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Abstract—A number of protocols and mechanisms have been proposed to address the problem of initial secure key deployment in
wireless networks. Most existing approaches work either with a small number of wireless devices (i.e., two) or otherwise rely on the
presence of an auxiliary device (such as a programmable camera, computer or Faraday cage). In this paper, we design a solution that
allows a user unaided initialization (free from auxiliary devices) of a relatively large number of wireless devices. The proposed solution
is based on a novel multichannel Group message Authentication Protocol (GAP), in which information is transmitted over both a radio
and a visible light channel (VLC). A notable feature of GAP is that the information to be authenticated is independent of the short
authentication string to be verified by the user (an indirect binding protocol [28]). This, as we show, results in a lower communication
cost compared to existing direct binding protocols. The advantage in terms of the communication cost of our GAP protocol is especially
important for power-constrained devices, such as wireless sensor motes.
Another appealing feature of GAP is that it is secure in the attacker model where the VLC is semi-authentic; whereas existing protocols
consider VLC to be authentic. This is made possible by using joint Manchester-Berger unidirectional error-detection codes that are
secure and easy to interpret by a non-specialist and unaided end user. Our overall key deployment mechanism has minimal hardware
requirements: one LED, one button and, of course, a radio transceiver, and is thus suitable for initializing devices with constrained
interfaces, such as (multiple) wireless sensor motes. We demonstrate the feasibility of the proposed method via a preliminary usability
study. The study indicates that the method has reasonably low execution time, minimal error rate and is user-friendly.
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1 INTRODUCTION

Wireless Sensor Networks (WSN) are increasingly gain-
ing momentum in our lives. Tomorrow’s e-healthcare
systems, smart homes, power management systems will
involve a large number of inter-connected smart wireless
(sensor) devices that will be operated and controlled
by end users (a home user or an administrator). These
devices have the capability to connect and interact,
and provide a backbone for the future development
of the “Internet of Things”. In a WSN environment,
the nodes might need to communicate security sensi-
tive data among themselves and with the base station
(also referred to as “sink”). The communication among
the nodes might be point-to-point and/or broadcast,
depending upon the application. These communication
channels, however, are easy to eavesdrop on and are easy
to manipulate, raising the very real threat of the so-called
man-in-the-middle attacker. A fundamental task, therefore,
is to secure these communication channels.

1.1 Motivation for Secure Initialization
A number of so-called “key pre-distribution” techniques
to bootstrap secure communication in a WSN have been
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proposed, e.g., [31], [13], [24], [12], [10]. However, all
of these techniques assume that, before deployment,
sensor nodes are somehow pre-installed with secret(s)
shared with other sensor nodes and/or the sink. The
TinySec architecture [15] also assumes that the nodes
are loaded with shared keys prior to deployment. This
might be a reasonable assumption in some, but certainly
not all, cases. Let us consider, for example, a user-centric
application of WSN. An individual user (Bob) wants to
install a sensor network to monitor the perimeter of his
property; he purchases a set of commodity noise and
vibration sensor nodes at certain retailers, and wants
to deploy the sensor nodes with his home computer
acting as the sink. Being off-the-shelf, these sensor nodes
are not sold with any built-in secrets. Some types of
sensor nodes might have a USB (or similar) connector
that allows Bob to plug each sensor node into his com-
puter to perform secure initialization. This would be
immune to both eavesdropping and man-in-the-middle
attacks. However, most sensor nodes might not have any
wired interfaces, since having a special “initialization”
interface influences the complexity and the cost of the
sensor node. Also, note that Bob would have to perform
security initialization manually and separately for each
sensor node. This undermines the scalability of the ap-
proach since potentially a reasonably large number of
sensor nodes might be involved.

Furthermore, keys can not always be pre-loaded dur-
ing the manufacturing phase because eventual cus-
tomers might not trust the manufacturer, for example
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in WSNs deployed for military applications. Moreover,
a WSN application might involve nodes produced by
multiple manufacturers. Due to this reason, establishing
pre-shared secrets or a PKI-based solution might be
infeasible as it would require a global infrastructure
involving many diverse manufacturers. We note that the
problem of secure WSN initialization that we consider
in this paper is very similar to the well-studied problem
of “wireless (two-device) pairing”, the premise of which
is also based on the fact that the devices wanting to
communicate with each other do not share any pre-
shared secrets or a common PKI with each other [4], [16].

1.2 Requirements for Secure Initialization

An important research challenge, in light of the above
discussion, is to design secure WSN initialization mech-
anisms that satisfy the following properties:

1) User-friendliness: The mechanism should be easily
administered by a non-specialist and unaided end
user. By unaided, we mean that the user is not
in possession of any auxiliary devices that can
facilitate or automate the initialization process. It
is important to note that auxiliary devices may
not always be available. They will also add to the
overall cost of the system. Furthermore, requiring
a specialized auxiliary device only for the sake of
a security operation presents deployment hurdles.

2) Scalability: The mechanism should be able to ini-
tialize a reasonably large number of nodes. Due
to the manual nature of initialization (because of
the lack of an auxiliary device as stated above),
however, one can only hope to initialize a maxi-
mum of, for example, 20-30 devices per batch of
initialization. (The mechanism can be repeated in
multiple batches whenever needed).

3) Compatibility with Constrained Resources: Being mass
produced, sensor devices are usually constrained,
i.e., they do not usually have wired or other tra-
ditional interfaces, such as displays and keypads.
Thus, the initialization mechanism should be able
to work within these resource constraints. In other
words, secure initialization should still be possible
even with a few on-board LEDs and buttons1.
Because sensor-motes are typically on a limited
power supply, an additional goal is to minimize
the communication overhead associated with the
secure initialization mechanism.

In addition to the necessary requirement of provid-
ing security against the man-in-the-middle attacker, it
is desirable that the initialization provides protection
against compromised nodes. This is needed to address
scenarios such as those whereby a manufacturer sneaks
in malicious sensor node(s) along with normal sensor
nodes shipped to a customer, as pointed out in [17].

1. Most commercially available sensor motes and devices possess
multiple LEDs and an on/off button (Mica2 [2])

1.3 Prior Work
The problem of secure initialization of sensor devices
has received considerable attention by the research com-
munity and a number of solutions have been proposed.
The prior solutions do not satisfy one or more of the
requirements outlined above, however. Many existing
solutions work only with a small number of (i.e., two)
wireless devices and are not scalable. These include
the “Shake-them-up” [9] scheme that suggests a simple
manual technique for pairing two sensors that involves
shaking and twirling them in very close proximity to
each other, in order to prevent eavesdropping. Another
scheme “Are You with Me” [21] uses human-controlled
movement to establish a secret key between two devices.

The other notable recent result “Message-in-a-
Bottle” [17] explores the use of a Faraday Cage
to shield communication from eavesdropping and
outside interference and allow a set of sensors to be
simultaneously paired with the sink. This is a scalable
technique, although as illustrated in [17], building a
truly secure Faraday Cage is a challenge. The primary
issue with this approach is the need to obtain and carry
around a specialized piece of equipment – a Faraday
Cage (an auxiliary device). The cost and the physical
bulk of the cage can be problematic in practice.

Another well-established approach to securing initial
key deployment involves two communication channels
– an insecure high bandwidth radio channel and a low-
bandwidth Out-of-Band (OoB) channel, such as visible
light. The security of this approach relies on the assump-
tion that the underlying OoB channel, being human-
perceptible, is authenticated and preserves the integrity
of transmitted messages. This approach has also been
discussed in the 6LoWPAN (IPv6 over Low power Wire-
less Personal Area Networks) RFC4919 specification [1].
According to this specification, one of the major security
considerations involves application of “out-of-band tech-
niques for the initial key establishment” among a large
number of sensor devices.

Many prior solutions based on the above multi-
channel approach, however, rely on the presence of aux-
iliary devices. For example, the solutions presented in
[36], [37], [35], [30], [22], [41] all require a programmable
video camera. Yet other solutions (e.g., GAnGs [11] and
Groupthink [29]) are geared for multi-user group settings
whereby each user is in possession of a personal device,
such as a smartphone. These solutions require interfaces
beyond the reach of current sensor devices, such as full
displays or cameras.

1.4 Our Contributions
In this paper, we present the first secure and usable ini-
tialization mechanism that works with multiple (sensor)
devices having constrained resources (a LED, a button
and limited power supply) and does not require any
auxiliary devices, thus satisfying all the requirements
outlined previously.



IEEE TRANSACTIONS ON MOBILE COMPUTING 3

Our initialization mechanism is based on a novel
(multichannel) protocol, called the Group message Au-
thentication Protocol - GAP. GAP involves communica-
tion over a radio channel and an out-of-band visible
light channel (VLC). GAP is inspired by the two-party
SAS protocol [40], [8]; we show that straightforward
generalizations of SAS to a multiparty protocol may
easily fall short of being secure. A notable feature of
GAP is that the information to be authenticated is in-
dependent of the short authentication string (an indirect
binding protocol [28]) to be verified by the user over
a visible light channel (i.e. the GAS and authenticated
information are completely independent in the sense
of probability). This, as we show, results in a lower
communication cost compared to existing direct binding
protocols. The advantage in the communication cost of
our GAP protocol is especially important for battery-
powered devices, such as wireless sensor nodes. We
also show how to secure GAP against malicious insider
attacks (compromised sensor nodes); in [22], the devices
are assumed to be benign during the initialization phase.

As we show later, the visible light channel (VLC) is
prone to certain bit-manipulation attacks, that (contrary
to the common belief) renders VLC semi-authenticated;
however many existing protocols [36], [37], [35], [22]
that use VLC consider it to be authenticated. In order
to prevent these attacks, we use a simple combination
of well known unidirectional codes (Berger and Manch-
ester), which is easy to interpret by an end user.

Finally, we demonstrate the feasibility of the proposed
mechanism via a preliminary usability study with 28
users. The study indicates that the method has reason-
ably low execution time, minimal error rate and is user-
friendly. We further discuss how the usability and scala-
bility of our mechanism can be improved by utilizing
a zero-configuration auxiliary device (e.g., a standard
camera phone with no additional computational logic),
when available.

We note that although we target our scheme as a
means of secure initialization of a WSN, our proposal
is also equally applicable to other wireless devices sce-
narios. This includes, for example, the initialization of a
number of commodity wireless access points that need to
be installed as part of an enterprise’s wireless network.
Paper Outline. In Section 2, we state the assumptions
and a give an overview of our solution. In Section 3,
we present the GAP protocol, and in Section 4, we give
a solution against insider attacks. Section 5 deals with
securing of transmissions over a visible light channel.
We discuss several implementation aspects of GAP in
Section 6. Usability evaluation is presented in Section 7.
Related work is provided in Section 8, and we conclude
in Section 9.

2 ASSUMPTIONS AND SOLUTION OVERVIEW
In this section, we outline our attacker model and
assumptions, and provide an overview of the secure
initialization protocol and mechanism.

1

2

M
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2
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M

(b)

Fig. 1. Two phases of GAP: in (a) devices exchange mes-
sages to be authenticated over a radio channel and (b)
a user performs authentication via a visible light channel
(dashed arrow).

2.1 Attacker Model
In our initialization protocol the information is sent
over two channels: a radio and a visible light channel.
We assume that an attacker has a full control over the
radio channel; he can eavesdrop, drop, delay, replay and
modify messages sent on this channel. He can initiate
communication with any device and at any given time.
The attacker can also eavesdrop and modify messages
sent over a visible light channel (VLC) at all times (Sec-
tion 5); the attacker however cannot disable the visible
light communication channel (erase the messages). To
convey information via VLC we use on-off keying (i.e.,
bit “0”: LED OFF, bit “1” LED ON). Note that an attacker
equipped with a directional light source (e.g. a laser)
can potentially modify bits sent via VLC. With such
keying the attacker can modify messages by flipping
0 → 1, but not vice versa (1 → 0) as the attacker
cannot force a switched ON LED to power OFF. In
this case, in our model, we speak of a semi-authenticated
visible light channel. For this reason we apply error
detection codes to the group authentication string before
its transmission over VLC; in Section 5 we show that
such coding prevents the bit flipping attacks. Note that
the existing related approaches [36], [37], [35], [22], [41]
consider the visible channel to be authenticated (i.e., the
attacker does not control messages sent over VLC). These
protocols are therefore insecure in our model and we
work in a much stronger attacker model. To start with,
we assume that devices involved in key deployment
are not compromised. Later in Section 4, we extend this
attacker model to include stronger insider attacks from
compromised wireless devices.

2.2 Solution Overview
A user wishes to initialize a larger set of wireless sensor
devices. She makes sure that the sensor devices are
all placed in her visual field, so that she can simulta-
neously observe their LEDs (Figure 1(b)). She powers
on the devices, picks an arbitrary one and designates
it as a coordinator node. Once this has been done, the
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coordinator initiates the execution of our Group message
Authentication Protocol (GAP) that enables mutual au-
thentication of messages (e.g. public keys) exchanged by
the devices over an insecure radio channel (Figure 1(a)).
Our protocol accomplishes this by first generating a
common short group authentication string (GAS) on all
the devices. In turn, the GAS is communicated over
a semi-authenticated visible light channel. Finally, the
user visually verifies that the GAS transmitted over the
VLC is the same on all the devices (Figure 1(b)). If the
verification is successful the user completes the protocol
by pushing the button on each device.

A notable feature of our Group message Authentica-
tion Protocol is that it binds authenticated information
(e.g. public keys) indirectly to a group authentication
string [28]. In indirect binding protocols, the GAS is
functionally independent of the information to be au-
thenticated (i.e. the GAS and authenticated information
are completely independent in the sense of probabil-
ity [28]). While there is no relation between the compared
GAS and the authentic information, the security of the
protocols comes from some mechanism that binds short
random nonces (used for calculation of the GAS) and
the authentic information together in a secure way. In
our case, this secure binding is achieved through the
commitment scheme. For this reason in GAP the devices
exchange messages to be authenticated (e.g., public keys)
through specially formed commit/decommit pairs over
a radio channel (Section 3 and Figure 2).

On the other hand, the direct binding approach re-
quires the GAS to be dependent on the information
devices want to authenticate. The basic principle behind
the direct binding approach is to make all the parties,
who are intended to be part of a protocol run, agree on
a short-output hash or digest of a complete description
(the collection of all the information that any member
of the group wishes to have authenticated to) of the
protocol run [28].

We show in Section 3.3 that indirect binding, as used
in our GAP protocol, can reduce the communication cost
compared to the representative directly binding protocol
proposed by Laur and Pasini in [18], [19].

3 EFFICIENT AND SECURE GROUP MESSAGE
AUTHENTICATION PROTOCOL

In this section we provide details of our Group message
Authentication Protocol - GAP. The GAP protocol shares
some similarities with the existing group authentication
protocols (please see an excellent survey on such proto-
cols by Nguyen and Roscoe [28]). Still, it is different in
two important ways:

1) The GAP binds authenticated information (e.g.
public keys) indirectly to a group authentication
string [28]. As a result, GAP incurs lower commu-
nication cost compared to some (provably secure)
directly binding protocols (Table 1). This is espe-
cially important for battery-powered devices such

as wireless sensor devices. It appears that this
disadvantage is common to all (provably secure)
directly binding schemes that use universal hash
functions to generate short group authentication
string (as discussed later in the section).

2) The GAP is a secure generalization of the two party
SAS protocol [8] into a multiparty version. This
is in contrast with recent Nguyen and Roscoe’s
attempt in [28] to generalize the SAS protocol. In-
deed, we show in Section 3.2 that their straightfor-
ward generalization results in an insecure protocol.
We state the security result for GAP in Theorem 1.

Two aspects of the GAP protocol are essential for
its security: (i) GAP imposes strict ordering among the
messages exchanged by the devices and (ii) at least one
device from the group (e.g. a coordinator) must know
the correct group size. Please note that the group size
information is entered by the user. This process can
be very challenging with devices that have constrained
interfaces (e.g. a single pushbutton and one LED). We
describe a possible user-friendly approach for accom-
plishing this task in Section 6 and study its usability
aspects in Section 7. We next give details of our GAP
protocol.

3.1 Description of the GAP
Let us introduce some notation. A user wishes to initial-
ize a set of M sensor devices. We assume that sensor
devices involved in key deployment are trusted. We
denote this group with G, i.e., G = {ID1, ID2, . . . , IDM},
IDj being the identity of the jth device (IDs are unique).
The set G is ordered with respect to the increasing
identities (ID1 < ID2 < . . . IDM ). Let PKj , j ∈ G,
denote a public key of wireless device j (i.e., the device
with the identifier IDj). For clarity, variables ĉj , d̂j , N̂j

and ĥGj denote the variables from device with identifier
IDj (or shortly device j) received by the device i (i.e.,
the device with the identifier IDi). The hats in the
notation indicate a possible modification (or influence)
by an adversary. We denote with k the coordinator sensor
device. The GAP protocol evolves as shown in Figure 2.
The goal of the protocol is to assist the devices in G to
mutually authenticate their respective public keys.

Phase I (radio). The user first designates one arbitrary
sensor device as a coordinator; this is achieved by a
push on a button (Section 5). We denote this device with
k ∈ G. Upon selecting the coordinator k ∈ G, it starts
to broadcast its IDk to all other nodes. Upon receiving
the IDk from the coordinator, the other nodes from G
begin to broadcast their own IDs until the predefined
timeout (a couple of seconds). Each device i ∈ G orders
all received IDs in the order of increased identities
(ID1 < ID2 < . . . < IDM ). We use Gi to denote the
ordered set of IDs as seen by device i ∈ G.

Phase II (radio). A commitment scheme is an impor-
tant cryptographic building block that is used in our
GAP. A commitment function transforms a value m into
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Pick a coordinator k

Phase I (radio): Given IDi
IDi -

Wait for ÎDj until timeout, ∀j ∈ Ĝ. ÎDj�

Create Gi = {ÎD1, . . . IDi . . . , ÎDM̂} s.t. ID1 < . . . IDi < . . . < ÎDM̂ · · ·

Phase II (radio): Calculate hGi = hash(Gi) ĉi−1�
Pick Ni ∈U {0, 1}` and set GASi ← Ni

ci -

(ci, di)← commit(hGi‖IDi‖PKi‖Ni)
ĉi+1�
· · ·

Phase III (radio): (ĥGj‖ÎDj‖P̂Kj‖N̂j)← open(ĉj , d̂j)
d̂i−1�

Verify hGi
?
= ĥGj & ÎDj received after ÎDj−1 & IDj 6= IDi

di -

If verification OK, GASi ← GASi ⊕ N̂j
d̂i+1�
· · ·

Phase IV (light): (1) User enters the group size M into the coordinator k.
The coordinator aborts the protocol if M 6= |Gk|.
(2) User verifies simultaneously GASi

?
= GASj , ∀i, j ∈ G, i 6= j.

If the verifications OK, the user pushes a button on each device.

Fig. 2. Group message Authentication Protocol (GAP): Authenticating public keys PKi (i ∈ G) using a Group
Authentication String (GAS).

a commitment/opening pair (c, d), where c reveals no
information about m, but (c, d) together reveal m, and
it is infeasible to find d̂ such that reveals m̂ 6= m. Every
device i ∈ G calculates a hash value hGi of the set Gi,
generates random nonce Ni (` bits). Next, the device i
sends its commitment ci to all other participants j ∈ Gi
but only after having received commitments from all the
devices j ∈ Gi, such that IDj < IDi. Note the each
device i ∈ G adds the hGi and its IDi to the commitment.
This is used to prevent reflection and node injection
attacks.

Phase III (radio). Decommitments are sent in the
same order as the corresponding commitments. Upon
receiving decommitment d̂j from j ∈ G the device
i (i 6= j) opens the commitment ĉj and verifies the
sender’s ID and that Gi matches Gj (by comparing hGi
and ĥGj ). If the verifications are OK, i updates GASi

as follows: GASi ← GASi ⊕ N̂j . Otherwise, device i
aborts the protocol. This process repeats for all received
decommitments.

Phase IV (light). In the last phase of the protocol the
user first enters the size of the group (M ) into the coor-
dinator that in turn verifies it to be equal to |Gk| (see Sec-
tion 6 for details). Next, the user simultaneously verifies
that the established GAS values on all the devices satisfy
GASi = GASj ∀i, j ∈ G. In Section 5) we describe a
secure method to accomplish this task, which is based on
LED blinking. If the verification is OK, the user pushes
a button on each device to complete the initialization
process. At this stage, each sensor device from G holds
authenticated public keys (or other messages) of all the
other devices.

Next we state the security result for the GAP protocol.
We assume that sensor devices involved in key deploy-
ment are trusted. Next, we assume the used hash func-
tion hash(·) to be collision resistant and the commitment

scheme commit(·)/open(·) to be non-malleable.
Theorem 1: The probability that a computationally

bounded adversary breaks (in a single attempt) the GAP
is bounded by 2−` + ε, where ` is the size (in bits) of the
group authentication string (GAS) and ε is a negligible
probability.

We provide the sketch of the proof of Theorem 1 in
Appendix. The important implication of this result is that
the authentication string GAS can be reasonably short
(e.g., 15-20 bits). This is especially important given that
the user verifies these bits without any assistance from
auxiliary devices. In Appendix we proved the security
of the GAP protocol in the attacker model in which
the sensor nodes are trusted. However, GAP protocol is
not secure against insider attacks (compromised nodes).
Note that this is a realistic attack because an attacker, for
example, can sneak in malicious sensor node(s) along
with normal sensor nodes during the transportation
phase. Later in Section 4.1 we propose a simple extension
of the GAP protocol, which is secure against compro-
mised insider devices, all this at a small additional
communication cost.

As stated at the beginning of this section, the GAP
protocol generalizes the two party SAS protocol into a
multiparty version. Although it may appear at first that
this is a straightforward task, we exemplify next that
such belief may be unfounded.

3.2 Insecure SAS Protocol Generalization
In [28] Nguyen and Roscoe propose a straightforward
generalization of the two party SAS protocol [8]. Sim-
ilar to GAP, in their proposal group members in the
first phase exchange commitment messages and subse-
quently, in the second phase, exchange the correspond-
ing decommitments. However, Nguyen and Roscoe al-
low for arbitrary interleaving of the commitment and de-
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TABLE 1
Comparison of GAP protocol and GMA [18] in terms of communication and computation.

GMA [bits] GAP [bits] Difference: GMA−GAP [bits]

T
x/

R
x

co
st ID M · |ID| M · |ID| 0

c M · |KL|/2 M · |KL|/2 0
d M ·

(
|ID|+ |KL|

)
M ·

(
|ID|+ |KL|/2 + |PK|+ |N |

)
M ·

(
|KL|/2− |PK| − |N |

)
PK M · |PK| 0 (part of the commit/open pair) M · |PK|

M ·
(
|KL|/2− |N|

)

C
om

pu
t.

co
st

hash h(·) M · |KL|/2 ·
(
|ID|+ |PK|

)
M · |KL|/2 · |ID| M · |KL|/2 · |PK|

commit(·) M · |KL|/2 ·
(
|ID|+ |KL|

)
M · |KL|/2 ·

(
|ID|+ |KL|/2 + |PK|+ |N |

)
M · |KL|/2 ·

(
|KL|/2− |PK| − |N |

)
GAS 0 0 0

|KL| = 2 · length
(
h(·)

)
M - group size |KL| ·M ·

(
|KL|/2− |N|

)

commitment messages in their respective phases (which
is not the case in our GAP). Such a construction (arbi-
trary interleaving) results in an insecure protocol, as we
exemplify next. We show that an attacker can replace
for example a public key (or any other message to be
authenticated) of a legitimate device with the one of his
own choosing. We will describe the attack in a two party
scenario as a special case of a multiparty scenario. Let us
assume that two devices ID1 and ID2 want to mutually
authenticate their public keys PK1 and PK2, respec-
tively. Following Nguyen and Roscoe’s protocol [28] the
devices send their respective commitments c1 and c2.
Attacker A blocks commitment c2 sent by ID2 and waits
to receive the corresponding decommitment d2. Having
received c1 and transmitted c2, the device ID2 considers
the first phase to be completed. ID2 enters the second
phase of the protocol and sends d2 before receiving d1;
according to Nguyen and Roscoe this is a legitimate
behavior [28]. Now the attacker A blocks d2, opens the
commitment c2 and retrieves the random number N2

from it. This allows A to create a commitment ĉ2 (in
which he replaces PK2 with his own P̂K2) which he
finally sends to ID1. This in the end results in the same
short group authentication string (i.e. N1 ⊕ N2) at the
devices ID1 and ID2, but A has succeeded in replacing
ID2’s public key (PK2) with the one of his own choosing
(P̂K2). While it is relatively easy to detect this flaw
in the two party scenario, the problem arises in the
multiparty setting where designers usually fail to realize
that the ordering between exchanged messages has to be
maintained between all the possible pairs of the group
members. This is exactly what GAP does.

3.3 Communication cost: Indirect Binding vs. Direct
Binding Protocols
Due to the potentially large number of sensor nodes and
the requirement for a power source such as a battery,
even small energy savings per device imply a significant
“green potential” [34]. In this section we study potential
advantages of directly over indirectly binding protocols
in terms of communication cost. Nguyen and Roscoe
in [28] give a simple model which compares the com-
putation cost between various group pairing protocols.
While Nguyen and Roscoe focused on the computational

aspects of various group pairing protocols, we believe
that in our setting it is more important to consider
related communication cost, especially in low-power
wireless sensor networks where the communication cost
dominates the computation.

Recall from Section 2 in indirect binding protocols
(our GAP) the short group authentication string is func-
tionally independent of the information to be authen-
ticated, whereas direct binding protocols require group
authentication string to be dependent on the information
devices want to authenticate. In direct binding protocols
(e.g. GMA from [18]) this is achieved by making all
group members agree on a short-output hash or digest
of a complete description of the protocol run; this short-
output digest is a short group authentication string. A
common approach to generating a short-output digest
in a provably secure way (in direct binding protocols) is
to use universal hash functions. Note that the random
keys required by the universal hash functions might
be significantly longer than the hash output in several
constructions of universal hash functions invented to
date and these long keys have to be exchanged between
the devices [28], [18]. At the same time in our GAP
protocol we use and communicate only short random
keys/nonces (in addition to information to be authenti-
cated). It is this difference in the key lengths that makes
indirect binding schemes more efficient in terms of a
communication cost.

We compared the communication cost of the represen-
tative provably secure directly binding scheme proposed
by Laur and Pasini [18] (the GMA protocol) and our pro-
tocol in Table 1. As shown in the table the advantage of
our GAP protocol over GMA (expressed as the difference
in the number of exchanged bits) is M · (|KL|/2 − |N |)
where |KL|/2 represents a short-output hash or digest
(as used in GMA), M being the group size and N is a
short random key/nonce (as used in our GAP protocol).
For example, with SHA-256 (thus |KL| = 512 bits [18])
and |N | = 15 bits the advantage of GAP over GMA
amounts to 241 ×M bits per device, i.e. for the whole
group to 241×M2 (e.g. for M = 30 devices the difference
is 26.5 KB in ideal conditions - no retransmissions).

For completeness, we also provide the comparison
between the two protocols in terms of the computation



IEEE TRANSACTIONS ON MOBILE COMPUTING 7

ID1 ID3 ID2 ID1 ID3 ID2

c1 // ĉ1 // Step (i)
c1 // ĉ1 //

c2oo c2oo c2oo c2oo
c3oo c3oo ĉ3 //
d1 // ĉ3 // Step (ii)

R1 // R̂1 //
d̂1 // R3oo R̂3 //

d2oo d2oo R2oo R2oo
d3oo d̂3 // Step (iii)

d1 //
(a) (b)

Fig. 3. (a) An example of the insider attack on GAP. Here the attacker ID3 wants to impersonate itself as ID1 to the
sensor device ID2. (b) Strengthening GAP.

cost (Table 1). For this we used the same computation
cost model2 as in [28]. Referring back to Table 1 note that
|KL| = 2 · length

(
h(·)

)
[18]. It turns out that GAP has ad-

vantage over GMA also in terms of the computation cost,
which is similar to the advantage in the communication
cost.

4 SECURING GAP AGAINST COMPROMISED
DEVICES

Theorem 1 holds under the assumption that all nodes in
G are trusted. In addition to the necessary requirement
of providing security against the man-in-the-middle at-
tacker, it is also desirable that the initialization provides
protection against compromised nodes. As pointed out
in [17], a manufacturer may sneak in malicious sensor
node(s) along with normal sensor nodes shipped to a
customer. Also, an adversary could insert his malicious
code inside already deployed sensor network that re-
quires keying with new devices brought to the field.
Here we show how to strengthen the GAP to withstand
insider attacks (compromised sensors).

4.1 Insider Attack on GAP

For simplicity, let us consider the following scenario. A
user wants to initialize a total of 3 sensor devices (having
ID1, ID2 ID3). Let us assume that the device with ID3 is
compromised and controlled by the attacker. This device
will try to impersonate itself to device ID2 as ID1. To
accomplish this, ID3 does the following (as shown in
Figure 3(a)). It first blocks the commitment c1 from ID1

to ID2 and replaces it with its own ĉ1 (and thus replacing
N1 with N̂1 and PK1 with its own P̂K1). Later, ID3

sends c3 only to ID1 in order to trigger it to open N1.
Now, ID3 creates ĉ3 (in which it commits to N3 ⊕N1 ⊕
N̂1) and sends it to ID2. It is easy to verify that at the
end all the devices will share equal GAS = N1 ⊕ N2 ⊕
N3. However, ID3 successfully replaced ID1’s public key
PK1 with the one of its own choosing P̂K1.

2. The computation cost is as follows: (1) cost
(
h(m)

)
≈

length
(
h(·)

)
× length(m) and (2) cost(commit(m)) ≈ cost

(
h(m)

)
.

4.2 Strengthening GAP Against Insider Attacks

To strengthen the basic GAP against insider attacks, we
introduce an additional phase in the original protocol.
More specifically, each device i ∈ G will generate a short
(` bits long, e.g. 15 bits) random number Ri and transmit
it at the end of Phase II of the GAP over a radio channel.
The purpose of this random number is to explicitly
signify the completion of the Phase II on the side of
the given device. The strengthened protocol is shown
in Figure 4. Note that the Phase IV is similar to Phase III
in the original GAP with the difference that instead of
verifying the order in which messages are received, each
device verifies random number R̂j (received in clear over
a radio channel) against R̂

′

j extracted from the commit
message ĉj . In this way, we not only mitigate the insider
attack, but we also alow the devices to exchange the messages
in an arbitrary order. The cost of this solution is only `
bits (e.g. 15) per device. Although the messages are now
exchanged in an arbitrary order the strengthened GAP
remains secure (even against the attack introduced in
Section 3.2), as we discuss next.

Let us consider again the scenario introduced in Sec-
tion 4.1. Three nodes want to exchange some authentic
information (e.g. public keys) using the strengthened
GAP where the device ID3 is compromised. As a part
of the insider attack, this device will try to impersonate
itself as ID1 to ID2 and replace public key PK1 with one
of its own choosing P̂K1. In order to accomplish this the
attacker blocks the commitment c1 to the device ID2 and
replaces it with ĉ1 (therefore replacing N1, R1 and PK1

by N̂1, R̂1 and P̂K1) as shown in Figure 3(b) (step (i)).
Next, the attacker sends its commitments c3 and ĉ3 to
the devices ID1 and ID2, respectively. The attacker has
to make sure that GAS1 = GAS2 on devices ID1 and
ID2, respectively. In the strengthened GAP, the devices
ID1 and ID2 generate nonces N1 and N̂1 independently
of each other, respectively. To generate N̂3 (and send ĉ3)
ID2 has to trigger ID1 to see N1 (step (iii)). An adversary
does not benefit from seeing decommitment d1 when
trying to construct ĉ3. Indeed, it follows that at the
moment at which ID1 revealed d1, the device ID1 must
already have received the nonces R2 and R3 (step (ii)),
as well as all the commitments. By sending the nonce
Ri in the Phase III of the strengthened GAP, each device
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Phase II (radio): Calculate hGi = hash(Gi) · · ·
Pick Ni ∈U {0, 1}` & Ri ∈U {0, 1}` and set GASi ← Ni

ĉj�
(ci, di)← commit(hGi‖IDi‖PKi‖Ni‖Ri)

ci -
· · ·

Phase III (radio): Confirmation of the end of Phase II R̂j�
Ri -
· · ·

Phase IV (radio): (ĥGj‖ÎDj‖P̂Kj‖N̂j‖R̂
′
j)← open(ĉj , d̂j)

d̂j�

Verify hGi
?
= ĥGj & R̂

′
j

?
= R̂j & IDj 6= IDi

di -

If verification OK, GASi ← GASi ⊕ N̂j · · ·

Fig. 4. Strengthening Group message Authentication Protocol (GAP) against insider attack. Phases I and V are not
shown as they are identical to the first and the last phases in the original GAP.

i ∈ G acknowledges that it has successfully received the
commitments ĉj in Phase II of the strengthened GAP
from the devices j ∈ G. In this way, the device i will
send its decommitment di only after all the devices
j previously acknowledged (with Rj) their successful
reception of the commitments.

Manipulating the group size. The important security
consideration of GAP is that the user is required to
enter the group size into a single arbitrary sensor (e.g.
a coordinator). However, a compromised coordinator
could manipulate the entered group size. This is true for
any protocol that falls in this category of protocols [22],
[23], [11]. The simplest solution for this problem would
be to assume that at least one device is not compromised
and that user enters the group size into each device [23],
[11].

5 SECURING A VISIBLE LIGHT CHANNEL

In this section we first describe possible attacks on
messages transmitted over a visible light channel when
on-off keying modulation is used. We then show how
to secure the transmission of a GAS over a semi-
authenticated VLC.

5.1 Attacks on VLC and Preventive Mechanisms
5.1.1 No encoding of the GAS
In this scenario, the coordinator and the other sensor
devices would simply transmit the GAS in its original
form via VLC. Let us consider the scenario shown in
Figure 5(a). Here, an attacker runs the Phases I-III of
the GAP protocol and establishes two different group
authentication strings, GAS3 with device 3 and GAS−3
with the remaining devices. From Theorem 1, it follows
P[GAS3 = GAS−3] ≤ 2−` + ε. If ` = 15 or 20 bits,
most likely GAS3 and GAS−3 will differ with a high
probability. Normally, this will be detected by the user in
Phase IV of the GAP. However, in the semi-authenticated
model of VLC, the adversary can flip bits 0 to 1 using
a directed light source (e.g., a laser pointer). By flipping
all the bits 0 to 1 in both GAS3 and GAS−3 the user will
see all 1s on all the sensor devices and wrongly conclude

1 2

4 53

GAS
3

GAS
-3

A

k

(a)

1
k

4 53

GAS3 GAS-3
A

2

(b) 1

GASki GAS−3i GAS3i Attack

1 0 0 yes

1 0 1 no

0 1 0 yes

0 1 1 yes

(c)

Fig. 5. The attacker A, with the aid of a laser, tries to
(a) modify both GAS3 and GAS−3 to match each other,
and (b) modify only GAS3 to match the fixed GAS−3. The
dashed arrows represent transmissions by the attacker
using directed light source.

that the verification is successful. Please note that all 1s
is a legitimate GAS.

5.1.2 Manchester and Berger Coding
We can mitigate the above bit flipping attack by using
Manchester coding (0 → 01 and 1 → 10). Manchester
encoded GAS contains an equal number of 0s and 1s. To
verify the GAS, a user would have to count the number
of 0s and 1s in the transmitted sequence and also verify
that the sequence has at most 2 subsequent bits set to 0
or 1. This solution doubles the size of GAS and requires
the user to perform additional verifications (count the
number of 0s and 1s, verify that the sequence has at
most 2 subsequent 1s and 0s). Clearly, this is not an
optimal option given that usability is severely deteri-
orated. In Figure 6(b) we compare different encodings
wrt their impact on both usability and security. Clearly,
the Manchester coding appears in the upper left corner
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Fig. 6. (a) Joint Manchester coding for GAS=0011010. The LEDs on sensor devices i, j and m always occupy the
opposite state of the coordinator k (a colored box indicates the LED is ON), (b) Security vs. Usability tradeoff of the
proposed solutions for the GAS verification via VLC.

(marked with the square). In an attempt to increase the
usability of the GAS verification procedure we could use
Berger codes [6].

The Berger code is a well know unidirectional error
detecting code. Berger codes can detect any unidirec-
tional error in a given codeword. Unidirectional errors
are errors that only flip zeros into ones or only ones into
zeros, but not both at the same time. Let us consider
a binary string (vector) s of size ` bits. Then a Berger
coded string s (denoted Ber(s)) is defined as follows:
Ber(s) ≡ s‖sB, where sB represents (in binary) the
number of zeros in s. The Berger code appends to s the
check value sB of size dlog2(`+ 1)e bits, giving the Berger
code of length `+ dlog2(`+ 1)e.

Example 1: For s = 1001101, we have sB = 011 and
Ber(s) = 1001101011.

This coding is secure given that the user counted
correctly the number of 0s in GAS, converted it to the
binary representation and compared it successfully with
the Berger check value. Clearly this is too heavy for
an end user and therefore highly unusable. This places
Berger coding next to Manchester coding in Figure 6(b).

5.1.3 “Joint-Manchester” Coding
We have seen that neither Manchester nor Berger coding
result in a usable solution (Figure 6(b)). To improve the
usability while trying to preserve the security, we intro-
duce another coding scheme, termed “Joint-Manchester”
coding. In this solution, the GAS is initially Manchester
coded. However, each sensor device transmits only the
half of the Manchester encoded GAS, according to the
following rule: the coordinator and other sensor devices
transmit even and odd bits of the Manchester encoded
GAS, respectively. In Figure 6(a) we show an example of
“Joint-Manchester” coding with coordinator k. Note that
the devices other than k always share the same state.

The important difference from the usability point of
view, with respect to regular Manchester coding, is that
the user now has to only make sure that all the sensor
devices other than the coordinator share the same LED
state and is opposite of the LED state on the coordinator
(please refer to Figure 6(a)). In Section 7, we show

that “Joint-Manchester” coding can be easily verified by
the user. This solution significantly decreases the time
required to transmit the Manchester encoded GAS (to
only ` bits, ` being the size of GAS). It does not put any
additional effort on the user.

How secure is the “Joint-Manchester” coding? To answer
this question, let us consider the scenario shown in
Figure 5(b). Here, the attacker runs Phases I to III of
the GAP protocol and establishes two likely different
GAS values, namely, GAS3 with device 3 and GAS−3
with the remaining devices. The goal of the attacker
is to flip bits of GAS3 (using a directed light source)
such that the modified GAS3 (denoted ĜAS3) satisfies
ĜAS3 = GAS−3. Note that the attacker has no advantage
in flipping bits in GAS−3 and/or GASk as the devices
other than the coordinator should occupy the state that is
opposite to the one of the coordinator k. The table given
in Figure 5(c) shows possible combinations of GAS3 and
GAS−3 (their ith bits) that are beneficial for the attacker.
Thus, if the ith bits of GAS−3 and GAS3 are equal, an
attacker will not need to modify them in any way. On
the other hand, if the ith bits of GAS−3 and GAS3 equal
1 and 0, respectively, an attacker could flip 0 → 1 by
using the laser. If the ith bits of GAS−3 and GAS3 are
0 and 1, the attacker will be unable to flip 1→ 0 for he
cannot switch OFF an already powered ON LED.

We conclude that 3 combinations out of 4 are bene-
ficial to the attacker (all combinations but the second
one). It follows that the probability for an attacker to
modify the bits is 3/4, therefore, the probability of a
successful attack increases to (3/4)` as opposed to 2−`

(the probability of a successful attack where the attacker
is unable to modify the GAS). If ` = 15, the probability
of a successful attack in a single attempt increases from
2−15 to approximately 2−6. From this security analysis
we conclude that the “Joint Manchester” coding is user-
friendly but less secure than the basic Manchester cod-
ing. Therefore, in Figure 6(b) “Joint Manchester” coding
appears in the bottom right corner.
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Berger code
1 1 0

Man. code
1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 sensor

1 1 0 0 1

0 0 1 1 0

Visible Light Channel

k

 j

Input GAS

k

 j

Joint-Manchester coding

t1 t2 t3 t4 t5

coordinator

Fig. 7. An example of the GAS verification via VLC using Berger-Manchester encoding. Labels j and k stand for jth
sensor device and the coordinator, respectively.

5.1.4 Berger-“Joint Manchester” Coding

Finally, we show that by combining “Joint Manchester”
coding and Berger codes (Berger-Manchester coding
from here on) we obtain a highly usable and yet a secure
solution (Figure 6(b)). As shown in Figure 7 the GAS
is first Berger encoded and then “Joint-Manchester” en-
coded. Recall, with “Joint-Manchester” coding each sen-
sor device transmits only a half of the Berger-Manchester
encoded GAS, according to the following rule: the co-
ordinator and the other sensor devices transmit even
and odd bits of the Manchester encoded GAS, respec-
tively. This solution significantly decreases the time re-
quired to transmit the Manchester encoded GAS (to
only ` + dlog2(` + 1)e bits, ` being the size of GAS). As
in “Joint-Manchester” coding, Berger-Manchester coding
does not require the user to perform any additional
task. Therefore, in Figure 6(b) Berger-Manchester coding
appears in the upper right corner. The price that we have
to pay for the increased security is the increased number
of bits that the user has to verify by dlog2(` + 1)e bits
(due to the Berger check value). In Section 7 we show
that Berger-Manchester coding can be easily verified by
the user. We next prove the security of the Berger-“Joint-
Manchester” coding.

Fact 1: Let i, j ∈ G be any two sensor devices such
that GASi 6= GASj . Then, the group authentication
string GASk as generated by the coordinator, satisfies:
(GASk 6= GASi) ∨ (GASk 6= GASj).
In other words, GASk cannot be equal to the respective
GAS values of both the sensor device i and the device
j. Therefore, to detect an error (i.e., a potential attack)
in the initialization process, it is sufficient to compare
the GAS of the coordinator with the GAS value of each
remaining sensor device.

Fact 2: Let a, b ∈ N0 be two natural numbers
(including zero) such that a > b, and let a,b ∈ {0, 1}`
be their binary representations (vectors). Then,
∃i ∈ {0, 1, . . . , `− 1} such that ai > bi.

We denote with Man(a) the Manchester encoded
binary vector a ∈ {0, 1}`. We also use notation aOdd

and aEven to denote the odd and even bits of a
Manchester-Berger encoded vector a, respectively. For
example, a = 1001101, aOdd ← [Man(Ber(a))]Odd

and aEven ← [Man(Ber(a))]Even we obtain:
aOdd = 1001101011 and aEven = 0110010100. Finally, we
use 1 as a shorthand notation for the vector comprising
all ones (the vector length should be clear from the

context) and ⊕ to denote bitwise addition modulo 2.
Next, we state our main result in this section.

Theorem 2: Let a,b ∈ {0, 1}` be two arbitrary but
different `-bit binary vectors (a 6= b). It is not
possible to modify aOdd ← [Man(Ber(a))]Odd and
bEven ← [Man(Ber(b))]Even using only unidirectional
changes of the type 0→ 1 such that the resulting binary
vectors, denoted âOdd and b̂Even, respectively, satisfy
âOdd ⊕ b̂Even = 1.

Proof: Let us denote with Hw(·) the Hamming
weight of a given binary vector. Considering the binary
vectors a,b ∈ {0, 1}` for which a 6= b, we can distinguish
the following three cases:

1. a 6= b and Hw(a) = Hw(b)

2. a 6= b and Hw(a) < Hw(b)

3. a 6= b and Hw(a) > Hw(b) .

Case 1. Let a 6= b and Hw(a) = Hw(b). If two
binary vectors are not equal but have the same
Hamming weight (i.e., aB = bB), then clearly
∃i ∈ {0, 1, . . . , `− 1} such that ai = 1 and bi = 0.
From the definitions of aOdd and bEven we
have aOdd,i ← [Man(ai)]Odd = [(1, 0)]Odd = 1 and
bEven,i ← [Man(bi)]Even = [(0, 1)]Even = 1. Since only
unidirectional changes (0→ 1) are allowed, it is not
possible to modify neither aOdd,i nor bEven,i. Therefore,
âOdd,i = b̂Even,i and consequently âOdd ⊕ b̂Even 6= 1.

Case 2. Let a 6= b and Hw(a) < Hw(b). From
Hw(a) < Hw(b) it follows that a has a larger number
of zeros than b and hence the larger Berger check
value, i.e., aB > bB (in base-10 notation). Since both
aB and bB are from N0, it follows from Fact 2 that
∃i ∈ {0, 1, . . . , dlog2(`+ 1)e − 1} such that aBi = 1 and
bBi = 0. Now, using the same reasoning as in the first
case (Case 1), it follows that in this case, too, we have
âOdd ⊕ b̂Even 6= 1.

Case 3. Let a 6= b and Hw(a) > Hw(b).
From Hw(a) > Hw(b) it follows directly that
∃i ∈ {0, 1, . . . , `− 1} such that ai = 1 and bi = 0.
Therefore, following the same steps as in the first case
(Case 1), we can conclude that in this case, too, we have
âOdd ⊕ b̂Even 6= 1.

Thus, in all the possible cases we have
âOdd ⊕ b̂Even 6= 1 (given a 6= b and the unidirectional
changes 0→ 1).

In other words, the Berger-Manchester coding is se-
cure in the model where the attacker can only flip bits
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Fig. 8. (a) An example of the group size verification for M = 32 devices. Experimental setup: (b) a 22-inch monitor
(placed horizontally) featuring 25 sensor devices.

0 into 1 on a visible light channel (semi-authenticated
channel).

6 IMPLEMENTATION DETAILS

In this section we discuss some implementation aspects
of the proposed GAP based secure initialization mecha-
nism, which are relevant for the usability study that we
conduced. More precisely, we describe a simple method
for entering the group size into the coordinator (Phase
IV of GAP). Note also that the user needs to know the
status of each device through the initialization process.
In our implementation, this is accomplished using the
sensor’s LED; due to lack of space, we do not provide
further details of this implementation.

Entering the Group Size and Synchronization. It is
essential for the security of GAP that at least one device,
from the group of devices being initialized, knows the
correct group size. The procedure goes as follows. Let
us assume that the user wishes to initialize M < 100
devices. We can represent M using decimal notation
as follows: M = M1||M2, where Mi ∈ {0, 1, ..., 9} (for
example, if M = 32, then M1 = 3 and M2 = 2).
Next, the user takes the coordinator (indicated with the
LED powered OFF; other devices blink) and initiates
the procedure for entering the group size with a short
push on the button (push0 in Figure 8(a)). In turn, the
coordinator’s LED powers ON which indicates to the
user that the coordinator is ready to accept the first
digit of M (M1 = 3 in our example). To enter the first
digit the user pushes the button M1 times (push1, push2
and push3 in Figure 8(a)). After that, the user waits the
predefined time period ∆t1 for the LED to blink once
(the LED powers subsequently OFF and ON as shown
in Figure 8(a)). This blink indicates to the user that the
coordinator is ready to accept the second digit of M
(i.e., M2). Again, the user enters the second digit by
pushing the button M2 times (push4 and push5) and
waits the predefined time period ∆t1 (Figure 8(a)). After
the coordinator “concludes” that the user has entered the
second digit, the coordinator assembles the group size by
concatenating two digits and compares the result with
the group size that the coordinator has learned from the
Phase I of the GAP. If the two match, the coordinator

advances to the Number OK state (continuous LED blink-
ing). Otherwise, the coordinator enters the Error state
(constantly powered LED ON).

Synchronization. The coordinator initiates simul-
taneous and synchronized transmission of Berger-
Manchester encoded GAS over VLC on all devices. The
synchronization can be achieved by having the coordi-
nator send SYNC messages over a radio channel to the
other devices. Any attempt of jamming or injecting syn-
chronization messages will result in desynchronization
among sensor devices. This is eventually detected by the
user because the sensor’s LED blinks fast in all states but
during the GAS transmission. Indeed, the fast blinking
of a LED will overlap (in time) with much slower GAS
transmission; in our implementation a single LED pulse
during the GAS transmission is 4 seconds long. In future,
we plan to study these aspects in greater detail. A similar
approach to synchronizing GAS transmissions appears
in Prasad and Saxena [32].

7 USABILITY EVALUATION

Experimental setup. Our focus in this preliminary study
was to verify the thesis that Berger-Manchester coding
(the GAS verification) is easy to interpret (perform) for
an end user. In addition we evaluated the procedure for
entering the group size into the coordinator (Figure 8(b)).
For this purpose we implemented a simple simulator
called BlinkTest (Figure 8). The BlinkTest allows us to
simulate different scenarios in which sensor devices are
placed on arbitrary virtual surfaces (e.g., a desk office as
shown in Figure 8(b)). In our study we arranged sensor
devices in four rows and six columns; this is logical
decision when working with a large number of devices.
BlinkTest also allows us to choose different casings for
sensor devices. In this study a simplistic white casing
with one red LED (Figure 8) was used. As can be seen
from Figure 8(b), the size of a virtual sensor device
matches the one of a real ZigBee sensor device (6x6 cm2).
In BlinkTest we can configure virtual sensor to blink
arbitrary GAS values in synchrony. A user in our study
interacts with the simulator via the 22-inch monitor that
is placed horizontally on a office desk (Figure 8). The
user uses a mouse to select the coordinator (Figure 8(b));
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TABLE 2
The testers’ demographic info as well as computer and

mobile devices usage.

Age Sex Eyesight Using Computer (hours/week)

18-25 over 25 Male Female No glasses/contacts Glasses/contacts > 5 6-15 15-30 < 30
28 0 22 6 18 10 1 8 11 8

Using Internet (hours/week) Using mobile device pairing Feel secure while using wireless

> 5 6-15 15-30 < 30 Y N Agree Do not agree Neutral Don’t know
5 11 11 1 24 4 15 3 7 3

the left mouse click simulates the pressing of a sensor’s
button.

Test cases. We first tested the users’ capability to
correctly enter the group size into the coordinator. We
used the following group sizes: 7, 10, 16 and 25 sensor
devices. In the second round of usability tests we studied
the ability of users to perform GAS verification and their
ability to detect intentionally introduced errors. In these
tests the blinking period was set to 4 seconds. The length
of the GAS as transmitted over visible light channel was
19 bits.

We created eleven test cases for the GAS verification,
which we divide into four categories: (1) GAS mismatch
between the coordinator and a single sensor node in:
(1.1) the first bit, (1.2) a middle bit and (1.3) the last
bit, (2) GAS mismatch between the coordinator and all
sensor devices in: the (2.1) first bit, (2.2) a middle bit
and (2.3) the last bit and (3) GAS mismatch between
the coordinator and all the remaining sensor devices but
one in: (3.1) the first bit, (3.2) a middle bit and (3.3) the
last bit. At the end, we tested the scenario with (4) no
GAS mismatches. The tests involved a 25 sensor devices
(Figure 8).

Procedure. A total of 28 participants took part in the
usability study. The testers were given a short intro-
duction to the initialization procedure, which involved
the description of the node’s state diagram, possible
applications of such a pairing scenario (access points,
ad-hoc networks, smart homes etc.). None of the partic-
ipants have taken part in any of our tests before. All
the participants were in their early twenties. Table 2
summarizes the participants’ demographic information
as well as information about their everyday usage of
computers and mobile devices. The usability test is
divided into two phases: a training phase and a testing
phase. The training phase served the purpose of teaching
the participants (i) how to enter the group size on the
coordinator and (ii) how to perform the GAS verification
on sensor devices. The training phase lasted for about 5
minutes. In the testing phase the participants performed
the actual test. At the end of every usability test, the
participants completed a post-test questionnaire, which
involved the System Usability Scale [7] to numerically
express their subjective opinion about the usability of
the tested procedures.
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Fig. 9. Testers that made mistake: (a) while entering the
group size, (b) for particular GAS verification test case.

Results of the Study

Each of the 28 participants performed 4 test cases for test-
ing the purpose of the procedure for entering the group
size and 10 test cases for testing the GAS verification
procedure, leading to a total of 392 test cases.

Entering the group size. Each user was asked to
enter once each of the following numbers 7, 10, 16 and
25, while using the procedure presented in Section 6
(Figure 8(a)). As the results in Figure 9(a) show, some
users experienced problems while entering 7 and 16. In
the first case the users had to enter two digits: 0 and
7. It turned out that the users would miss completely
to enter the first digit 0. The high error rate with the
group size of 16 is due to the fact the users confused
the push0 event in Figure 8(a) with the push1. The
average time for entering the group size was around
16, 14, 17 and 18 seconds for 7, 10, 16 and 25 devices,
respectively. Please note that these included times ∆t1
and ∆t2 in Figure 8(a). Evaluating a usable-security
application with young and educated participants is a
natural first step (an application that does not fare well
with them is unlikely to be acceptable by other samples
of population), and therefore, our study only represents
a preliminary evaluation. Future work is needed to
evaluate the method with a sample representative of a
larger population.

GAS verification via VLC. The testers were asked to
observe the sensor devices on the display as shown in
Figure 8, and to indicate (through a keyboard) if and
when the status of the coordinator’s LED (the isolated
sensor device in Figure 8(b)) is incompatible with the
LED status on the other sensor devices. Recall that by
the Berger-“Joint Manchester” coding the status of the
LED on the coordinator must always be opposite of
the status of the LED on all the other sensor devices
(Section 5.1.4). Each test case included the initialization
of 25 sensor devices (Figure 8(b)). In Figure 9(b) we plot
the number of testers that make mistakes for different
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Fig. 10. (a) User feedback on the usability of the initialization protocol. (b) Zero-configuration auxiliary device: Using
a smart phone equipped with a camera to assist the initialization of a larger number sensor devices.

GAS verification scenarios. Overall, we see a reasonably
low error rates. As expected, we observe the highest
error rate when GAS mismatch occurs at the end of the
GAS transmission (2 errors in the scenario when only
one device has incompatible GAS with the coordinator
and 4 errors in the scenario when all the devices have
incompatible GAS values with the coordinator). The
reason for this is that the users become less focused
towards the end of the GAS verification phase. Some-
what higher error rate in the scenario where all the
sensors have incompatible GAS with the coordinator is
also understandable, as in this case all the sensor devices
share the same LED state; it is much easier to detect
the incompatible GAS on only one device. Finally, from
the last test case (No GAS mismatch) we conclude that
there were no false positives in our study. Note that the
duration of the GAS verification phase can be calculated
by multiplying the duration of the LED pulse (4 seconds
in our implementation) with the size of the encoded
GAS (19 bits in our case). In our study this amounts to
approximately 80 seconds. Given that the user initializes
25 sensor devices this amounts to around 3.2 seconds per
device.

Questionnaire. At the end of the usability tests the
users were asked to fill in the post-test questionnaire
from which the System Usability Score (SUS) [7] was
calculated. The average SU-score for 28 users was 80,8
(out of 100). Finally, Figure 10(a) summarizes the users’
answers on the questions related to difficulty of the
procedure for entering the group size and detection of
mismatches in the GAS verification phase. As shown,
most of the users found these two procedures relatively
easy to use.

Improving Usability and Scalability with a Zero-
Configuration Auxiliary Device. In some situations the
user may want to initialize even larger number of nodes
than we considered in this paper (e.g. more than 100 in
several batches). Note that there is a certain limit to the
number of devices that can be initialized in one batch
because of the constrained nature of the devices as well
as that of the human operator. Therefore, to significantly
improve scalability, usability and reduce likelihood of
errors we can use a camera on a smartphone if available,
to record a group authentication string (GAS) transmit-

ted using LEDs, as shown in Figure 10(b). Most existing
solutions that involve cameras, such as [11], [27], [36],
[37], [35], [30], [22], [41] require video processing or
pattern recognition services installed and preconfigured
with the camera devices. On the contrary, in the case
of our GAP protocol, the GAS verification aided by a
smartphone requires no special services or configuration
on the side of the smartphone. All that is required from
the user is to record a the GAS procedure (Figure 10(b))
and review it as many times as necessary to make sure
that LED of the group members at all times occupy
the opposite state than the coordinator device. We have
shown before that this is an easy task for the user thanks
to the Berger-Manchester coding.

8 RELATED WORK

Many existing key (pre-)distribution schemes for wire-
less networks rely on unspecified secure key initializa-
tion mechanisms. Here, we overview existing initializa-
tion mechanisms.

In Resurrecting Duckling [39], a physical contact is
required to securely establish a secret key. It requires
specialized hardware and may not scale well. Similarly,
Talking to Strangers [4] requires specialized setup hard-
ware (e.g. audio or infrared) in order to setup a public
key. Seeing Is Believing uses an installation device with
a camera or a bar code reader to create an out-of-band
secure channel [27]. Key authenticity is achieved through
certified public keys.

In Shake Them Up [9], user establishes a secret key
between two nodes by holding and shaking the de-
vices together while they send identical packets over
the radio. This scheme may be violated by using radio
fingerprinting. The three related schemes are Are You
With Me [21], Smart-Its Friends [14] and [25]. Mayrhofer
and Welch [26] also use an out-of-band laser channel
constructed with off the shelf components for transmit-
ting short authentication strings. According to [26], the
proposed solution does not ensure complete authenticity
of the the laser channel. Roman and Lopez [33] discuss
general aspects of communication over a visible light
channel.

In Key Infection [3], two nodes establish a secret key
by sending it in the clear over radio. They assume an
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attacker is unable to eavesdrop all the keys from all the
nodes (e.g., 10.000 nodes) during key deployment. In
Message In a Bottle [17] and KALwEN [20], keys are sent
in the clear to the nodes located inside a Faraday cage
(a specialized hardware) that ensures key secrecy and
authenticity. However, the number of simultaneously
initialized nodes determines the size of the Faraday cage.
In On-off Keying, the presence of an RF signal represents
a binary 1, while its absence represents a binary 0 [8]. By
using an unidirectional encoding scheme, On-off Keying
ensures that an attacker is unable to modify a packet
during transmission.

In the paper, Wong and Stajano [41] present device
pairing and group key agreement multichannel protocols
that use communication over a radio and an out-of-
band channel (e.g. visual). However, their protocol re-
quires each device to be capable of demodulating signals
received over an OoB channel (i.e., they have to be
equipped with a camera). In HAPADEP [38] both data
and verification information is sent over an audio chan-
nel. The pairing devices are both required to have speak-
ers and microphones. In a related set of papers, Saxena
and Uddin [35], [36], Saxena et. al. [37] and Perkovic
et. al. [30] present device pairing methods based on
devices equipped with LEDs and a video camera as the
receiver. Li et. al. [22] also propose a protocol for the
initialization of the large number of sensor devices that
can be operated by a human. However, their protocol
is insecure in the attacker model where an adversary
performs flipping attacks in semi-authentic VLC.

In GAnGS [11] and SPATE [23] protocols for the
secure exchange of authenticated messages among a
group of N users are proposed. While GAnGS requires
O(N) interactions to authenticate the exchanged data, in
SPATE each group member carries out N comparisons
in parallel to authenticate other members’ data.

9 CONCLUSION

We made several contributions in this paper. We pro-
posed a novel multichannel protocol, called Group mes-
sage Authentication Protocol (GAP), for user-friendly ini-
tialization of multiple resource-constrained wireless de-
vices. The proposed protocol has minimal hardware
requirements on the wireless devices: one LED and one
button. Moreover, as an indirect binding scheme [28]
GAP has a lower communication cost compared to
existing direct binding protocols. GAP involves com-
munication over a bidirectional radio channel and an
unidirectional out-of-band visible light channel. The pro-
posed protocol is shown to be secure in the very strong
attacker model, where an attacker can eavesdrop, jam
and modify transmitted messages on both the radio and
the visible light channel. We also introduced a novel
coding scheme (Berger-Manchester combination) for the
secure communication over semi-authentic Visible Light
Channel. Finally, we demonstrated the feasibility of the
proposed initialization method via the usability study

that indicates that the method has reasonably low exe-
cution time, minimal error rate and is user-friendly.
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EPFL. In December 2006, Mario Čagalj was elected Assistant Professor
and in September 2010 he was promoted to Associate Professor at the
University of Split, Croatia. His research interests include the design
and analysis of security protocols for wireless networks, applied cryp-
tography, applications of game theory to wireless (and wired) networks,
and the design of energy-efficient communication protocols for wireless
networks.
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APPENDIX - SKETCH OF THE PROOF OF
THEOREM 1
A user wishes to initialize a set of M sensor devices. We
denote this group with G, i.e., G = {ID1, ID2, . . . , IDM},
IDi being the identity of the ith device (all IDs are
unique). In the proof, we assume that the adversary does
not belong to the set G (i.e., no sensor device from G is
compromised). We further assume that each device has
an access to a perfect random number generator. We de-
note with k the coordinator sensor device. Our security
proof is based on the notion of matching conversations
introduced by [5]. Informally, we say that devices i, j ∈ G
(i 6= j) have matching conversations, if for each message
mi (mj) sent out by i (j) at the time instant ti (tj),
the device j (i) received the same (unaltered) message
mij = mi (mji = mj) at the time instant ti+1 (tj+1),
where ti < ti+1 (tj < tj+1). Clearly if all pairs of devices
from G have matching conversations, then all messages
transmitted must have arrived at intended destinations
unaltered. In other words, the messages are authentic.

We say that all sensor devices from G “Accept”
(shortly “All accept”) if all the verifications in the GAP
protocol (Figure 2) are successful. Let us further define
an event S as follows:

S , {Exists non-matching︸ ︷︷ ︸
S0

,All accept︸ ︷︷ ︸
S1

} = {S0, S1}. (1)

The event S says that there exists a pair of devices from
G that does not have matching conversations and at
the same time all the verifications in the GAP protocol
(Figure 2) are successful. In other words, there exists
a sensor device i ∈ G that has accepted a potentially
altered message as an authentic one. Therefore, we can
define the probability of a successful attack on the GAP
protocol as P[S].

Let us introduce some additional notation.
We denote with viewi, i ∈ G the ordered set
comprising all commitments received by the
device i, including its own ci. More precisely,
viewi = {ĉID1i, ĉID2i, . . . , ĉIDi−1i, ci, ĉIDi+1i, . . . , ĉIDMi

i},
where (Mi − 1) is the number of commitments received
by the device i. To avoid somewhat cumbersome
notation, we drop the ID from each index so that finally
we have viewi = {ĉ1i, ĉ2i, . . . , ĉi−1i, ci, ĉi+1i, . . . , ĉMii}.
Please note that the set viewi is ordered with respect to
the sender identities. The following fact follows directly
from the Phase IV of the GAP protocol.

Fact 3: In a successful attack, the number of commit-
ments received by the coordinator k must be M − 1,
implying, |viewk| = |Gk| = M .
We next state the following useful result (we omit a
straightforward proof for the lack of space).

Lemma 1: If we have non-matching conversation(s)
and all the devices from G “Accept” then either ∃i, j ∈ G
such that viewi 6= viewj or otherwise all the devices
“Accept” with the negligible probability ε0.
We continue our proof by introducing another event
denoted A:

A , {∃(i, j) ∈ G s.t. viewi 6= viewj} . (2)

Then we can bound the probability of a successful attack
(P[S]) as follows:

P[S] = P[S|A] ·P[A] + P
[
S|A

]
·P
[
A
]

≤ P[S|A] + P
[
S|A

]
(1)

≤ P[S|A] + ε0
(2)
= P[S1|A] + ε0

(3)

where (1) follows from Lemma 1 and (2) from the fact
that the event A implies that we will have for sure non-
matching conversation(s). From the definition of event
S1 and by applying the probability product rule we
obtain the following bounds on P[S1|A], ∀i ∈ G\{IDk},
k being the coordinator device:

P[S1|A] ≤ P
[
GASk = GASi|A,S1−(GASk=GASi)

]
, (4)

where S1−(GASk=GASi) denotes that all verifications in the
GAP protocol, other than GASk = GASi, are successful.

Fact 4: If ∃i, j ∈ G s.t. viewi 6= viewj , then the fol-
lowing holds for the coordinator k ∈ G: viewk 6= viewi

or/and viewk 6= viewj .
Then from Fact 4 we know that if the event A has
occurred, then there exists i ∈ G such that viewi 6= viewk.
Let i denote such a device. We have two possibilities for
devices (i, k) ∈ G, either Mi = Mk or Mi 6= Mk, that
is, Mi = M or Mi 6= M (from Fact 3 Mk = M ). From
this and the bounds in equations (3) and (4) one can
easily establish (using the law of total probability) the
following bound on the probability of a successful attack
P[S]:

P[S] ≤ max

{
P [GASk = GASi|A,S1−ki, (Mi = M)] ,
P [GASk = GASi|A,S1−ki, (Mi 6= M)]

(5)
where S1−ki is a shorthand notation for S1−(GASk=GASi).

What remains to be shown is that both probabilities
on the right in inequality (5), are bounded above by 2−`

plus some negligible probability. For simplicity and due
to page limitations, we focus only on the case (Mi 6= M).

Condition Mi 6= M . By definition (Section 3),
GASi = Ni ⊕ N̂−i, where N̂−i , ⊕j∈Gi\{i}N̂ji. Similarly,
GASk = Nk ⊕ N̂−k, with N̂−k , ⊕j∈Gk\{k}N̂jk. Note
that we must have |Gi| = Mi and |Gk| = M , because by
assumption all verifications other than GASk = GASi are
successful. In other words, the number of commitments
received in Phase II of GAS has to match the number
of IDs received in Phase I, otherwise the protocol is
aborted by i and/or k before reaching the final phase
of GAS. Now we can write the following:

P [GASk = GASi|A,S1−ki, (Mi 6= M)] (6)

= P
[
Nk = N̂−k ⊕Ni ⊕ N̂−i|A,S1−ki, (Mi 6= M)

]
(7)

= P
[
Ni = N̂−i ⊕Nk ⊕ N̂−k|A,S1−ki, (Mi 6= M)

]
. (8)

In order to show that the probability (6) is bounded by
2−` (plus a negligible probability), we will next show
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that Nk is essentially independent of N̂−k and Ni, and
N̂−i, or otherwise Ni is independent of N̂−i and Nk, and
N̂−k.

Independence (Ni, Nk). By the GAP protocol, devices
i and k generate Ni and Nk independently of each other.

Independence (Nk, N−k) and (Ni, N−i). Note that
the GAP protocol induces a total order on the set of
exchanged messages (see Section 3). The fact that we
condition probability (6) on the event S1−ki implies that
all verifications other than (GASk = GASi) are success-
ful. From the device i’s perspective, a properly ordered
exchange of messages with another device j ∈ G\{i}
looks as follows: d̂ji � di � ĉji � ci for (i < j), that is,
di � d̂ji � ci � ĉji for (i > j), where the binary operator
� implies that a variable on the left side succeeds in time
the variable on the right side.

We claim that an adversary does not benefit from
seeing decommitment di when trying to construct ĉji.
Indeed, it follows from S1−ki that at the moment at
which i revealed di, the device i must already have
received all commitments (including a candidate for ĉji)
in the proper order. Any commitment that succeeds di
contradicts to S1−ki.

Therefore, we ask ourselves: Can the adversary gen-
erate N̂ji (as a part of ĉji) such that it is related to
Ni (from ci) when only the commitments are available?
We consider the scenario where i < j (similar analysis
applies to j < i). Having seen ci, the adversary has only
four options: (i) set ĉji = ci, (ii) try generate a related
commitment such that the covariance Cov(N̂ji, Ni) > 0,
(iii) break the hiding property of commit(·), and of
course (iv) try to guess Ni.

In case (i), the adversary has to make sure that the
IDi that appears in ci (see Section 3) is changed into
some different value, otherwise i aborts the protocol (i.e.,
S1−ki has not occurred). Because ĉji = ci, this can be
done only by altering the corresponding di to obtain
d̂ji 6= di. From S1−ki we know that d̂ji 6= di opens ci,
implying that the commitment scheme is broken. This
can happen only with a negligible probability εc. Case
(ii)) implies a successful attack on the non-malleable
commitment scheme, which can happen with probability
at most εc. In case (iii) the adversary learns the value of
Ni from ci only with the negligible probability εc, thanks
to the (computationally) hiding property of the used
commitment scheme. Finally, in case (iv), the probability
of success is clearly 2−`, ` being the length of Ni.

By summing up all the probabilities we conclude that
the adversary can relate an arbitrary N̂ji (from N̂−i) to
Ni with the probability that is at most 2−` + 3 · εc.

Independence (Nk, N−i) and (Ni, N−k). As be-
fore, S1−ki implies that all verifications other than
(GASk = GASi) are successful. So both devices k
and i see well ordered messages. For device k,
a proper exchange of messages with any two de-
vices j,m ∈ Gk such that m < k < j is as follows:
d̂jk � dk � d̂mk � ĉjk � ck � ĉmk. Similarly, for device i

and any two devices j,m ∈ Gi such that m < i < j we
have d̂ji � di � d̂mi � ĉji � ci � ĉmi. We ask ourselves if
an adversary can relate N̂ji and/or N̂mi (N̂jk and/or
N̂mk) to Nk from ck (Ni from ci).

As before, we claim that the adversary does not benefit
from seeing any decommitments. Let us consider the
moment when the first decommitment is sent (revealed).
Let this be dk (similar analysis applies to any decom-
mitment). At this moment, the adversary learns Nk and
can adjust accordingly N̂ji such that Cov(N̂ji, Nk) > 0.
Given this, can the adversary generate N̂mk such that
Cov(N̂mk, Ni) > 0 by waiting to receive di? We can show
that this is not possible. Indeed, from the proper order
of messages as seen by the devices k and i above, this
attack creates the following two temporal dependencies:
ĉji � dk � ck � ĉmk and ĉmk � di � ĉji � ci. By combin-
ing these two temporal chains, we arrive at the following
contradiction: ĉji � ĉji. Thus, it is not possible to simul-
taneously relate both N̂ji to Nk and N̂mk to Ni. This is
valid for any possible combinations of decommitments.

Using similar analysis as in the previous case (“Inde-
pendence of (Nk, N−k)”), we can show that before seeing
any decommitment the adversary cannot relate N̂ji Nk

with the probability higher than 2−` + 3 · εc + εh. The
only difference wrt the approach taken in ”Independence
of (Nk, N−k)” is that attacks where the adversary tries
to set ĉji = ck are prevented by including hash(Gk) in ck
and hash(Gi) in ĉji (where |Gk| 6= |Gi| as Mi 6= M ); this
is the reason for the appearance of the probability (εh)
of finding a collision for hash(·).

From the analysis of independence between Ni, Nk,
N̂−i and N̂−k and expressions (7) and (8) it readily
follows that:

P [GASk = GASi|A,S1−ki, (Mi 6= M)] ≤ 2−` + 3 · εc + εh .

Finally, from the fact that similar analysis can be carried
out for the case Mi = M and expression (5), it easily
follows that P[S] ≤ 2−` + ε, where ε , 3 · εc + εh.


