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Abstract

Web Search is one of the most rapidly growing applications on the
internet today. However, the current practice followed by most search
engines – of logging and analyzing users’ queries – raises serious privacy
concerns. In this paper, we concentrate on two existing solutions which
are relatively easy to deploy – namely Query Obfuscation and Anonymiz-
ing Networks. In query obfuscation, a client-side software attempts to
mask real user queries via injection of certain noisy queries. Anonymizing
networks route the user queries through a series of relay servers, hiding the
actual query source from the search engine. A fundamental problem with
these solutions, however, is that user queries are still obviously revealed
to the search engine, although they are “mixed” among queries generated
either by a machine or by other users. We focus on TrackMeNot (TMN),
a popular query obfuscation tool, and the Tor anonymizing network, and
try to analyse whether these solutions can actually preserve users’ pri-
vacy in practice against an adversarial search engine. We demonstrate
that a search engine, equipped with only a short-term history of a user’s
search queries, can break the privacy guarantees of TMN and Tor by only
utilizing off-the-shelf machine learning techniques.

Keywords: Search Privacy, Query Obfuscation, Anonymizing Networks

1 Introduction

The popularity of Internet has foreseen many developments, a major one being
the transformation of Web into a huge repository of information. Efficiently
searching this vast amount of information is important, which led to the emer-
gence of search engines. These search engines accept queries containing few

∗This submission combines and extends two previously published papers – [25, 26].
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words and provide related results to the users. To improve the relevance of
these results, the leading search engines started logging and analysing the user
queries. This prevalent practice has received considerable attention from me-
dia, public and researchers all over the world because of the possible privacy
breaches.

Public awareness was raised when the U.S. Department of Justice issued a
subpoena to Google for a week’s worth of search query records and one million
URLs from its Web index in August 2005 [24]. Later in 2006, AOL released
three months of search logs to the research community. Even though these logs
were pseudonymized, the identities of a few users could be extracted based on
the information embedded in their queries [14, 3]. After these major incidents,
growing attention has been given to how major search engines like Yahoo!,
Google, AOL and MSN process and store the user queries over a long period of
time.

Archiving the search queries is necessary for the search engine to improve
the relevance of the search results. Also, analysing these stored records helps
in generating revenue for the search engines through user specific advertising.
There are policies in place to restrict the duration of storing these search records,
but privacy breaches can take place however small duration these stored records
correspond to.

The privacy breaches due to stored query logs, as seen in the case of AOL
logs, can be broadly classified into implicit and explicit categories. Explicit
privacy breach takes place because of the information embedded in the query
itself. Many a times, the query content alone conveys personally sensitive in-
formation. Some examples include: a user searching for a particular disease he
or his family member might be suffering from, searching for one’s social secu-
rity number (SSN) or phone number to check if it exists on the web, locating
directions, subscribing to news items and performing “ego-surfing”1. Implicit
privacy violations, on the other hand, occur when the sensitive information can-
not be learned directly from the query logs. In this case, information needs to be
extracted using aggregation and profiling methods or data mining techniques.
As an example, it is possible to infer the income level of a user by keeping track
of the brand of products he/she often searches for [34].

Realizing the need for web search query privacy, researchers have come up
with a number of techniques. These techniques can be broadly classified into
three categories, based on the changes required at the server and the client
sides, the requirement of any additional third-party infrastructure and the level
of trust that the user needs to impose. The first class of solutions involves the
use of Private Information Retrieval (PIR) protocols [21]. These protocols, how-
ever, require infrastructural changes at both the server and the client. Though
practical PIR protocols guarantee computational privacy, they are not feasible
to be deployed in practice due to the high communication and computation
overload.

1Ego-surfing is a popular practice among users to search for their own names, just to check
what results might appear
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The second class of solutions require the presence of third party infrastruc-
ture, like a proxy, e.g. Scroogle [32] or an anonymizing network, e.g. Tor [8].
These solutions are advantageous in the sense that they do not require changes
at the server side, however, they force the user to impose unwanted trust onto
the third party entities and have performance penalties. In the case of Scroogle,
the user needs to trust a single server hosted by a third party company - which
accepts the user queries, strips away any identifying information associated with
the queries (like the cookies or the IP addresses), and acts as a relay between
the search engine and the user. Performing web search over an anonymizing net-
work certainly provides better protection and fault tolerance than a single proxy
because it relies on multiple peers. These anonymizing networks are typically
implemented using onion routing, whereby the user queries are routed through
a series of nodes/relay servers before reaching the search engine; thereby hiding
the actual source of the query. Because these relay nodes do not modify the
queries in any way, the actual query source remains visible to the search engine
if there is some identifying information associated with the query (like a cookie).
To achieve better search privacy while using the anonymization networks, client
side tools like Private Web Search (PWS)[30] have been proposed, which remove
any identifying information associated with the query.

The third class of solutions are based on the principle of Query Obfuscation,
whereby a client-side software injects many noisy queries into the stream of real
user queries transmitted to the search engine. The basic idea is to make these
noisy queries closely resemble the real queries, so that it is hard for the search
engine to distinguish the real queries and profile the user. Since these methods
only require changes at the client side, they can be easily adopted by privacy
conscious users. These methods do not modify the user queries in any way, but
just add few additional noisy queries; hence they do not prevent explicit privacy
breaches, but only protect the user against implicit privacy violations.

Though each class of solutions has its own advantages and disadvantages,
the third class is the easiest to deploy (since it only requires client side changes)
and provides the highest level of confidence to a user, since the user has com-
plete control and does not need to impose trust on any external entities. Since
search engines generally are not motivated enough to incorporate any server
side changes for user privacy, the second class of solutions, requiring third party
infrastructure, are preferred over the first class.

1.1 Our Contributions

In this work we try to assess and quantify the level of privacy provided by the
third and second class of solutions, by evaluating one solution in each class;
namely TrackMeNot (TMN) [16, 10] query obfuscation tool and the Tor [8]
anonymizing network.2

Both these problems are independent and yet related. They are independent
because they are based on fundamentally different principles, yet they resemble

2We have independently evaluated these solutions and the results have been published at
[25, 26]. This submission combines and extends the two previously published papers.
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similar binary classification problems (where one tries to separate the instances
of two classes when mixed together). In the case of TMN, the problem boils
down to identifying the queries of a user from the pool of queries containing user
and machine generated queries. On the other hand, the case of anonymizing
networks reduces to the problem of identifying the queries of a user from the
pool of queries generated by the user and other anonymizing network users.

We note that our problems are different from the problem of identifying user
queries from a search log (see, e.g. [19, 18]). First, an adversary in our work
is the search engine itself and not a third party attempting to de-anonymize
a search log. Second, unlike a third party, the search engine is already in
possession of users’ search history using which it can effectively train a classifier.
Moreover, the goals of our study are also different; we are interested in using
known classifiers to evaluate the minimum effort needed by an unsophisticated
adversary to break the privacy guarantees offered by these protection services.

A higher level goal of our work is to assess and quantify the effectiveness of
query obfuscation and anonymizing networks in preserving the user privacy in
practice, against an adversarial search engine. In our assessment we try to model
a naive adversary, with access to partial user search history and simple off-the-
shelf machine learning techniques. Our results establish lower bounds on the
accuracies that can be achieved, since we utilize as little information as possible.
It is always possible to improve the results by utilizing more information or
stronger machine learning techniques.

It has been mentioned in [30] that search queries, even though stripped
off of any accompanying information like IP address and cookies, reveal some
information about the user. This is associated to the linkability among queries.
We make use of this query linkability to separate the machine generated TMN
queries when mixed with user queries, and to separate a specific user’s queries
when mixed with queries of other Tor users. We try to address this open problem
of linking queries to users by using machine learning techniques (called query
classification) and show that queries of a user can be identified with reasonable
accuracies, just by analysing the query content.

For TrackMeNot (TMN), we demonstrate that an adversarial search engine
can break the privacy guarantees of TMN. More specifically, by treating a se-
lected set of 60 users – from the publicly-available AOL search logs [1] – as users
of the TMN software, we show that user queries can be identified with an aver-
age true positive rate of 48.88%, while the average TMN query misclassification
rate being only 0.02%.

For an anonymizing network like Tor, we demonstrate that an adversarial
search engine can extract user of interest’s queries by utilizing only the query
content. By treating a selected set of 60 users – from the publicly-available
AOL search logs – as users of interest performing web search over Tor, we show
that their queries can be identified with 25.95% average true positive rate when
mixed with queries of 99 other Tor users, and with 18.95% average true positive
rate when mixed with 999 other Tor users. Though the average accuracies are
not so high, our results show that a few users of interest can be identified with
accuracies as high as 80–98%, even when mixed with queries of 999 other Tor
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users.
We would like to highlight that the results for the first experiment are specific

to the TrackMeNot tool, which is currently the only real-world implementation
of query obfuscation. The results of the second experiment, in contrast, are
generic and apply to any anonymizing network since we do not utilize any net-
work specific information during the analysis.

1.2 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we present
how author identification problems compare to query classification problems,
and what prior work has been done so far in this area. Since we need to work
with real user logs for our experiments, we describe our novel experimental
methodology in Section 3. Our adversary model and metrics used to evaluate
the performance of the machine learning techniques are discussed in Section 4.
Section 5 explains the details of our first experiment, where we assess a practical
query obfuscation tool called TrackMeNot. In Section 6, we explain the details
of the second experiment, where we evaluate the effectiveness of anonymizing
networks in protecting user privacy. This is followed by Section 7, where we try
to analyse and interpret our results.

2 Related Work

The query classification problem is very similar to authorship attribution prob-
lems, which have a long history. An early example of authorship attribution is
the “Federalist Papers”[22]. The primary goal was to model unique author styles
by looking at the text characteristics, such as vocabulary richness (Zipf’s word
frequency distribution), choice of rhymes, word length and habit of hyphenation.
[7] showed that it was important to select content-independent attributes, such
as punctuation, usage of prepositions (e.g. “the”, “if”, “to”), etc. to reveal
author’s individual characteristics.

With the evolution of electronic text like emails, blogs, tweets and online
messages, the problem of authorship attribution has also evolved [38]. Com-
pared to the traditional authorship attribution problem, where the texts were
long and had few possible authors (as in the case of “Federalist Papers”), elec-
tronic data is neither long (e.g. tweets) nor does it have few authors. Firstly,
shorter chunks of data makes it harder to apply regular text analysis techniques,
such as bag-of-words. Second, style of the text may not help in identifying the
author since it changes according to the recipient (like in e-mails - same au-
thor can write in different styles for different recipients). In most cases, the
number of possible authors is either unlimited or very large. These issues make
authorship attribution problem more challenging in the context of electronic
data. However, studies like [7],[20] and [2] show that sophisticated classifica-
tion techniques (like Support Vector Machines(SVM) and multiclass classifiers -
OVA and AVA) can give promising results even with electronic data. In this pa-
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per, we use some of these sophisticated techniques when off-the-shelf classifiers
cannot help in identifying user’s queries.

Query classification is even harder compared to e-mails or articles since the
query length is much shorter. However, studies show that “Vanity Queries” [33]
(those containing user identifying information, such as name, telephone numbers
and zip codes) significantly help in identifying a user, given an anonymized
search log containing queries (but not identifiers). Jones et al.[19] have worked
on de-anonymizing query log bundles, which are used by the search engines to
preserve the search logs and also to meet user privacy requirements. Making
use of the vanity queries, they show that an attacker, having access to a query
log bundle, can identify if the bundle contains a query session of a particular
user or even identify the names and locations of users in that bundle. They also
make use of analytical vulnerabilities and show that it is possible to un-bundle
the logs and cluster queries into users. In a related work [18], by the same
group of authors, it is shown that simple classifiers - those mapping queries into
age, gender and location of user sending the queries - can be combined to map
sequence of queries into a candidate user set which is 300-600 times smaller than
random guess. They also show that it is possible for an attacker to identify the
query session of a user, if he is able to guess some likely queries the user might
make, and the chances greatly improve if the attacker gets to know some of the
user’s unique queries.

3 Query Data

In order to pursue our study, we should work with real user queries. To this
end, one possibility was to seek users who may volunteer to let us record their
queries. However, due to the privacy concerns (which form the basis for our
work), it was not feasible to recruit such volunteering users.

To address the above problem, we used a novel experimental methodology.
We worked with the released AOL search data [1] and simulated the existing
queries as they would have appeared to the search engine if the users were using
the query obfuscation tools or the anonymizing networks. The AOL search
data was well suited for this purpose because it consists of a large number
of real user queries (21 million), corresponding to a large user base (650,000)
and spanning over a reasonably long period of time (3 months). Though the
AOL logs correspond to a different time period (year 2006), it does not affect
our experiments because we concentrate on the query content alone and do
not consider the associated query timestamps, as we discuss later in the paper.
Since most queries do not have temporal dependence, we proceed with the use
of historical AOL search logs for our experiments.

3.1 Relevance of AOL Data

The behavior of a user group which uses privacy enhancing technologies is ex-
pected to be different from the group which is not aware of privacy issues or the
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existence of privacy enhancing tools. We do not have any information about the
privacy consciousness of AOL users. However, since the AOL data was released
before the concern for web search privacy grew among users (because most users
were not actually aware that search engines were collecting such logs), or before
the anonymizing techniques were actually proposed or used for this purpose,
we believe the AOL logs most likely capture the non-privacy conscious user’s
search behavior.

We should note that it may not be possible to obtain data which can capture
the difference in behavior of privacy conscious users in the real world. Privacy
conscious volunteers may not be willing to share their web search query traces
for research, and even if they share, it might not reflect their regular/normal
behavior and would be corresponding to a made up personality. However, when
people are knowledgeable about how a privacy enhancing technology works and
if they believe in it offering protection, then there is a high chance that these
privacy conscious users might open up and exhibit their normal web search
behavior believing they are protected. Hence, we believe using the AOL logs
might allow us to obtain a first step understanding of the protection offered by
the privacy enhancing technologies.

3.2 AOL Data Statistics

These AOL logs span across three months: March, April and May of 2006. We
use the May month’s data for simulating the user and reserve the data from the
first two months as the user history (which we assume is available to the search
engine before the user started using TMN or Tor). Since search engines have
existed for longer than a decade while the search privacy concerns grew recently
in 2006, we believe it is safe to assume the search engine has a partial search
history of the user - until the user started using these privacy tools. The first
2 months data will be used as a training set and the last month data will be
the test set, in case of our supervised machine learning classifiers. This AOL
data is a tuple of the form <AnonymousUserID, Query, QueryTime, ItemRank,
ClickURL>. For our experiments we do not make use of the ItemRank and
ClickURL fields, since they are not available for all the queries.

Since it is hard to conduct the experiment on all the 650,000 users, we
selected few users from the AOL logs for our experiments. This selection is
done not at random, but based on the users’ behaviour across different categories
(discussed below) so that a wide variety of users are covered. The following five
categories have been identified, since they were directly observable from the logs.
For obtaining the statistics across each category, we considered all the 650,000
AOL users across all three months. All the graphs are plotted in logarithmic
scale to closely observe the trends.

3.2.1 Number of Queries

Over a period of time, different users send different number of queries. We
calculated the total number of searches performed by each user and plotted
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Figure 1: Number of Queries

the number of users across different query bands. From Figure 1 (a power law
distribution), we can see that most users lie below the 500 query mark with
the bulk of them (about 98.72%) performing less than 100 searches over a three
month duration. The rest are spread across the graph in small numbers. The
same characteristics are also seen in the graphs plotting the maximum number
of queries fired in a day, a week and one month versus the number of users
in each query band. We thus combined these four into the same category (i.e.
number of queries over a 3 month period).

3.2.2 Average Query Frequency

Figure 2: Average Query Frequency
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Users have different querying rates, which may turn out to be an identifying
feature. We computed the average timing difference between successive queries
for each user and plotted the number of users across different time bands -
shown in Figure 2. We can see that the largest user group has average query
frequency less than 100 seconds; this is because most of the users send few
queries in immediate succession and then remain inactive (might be because
the user removed his cookies, and all his later queries were not attributed to
the same user). We see that the number of users with moderate time difference
(of few thousand seconds) between queries are few, because a large number of
users seem to take long breaks between query sessions pushing the average time
difference between queries to large values. Hence, there is a very small group of
users who frequently send queries to the search engines.

3.2.3 Sensitive Query Content

Figure 3: Sensitive Query Distribution using Method1

The content of search queries obviously varies across users and we believe
it might play a very important role in conveying information about the query
source. We considered two broad classes for the query content: sensitive and
insensitive. Sensitive queries are those, which a user may not be willing to reveal
to the outside world, such as his/her medical condition, interest in weaponry
(considering the alarming increase in terrorism), those related to child abuse
and pornography, and so on. On the other hand, a user may not mind the
public taking notice of his/her insensitive queries, such as those related to movie
interests, sports, and education.

We adopted two methods to identify the sensitive query distribution (one
for each experiment), as we were unsure which might be a better way. For the
first experiment, we resorted to machine learning techniques for classification
of query content since it is easy compared to keyword based identification. We
manually labelled a small subset of queries into sensitive and insensitive cat-
egories (we referred to various press articles discussing sensitive queries that
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appeared in the AOL logs [14, 3]), and trained a Naive Bayes classifier with
this data. We used this trained classifier to classify the rest of the user queries.
The cross-validation true positive rate of this classifier on the manually labelled
set was 68.0095%. Having classified each user’s queries into the sensitive and
insensitive categories, we plotted a graph indicating the number of users across
different sensitive/insensitive percentages (see Figure 3). The graph is alarming
and contrary to what one would normally expect. A large number of users were
classified to be making sensitive queries. This anomaly could be because of the
way we trained the classifier; while training, we labelled the complete query in
the training set to be sensitive or insensitive instead of just selecting some rele-
vant keywords, because we did not want the filtering mechanism to miss queries
– such as “how to kill your wife” – which are not necessarily keyword sensitive.

For the second experiment we decided to use the keyword based sensitive
query identification, to see how the distribution might vary. We observed queries
of 2000 AOL users and identified certain sensitive keywords relating to medical
data, terrorism, weaponry, child abuse and pornography. Some sample keywords
include steroids, marijuana, rape, porn and suicide bombers. If any one of these
keywords occurred in a query, the query was labelled as sensitive. We labelled
the queries of all the AOL users and found the percentage of sensitive-insensitive
query distribution for each user. We plotted the user distribution across different
percentages of sensitive queries - shown in Figure 4. Having a different keyword
set might alter the distribution a little, but we expect the distribution to mostly
remain the same.

Figure 4: Sensitive Query Distribution using Method2

3.2.4 Weekday/Weekend Distribution

From the logs, we observed that some users perform web search only during
weekdays (they might be using corporate machines) and some only over the
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weekends. Speculating this as an important feature for user identification, we
calculated the number of queries fired by each user over weekdays and weekends.
We categorized users into three groups – those who search only over weekdays,
those who search only over weekends and those who distribute their queries
between weekdays and weekends. Figure 5 provides a graphical distribution of
this data.

Figure 5: Weekday/Weekend Distribution

3.2.5 Query Length

Though query lengths are implicitly attached to the queries, they may contribute
towards identifying the user. As an example, if there is a user A who sends two
word queries consistently, and we come across a query consisting of 5 words in
length, then it is highly unlikely that user A might have generated that query.
Hence considering the query length as an important attribute, we plotted the
number of users across three different query length bands – Short, Medium and
Long. The users in short band have average query length of less than 3 words,
those in medium band have average query length lying between 4 to 6 words,
and users in long band have average query length greater than 6 words. From
Figure 6, we can observe that a large number of users send short queries.

4 Our Adversarial Model

The adversary in our work is the search engine itself and not a third party,
whose goal is to work against these privacy preserving solutions and identify
the user queries for profiling and aggregation purposes. Unlike a third party,
the search engine is already in possession of the users’ search history which it can
effectively put through use to gain an advantage. We consider the adversary
to be passive and that it only analyses the logged queries. In particular, we
assume it does not inject any manipulated responses to the user in an attempt
to identify the user queries.
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Figure 6: Query Length Distribution

We try to model a naive and unsophisticated adversary, who makes use of off-
the-shelf machine learning techniques to identify the user queries with as little
effort as possible. Since the effectiveness of these machine learning techniques
largely depends on choosing optimized parameters, we keep our attacks simple
by either using default parameters for the techniques or making the simplest
parameter optimizations. Also, we assume that the adversary does not make use
of any information associated with the queries besides the queries themselves,
like the cookie information associated with the search queries, the exact query
timestamps or the Tor exit node IP addresses. This additional information may
not be available when the user is using a sophisticated privacy solution (like
PWS[30] + Tor). Therefore, our results establish the lowest accuracies that can
be achieved, since we utilize the least information that is always disclosed, and
it is possible to improve the results by utilizing more information or stronger
machine learning techniques.

We can consider both the query obfuscation and anonymizing network prob-
lems as binary classification problems, where we try to associate query instances
to either a user class or Other class. Here the Other class represents the
TMN class in the query obfuscation experiment and the other Tor users in
the anonymizing network experiment. For measuring the efficiency of the ma-
chine learning techniques in correctly identifying queries belonging to each class,
we use two metrics: (1) percentage of correctly identified User queries, and (2)
percentage of Other class queries incorrectly identified as user queries. If there
are u user queries and t other class queries, recorded by the search engine,
and a classifier predicted u′ + t′ queries as user queries, where u′ corresponds
to correctly identified user queries and t′ corresponds to incorrectly identified
other queries, then our two metrics are given by u′/u and t′/t, respectively. We
shall henceforth refer these measures as “True Positives” and “False Positives”.
(Standard Machine learning definitions use “accuracy” and “misclassification
rates” as the performance metrics). The classifier is said to be doing a good
job if u′/u is close to 1 and t′/t is close to 0, i.e, percentage of correctly classi-
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fied user queries is close to 100% and percentage of incorrectly classified TMN
queries is close to 0%.

4.1 Relevance of Classification Results

Let us assume that the search engine is interested in identifying the queries
corresponding to a user of interest, A. Assume there are nu number of A’s
queries and no number of Other class queries (note that generally nu << no).
The search engine can select a query at random and can trivially identify it
to be A’s query with a probability pnaive = nu

(nu+no)
. Instead, if we apply our

classification approach which has a true positive rate of x (i.e., probability of
correctly identifying A’s queries) and a false positive rate of y (i.e., probability
of incorrectly identifying others’ queries as A’s queries), then we obtain a (very
small) subset of x ∗ nu A’s queries and y ∗ no other users’ queries. Now, if we
pick a random query from this subset, then the probability that this query is
A’s query is pclass = x∗nu

(x∗nu+y∗no)
. If our classification is doing a good job, i.e.

if x is high and y is low, then pclass would be significantly higher than pnaive,
which in turn would mean that we are doing a much better job of identifying
user’s queries than we do with a random guess.

For example, consider nu to be 100 and no to be 100,000. Assume the
classifier’s true positive rate, x, to be 50% and the false positive rate y to be
0.1%. Based on the numbers, we can see that the classifier would label 150
queries as A’s queries. The probability of identifying A’s queries in this small
subset of 150 queries is much higher (pclass = 0.33) when compared to the
default probability (pnaive = 0.001). The adversary, i.e. the search engine, will
prefer to use these less noisy 150 queries for personalization and aggregation
purposes as compared to the 100,100 more noisy queries. This example clearly
shows the need to use a classifier to obtain a purer sample of user queries.

In all our experiments, we try to evaluate these true positive rate x and the
false positive rate y for the classifiers, which help us in validating whether the
pclass is higher than pnaive; our results show it is indeed the case.

5 Evaluating privacy provided by Query Obfus-
cation

The goal of this experiment is to find how effective query obfuscation can be in
preserving users’ privacy in practice. We focus on a real world query obfuscation
tool called TrackMeNot (TMN) [16, 10], which is implemented as a Mozilla
Firefox plugin. This tool programmatically generates queries, mimicking the
user search behaviour, and attempts to hide the real user queries in this fake
query stream. TMN has taken necessary measures to closely simulate user’s
search behavior and has evolved considerably over time. Currently TMN is
a popular and robust query obfuscation tool, with 469,098 downloads for the
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plugin version 0.6.721 [11]3.
Previously, theoretical models have been developed to bring insights into the

effectiveness of query obfuscation for search privacy [37] and a brief analysis of
TMN has recently been conducted in [6] using search logs from a single user
(see Section 2.1 of [6]). The current work represents the first step, to the best
of our knowledge, towards a large scale analysis of TMN.

We set out to investigate the following question: Is it possible (and to what
extent) for an adversarial search engine – equipped with users’ search histories
– to filter out TMN queries using off-the-shelf machine learning classifiers?.

Overview of results: We answer the above question affirmatively. We selected
60 users from the publicly-available AOL search logs and treated them as users
of the TMN software. As per our metrics defined in Section 4, we are able
to achieve an average true positive rate of 48.88% for identifying user queries,
while the average false positive rate is only 0.02%. We also observed that for
few users, the true positive rates were greater than 80% and as high as 100%,
whereas for others, the true positive rate was less than 10%. In almost all cases,
the pclass value was very close to 1 and much higher than the value of pnaive,
which was always less than 0.1. Based on our results, we can conclude that
most users are susceptible to privacy violations even while using TMN, some of
them being significantly more vulnerable than others.

5.1 Background: TMN Query Generation

In this section, we discuss TMN query generation process. We first try to
understand this process based on what was reported in [16], and then, for deeper
insights, inspect TMN’s source code [10]. At a high level, the goal of TMN is
to hide user queries in a stream of random machine generated queries. In order
to make these random queries indistinguishable from real user queries, TMN
adapts the randomly generated queries to content a user is interested in. This is
achieved by studying the web search responses to real user queries and extracting
useful information. TMN uses this extracted information to adapt the random
generated queries accordingly. To understand how TMN works and adapts
to user queries, consider a small example. Assume user A installed TMN and
started using it. Initial TMN queries would be generated from popular news RSS
feeds, hence the fake query stream contains queries like “new apple macbook pro
launch”, “Obama and whitehouse”, etc. When A searches for “google android
versions”, TMN notices this query and its accompanying search results. By
learning from this, it generates newer queries like “Google android”, “android
phones”, etc. and adds them to the query stream. Later on when user searches
for “restaurants in california”, TMN adds queries related to “california” and
“restaurants” to the query stream. This adaptation to user queries helps TMN
generate realistic looking fake queries.

3We refer the reader to Bruce Schneier’s criticism of TMN when it was introduced in 2006
[31]
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5.1.1 Understanding TMN from the Literature

TMN hides the user queries in a stream of programmatically generated search
queries, which mimic or simulate the user’s search behavior. In order to make the
fake queries look realistic, TMN includes many features described below. TMN
maintains a dynamic query list, which is instantiated with an initial seed list of
queries obtained from popular RSS feeds and publicly available recent searches.
Later, individual queries from this list are randomly selected and substituted
with query-like words from HTTP response messages returned by the search
engine for actual user queries - thereby adapting the newer queries to reflect the
content a user is interested in. Over time, each TMN instance develops a unique
set of queries and adapts itself to the user’s interested content and mimics the
user more closely.

TMN employs a “Selective Click-Through” mechanism, which simulates the
user behavior of clicking on the query results returned by the search engine. It
also keeps track of all the user searches by monitoring all outgoing HTTP re-
quests from the browser using the “Real Time Search Awareness” mechanism.
The “Live Header Maps” feature enables TMN to adapt dynamically to the
client’s browser, such as browser version and operating system details, helping
TMN to use the exact set of headers that the browser uses. TMN also imple-
ments “Burst Mode” queries in order to incorporate the common user behavior
of firing related queries in immediate succession as part of a query session.

With all these features, TMN is believed to be a good simulator of user’s
searching behavior. However, it has certain drawbacks as mentioned in [16].
TMN cannot mask a user’s private information (e.g., names or phone numbers)
included in the search queries, and it cannot prevent user identification based
on the IP address or cookies. In order to hide one’s IP address while searching,
TMN developers recommend the use of anonymizing networks, such as Tor
[8][16]. [31] points out TMN might generate “hot-button issue” searches - those
involving sensitive search query terms (e.g. “HIV”,“drug-use” and “bombings”),
which the user might not be willing to search. The TMN authors claim that
this problem can be prevented by configuring the initial RSS input feeds and
thus controlling the type of queries sent by TMN. Based on these discussions,
we can say that TMN (potentially) only provides protection against aggregation
and profiling of individual search queries by adversarial search engines. With
and without the use of TMN, user’s area of interest would be exposed to the
adversary, but when using TMN, the actual search queries would be masked
in a stream of related queries. The better the simulated queries resemble the
actual user queries, the better are the chances for TMN to hide the actual user
queries.

5.1.2 Understanding TMN from the Source Code

In order to obtain a deeper understanding of TMN, we analyzed the supporting
code of TMN’s Firefox extension. Mozilla extensions which are written in XUL
and JavaScript, provide an easy way to develop new applications on top of the
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basic Firefox browser platform. The XUL language extends the GUI of the
browser while the JavaScript helps in defining the functionality.

When TMN is installed on the Firefox browser, it creates a default query seed
file and a query list. This query list is initialized with some queries extracted
from the default or supplied RSS feeds and this list is padded with some queries
from the query seed file. Once done, a search is scheduled immediately (delay is
0 seconds). For the later queries, some non-zero random timer values are used
based on the query generation frequency chosen by the user (and some random
offset) using the TMN control panel.

After the delay timeout, a fake search query request is initiated. A random
query is selected from the query list and with some probability the query is
modified – only the longest word in the query is retained or a negated word is
added to the query (such as “word1 word2 - word3”), or quotation marks are
added. This modified query is used as the search query. Sometimes, if “Burst
Mode” is enabled, a sequence of related queries might be generated from the
selected query by omitting some keywords at random. These Burst Mode queries
are sent within short intervals of time, so as to form a chain of related searches
– simulating user search sessions, where queries sent in immediate succession
relate to the same topic.

When encoding the generated search query into a URL, some browser details
are to be mentioned in the header portion of the URL request. TMN maintains
a list of headers and URLs for each search engine, and an entry in these lists
gets updated when TMN observes any change in the user communication with
the search engine. The previously selected and modified query is encoded into
the search request URL with updated headers and an XMLHttpRequest is gen-
erated. Apart from displaying the sent query on the Firefox status bar, TMN
also stores this request URL in logs for later reference. When there is a state
change in the XMLHttpRequest sent, i.e., when a response is received from the
server, an appropriate action is taken based on the HTTP status response. If an
error occurs, it is logged. If the HTTP status response is OK, then the HTML
response is processed and keywords are extracted from the textual content on
the web page. The TMN query list is updated by randomly replacing few old
queries in the list with these new extracted keywords, thereby incorporating
the user interests. Since, the newer queries are again selected from this same
query list, the newer queries would better adapted to the content the user is
interested in. Also based on some probability, TMN tries to simulate the user
click-throughs. To this end, TMN identifies the links on the HTML response,
processes these links, and picks one of them at random. After some delay, an-
other XMLHttpRequest is generated with the selected link, thereby simulating
the user behavior of clicking a link. TMN does not process the returned html
response for this click-through link. If Burst Mode is enabled, TMN schedules
the next search with the following search queries in sequence. After a timeout,
TMN repeats the whole procedure again with another randomly picked query
from the query list.

In this way, the TMN query list (and so the TMN query seed file) gets up-
dated with keywords extracted from the web response returned by the search
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engine, both for the user queries and TMN queries. In the long run, TMN
gets adapted to the query content the user is interested in and generates better
queries making it (potentially) much harder for the search engine to differentiate
the noisy queries from the original user queries. Because some form of random-
ization occurs at each and every step, it is impossible for two TMN instances
to generate the same set of TMN queries.

5.2 Experimental Study of TMN: Preliminaries

Based on our discussion in previous section, we find that TMN has taken nec-
essary measures to simulate user’s search behavior and generate noisy queries
as similar as possible to user’s queries. TMN has also evolved considerably over
time resulting in a potentially robust and popular query obfuscation tool. In this
work, we set out to investigate whether it is still possible (and to what extent)
for an adversarial search engine to filter out TMN queries using off-the-shelf
machine learning classifiers, and thus evaluate the privacy guarantees provided
by TMN. Our adversarial model is discussed in Section 4. We assumed that the
search engine would have access to user’s search histories for a certain duration
until the point the user starts using the TMN software.

In order to pursue our study, we should work with real user queries; and as
discussed in section 3 we work with AOL logs. We selected a few users from the
AOL logs and simulated their behaviour of issuing queries to the search engine
while TMN is installed and running on their machines. TMN is a Mozilla
extension and these extensions, installed on a Firefox browser, operate only on
one user profile – the one on which it was installed. Hence, we can have multiple
Firefox user profiles, each with its own independent TMN instance, simulating
a different user.

Due to the resource limitations on a single machine, it is difficult to run
many Firefox user profiles simultaneously. To remedy this, we used the Plan-
etLab [27] system, a global distributed research network used by researchers to
develop network applications and run network simulations. PlanetLab resources
are assigned to the users as a resource slice, and these slices are instantiated by
assigning nodes to it. Each of these nodes need to be configured with the ex-
perimental environment, which in our case is a working Mozilla Firefox browser
with the TMN plugin installed.

5.2.1 Selecting Users

We decided to select 15 AOL users from the following four categories, i.e., a
total of 60 users.

Number of Queries From Figure 1, we find that most users are below the
100 query mark, and of these, more than 70% perform fewer than 30 searches
during the three month period. Thus, we selected eight users at random from
the set of users who fire less than 30 queries, five users from the set of users who
fire less than 100 queries and two users who pose more than 100 queries.
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Average Query Frequency The graph in Figure 2 is smooth everywhere
except for a sharp peak at 200 seconds. To take this into account, we randomly
selected five users from the set of users with an average query frequency of
less than 200 seconds, five users lying near the second rounded peak at 35000
seconds, and the remaining five from the set with more than a million seconds
average gap between successive queries.

Sensitive Query Content Since there are a large number of users in the
100% sensitive band (Figure 3), we randomly selected six users from this set.
Five users are selected from the 30% insensitive - 70% sensitive band, two users
from 10% sensitive - 90% insensitive band, and the remaining two from 100%
insensitive query set.

Weekday/Weekend Distribution Based on the distribution in Figure 5,
we equally divided the choice of users among those who fire all their queries
over weekdays, those who distribute 40% on weekday and 60% on weekend, and
those who search only during weekends.

5.3 Experimental Set-Up and Implementation

After the user selection, the task ahead was to simulate the user logs while a
TMN instance per user is running, and record all the resulting queries. Sixty
nodes (corresponding to each selected user) were allocated to the PlanetLab
resource slice, and each of these nodes maintains one Firefox user profile. Since
Mozilla is a GUI application and X11 forwarding (necessary to run GUI appli-
cations over SSH connections) is not enabled on the PlanetLab machines due
to security reasons, we had to install a VNC server on each of the nodes, which
provides a GUI enabled remote access to these machines. Google was chosen as
our (adversarial) search engine.

To simulate user’s search behavior as per AOL log files, we developed a
Mozilla extension which reads the user logs and fires the queries at timestamps
listed in the logs. Similar to the TMN plugin, the new plugin also generates
the user queries as XmlHttpRequests. The html response – from the server – to
these queries is processed by TMN, since TMN does not find the corresponding
request URL in its database (see Section 5.1). TMN treats the webpage to
be a valid response to an actual user query and adapts itself to the new data
– the exact behavior we need. Since the AOL user logs belong to a different
time frame (year 2006), they were translated to the present time. The average
query frequencies of TMN instances were chosen at random so as to keep them
as close as possible to the real user behavior. We also ran 5 additional TMN
instances with varying average TMN query frequency, for the same user, on our
local machines in order to evaluate the effect of TMN query frequency on the
level of privacy provided by TMN. After configuring the necessary settings on
PlanetLab machines, both the user log simulator and TMN were started. These
experiments were conducted for a period of one month, and backup of the logs
was taken at regular intervals.
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5.3.1 Classification of User and TMN Queries

For our machine learning requirements, we used WEKA [36], an open source
software which supports many machine learning algorithms and data prepro-
cessing options. We used this off-the-shelf machine learning toolkit in order to
estimate the true positive rate with which we (adversarial search engine) can fil-
ter user queries, from the pool of user and TMN queries we obtained as described
in previous section. For this experiment we treat WEKA as a black box and do
not dwell deep into the working of the algorithms. Generally performance of a
machine learning technique depends on the optimal parameters chosen for the
problem; to keep our attacks simple we do not make any optimizations, but use
the default parameters.

Two main categories of machine learning algorithms which can be used for
our application are clustering and classification algorithms. Classification is a
supervised mechanism, where we need to train the classifier on some labelled
training set, and assign labels to quantities in the test set. Clustering algo-
rithms, without any prior knowledge of labelled data, try to group the data into
clusters/groups, such that elements in a group share some common features.
Clustering is unsupervised [36].

5.3.2 Preparing the Data

The pool of simulated user and TMN query logs, collected over the one month
period (as discussed in previous section), form our test data which needs to be
clustered or classified. We labelled each query in the test data as a user or TMN
query, since we want to test the performance of machine learning algorithms af-
ter categorizing the queries. The data includes the query, its label and the
timestamp when the query was fired. For indicating the time, we used WEKA’s
DATE attribute in “yyyy-MM-dd HH:mm:ss” format. This string is internally
converted by WEKA into a numeric representation (akin to the unix time stamp)
when using it for machine learning. The queries are strings and WEKA cannot
directly handle string attributes. So we used a preprocessing filter, called String-
ToWordVector, which breaks down the words in the string and converts them
into numeric attributes. Each string gets converted into a word vector of 1’s
and 0’s in these attributes, where ‘1’ indicates the presence and ‘0’ indicates the
absence of the word in the string. For example, having just two queries – “apple
macbook pro” and “google android phones” – results in 6 numeric attributes,
one for each word(< apple, android, google,macbook, phones, pro >). Both the
queries can be represented as vectors in these attributes, like < 1, 0, 0, 1, 0, 1 >
and < 0, 1, 1, 0, 1, 0 >. These word vectors are generated from the set of words
appearing in the training set. Any new unseen words appearing in the test
set are neglected. So, a test query like “apple ipad” would be converted to
< 1, 0, 0, 0, 0, 0 > vector, after neglecting the “ipad” word. So every query
would be represented as a big tuple/vector in the query words, the timestamp
and the label we assign.
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5.3.3 Clustering Algorithms

We started with the unsupervised/clustering schemes since they are simple and
potentially more powerful (as no labelled training is needed). We tested the
performance of well known clustering algorithms, such as SimpleKMeans, Far-
thest First and EMClusterer [9] with default parameters, using the Classes-to-
Clusters evaluation mode in Weka. In this testing mode, the pre-assigned labels
are masked and the data gets processed using the other attributes. Once the
clusters are formed, the labels are unmasked and the majority class in each clus-
ter is determined to find the performance of the algorithm as per these labels.
However, the clustering algorithms with default parameters could not distin-
guish user queries from those of TMN and placed both types of queries into
the same (TMN) cluster, for all of our test users. We note that it is possible
to achieve better user query identification results by fine tuning the parame-
ters of the clustering algorithms or applying other procedures, such as n-grams.
However, since our goal is to simulate a naive adversary trying to identify the
efficiencies using simple off-the-shelf machine learning tools with no parame-
ter optimization, we defer this task to future work, and rather concentrate on
classification algorithms.

5.3.4 Classification Algorithms

To train the classifiers we need to have sample data corresponding to both
the user and TMN classes (i.e., pre-labelled data). If only one of user or TMN
training data is used, all the queries would get classified into the same class since
there are no identifying features available for the second class. The training
set for the user queries was obtained from AOL two month user history, as
discussed in Section 3. To obtain the TMN training set, we used the logs from a
TMN instance which was run independently of all our simulations on a desktop
machine for a period of one week.

With these training and test sets, we chose five classifier algorithms, out of
the several classifiers applicable to our scenario, based on their performance in
few preliminary tests. They are: Logistic (Regression), Alternating Decision
Trees (ADTree), Random Forest, Random Tree and ZeroR. For now, we neglect
other better classifiers like SVM, so as to estimate the lowest accuracies that
can be achieved. For the sake of completeness, a brief description of each of
these classifiers is provided below:

• Logistic (Regression): Regression classifier models are used to predict the
probability of occurrence of an event by trying to fit the data to a logistic
(linear, polynomial, etc.) curve in a multidimensional space. Based on
the location of the data point in the multidimensional space (relative to
the logistic curve), a label is assigned to it. For example, in the case of
linear regression, all points lying on one side of line in the 2-dimensional
space are given one label, and those on the other side are given another
label. The positioning of the line is determined based on the training data,
so as to minimize the errors and get a good separation between the class
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points. Logistic regression is mainly used when there are two classes of
data (where the classes can be separated by a line in the point space), but
multinomial versions also exist [36].

• Alternating Decision Trees (ADTree): These are similar to binary search
trees, where we start from the root and traverse to the leafs by taking the
path based on the value of the search variable. A decision tree algorithm
contains decision and prediction nodes. These decision (non-leaf) nodes
specify a condition while the prediction (leaf) nodes contain a number.
Based on the attribute values in the input data vector, we travel along
one path from the root node to the leaf/prediction nodes which determine
the classification label for the particular data vector. Variants of the
traditional decision trees exist, where we simultaneously travel along many
paths up to the leaf prediction nodes and the end result is determined by
considering all the prediction node values covered [36].

• RandomForest: They are also based on classification trees, but unlike
alternating decision trees Random Forests use a collection of classification
trees. The input is made to travel across all the trees and the final decision
is made based on voting, where the output of each classification tree is
taken into consideration [36].

• RandomTree: It is based on classification tree principles, but the nature
of the nodes in the tree is different. The algorithm considers K randomly
chosen attributes at each node in the tree (unlike a single attribute as in
alternating decision trees) and provides an estimation of class probabilities
instead of specifying a single label/class for the data vector.[36].

• ZeroR: It is the simplest classification algorithm and is based on major-
ity. The algorithm identifies the majority class label in the training data
and classifies every data element in the test set with this majority label,
thereby providing the threshold accuracy that should be provided by other
classifiers [36].

Query and Date Attributes: To check for the influence of each of the at-
tributes (query and date) on the classification, we tested the performance of the
above four classifiers (except ZeroR as its user true positive rate is 0% due to
a large TMN query set) across the following three settings for a couple of test
users. Our goal was to determine as to what extent these attributes might be
useful for classification.

1. Considering only date and label value attributes

2. Considering only query and label value attributes

3. Considering both query and date along with label value attributes.
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Table 1: % of user queries correctly classified with different attributes

Classifier True Positive Rates
Logistic ADTree Random Random

Forest Tree

User1
Only Query 92.59% 82.22% 92.59% 89.63%
Only Date 14.44% 13.7% 13.7% 13.7%

Both Query and Date 92.59% 13.7% 89.63% 46.30%

User2
Only Query 85.19% 85.71% 86.77% 86.24%
Only Date 3.17% 0.53% 0.53% 0.53%

Both Query and Date 10.58% 0.53% 68.25% 0.53%

The results obtained are indicated in Table 1. (The percentages indicate the
fractions of user queries correctly identified by the classifiers – i.e. the true pos-
itive rates; the false positive rates, i.e. the TMN query misclassification rates,
were close to 0% in most cases and so are not listed). We can clearly see that out
of the three settings, considering only query attribute along with label values
provides the maximum true positive rate. Including the date attribute (inter-
nally it is converted to a numeric value by WEKA) reduces the true positive
rate and considering only the date attribute yields the worst true positive rate.
Therefore, for the analysis of rest of the experimental data, we neglect the date
attribute and consider only query and label values as the data to be classified.
There could be other possible uses of the date attribute like timing windows,
but we neglect them for now to keep our attacks simple. Since Naive Bayes is a
standard classifier which can be used when date attribute is not considered, we
replaced ADTree with Naive Bayes classifier for the rest of our analysis.

TMN Average Query Frequency To test for the effect of TMN’s aver-
age query frequency in protecting users’ privacy, as mentioned earlier, we ran
another 5 simulations apart from the 60 simulations considered before. Each
of these 5 simulations, simulated the same user but with different TMN query
frequencies – 10 per minute, 5 per minute, 1 per minute, 30 per hour and 1 per
hour. After one month, these TMN logs were analyzed using the chosen clas-
sifiers. The results obtained for Naive Bayes and Logistic (Regression), which
yielded the best true positive rates, are depicted in Table 2. Though the per-
formance of Naive Bayes was varying a little, the Logistic regression classifier
was found to have a constant true positive rate. This suggests that using differ-
ent query frequencies would more or less provide the same level of privacy. In
other words, higher TMN frequency may not help in hiding user’s query better,
contrary to one’s intuition.

Independent User History: Since using an independent TMN log for train-
ing the classifier turned out to be helpful in identifying the user queries with
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Table 2: % of user queries correctly classified for different TMN query frequen-
cies
TMN Query True Positive Rates False Positive Rates
Frequency Naive Bayes Logistic Naive Bayes Logistic

(Regression) (Regression)

10 per Minute 6.25% 56.25% 0% 0.06%
5 per Minute 0% 56.25% 0% 0.02%
1 per Minute 56.25% 56.25% 0% 0.12%
30 per Hour 56.25% 56.25% 0% 0%
10 per hour 56.25% 56.25% 0% 0%

good accuracies, we performed a test to validate whether any user log data other
than the actual user’s history would also give similar results (if this were the
case, the search engine would not need access to every user’s history of searches).
To this end, we considered four users – user1, user2, user3 and user4, from
the AOL log data. Now, instead of using a user’s history to train the classifier
for that user, we used the history of user4 as the training data and tried to
classify user1, user2 and user3’s simulated queries from their respective TMN
query pools using Logistic, RandomForest, RandomTree and Naive Bayes (after
replacing ADTree, as described before) classifiers. In all the cases, none of the
user queries were identified correctly – that is the true positive rate turned out
to be 0%.

Our analysis above shows that an independent user log is not helpful in
distinguishing between user and TMN queries, but an independent TMN log
is. One reason for this could be that the independent TMN log was functional
around the same time frame as other TMN instances (i.e., it was run along with
other TMN instances) and it used the same default RSS feeds to populate the
TMN query list. Note that an adversarial search engine can also produce such
updated TMN log from time to time for training the classifiers.

We note that many users are not likely to pay attention to the RSS feeds
chosen for query generation and may use the default ones. Thus, in our experi-
ments, we used the default RSS feeds thereby generating the same initial seed list
of queries. We have not closed the browsers while conducting our experiments
because of the common practice among users to put their computers to sleep
and re-invoke them instead of switching them off and rebooting the machines
each time, and also due to their tendency to continue using the browser with-
out restarting unless it crashes. We acknowledge that not closing the browsers
might affect the efficiency of TMN, because TMN uses the RSS feeds to update
the query list with new keywords only when the browser restarts.

5.4 Classification Results

After collecting the query and label data from the 60 user simulations, we were
ready to execute the selected classifiers. As mentioned earlier, for each of the
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60 users, we randomly chose the TMN query frequency, simulating a real user
behavior (as shown in Table 2, this should not impact our results much). Hence
the number of TMN queries mixed with the real user queries differs in each
experiment, impacting our pnaive and pclass values. We built the training set
with user history log and an independent TMN log as discussed previously. The
results of classifiers over the test data are depicted in Table 3. For simplicity, we
have not listed the results for all the classifiers; rather we only report the per-
formance of the standard Naive Bayes classifier and the maximum true positive
rate achieved among the other three classifiers (Random Forest, Random Tree
and Logistic). Also, the true positive rates shown are the mean true positive
rates of the users belonging to different AOL categories (as defined in Section
5.2.1).

We find that for all users, the classifiers did a very good job of correctly
identifying almost all TMN queries; average false positive rate was close to
0.02%. In other words, there were very few TMN queries which were wrongly
classified. The true positive rates for identifying the user queries were not
very high in general; average true positive rates over all users was 48.88%.
In most cases, the classifier was able to identify a reasonable fraction of user
queries correctly. However, there were indeed some cases (e.g., one in Sensitive
Query Content and one in Average Query Frequency categories) where 100%
true positive rate was achieved in identifying the user queries. There were 4
other user instances for which more than 80% true positive rates were achieved.
The pnaive and pclass values are reported for the best performing classifier in
each AOL category. In all cases, the values of pclass are much higher than pnaive,
which reinforces that classifiers are useful for obtaining a purer sample of user
queries.

5.5 Discussion of Results

In this section, we discuss and attempt to interpret the results obtained in
Section 5.4. The first key insight from our results is that the classifiers were
very accurate in identifying the TMN queries (mean false positive rate over all
users was only 0.02%). This is perhaps because the TMN query log – using which
the classifiers were trained – consisted of a reasonably large number (42334) of
TMN queries (although only corresponding to a week’s period) which was likely
sufficient to extract features for identifying TMN queries. Recall that this log
was generated around the same time frame as our test user instances, which
might have been helpful in correct classification of TMN queries. Note that an
adversarial search engine can also produce such updated TMN log from time to
time for training the classifiers. A very low false positive rate of TMN queries
implies that any query classified as a user query, is indeed a user query with
significantly high probability.

The true positive rates for user queries, on the other hand, were not as good
as they were for TMN queries (we obtained a mean user query true positive
rate of 48.88% over all users). One possible reason for relatively low rate in this
case is that we were only able to leverage users’ two-month history for training
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Table 3: Mean true positive rates of user queries and mean false positive rates
of TMN queries for each category of users

No. of

Users

True False

pnaive pclass
Queries Positive (%) Positive (%)

Naive Max. Naive Max.
Bayes Bayes

0-10 8 6.15 11.52 0 0.07 0.002 0.97
11-100 5 7.08 33.14 0 0.25 0.011 0.79
100+ 2 18.71 33.86 0.06 0.29 0.08 0.94

Average

Users

True False

pnaive pclass
Query Positive (%) Positive (%)

Freq. (sec) Naive Max. Naive Max.
Bayes Bayes

0-100 5 28.16 40.41 0.03 0.01 0.007 0.99
35000 5 30.83 71.86 0.01 0.01 0.006 0.87
> 106 5 9.23 36.28 0 0 0.003 1

Sensitive

Users

True False

pnaive pclass
Query Positive (%) Positive (%)

Content Naive Max. Naive Max.
Bayes Bayes

0% 2 60 60 0 0 0.003 1
10% 2 61.46 64.79 0 0 0.002 1
70% 5 45.53 63.96 0.02 0.14 0.007 0.84
100% 6 23.97 39.02 0 0.16 0.017 0.84

Weekday/

Users

True False

pnaive pclass
Weekend Positive (%) Positive (%)

Distribution Naive Max. Naive Max.
Bayes Bayes

Only weekdays 5 12.28 12.28 0 0 0.002 1
Only weekends 5 23.2 99.99 57.26 0.08 0.004 0.57

Distributed 5 1.22 99.92 86.94 0.08 0.032 0.99
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purposes. Since a large number of users only fired less than 100 queries (as
seen from Figure 1) over 3 months, the classifiers did not have a large number
of user queries to work with. Due to this reason, perhaps it was not possible
to derive identifying characteristics for user queries in a number of cases. We
believe that, in practice, the search engines can utilize long-term search histories
available to them prior to a user starts using the TMN software, resulting in
much better true positive rates. Even with our current average identification
rates, the value of pclass is almost close to 1 and is much higher than pnaive,
which is always lower than 0.1. The search engine can identify nearly 50% of user
queries and still use them for profiling and aggregation purposes (since almost
no TMN queries were incorrectly classified, as discussed above). Remember,
the amount of information we used for the classification was very little (just the
query content) and we believe the results would improve if we made a better use
of the time stamps and use the ClickURL and ItemRank features. Note also that
our true positive rates were found to vary significantly across different users. We
observed that queries corresponding to some of the users could be identified with
greater than 80% and as high as 100% true positive rates, whereas for others, the
identification rate was less than 10%. Based on our current experiments, we can
conclude that most users are susceptible to privacy violations even while using
TMN, and some of these users are significantly more vulnerable than others (as
we discuss below).

Looking at Table 3, we can make inferences regarding which users are pos-
sibly more vulnerable based on our different categories: number of queries, av-
erage query frequency, sensitive query content and weekday/weekend distribu-
tions. User query identification true positive rates seem to be slightly improving
with the number of queries posed by the users. Although the false positive rates
are increasing very slightly, we can ignore them considering a good improvement
in user query classification rate. These results are justifiable because the more
the number of queries sent by a user, more are the chances to identify user query
patterns and hence better are the true positive rates. Users with very fast (less
than 100 sec) and very slow (more than 1 million seconds) average querying
frequencies seem significantly less vulnerable compared to those with moderate
(35,000 seconds) frequencies. The very fast and very slow category users are
those who send very few queries in immediate succession and then remain idle
or spread their few queries across 3 months duration. Since the queries available
for analysis are few, the true positive rates are bound to be less for these users
compared to the ones belonging to the moderate category.

We do not notice any significant effect of the sensitivity of query content on
classification accuracies. However, for users who did not pose any insensitive
queries (based on our categorization in Section 3.2.3), true positive rates were
found to be relatively lower. Therefore, based on our sensitive query classifica-
tion, the users who fire a larger fraction of sensitive queries were better camou-
flaged by TMN than those who fire a larger fraction of insensitive queries. This
might be because of the presence of many sensitive queries in the initial query
set generated from the default RSS feeds.

Users who engage in web search only during weekdays turned out to be
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much better protected compared to those who pose queries only over weekends
(queries of such users can be identified with almost 100% success). This might
be because the nature of queries posed during the weekends make them more
attributable to the user – as they are based on the user interests. The queries
posed during weekdays (highly likely to be from a work place) may not exactly
reflect the same, mostly due to the self imposed restrictions on searching for
queries based on user interests from a work place. Hence if users send queries
only during weekends, then these queries have higher chances of being related
to the user. Finally, from Table 2, we also observed that using different TMN
average query frequencies would more or less provide the same level of privacy.
In other words, higher TMN frequency may not help in hiding user’s query,
contrary to one’s intuition.

In summary, our results indicate that TMN is very susceptible to machine
learning attacks. In fact, TMN could be weaker than what our attacks imply.
This is because we only used some simple off-the-shelf classifiers with default
parameters and this itself resulted in considerable true positive rates. Use of
better and stronger machine learning algorithms, with optimized parameters, is
very likely to further increase the accuracies.

5.6 Experimental Summary

We focused on TrackMeNot (TMN), a real-world search privacy tool based on
query obfuscation, and demonstrated that a search engine, equipped with only
a short-term history of user’s search queries, can break the privacy guarantees
of TMN by only utilizing off-the-shelf machine learning classifiers. More specif-
ically, by treating a selected set of 60 users – from the publicly-available AOL
search logs – as users of the TMN software, we showed that user queries can be
identified with an average true positive rate of 48.88%, while the average TMN
query false positive rate was only 0.02%.

6 Evaluating privacy provided by Anonymizing
Networks

The first experiment shows that query obfuscation is not very reliable and does
not provide complete privacy to the user as expected. The next best privacy
option is to use additional third party infrastructure with minimum expansion
of trust beyond the user. This leads us to anonymizing networks which certainly
provide better protection and fault-tolerance than the use of a single third party
proxy server. As discussed before, anonymizing network routes user queries over
a path consisting of a series of nodes (called relay servers) distributed all over the
internet, effectively hiding the actual source of the query. We have considered
the Tor [8] anonymizing network for studying the effect of anonymizing networks
in protecting the user’s search privacy.

In this experiment we try to analyse how effective an anonymizing network
can be – in preserving users’ privacy in practice – against an adversarial search
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engine. (From here on, we will call the anonymizing network as Tor, for sim-
plicity of presentation and without loss of generality.) We observe that the web
search over Tor network has one fundamental drawback: the search query has
to reach the search engine in clear text format, for the search engine to be able
to process the query and return the response back to the user. In other words,
a user’s search queries are not hidden from the search engine. However, these
queries are indeed “mixed” among the queries issued by other users of the same
anonymization service.

We ask the following question: Is it possible for an adversarial search engine
to associate queries coming out of Tor exit nodes to Tor users who issued these
queries?.

Our adversarial model is discussed in Section 4. In an attempt to keep our
attacks more generic and not limited to only one particular type of anonymizing
network, we assume that the adversary does not make use of any information
specific to Tor anonymizing network – like the Tor exit node IP addresses. We
base our work on an important observation, made by other researchers [5], that
although a potentially large number of users might be accessing web search over
the Tor network, only a small fraction of these users really remain anonymous
to the search engine in practice. The reason is that a significant number of
users, even while using Tor, remain logged in to their accounts with search
engines (e.g., Gmail accounts with Google) and may not disable cookies and
other identifying information [5]. It is possible to use TOR clients like Private
Web Search (PWS)[30] and remove any identifying information accompanying
the query, but users are not generally aware of such tools. This implies that a
user’s queries might be getting mixed among queries of only a small number of
other (anonymous) Tor users, potentially making these queries more identifiable.

Overview of results: We answer the aforementioned question affirmatively.
More specifically, by treating a selected set of 60 users – from the publicly-
available AOL search logs – as “users of interest” performing web search over an
anonymizing network, we show that their queries can be identified with high true
positive rates of 80–98%, even when queries of up to 999 “other users” (other
Tor users) are mixed together. Our results indicate that we can identify a user of
interest’s queries with 25.95% average true positive rate, when queries of up to 99
other Tor users are mixed together, and this average true positive rate drops to
18.95% when queries of 999 other Tor users are mixed together. Our experiments
indicate that users who pose a larger number of queries, those whose queries are
longer and those with higher fraction of sensitive queries are more vulnerable.
Our results cast serious doubt on the effectiveness of anonymizing web search
queries by means of anonymizing networks. Since our attacks only exploit a
minimal amount of information (just the query content) for the query association
task and short-term search histories, and only use existing classification tools,
stronger attacks resulting in improved query identification rates are very much
plausible.
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6.1 Problem Formulation and Study Methodology

We base our work on the query information alone, because the search query must
reach the search engine in clear text format even while using any anonymizing
network (the query passes through many in-between relay nodes in encrypted
format when using TOR). In an attempt to keep our attacks more generic and
not limited to only one particular type of anonymizing network, we assume that
the search engine does not make use of any other information associated with
the queries, such as the query timing information, the exit node IP address,
unblocked cookies accompanying the queries or the Click-through patterns fol-
lowed by the user. This allows us to completely avoid the need to simulate the
re-routing of queries through Tor.

An important point to notice, in the context of working with old logs, is that
we should prevent combining query logs belonging to different time periods so
as to prevent identification of queries based on the temporal information. For
example, if user A’s query log belongs to year 2005 and user B’s query log
belongs to year 2010, then separating their queries when mixed together is a
lot easier using the temporal information embedded in the queries, such as the
current news topics, etc.. This problem does not arise in our case since all the
selected users belong to the released AOL logs. In addition, the timestamps
of the queries cannot be used directly. If the queries are channelled through
Tor, the queries are going to experience considerable (random) delay because
of the Tor’s re-routing. Hence, we do not make use of the exact value of the
timestamps, but we experiment only with timing windows and consider the
queries within those windows.

For our study, we assume that the adversarial search engine has access to
the list of possible Tor users performing web search over Tor(U). This is a
realistic assumption because the search engine has access to a user’s search
history and it can determine whether a particular user has possibly started to
use Tor for issuing queries. This can be done, for example, by identifying the
query patterns (such as query frequency) for a user or for an IP address with the
help of cookies. If for a reasonable duration, e.g. a week, the search engine does
not receive any queries from a user or an IP address, violating the user’s typical
querying pattern, it can mark that user as a potential Tor user. Even when
the users delete their cookies, there are chances that the search engine might
mistake these users to be possible Tor users. However, since the user querying
patterns do not change when using new cookies, the search engine might be able
to map these mistaken Tor users to the new cookies if the querying patterns
match, and continue profiling the users. Such mapping techniques or anti-
aliasing techniques have been studied before in [23]. Though the content they
deal with in [23] are large texts like bulletin boards and web pages, we believe
similar techniques could be developed for mapping web search users associated
with different cookies. Thus, we assume throughout our study that the search
engine can generate a possible Tor user list and keep updating it. A determined
search engine may also run Tor relays and collect the IP addresses of all Tor
machines which connect to these relays.
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Over a period of time, the search engine logs a set of queries (denoted Q)
that it receives from the Tor exit nodes (list of exit nodes is publicly available).
These queries are issued by the users appearing in the list U and are all mixed
together. Our (i.e. the adversarial search engine) goal is to identify the queries
in Q that correspond to some or all users in U. We model this identification
problem as a classification problem in machine learning, whereby we train a
classifier with the prior search history of the Tor users (collected prior to the
time they started using Tor) and ask the classifier to classify the queries in Q
to the respective users in U. Since we might want to associate the queries to
all users, we will need one class per user. Therefore, the problem reduces to a
multiclass classification [29] problem. In the rest of this paper, we denote the
AOL users, whose queries are to be separated from the mixed query set received
at Tor exit nodes as ‘users of interest’ and the total number of users using web
search over Tor as U. The users present in U, apart from the users of interest,
will be referred as ‘other users’.

The size of U (denoted N) is an important parameter for our study and for
the level of privacy that can be provided to the users performing web search over
Tor. Intuitively speaking, the larger N is, more difficult it would be to correctly
classify queries. However, we argue that in practice N may not be very large.
As discussed in Section 6, recent research [5] shows that although there are, on
an average, 1893 Google users at one Tor exit node over one week, about 872 of
these users access the services by signing into Google, making themselves iden-
tifiable even while using Tor. Of the rest 1000 who did not sign into Google, a
significantly large fraction of users may not have disabled or deleted their cook-
ies while using Tor. Cookies and other identifying information can be blocked
by using tools such as PWS [30], as mentioned before. However, as discussed in
[5], a significant number of users are not aware of these options. In summary,
even if a large number of users might be using Tor for private web search, only
about few hundreds (∼500) of unidentified users exist at each Tor node and with
1500 Tor exit nodes in total, only about few hundred thousands (∼750,000) of
users actually remain anonymous to the search engine. In addition, the search
engine might not want to track each and every one in this anonymous user set,
but instead it might want to concentrate on few users - selected based on the
kind of sensitive queries they send or based on their real world identities (like
suspected terrorists). In light of these important observations, we consider a
maximum of N = 1000 anonymous web search users, and try to associate the
queries in Q to these users. We believe that this number 1000 is reasonable for
experimental purposes.

As discussed in Section 4, we aim to identify the true positive rate x and
false positive rate y for each user of interest. We want x to be high and y to be
low for pclass to be significantly higher than pnaive. As a concrete example, our
classification attacks for AOL user #67910 yield pclass = 0.73 (x = 45/192 and
y = 16/46062), which is about 183 times more than the probability of a random
guess pnaive = 0.004, when N = 100. Through our classification experiments in
the rest of this paper, we aim to find out the values of x and y for a diverse set
of users firing different type of queries, and for different values of N (100, 200,
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300, 500 and 1000).

6.2 Selecting Users

As mentioned earlier, we do not intend to identify queries belonging to all anony-
mous Tor web search users present in U, but only concentrate on a specific few
(60) users of interest. Note that since we are concentrating on the query con-
tent alone, we have not considered any categories related to the query timing
information, such as the average timing difference between queries and weekday-
weekend distribution. We had selected 20 users of interest from each category
as follows:

Number of Queries: We selected 14 users of interest at random from set of
users who fire less than 100 queries, 4 users of interest at random from set of
users who fire 101-500 queries and 2 users of interest at random from the set of
users who fire more than 500 queries over a period of three months.

Query Length: Most users send queries of average length less than 3 words,
as seen from Figure 6. Following these statistics, we have chosen 15 users of
interest randomly from the set of users sending short queries, 3 users of interest
were selected at random from the set sending medium length (3-6 words) queries
and 2 users of interest were selected at random from the set sending long (more
than 6 words) queries.

Sensitive Queries: From Figure 4, we observed that a large number of users
belong to the 0–10% sensitive query band and the rest are spread over other
percentages in small numbers (a few hundreds). Hence, 10 users of interest are
selected at random from the set of users sending 0–10% sensitive queries, 2 users
of interest are selected at random from 10–20% sensitive query band, 2 users of
interest are selected at random from 20–30% sensitive query band, 3 are selected
from 50–60% sensitive query band and another 3 from 90–100% sensitive query
band in proportion to the actual user distribution.

6.3 Selecting Classifiers

Differentiating user queries from the machine generated queries is relatively easy
compared to differentiating one user’s queries from another user’s. During the
first experiment we observed that clustering algorithms with default parameters
do not help much, hence we did not consider them. Since the current problem
is harder, compared to the first experiment, we dropped the classifiers discussed
in Section 5.3.4 and have chosen Support Vector Machine (SVM). This selection
is based on strong recommendations, such as [15], to use SVMs for textual clas-
sification or categorization, and its wide spread application in similar projects
[7] and [20].

There is more than one implementation of SVM algorithm in WEKA, and we
have selected WLSVM - which is the WEKA integrated version of LIBSVM(the
popular software for Support Vector Classification, Regression and Distribution
Estimation). WLSVM in WEKA implements five classification algorithms and
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of these three were not suitable for our scenario. The other two, named C-SVC
and nu-SVC - where SVC stands for Support Vector Classification, are suitable
for our problem. Considering our main goal of keeping the attacks simple enough
for a naive adversary, we preferred C-SVC over nu-SVC because of the simplicity
in choosing the algorithm parameters. The positive and negative training data
for our classifier is obtained from the user search history – positive examples
for a user include all the queries sent by the user so far and negative examples
include the queries sent by the other Tor users in the past.

C-SVC is a binary classifier, that separates instances of two classes when
mixed together. Multiclass classification can be solved by converting multi-
class problem into multiple binary classification problems. These are popularly
called as One-vs-All (OVA) and All-vs-All (AVA), as described in [28]. Assume
there are N users/classes, with each user assigned an integer in the range [1, N ].
All the queries in the training data belonging to user i (where i ∈ [1, N ]) are
labelled i. In OVA model, we build one separate classifier for each user/class
in the dataset. For ith classifier, the positive examples will be the training
data with label i and the negative examples include all the data with a label
different from i. We classify the test data with the class label depending on
which corresponding classifier outputs greater/larger value. In AVA model, we
build N(N − 1) classifiers, one for each pair of classes i and j. Each of these
classifiers(i, j) gets trained on only the data belonging to classes i and j. At the
end, the label is predicted by following a voting mechanism (see [28] for details).

Both OVA and AVA are applicable to our problem and can yield good accu-
racies. C-SVC directly performs multiclass classification by implementing AVA
when the number of classes are more than 2; thus, we used this feature directly.
For OVA, we used a meta classifier in WEKA, which helps us to implement the
OVA pipeline using C-SVC as the base classifier.

Classifier parameters play an important role in correctly identifying the
queries and increasing the performance. The performance of C-SVC classifier is
determined by three parameters – kernel type, cost parameter-C and an Epsilon
(ξ) value. By following the SVM parameter guide [17], we chose the simplest
linear kernel for our problem. The optimal values for other two parameters, C
and ξ, have been chosen using another meta classifier in WEKA called CVPa-
rameterSelection. Given a sample dataset and the parameter to be optimized,
this meta classifier performs classification on the sample dataset using all the
parameter values within a specified range and identifies the best value based on
the classification performance.

6.4 Selecting Attributes

As discussed previously, we decided to concentrate on the query content alone,
without using any additional information. However, we wanted to test the in-
fluence of time feature on the achievable accuracies and so performed a small
experiment. Since time feature cannot be used directly because of the inherent
delay when queries are sent over Tor, we considered timing windows of con-
siderable duration. Since it is hard to predict what size of the timing window
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Table 4: Comparison of true positive rates for attribute selection

Classifier

True True True positives –
positives – No positives – Including

Additional Including Timing window
Attributes Query Length 3 hrs 4 hrs 6 hrs 12 hrs

AVA 16.26% 14.58% 13.16% 14.08% 13.62% 14.41%
OVA 13.65% 14.41% 13.98% 12.99% 12.63% 14.15%

might provide better results, we divided 24 hours in a day into different non-
overlapping windows of sizes of 3, 4, 6 and 12 hours and compared the accuracies
with each timing window size. Also, we considered the Query Length feature,
though it is implicit in the Query information. User’s anonymous ID and Query
are the necessary attributes. In order to determine the impact of each additional
attribute on the classification results, we tried to identify the average true pos-
itive rates of user query identification for all the users of interest when N=100,
by including one additional attribute at a time. The average true positive rates
are indicated in Table 4. We can see that by including the Query Length feature
reasonable performance is achieved both in the case of OVA and AVA. Addition
of timing windows did not provide much improvement over the existing true
positive rates, both in the case of OVA and AVA. There could be other possible
and better uses of these query times, but we neglect them for now. Hence for all
the following experiments we included Query Length as an additional attribute
along with Query and the user’s anonymous ID.

6.5 Experiment Results

Figure 7: OVA Results Summary for Number of Queries

In our experiments, we tried to estimate the true positive rate of the clas-
sifiers in correctly identifying queries of 60 users of interest, who are chosen at
random based on the AOL query statistics described in Section 6.2. For each
user of interest, we measure the true positive rate and false positive rate (along
with pnaive and pclass) across five datasets, where in each dataset, we vary the
number of ‘other users’ whose queries are mixed with that of the current user of
interest. The five datasets containing randomly selected 99, 199, 299, 499 and
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999 other users were generated. In order to be consistent across all 60 users of
interest, we used the same ‘other user’ datasets. Thus, when the user of inter-
est’s query set is mixed with the queries of these ‘other users’, we form datasets
with N as 100, 200, 300, 500 and 1000 users.

Figure 8: OVA Results Summary for Query Length

For each user of interest, we performed both OVA and AVA classification
with C-SVC as the base classifier. As outlined in Section 6.3, the kernel option
in C-SVC is chosen as Linear Kernel. The best C and ξ parameters chosen by
the meta classifier (CVParameterSelection) are C=336 and ξ=0.001.

For each of the three categories, we summarized the OVA results indicating
the average values of True Positive and False Positive for all the users of interest
in specific sub-categories. The summary of OVA results for Number of Queries
is given in Figure 7, summary of OVA results for Query Length is given in Figure
8 and the summary of OVA results for Sensitive Queries is depicted in Figure
9. The values in the table indicate the true/false positive rates in percentages
followed by the fraction which gave those values. These fractions were included
to indicate the actual number of queries correctly classified or misclassified –
helping us to measure the pnaive and pclass. The results for AVA classification,
for each category, came out to be very similar to that of OVA classification, and
are thus not reported in the paper.

The average true positive rates shown in the figures are reasonable. Across all
the 60 users of interest, the average true positive rate was 25.95%, when N=100,
and this rate drops to 18.95% when N=1000. More importantly, though the
average true positive rates are not very high, our results show that few users
of interest could be identified with true positive rates as high as 80–98%, even
when N=1000. This can be seen from Figure 10, which lists the top five users
of interest in each category with high end true positive rates (several of them
have rates as high as 80–100%). Each row in the figure corresponds to a user
of interest, and these users within each category, are arranged in the decreasing
order of their true positive rates (when N=100). Also, across all 60 users for
N=1000, the pnaive values range between 0-0.015, while the pclass values vary
between 0.13-0.8.
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Figure 9: OVA Results Summary for Sensitive Queries

Figure 10: OVA Users with Best Accuracies
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6.6 Interpretation and Discussion of Results

In this section, we attempt to discuss and interpret the results of our study, and
draw some useful conclusions.

The first observation looking at Figure 7, 8 and 9 is that the average true
positive rates (i.e., the fraction of correctly classified queries) indicate that in
most cases some fraction (at least a quarter) of users’ queries can always be
correctly classified. The false positive rates are also very low in almost all cases,
which can be credited to our choice of optimal parameters for the classifier.

Looking at Figure 7 across the rows, we find that the true positive rates
are likely to increase with the number of queries posed by the user – the more
active a user is, the more identifiable his/her queries become. We can explain
this based on the nature of machine learning techniques. When more data
is available about a user, the machine learning techniques can extract better
information about the user interests, and so can make better predictions. Lack
of data results in more noise and therefore poor results. Figure 8 shows that
longer queries are likely more identifiable. This is because only a very small
fraction of users issue longer queries (more than 6 words), as seen from Figure
6, and thus their queries are distinctive among the pool of a large number of
shorter queries. Following the same reasoning, we observe, from Figure 9, that
true positive rates are expected to increase as the sensitivity of the query content
increases (recall the sensitive/insensitive query distribution in Figure 4). This is
an important insight demonstrating that users who pose more sensitive queries
are likely easily identifiable. Unfortunately, this contradicts the fundamental
goal of using an anonymizing network in the first place – to hide the fact that
one is issuing sensitive queries. In all cases, the pnaive values (ranging between
0-0.015) are much smaller than the pclass values (ranging between 0.13 - 0.8),
showing that the classifiers are generating a small but good sub-set of queries,
containing more user queries and fewer noisy/other queries. Though the results
might seem intuitive and follow the trend that users who stand out are easily
identifiable, they provide us a very good estimate of what percentage of these
user queries can actually be identified because of the query properties.

6.7 Experimental Summary

In this section, we studied the problem of identifying a user’s queries from a
pool of queries received by a search engine over an anonymizing network. We
demonstrated that an adversarial search engine, equipped with only a short-
term search history, can extract user of interest’s queries by utilizing only the
query content and off-the-shelf machine learning classifiers. More specifically,
by treating a selected set of 60 users – from the publicly-available AOL search
logs – as users of interest performing web search over an anonymizing network,
we showed that their queries can be identified with 25.95% average true positive
rate when N=100, and with 18.95% average true positive rate when N=1000.
Though the average true positive rates are not very high, our results show that
few users of interest can be identified with rates as high as 80–98%, even when
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the value of N=1000.

7 Analysis

In this section, we attempt to provide an explanation, as to why we obtained the
presented true positive rates in both the experiments and how it was possible
to identify the user queries.

7.1 Reasons Behind the True Positive Rates

To understand our results, we try to find the reasons behind how and why
a query gets identified as a user query. Analysing the results of the machine
learning classification and its behaviour change as the experimental parameters
vary is not a trivial task. This is something that cannot be done in a straight-
forward known way. However, we still make an attempt to study the factors
behind the classification.

Since the data fed to the machine learning algorithm contained queries bro-
ken down into word vectors, we tried to identify the word usage distribution
among 1000 users. By trimming down all the query words, using stemming al-
gorithms present in WEKA, we identified the “root” keywords appearing in the
queries and sorted them in the decreasing order of occurrence. The distribution
with the vertical axis, on log scale, indicating the number of occurrences and
the horizontal axis indicating the number of unique root keywords can be seen
in Figure 11. There were 28659 root keywords(i.e. stemmed words) in total
and of these only 4797 root keywords had more than 10 occurrences. This dis-
tribution mimics the “Long Tail” behaviour of web search queries, as discussed
in [12], where each user is considered a bit eccentric and is expected to send
both common queries (all root keywords with more than 10 occurrences in the
distribution) and a few unique/unusual queries (at least one keyword with less
than 10 occurrences in the distribution). These unique/unusual keywords are
what we think might be contributing for query identification.

Let us consider the SVM classifier in the second experiment and assess how
these unique keywords influence the classifier decision. By converting the query
strings to word vector, we are mapping the search queries to points in the multi
dimensional space and the SVM classifier is trying to find a maximum mar-
gin hyperplane that helps in separating the user query points from the rest.
The test queries, which are closer to the user training queries in the multidi-
mensional space are labelled as user queries. If the user has unique/unusual
keywords in his training data, the presence of these unique/unusual keywords
in the test queries brings them closer to the user query points in the multidi-
mensional space, thereby getting the query identified as a user query. In this
way having unique/unusual query words helps in easy query identification. The
more the number of such unique/unusual queries, the better are the chances
for obtaining good accuracies – but this alone does not guarantee it. Even if
there are unique/unusual queries in the user training set, there could be more
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Figure 11: Root Keyword Distribution

occurrences of such query words in the ‘other user’ training set, there by pre-
venting the query from getting classified as a user query. For example, lets say
“culinary” is a unique keyword occurring in the training set of user of interest
A. This word being unique only guarantees that it does not occur more than 10
times in the 1000 user query set. However, this word can occur 7 times in the
other users’ training set and 2 times in A’s training set, resulting in the query
not being classified as A’s query owing to the majority.

7.2 Rules Governing the Classifier

After manually comparing the predictions made by the classifier, we came up
with three possible explanations of how the classifier might be predicting these
user of interest’s queries. There could be other better explanations than the
ones we propose. Let us call these explanations, as the three rules determining
the label of a test query:
1. If the exact test query is repeated in the user of interest’s training set, then
the query is identified as the user of interest’s query. Say we came across the
test query “how to kill a spider” and the exact query repeated in the user of
interest A’s training set, then we can be sure that this test query was sent by
user A. This is trivial.
2. If a subset of keywords in the test query occur as a full fledged query in the
user of interest’s train set, then the query is identified as the user of interest’s
query. For example, if our test query is “bake a fruit cake” and if we have “bake
a cake” as a query in the A’s training set, then the test query shall be identified
as A’s query.
3. If the test query can be obtained by combining terms from queries in the
user of interest’s train set, then the query is classified as a user of interest’s
query. Say our test query is “California bike tours” and if there are “famous
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bike tours” and “New york to California” queries in the A’s training set, then
the test query is classified as A’s query.

Similar rules also apply to the identification of non user queries based on
terms in the non user (or ‘Other’) training set. If a query satisfies one rule with
user of interest’s training set, and one rule with non user training set, then based
on the parameters that we chose for the classifier and the number of times these
query terms appear in each of the training sets, the query will be classified. The
presence of unique query words in the training set and test set, would help in
easing this decision process.

7.3 Influence of a Time Gap

The web content that a user is interested in varies with time. The search
queries, which are closer in time are better related than the ones sent long ago.
In our scenario, we had the test data set immediately follow the user training
set. This might be one reason why we were able to achieve considerable true
positive rates. A time gap between the test and the training data sets might
make it harder to de-anonymize the data, because the common content between
the test and the train sets decreases with time. However, prior research [35]
shows that users tend to pose exact same queries over and over, as it is easier
compared to remembering the url of the search result, or more efficient than
performing an internal search within the website. This behaviour is described
as “bookmarking” [35]. For a considerable long period, these queries do not
change and this helps the machine learning approach in identifying at least a
small fraction of the user queries. We tried identifying the percentage of same
queries repeated in the test and train sets (assumed to be bookmark queries),
for two AOL users with IDs 20894930 and 67910. The percentage of bookmark
queries were less than 6%, but the machine learning true positive rates were
higher than 58%, infact higher than 90% for user ID 20894930. Thus at least a
small fraction of user queries could still be identified, even when there is time
gap between the test and training data sets.

7.4 Reasons Behind Decrease in True Positive Rate

We understood how the accuracies are obtained, but the question that is re-
maining is - “In the second experiment, why do the accuracies decrease when we
increase the value of N , the number of users using web search over anonymizing
network?”. Following the three rules mentioned above, we determine the label
of a test query based on the number of occurrences of similar query words in the
training sets. The more the occurrences of such words in the user of interest’s
training set, the more are the chances for it to be identified as a user of interest’s
query and vice versa. With the increase in the value of N , the size of the other
users training set greatly increases, improving the chances of occurrence of these
test query words within. This decreases the probability of classifying the query
as a user of interest’s query. Here is one example that we came across for one
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AOL user. “j c penney catalog” was a test query and there was no exact looking
query, or a query formed by subset of its keywords in the particular user’s train-
ing set. However, the words “j c penney” and “catalog” had occurred before in
the particular user’s train set, and hence it was labelled as the particular user’s
query when N=100 (as per explanation 3 above). However as N increased to
300, this query was not labelled as the user of interest’s query, since there were
more occurrences of “j c penney” and “catalog” terms in the other users’ query
training set. In this way, depending on the occurrence of query terms in the
training sets, the accuracies decrease as the value of N increases.

However, due to the “bookmarking” behavior discussed before, the classifiers
will be able to identify at least a few of the user’s queries when we increase
the number of other/noisy queries in the dataset. Adding more number of
anonymizing network users would definitely degrade the classifier’s true positive
rates, but due to user’s repeated queries, these true positive rates would still be
larger than zero.

8 Conclusions

In this paper, we studied and tried to quantify the levels of privacy provided by
query obfuscation tools and anonymizing networks. As a representative example
of tools based on Query Obfuscation principle, we focussed on TrackMeNot and
demonstrated that a search engine, equipped with only a short-term history of
user’s search queries, can break the privacy guarantees of TMN by only utilizing
off-the-shelf machine learning classifiers. More specifically, by treating a selected
set of 60 users – from the publicly-available AOL search logs – as users of the
TMN software, we showed that user queries can be identified with an average
true positive rate of 48.88%, while the average TMN query false positive rate
was only 0.02%.

We tried identifying a user’s queries from a pool of queries received by a
search engine over an anonymizing network like Tor. We demonstrated that
an adversarial search engine, equipped with only a short-term search history,
can extract user of interest’s queries by utilizing only the query content and
off-the-shelf machine learning classifiers. By treating a selected set of 60 users
– from the publicly-available AOL search logs – as users of interest performing
web search over an anonymizing network, we showed that their queries can
be identified with 25.95% average true positive rate when N=100, and with
18.95% average true positive rate when N=1000 (where N is the size of user set
performing web search over Tor). Though the average true positive rates are
not very high, our results show that few users of interest can be identified with
true positive rates as high as 80–98%, even when the value of N=1000. We even
tried to identify the reasons behind how and why a query gets classified as a user
query, and answered why the true positive rates tend to decrease as the number
of users using the anonymization service increase. Our results, therefore, cast
serious doubt on the effectiveness of anonymizing web search queries by means
of anonymizing networks and Query obfuscation tools.
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One of the strengths of our attacks is that they only use minimal infor-
mation (query content) for identification of users’ queries, and use off-the-shelf
classification techniques, while still being reasonably successful. Under realistic
conditions, it would certainly be possible to improve our attacks by taking into
account other information that would be available to the search engine under
normal circumstances. For instance, exact query timestamps may very well be
a useful attribute. Similarly in the case of Tor, exit node IP addresses are also
likely to improve the accuracies. Say, the exit nodes vary for every t minutes
and a query coming from an exit node was identified to be coming from user
A, then another related query coming from the same exit node within t minute
time frame, has more chances to be associated to the same user A. In addi-
tion, novel classification mechanisms can be designed specifically tailored to this
query identification problem. Finally, a search engine can build better classifiers
by training them on long-term (longer than 2 months) search histories of the
users. We believe these additions might provide significant improvements in
correct classification of the queries and further reduce false positive rates. By
utilizing the geographical locality information accompanying the queries and the
users [13] (place names and details pertaining to certain localities) and using
contextual information for query classification [4], we plan to further improve
the results. We defer these items as an interesting avenue for future research.
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