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ABSTRACT
Web search has emerged as one of the most important applications
on the internet, with several search engines available to the users.
There is a common practice among these search engines to log and
analyse the user queries, which leads to serious privacy implica-
tions. One well known solution to search privacy involves issuing
the queries via an anonymizing network, such as Tor, thereby hid-
ing one’s identity from the search engine. A fundamental problem
with this solution, however, is that user queries are still obviously
revealed to the search engine, although they are “mixed” among the
queries issued by other users of the same anonymization service.

In this paper, we consider the problem of identifying the queries
of a user of interest (UOI) within a pool of queries received by a
search engine over an anonymizing network. We demonstrate that
an adversarial search engine can extract the UOI’s queries, when
it is equipped with only a short-term user search query history, by
utilizing only the query content information and off-the-shelf ma-
chine learning classifiers. More specifically, by treating a selected
set of 60 users – from the publicly-available AOL search logs – as
the users of interest performing web search over an anonymizing
network, we show that each user’s queries can be identified with
25.95% average accuracy, when mixed with queries of 99 other
users of the anonymization service. This average accuracy drops
to 18.95% when queries of 999 other users of the anonymization
service are mixed together. Though the average accuracies are not
so high, our results indicate that few users of interest could be iden-
tified with accuracies as high as 80–98%, even when their queries
are mixed among queries of 999 other users. Our results cast seri-
ous doubts on the effectiveness of anonymizing web search queries
by means of anonymizing networks.

Categories and Subject Descriptors
C.2.0 [Computer-Communications Networks]: General—Secu-
rity and protection; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy
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1. INTRODUCTION
Today’s world wide web hosts an enormous amount and a wide

variety of data. Efficiently searching and retrieving this vast amount
of information is very important, and currently more than one search
engine is available to the users. To improve their search results,
these search engines adopted the practice to log and analyse the
queries issued by the user. This received considerable attention
from media and public as well as researchers all over the world be-
cause of the possible privacy breaches. The issue was first brought
into limelight in August 2005, when the US Department of Justice
issued a subpoena to Google for a week’s worth of search query
records [14]. Later AOL has published three months (pseudonymized)
search query logs, from which identities of certain users had been
extracted based on personal information embedded in their queries
[8, 2]. Since then, the media started shedding more light on how
several major search engines (Yahoo!, AOL, MSN and Google) log,
store and analyse individual search query logs.

Archiving and analysing search queries is important from a search
engine’s perspective for improving the quality of search results, and
for generating revenue through sponsored search advertising. How-
ever, this logging of queries has serious privacy implications which
can be categorized into explicit and implicit versions. Explicit pri-
vacy breach happens because of the information embedded in the
query itself, and some common examples include searching for a
particular disease the user or a family member might be suffering
from, searching for one’s social security number to check if it exists
on the web, and performing “ego-surfing1”. Implicit privacy viola-
tions happen when the sensitive information can not be learned di-
rectly from the query logs, but has to be extracted using aggregation
and profiling methods or data mining techniques. An apt example
could be to infer the income level of a user by keeping track of the
brand of products he/she often searches for[23].

Many techniques have been proposed to address this problem of
privacy breach through web search queries. First class of solutions
involves use of private information retrieval (PIR) protocols [11],
which are a generic body of work. However, current PIR proto-
cols, due to their high communication and computation overload,
are not feasible to be deployed in practice with the existing infras-
tructure. A second class of solutions is based on the principle of
query obfuscation [24], where a client-side software injects noisy
queries into the stream of real queries transmitted to the search en-
gine. These methods protect the user against profiling, thereby pre-
venting implicit privacy violations. Unfortunately, a practical query
obfuscation tool - TrackMeNot [10, 22], has recently been shown
to be vulnerable [15]; an adversarial search engine can distinguish
between user’s queries and obfuscation queries with high accuracy,

1A common practice seen among users to search for their own
names, just to check what results appear.



and can extract a large fraction of user’s queries.
Another class of solutions involves the use of third-party infras-

tructure such as a single proxy, e.g., Scroogle [18] or an anonymiz-
ing network, e.g., Tor [21]. The use of single proxy is problematic
because it requires the users to impose (unwanted) trust on to a sin-
gle server hosted by a third-party company. Web search over an
anonymizing network, which is the focus of our paper, certainly
provides better protection and fault-tolerance than the use of a sin-
gle proxy. An anonymizing network is typically implemented using
onion routing and it involves routing one’s queries over a path con-
sisting of a series of nodes (called relay servers) distributed all over
the internet. This way the actual source of a query would poten-
tially remain hidden from the search engine. Private Web Search
(PWS) [17] is a client side tool that can be used to route search
queries privately over the Tor network. It has been mentioned in
[17] that search queries, even though stripped of the accompanying
information like IP address and cookies, reveal some information
about the user. They associate it to the linkability among queries,
which has been mentioned as an open problem in Table 1 in [17].
We try to address this open problem of linking queries by using
machine learning techniques and show that queries of a user can be
identified with reasonable accuracies, just by looking at the query
content.

Our Contributions.
A higher level goal of this work is to analyse how effective an

anonymizing network can be – in preserving users’ privacy in prac-
tice – against an adversarial search engine. (From here on, we will
call the anonymizing network as Tor, for simplicity of presentation
and without loss of generality.) We observe that the web search
over Tor network has one fundamental drawback: the search query
has to reach the search engine in clear text format for the search
engine to be able to process the query and return the response back
to the user. However, these queries are indeed “mixed” among the
queries issued by other users of the same anonymization service.

We ask the following question: Is it possible for an adversarial
search engine to associate queries coming out of Tor exit nodes to
Tor users who issued these queries?

In our attack model, the search engine is a passive adversary
who tries to make identification decisions only by analysing the
received and logged queries. In an attempt to keep our attacks
generic, we assume that the search engine does not make use of any
information associated with the queries besides the queries them-
selves, such as the Tor exit node IP address or even exact query
timestamps. We base our work on an important observation, made
by other researchers [4], that although a potentially large number of
users might be accessing web search over the Tor network, only a
small fraction of these users really remain anonymous to the search
engine in practice. The reason is that a significant number of users,
even while using Tor, remain logged in using their accounts with
search engines (e.g., Gmail accounts with Google) and may not
disable cookies and other identifying information [4]. This implies
that a user’s queries might be getting mixed among queries of only
a small number of other (anonymous) Tor users, potentially making
these queries more identifiable.

Indeed, we answer the aforementioned question affirmatively.
More specifically, by treating a selected set of 60 users – from
the publicly-available AOL search logs – as ‘users of interest’ per-
forming web search over an anonymizing network, we show that
their queries can be identified with 25.95% average accuracy, when
queries of upto 99 other Tor users are mixed together and this av-
erage accuracy drops to 18.95% when queries of 999 other Tor
users are mixed together. For few users, these accuracies reached
upto 80–98%, even when queries of upto 999 ‘other users’ (other

Tor users) are mixed together. Our results cast serious doubt on
the effectiveness of anonymizing web search queries by means of
anonymizing networks.

In the rest of this paper, we denote the AOL users, whose queries
are to be separated from the mixed query set received at Tor exit
nodes as ‘users of interest’ and the total number of users using web
search over Tor as U. The users present in U, apart from the users
of interest, will be referred as ‘other users’.

2. PROBLEM FORMULATION AND STUDY
METHODOLOGY

In this paper, we investigate if it is possible for an adversarial
search engine to associate queries coming out of Tor exit nodes to
Tor users. While using any anonymizing network, the search query
must reach the search engine in clear format so we base our work on
the query information alone, which is always going to be revealed
to the search engine. We assume that the search engine does not
make use of any accompanying information like exit node IP ad-
dress, unblocked cookies accompanying the queries or the Click-
through patterns followed by the user. Specifically, in our attack
model, the search engine is a passive adversary which tries to make
identification decisions only by analysing the received and logged
queries.

For conducting our study, we should simulate real user queries
being channelled through anonymizing networks, like Tor, but since
our model does not require any other information apart from the
query content, it is needless to simulate the Tor functionality. There-
fore, we work directly with real user search query logs. For obtain-
ing real user queries, one option could be to seek volunteers who
may allow us to record their search queries over a period of time,
but it is not a viable solution considering the privacy concerns (the
same concerns that motivate our work). Instead, we chose to uti-
lize the publicly available real user search logs, such as the AOL
search logs [1] released in 2006. These AOL logs are spread over a
reasonably long duration (3 months).

For our study, we assume that the adversarial search engine has
access to the list of possible Tor users performing web search over
Tor(U). This is a realistic assumption because the search engine has
access to a user’s search history and it can determine whether a par-
ticular user has possibly started to use Tor by identifying changes in
his query patterns (such as query frequency). If for a reasonable du-
ration, e.g., a week, the search engine does not receive any queries
from a user or an IP address, violating the user’s typical querying
pattern, it can mark that user as a potential Tor user. Even when the
users delete their cookies, there are chances that the search engine
might mistake these users to be possible Tor users. However, since
the user querying patterns do not change, the search engine might
be able to map these mistaken Tor users to new cookies if the query-
ing patterns match, and continue profiling the users. Such mapping
techniques or anti-aliasing techniques have been studied before in
[13]. Though the content they deal with in [13] are large texts like
bulletin boards and web pages, we believe similar techniques could
be developed for mapping web search users associated with differ-
ent cookies. Thus, we assume throughout our study that the search
engine can generate a possible Tor user list and keep updating it.

Over a period of time, the search engine logs a set of queries
(denoted Q) that it receives from the Tor exit nodes (list of exit
nodes is publicly available). These queries are issued by the users
appearing in the list U and are all mixed with one another. Our
goal (i.e., the adversarial search engine) is to identify the queries in
Q that correspond to some or all users in U. We model this iden-
tification problem as a classification problem in machine learning,
whereby we train a classifier with the prior search history of the Tor



users (collected prior to the time they started using Tor) and ask the
classifier to classify the queries in Q to their respective users in
U. Since we might want to associate the queries to all users, we
will need one class per user. Therefore, the problem reduces to a
multiclass classification problem.

The size of U (denoted N ) is an important parameter for our
study and for the level of privacy that can be provided to the users
over Tor. We argue that in practice N may not be very large. As dis-
cussed in Section 1, recent research [4] shows that although there
are, on an average 1893 Google users at one Tor exit node over
one week, about 872 of these users access the services by sign-
ing into Google, making themselves identifiable even while using
Tor. Similarly, a significantly large fraction of users may not dis-
able their cookies, due to unawareness about tools like PWS [17].
In summary, even if there are 1500 Tor exit nodes in total and a
large number of users might be using Tor for private web search,
only a small fraction of these users actually remain anonymous to
the search engine. In addition, the search engine might not want
to track each and every one in this anonymous user set, but in-
stead it might want to concentrate on few users - selected based on
the kind of sensitive queries they send or based on their real world
identities (like suspected terrorists). In light of these important ob-
servations, we consider a maximum of N = 1000 anonymous web
search users, and try to associate the queries in Q to these users.
We believe that this number 1000 is reasonable for experimental
purposes.

Let us assume that the search engine is interested in identifying
the queries corresponding to an user of interest, A. Let us say that
Q contains nu number of A’s queries and no number of other users’
queries (note that generally nu << no). The search engine can se-
lect a query from Q at random and can trivially identify it to be A’s
query with a probability pnaive = nu

(nu+no)
. Instead, if we apply

our classification approach which has an accuracy of x (i.e., prob-
ability of correctly identifying A’s queries) and a misclassification
rate of y (i.e., probability of incorrectly identifying others’ queries
as A’s queries) (These “accuracy” and “misclassification rates” are
not in accordance with the standard Machine learning definitions),
then we obtain a (very small) subset of Q which consists of x ∗ nu

A’s queries, and y ∗ no other users’ queries. Now, if we pick a
random query from this subset, then the probability that this query
is A’s query is pclass = x∗nu

(x∗nu+y∗no)
. If our classification is do-

ing a good job, i.e., if x is high and y is low, then pclass would be
significantly higher than pnaive, which in turn would mean that we
are doing a much better job of identifying user’s queries than we
do with a random guess. As a concrete example, our classification
attacks for AOL user #67910 yield pclass = 0.73 (x = 45/192
and y = 16/46062), which is about 183 times more than the prob-
ability of a random guess pnaive = 0.004, when N = 100.

Through our classification experiments in the rest of this paper,
we aim to find out the values of x and y for a diverse set of users
firing different type of queries, and for different values of N (100,
200, 300, 500 and 1000).

3. EXPERIMENTAL PRELIMINARIES
3.1 AOL Data Statistics

As mentioned earlier, the AOL logs are spread across three months
duration. For our purpose, we consider the first two months data
as the search history available to the search engine and the last
month’s data is the new queries information to be classified. These
sets shall be referred to as the training set and test set henceforth.
Instead of identifying the queries of all users in U(since it can be
time consuming), we want to concentrate on few specific users who
we consider to be important - users of interest. To this end, we se-

lected a set of 60 users of interest from the AOL logs and tried to
find the accuracy in identifying their queries from the query pool of
upto 1000 Tor users (N = 1000) using web search over Tor. The
selection is made according to the AOL query statistics described
below.

Figure 1: Number of queries

Different users send different number of queries over a time pe-
riod. The query frequency of a user plays an important role in de-
ciding whether a query coming out of a Tor exit node should be
associated to the user. We calculated the total number of queries
sent by all the AOL users over the 3 months period and plotted the
number of users in different query bands. From the graph in Figure
1, we can see that most users (about 98.72%) issue less than 100
queries in a 3 month period. The rest are spread throughout the
graph in smaller numbers, with the user density decreasing as the
number of queries increase.

Figure 2: Query Length Distribution

Though query lengths are implicitly attached to the queries, they
may contribute towards identifying the user. We plotted the number
of users across three different query length bands – Short, Medium
and Long. The users in short band have average query length less
than 3 words, those in medium band have average query length
lying between 4 to 6 words, and users in long band have average
query length greater than 6 words. From Figure 2, we can observe
that a large number of users send short queries.

The query content varies from user to user, and so it can provide
additional information in identifying the user sending the query.
We consider two broad categories of queries, namely – Sensitive
and Insensitive. There is no hard and fast way to define these type
of queries, and it simply depends on the application as to what
is considered sensitive or insensitive. For example, with the cur-
rent rise in terrorism, sensitive content might include the queries
related to bombs, military details, etc. For our purpose, after ob-
serving queries of 2000 AOL users, we identified certain sensitive
keywords relating to medical data, terrorism, weaponry, child abuse
and pornography. If any one of these keywords occurred in a query,
the query was labelled as sensitive. We labelled the queries of all



Figure 3: User Sensitive Query Distribution

the AOL users and found the percentage of sensitive-insensitive
query distribution for each user. We plotted the user distribution
across different percentages of sensitive queries, which is shown in
Figure 3.

3.2 Selecting Users
As mentioned earlier, we only concentrate on identifying queries

of a specific few (60) users of interest - chosen according to the cat-
egories discussed above. We had selected 20 users of interest from
each category as follows:
Number of Queries: In order to comply with the statistics in Figure
1, we selected 14 users of interest at random from set of users who
fire less than 100 queries, 4 users of interest at random from set of
users who fire 101-500 queries and 2 users of interest at random
from the set of users who fire more than 500 queries over a period
of three months.
Query Length: Following the statistics in Figure 2, we have chosen
15 users of interest randomly from the set of users sending short
queries, 3 users of interest were selected at random from the set
sending medium length (3-6 words) queries and 2 users of interest
were selected at random from the set sending long (more than 6
words) queries.
Sensitive Queries: Based on statistics in Figure 3, 10 users of in-
terest are selected at random from the set of users sending 0–10%
sensitive queries, 2 users of interest are selected at random from
10–20% sensitive query band, 2 users of interest are selected at
random from 20–30% sensitive query band, 3 are selected from
50–60% sensitive query band and another 3 from 90–100% sensi-
tive query band in proportion to the actual user distribution.

3.3 Selecting Classifiers
For our machine learning needs, we use WEKA[5], an open

source software which includes a large number of classifiers and
preprocessing options. We wanted to use this publicly available,
off-the-shelf classification tool and estimate the accuracy levels that
can be achieved. These accuracies can most likely be increased if
we use classification algorithms specifically designed and tailored
for this particular requirement.

WEKA has many in-built classifiers which can be used for our
attacks. We have chosen Support Vector Machine (SVM) as the
best classifier for our purpose based on the strong recommenda-
tions, such as [9], to use SVMs for textual classification or catego-
rization, and its wide spread application in similar projects.There is
more than one implementation of SVM algorithm in WEKA, and
we have selected C-SVC binary classifier because of the simplicity
in choosing the classifier parameters.

C-SVC is a binary classifier which identifies and associates data
instances belonging to two classes. Multiclass classification can
be solved by converting multi-class problem into multiple binary

classification problems. These are popularly called as One-vs-All
(OVA) and All-vs-All (AVA), as described in [16]. In OVA model,
we build one separate classifier for each class in the dataset. For ith

classifier, the positive examples will be the training data with label i
and the negative examples include all the data with a label different
from i. In AVA model, we build N(N −1) classifiers, one for each
pair of classes i and j, where N is the number of classes. Each
of these classifiers(i, j) gets trained on only the data belonging to
classes i and j. At the end, the label is predicted by following a
voting mechanism (see [16] for details). Both OVA and AVA are
applicable to our problem and can yield good accuracies.

3.4 Selecting Attributes
Each entry in the AOL log is a tuple of the form: <AnonymousID,

Query, Time, ItemRank, ClickURL>. In our model, since we work
with the query content alone and do not concentrate on additional
clickthrough patterns of the user, we neglect the ItemRank and
ClickURL features.

The AnonymousID feature is used for distinguishing the AOL
users and is treated as the Class Label for classification. Since the
Query feature is a string and WEKA can not handle strings directly,
we converted the strings to word vectors using the in-built WEKA
preprocessing filter StringToWordVector. We added another feature
Query Length, as described in Section 3.1, though it is implicit in
the Query information. Since time feature cannot be used directly
because of the inherent delay when queries are sent over Tor, we
considered timing windows of considerable duration. Since it is
hard to predict what size of the timing window might provide better
results, we divided 24 hours in a day into different non-overlapping
windows of sizes of 3, 4, 6 and 12 hours and compared the accura-
cies with each timing window size.

AnonymousID and Query are necessary attributes and in order
to determine the impact of each additional attribute on the classi-
fication results, we tried to identify the average accuracy of all the
users of interest when N=100, by including one additional attribute
at a time. The average accuracies are indicated in Table 1. We can
see that by including the Query Length feature reasonable perfor-
mance is achieved both in the case of OVA and AVA. Addition of
timing windows did not provide much improvement over the exist-
ing accuracies, both in the case of OVA and AVA. There could be
other possible and better uses of these query times, but we neglect
them for now. Hence for all the following experiments we included
Query Length as an additional attribute along with Query and the
AnonymousID.

4. EXPERIMENTS AND RESULTS
In our experiments, we tried to estimate the accuracy of the clas-

sifiers in correctly identifying queries of 60 users of interest. For
each user of interest, we measure the accuracy across five datasets,
where in each dataset, we vary the number of ‘other users’ whose
queries are mixed with that of the current user of interest. The five
datasets containing randomly selected 99, 199, 299, 499 and 999
other users were generated. In order to be consistent across all 60
users of interest, we used the same ‘other user’ datasets. Thus,
when the user of interest’s query set is mixed with the queries of
these ‘other users’, we form datasets with N as 100, 200, 300, 500
and 1000 users.

For every user of interest A, we intuitively call the fraction of
correctly identified user A’s queries (denoted as x in Section 2) as
Correctly Classified and the fraction of other users’ queries incor-
rectly classified as user A’s queries (denoted as y in Section 2) as
Misclassified (These terms are not in accordance with the standard
Machine Learning definitions). As discussed in Section 2, we want
the Correctly Classified value to be as high as possible and Mis-



Classifier Accuracies – No Accuracies – Including Accuracies – Including Timing window
Additional Attributes Query Length 3 hrs 4 hrs 6 hrs 12 hrs

AVA 16.26% 14.58% 13.16% 14.08% 13.62% 14.41%
OVA 13.65% 14.41% 13.98% 12.99% 12.63% 14.15%

Table 1: Comparison of Accuracies for Attribute Selection

Figure 4: OVA Results Summary for Number of Queries

classified value to be as low as possible, and consider it to be an
optimal measure of the performance.

We obtained the results for all the 60 users of interest belonging
to the three categories discussed in Section 3.2. For each category,
we summarized the OVA results indicating the average values of
Correctly Classified and Misclassified for all the users of interest in
specific sub-categories. The summary of OVA results for Number
of Queries is given in Figure 4, summary of OVA results for Query
Length is given in Figure 5 and the summary of OVA results for
Sensitive Queries is depicted in Figure 6. The results for AVA clas-
sification, for each category, came out to be very similar to that of
OVA classification, and are thus not reported in the paper.

5. INTERPRETATION AND DISCUSSION OF
RESULTS

The first observation looking at Figure 4, 5 and 6 is that the av-
erage accuracies (i.e., the fraction of correctly classified queries)
are reasonable, i.e., in most cases some fraction of users queries
can always be correctly classified. The average accuracy across all
the 60 users of interest is 25.95% when N=100, and this decreases
to 18.95% when N=1000. These accuracies show that at least a
quarter of the user’s queries can be easily identified. The misclas-
sification rates are also very low in almost all cases.

Looking at Figure 4 across the rows, we find that the accuracies
are likely to increase with the number of queries posed by the user.
We can explain this by looking at the distribution in (Figure 1); the
number of users go down considerably with increase in the number
of queries. If there are only few users who pose a large number of
queries, their queries do not get mixed well and thus can be identi-
fied with a high probability. Figure 5 shows that longer queries are
likely more identifiable. This is because only a very small fraction
of users issue longer queries (more than 6 words), as seen from
Figure 2.Following the same reasoning, we observe, from Figure
6, that accuracies are expected to increase as the sensitivity of the
query content increases (recall the sensitive/insensitive query dis-
tribution in Figure 3). Though the results might seem intuitive and
follow the trend that users who stand out are easily identifiable, they
provide us a very good estimate of what percentage of these user
queries can actually be identified because of the query properties.

Reasons behind the accuracies.
To understand these results, we try to find the reasons behind

how and why a query gets identified as a user query. Since the
data fed to the machine learning algorithm contained queries bro-
ken down into word vectors, we tried to identify the word usage
distribution among the 1000 users. By trimming down all the query

words, using stemming algorithms present in WEKA, we identified
the ‘root’ keywords appearing in the queries and sorted them in the
decreasing order of occurrence. The distribution can be seen in
Figure 7. There were 28659 root keywords(i.e. stemmed words) in
total and of these only 4797 root keywords had more than 10 occur-
rences. This distribution mimics the ‘Long Tail’ behaviour of web
search queries, as discussed in [6], where each user is considered
a bit eccentric and is expected to send both common queries (all
root keywords with more than 10 occurrences in the distribution)
and a few unique queries (at least one keyword with less than 10
occurrences in the distribution). These unique keywords are what
we think might be contributing for query identification.

Figure 7: Root Keyword Distribution

Reasons behind accuracy decrease.
We understood how the accuracies are obtained, but the question

that is remaining is - “Why do these accuracies decrease when we
increase the value of N , the number of users using web search over
anonymizing network?”. We determine the label of a test query
based on the number of occurrences of similar query words in the
training sets. More the occurrences of such words in the user of in-
terest’s train set, more are the chances for it to be identified as a user
of interest’s query and vice versa. With the increase in the value of
N , the size of the other users’s training set greatly increases, im-
proving the chances of occurrence of test query words within. This
decreases the possibility of classifying the query as a user of inter-
est’s query. Here is one example that we came across for one AOL
user.“j c penney catalog” was a test query and there was no exact
looking query, or a query formed by subset of its keywords in the
other users’ training set. The words “j c penney” and “catalog” had
occurred before in the particular user’s train set, and hence it was
labelled as the particular user’s query when N=100. However as



Figure 5: OVA Results Summary for Query Length

Figure 6: OVA Results Summary for Sensitive Queries

N increased to 300, this query was not labelled as the user of inter-
est’s query, since there were more occurrences of “j c penney” and
“catalog” terms in the other users’s query training set. In this way,
depending on the occurrence of query terms in the training sets, the
accuracies decrease as the value of N increases.

Influence of a time gap.
The web content that the user is interested in varies with time.

A time gap between the test and the training data sets might make
it harder to de-anonymize the data, because the common content
between the test and the train sets decreases with time. However,
prior research [20] shows that users tend to pose exact same queries
over and over, as it is easier compared to remembering the url of the
search result, or more efficient than performing an internal search
within the website. This behaviour is described as “Bookmarking”
[20]. For a considerable long period, these queries do not change
and this helps the machine learning approach in identifying at least
a small fraction of the user queries. We tried identifying the per-
centage of same queries repeated in the test and train sets (assumed
to be bookmark queries), for two AOL users with IDs 20894930
and 67910. The percentage of bookmark queries were less than
6%, but the machine learning accuracies were higher than 58%, in-
fact higher than 90% for user ID 20894930. Thus at least a small
fraction of user queries could still be identified, even when there is
time gap between the test and training data sets.

6. RELATED WORK
Query classification problem studied in this paper is very similar

to authorship attribution. Authorship attribution has a long history
beginning in the 19th century. “Federalist Papers” is an early ex-
ample of the problem [12]. In early authorship studies, the primary
goal is to model unique author styles by looking at text character-
istics, such as vocabulary richness (zipf’s word frequency distribu-
tion), word length, choice of rhymes and habit of hyphenation.

During the evolution of authorship attribution problem, type of
data being studied changed from published articles to electronic
text – emails, tweets, blogs and online messages [25]. In the tradi-

tional authorship attribution problem, studied texts were long arti-
cles with few authorship possibilities as in the case of “Federalist
Papers”. However, electronic data may neither be long nor does it
have a few possible authors. Also in the case of emails, style of the
text changes according to receiver of the e-mail; same author can
write in different styles for different recipients. These issues make
authorship attribution problem more challenging in the context of
electronic data.

Identification of search queries is even harder compared to e-
mails or articles since the query length is much shorter. However,
recent studies show that “Vanity searches” [19], sending search
queries containing personally identifying information such as name,
address and telephone number; significantly contribute towards query
sender identification. These vanity searches leak the user privacy,
even when privacy preserving tools like TrackMeNot or Tor are
used.

To the best of authors’ knowledge, this paper is the first to study
the problem of identifying web search queries given a pool of queries
from users of an anonymizing network. This is related but different
from the problem of identifying queries from a search log. First,
an adversary in our application is the search engine itself and not
a third party attempting to de-anonymize a search log. Second,
unlike a third party, the search engine is already in possession of
users’ search history using which it can effectively train a classi-
fier. Moreover, the goals of our study were also different; we were
interested in evaluating existing classifiers to address this problem
so as to keep our attacks simple.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of identifying a user’s

queries from a pool of queries received by a search engine over an
anonymizing network. We demonstrated that an adversarial search
engine, equipped with only a short-term search history, can extract
user of interest’s queries by utilizing only the query content and off-
the-shelf machine learning classifiers. More specifically, by treat-
ing a selected set of 60 users – from the publicly-available AOL



search logs – as users of interest performing web search over an
anonymizing network, we showed that their queries can be identi-
fied with 25.95% average accuracy when N=100, and with 18.95%
average accuracy when N=1000. Though the average accuracies
are not so high, our results show that few users of interest can be
identified with accuracies as high as 80–98%, even when the value
of N=1000. We tried to identify the reasons behind how and why
a query gets classified as a user query, and answer why the accura-
cies tend to decrease as the number of users using the anonymiza-
tion service increase. Our results, therefore, cast serious doubt on
the effectiveness of anonymizing web search queries by means of
anonymizing networks.

One of the strengths of our attacks is that they only use mini-
mal information (query content) for identification of users’ queries
and use off-the-shelf classification techniques. Under realistic con-
ditions, it would certainly be possible to improve our attacks by
taking into account other information that would be available to
the search engine under normal circumstances. For instance, exact
query timestamps may very well be a useful attribute. Similarly,
exit node IP address is also likely to improve the accuracies. Fi-
nally, a search engine can build better classifiers by training them
on long-term (longer than 2 months) search histories of the users.
By utilizing the geographical locality information accompanying
the queries and the users [7] (place names and details pertaining to
certain localities) and using contextual information for query clas-
sification [3], we plan to further improve the results. We defer these
items as an interesting avenue for future research.
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