.  

Another important application of our work to cyber-
security pertains to the automated (subconscious) detection of 
“real” and “fake” websites based on neural signatures. Our 
study revealed differences in brain areas activated during 
identification of “real” and “fake” websites. This means that 
users’ may be subconsciously detecting differences between 

the two websites, although consciously they may fail to detect 
them. This result is in line with the study of real and fake 
Rembrandt paintings by Huang et al. [24]. These brain 
differences may be leveraged to build an automated real-fake 
detection engine in the future (e.g., in real-time using EEG 
measures). 

The malware warnings task triggered significant brain 
activity in regions primarily associated with language 
comprehension and reading. Importantly, actual malware 
warnings, in contrast to casual pop-ups, generated 
significantly more activation in brain areas governing 
language comprehension, visual attention, and inspection. 
This suggests that participants were reading through the 
warnings carefully to understand the message conveyed and 
attempting to make an appropriate decision. Indeed, this was 
validated via our behavioral data which showed that 
participants heeded warnings about 90% of the time (also in 
line with the recent large-scale field study of [11]). We 
therefore believe that our study provides a neurological basis

for users’ ability to process and heed malware warnings, 

further validating the results of [11]. It should be noted that 
since our security warnings were simplified, our results may 
underestimate users’ performance when faced with malware 

warnings, which could be improved with better warnings 
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(such as those employed by modern browsers and variants 
thereof [11]). 

Another key component of our study was to asses users’ 

performance in user-centered security tasks based on one   
personality trait, impulsivity. Specifically, we studied the 
effect of impulsivity measured via a simple questionnaire. The 
study conducted by Pattison et al. [62] had found that less 
impulsive individuals were better at identifying and managing 
phishing emails. In our study, we did not find statistically 
significant relationship between impulsivity and task 
performance. However, we found that, in both phishing 
detection and malware warnings tasks, impulsive individuals 
showed significantly less brain activation and connectivity in 
regions governing decision-making and problem solving. This 
implies that impulsive behavior might be counter-productive 
to phishing detection and malware warnings task performance. 
A long-term impact of this finding can be in developing 
targeted security training programs. For example, an 
organization may concentrate their security training efforts on 
employees who are highly impulsive, as determined by their 
scores in the impulsivity questionnaire [1]. Similarly, school 
authorities may focus their online child safety efforts on 
children with high impulsivity levels. In such cases, for ethical 
and privacy reasons, we expect that users’ personality scores 

and neural activation levels would be kept private in secure 
storage (just like other personal records). These scores would 
then be used for identifying clusters of personnel needing 
different types of training. 

A unique advantage of our study was that it allowed for a 
direct comparison between phishing detection and malware 
warnings tasks. In this respect, we found significant 
correlation in participants’ brain activity governing decision-
making regions (bilateral middle frontal gyri). This suggests 
that both tasks involve, at a higher level, similar cognitive 
processes and that users’ performance in the two tasks might 

be correlated with each other. Note that, although language 
comprehension is unique to the malware task, both tasks 
involved a crucial decision making aspect. Broadly, this seems 
to indicate that the cognitive mechanisms underlying these 
security tasks are related, which may translate into similarity 
in users’ performance in the two tasks. 

Although fMRI scans are usually expensive, we believe 
that our methodology could also serve the purpose of security 

screening of individuals. Impulsivity questionnaires alone 
might be helpful in predicting users’ susceptibility to attacks 

in some cases. However, since those questionnaires are “self-
reported,” the users may, knowingly or unknowingly, not 

provide the accurate responses, although the BIS have been 
shown to possess high levels of reliability. By scanning users 
using neuroimaging techniques like fMRI, we can capture and 
analyze users’ brain signals, which users will not be able to 

change or lie about, and predict their potential for attacks in 
real-life. Such neural signatures governing users’ phishing 
detection capability (or lack thereof) – the primary subject of 
our study - has applications in organizations with high security 
requirements, such as national defense. 

IX. STUDY LIMITATIONS

In line with any study involving human subjects, ours also 
has certain limitations. A primary limitation pertains to the 
constraints posed by the fMRI experimental set-up. Since 
participants were performing tasks inside the fMRI scanner, 
the set-up did not mimic “real-world” online browsing 
experiences. The discomfort associated with lying in a supine 
position and being stationary may have also impacted 
participants’ brain activity. In addition, the fact participants 

were being scanned may have impacted their brain activation 
and behavioral responses. The constrained interface (image-
based display, binary input and no internet connectivity, 
unlike a modern computer) available during the scans may 
have limited participants’ interactions with the system. For 

example, the participants were presented with images of 
websites rather than with the websites themselves in the 
phishing task. Similarly, the malware warning images were 
very simplistic and rudimentary due to equipment constraints.
We believe this may have negatively affected participants’ 

performance in the underlying security tasks. Furthermore, 
although we corrected for participants’ head motion in the 

MRI scanner, it may have impacted fMRI data quality.
During our neural analysis of the phishing detection task, we 
investigated only real and fake conditions, irrespective of the 
correct or incorrect responses given to them. The primary 
reason for not directly comparing correct and incorrect 
conditions for the phishing task was not having a large enough 
number of trials in each condition to have the necessary 
statistical power to detect a significant effect. We suggest that 
future studies consider the users’ judgments in neural analysis. 
Finally, the lab-based environment of the study may have 
impacted participants’ behavior, as they may not have felt 
actual security risks were occurring during the experiments.  

The effective sample size used in our study ranged from 22 
(phishing detection task and phishing control task) to 25 
(malware warnings task) participants (see Section V.B), which 
previous power analysis studies have found to be optimal. For 
instance, statistical power analysis of event-related design 
fMRI studies has demonstrated that 80% of clusters of 
activation proved reproducible with a sample size of 20 
subjects [55]. 

X. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an fMRI study to bring insights 
into user-centered security by focusing on phishing detection 
and responding to malware warnings. Our results provide a 
largely positive perspective towards users’ capability and 

performance vis-à-vis these crucial security tasks. We found 
that users showed significant brain activity in key regions 
known to govern decision-making, attention, and problem-
solving ability (phishing and malware warnings) as well as 
language comprehension and reading (malware warnings). 
Apart from that, we saw strong functional connectivity in 
several regions of the brain while performing the phishing 
task. This level of activation and connectivity indicates that 
users were actively engaged in the tasks and were not ignoring 
or bypassing them (as prior lab studies have concluded [12, 



1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2566265, IEEE

Transactions on Information Forensics and Security

13

13, 14, 15, 16, 17]). In the case of the malware warnings task, 
brain activity and behavioral performance (accuracy) were 
complementing each other validating that users heed malware 
warnings with a high likelihood (as also shown by a recent 
field study [11]). For the phishing task, however, task 
performance was poor despite significant brain activity 
associated with decision making. This divergent result 
demands future investigation. It could be attributed to users’ 

lack of knowledge as to the markers for “fake” vs. “real” 

website decisions (e.g., URLs), which may be overcome by 
user education and training. We also demonstrated that 
individuals with higher impulsivity may not utilize brain areas 
(MPFC) associated with making decisions of a conflicting 
nature as efficiently as non-impulsive individuals and may 
result in poorer cognitive and behavioral outcomes. This 
suggests it would be valuable to study whether individual trait 
characteristics should factor into user-centered security 
design. Finally, we discovered a high degree of correlation in 
brain activity with respect to decision-making regions across 
phishing detection and malware warnings tasks. This 
correlation suggests users’ behavior in one task may be 

predicted by their behavior in the other.

We see a clear path-forward for subsequent research using 
neuroimaging techniques (e.g., fMRI, EEG or fNIRS) to 
inform the design of user-centered security systems. In the 
long-run such studies may provide a neural signature for poor 
and good security decisions which can be used for predicting - 
as well as correcting - users' security behavior. Future research 
may conduct subsequent evaluation with diverse participant 
samples, study the effect of warning fatigue or habituation, 
consider user-centered security domains other than phishing 
detection and malware warnings (e.g., password memorization 
and recall), and evaluate the effect of security training and 
education on users’ performance.
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