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ABSTRACT
Deauthentication is an important component of any computing
system that promises to o�er legitimate access to restricted services
residing on the system. As computing devices are ubiquitous, it
has underscored the need to design zero-e�ort deauthentication
systems from a usability perspective. While the design of such
deauthentication systems is geared towards making them more
usable, o�en the security implication of these deigns overlook the
physical security of the system resulting in various side channel
vulnerabilities in the system. �is issue highlights the need to
design a defense mechanism that is capable of minimizing the
threat posed by such side channel a�acks while having minimal
impact on the design of the system.

In this paper, we aim to address the sound-based vulnerability,
recently introduced in the literature, against one of the prominent
zero-e�ort deauthentication schemes, called ZEBRA, that transpar-
ently and continuously authenticates the user using a wearable
device wirelessly connected with the authentication terminal. To
this end, we propose YELP, a novel and practical defense mech-
anism based on the principle of sound masking. YELP uses two
di�erent types of masking sounds, namely “white noise”, and “mu-
sic” for cloaking the acoustic side channel leakage underlying the
ZEBRA system. We believe that the use of such masking sounds
at a reasonable volume level can hide the acoustic leakage ema-
nating from the physical component of the system, and thereby
reduce, if not eliminate, the imposed sound-based vulnerability.
Indeed, our results show that white noise, as a masking sound, can
e�ectively hide the acoustic leakage from ZEBRA system, thereby
signi�cantly reducing the a�ack success rate of an audio-based
side channel a�acker while music can moderately hide the acoustic
leakage from the system. Our work therefore shows that sound
masking can be used as an e�ective tool in improving the security
of (de)authentication systems against an audio-based side channel
a�ack without a�ecting its original design and without requiring
additional e�ort from the user.
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1 INTRODUCTION
User authentication is an essential security functionality for most
computing paradigms. An important component of an authentica-
tion system is deauthentication, i.e., promptly detecting when to
log out a previously authenticated user from an ongoing session. A
promising approach to improving the usability of (de)authentication
mechanisms is to make them transparent to users by reducing, if
not eliminating, the cognitive e�ort required from users. Although
such zero-e�ort authentication schemes are compelling, designing
them correctly can be a challenge in practice.

A representative scheme in this direction is ZEBRA, a zero-e�ort
bilateral deauthentication method, proposed by Mare et al. [33].
ZEBRA is intended for scenarios where users authenticate to com-
puter terminals (such as desktop computers in a shared se�ing). In
such scenarios, users typically have to either manually deauthen-
ticate themselves by logging out or locking the terminal, or the
terminal can deauthenticate a user automatically a�er a su�ciently
long period of inactivity. �e former approach requires explicit
user e�ort while the la�er approach reduces promptness of log out.
�e ZEBRA method aims to make the process of deauthentication
both prompt and transparent: once a user is authenticated to a
terminal (using say a password), it continuously, yet transparently
re-authenticates the user so that prompt deauthentication is possi-
ble without explicit user action. In ZEBRA, the user is required to
wear a bracelet (or a smartwatch) equipped with motion sensors
on his mouse-holding hand. �e bracelet is wirelessly connected
and pre-paired to the terminal, which compares the sequence of
events it observes (e.g., keyboard/mouse interactions) with the se-
quence of events inferred using measurements from the bracelet’s
motion sensors. �e logged-in user is deauthenticated when the
two sequences no longer match.

ZEBRA is particularly appealing due to its simplicity of design.
However, as shown in a recent work by Huhta et al. [25], this
simplicity gives rise to a design assumption that an adversary can
exploit to defeat the security of the scheme. In particular, Huhta et al.
identi�ed a design �aw in ZEBRA that allows to develop an e�ective
a�ack strategy, whereby a human a�acker observing/listening to a
victim at a nearby terminal and opportunistically mimicking only
a subset of the victim’s activities (e.g., only keyboard events) at
the authentication terminal. For example, the human a�acker can
simply listen onto the sounds of the keyboard typing of the victim
on another computer terminal and mimic the keystroke events at
the authentication terminal. �e a�ack can be used to e�ectively
undermine the security o�ered by ZEBRA in that the a�acker can
remain logged in for a relatively long duration of time, during
which it can perform malicious activities on the terminal (such as
sending emails on behalf of the victim, or changing dosages and
writing new prescriptions in a hospital se�ing.). Depending upon



the application scenarios for ZEBRA, the consequences of such an
a�ack can be devastating.

Given the severity of this threat against the otherwise practical
ZEBRA system, we set out to design an e�ective defensive approach
that would work transparently with ZEBRA, i.e., without necessi-
tating any design changes to ZEBRA. Since the visual observation
a�acks can be relatively easily addressed by the use of visual bar-
riers around the login terminals that will block the a�acker from
gaining a clear view of the victim when using another terminal,
our focus in this work is on sound-based observation a�acks which
exploit the sounds of the keyboard typing [45] and are challenging
to address. Our general idea to resist such sound-based opportunis-
tic a�acks against ZEBRA is to utilize the notion of sound masking
– the login terminals or a device placed in the surrounding environ-
ment produces deliberate sounds that will mask the sounds of the
keyboards, thereby making it di�cult for the a�acker to mimic the
victim user’s activities.

Sound masking itself is already being used in many contexts. It
has traditionally been used as a commercial solution ([4, 12, 31, 32,
42]) for providing speech privacy in call centers, o�ces, medical
facilities, law and government facilities, etc. It has been used as a
way to reduce distraction, improve focus/productivity and protect
sensitive conversations. It is touted as a low cost measure to achieve
speech privacy as compared to potentially expensive architectural
improvements in the environment. Our approach to bolster the
security of ZEBRA against sound-based opportunistic a�acks based
on sound masking is well-aligned with these traditional solutions
and can in fact seamlessly work along with them as a broader solu-
tion for authentication/deauthentication security, speech privacy
and productivity improvement.

Our Contributions: Our primary contributions can be summa-
rized as follows:

(1) Securing Deauthentication with Sound Masking: We pro-
pose a novel defense, called YELP1 (Section 3.1), to known
audio-based opportunistic a�acks against a prominent, repre-
sentative deauthentication system, ZEBRA, based on the simple
idea of sound masking. YELP works transparently with ZEBRA
without requiring any changes to its design and still maintain-
ing its zero-e�ort property.

(2) Designing YELP with Two Types of Masking Sounds: We
design YELP based on two types of masking sounds, white noise
produced by the computer terminals themselves and musical
sounds produced by a central device present in the environment
where the ZEBRA system is being deployed (Section 3.3). While
such masking sounds have already been used in real-world
scenarios for improving speech privacy, relaxation and produc-
tivity, we argue that they may also be e�ective in improving
the security of authentication/deauthentication systems with
li�le to no added cost to the system.

(3) Evaluating YELP for Security and Performance: We eval-
uate the performance and security of YELP based on the two

1Yelp denotes the noises produced by zebras. Our solution gives rise to an improved
ZEBRA system that produces masking sounds to bolster its security.

types of masking sound choices. For the purpose of our evalua-
tion, we �rst recreate the ZEBRA system (Section 4) as docu-
mented by Mare et al. [33]. Based on experiments with human
users, we further reproduce the audio-based opportunistic at-
tack on ZEBRA as proposed by Huhta et al. [25], testing its
performance (Section 5) against both ZEBRA and YELP. Our
results show that YELP can e�ectively improve the security
of ZEBRA without a signi�cant impact on its performance in
the benign se�ings. In particular, we show that by using YELP
with white-noise, ZEBRA was able to kick out 70% of the a�ack-
ers as opposed to 22% without YELP within a small number
of interactions (as de�ned by ZEBRA). In addition, YELP with
music kicked out 60% of the a�ackers for the same number of
interactions.

Paper Roadmap: �e rest of the paper is structured as follows.
In Section 2, we present a review on ZEBRA and opportunistic
a�acks against ZEBRA. In Section 3, we detail our defense approach
followed by Section 4, where we report on our reimplementation
of the ZEBRA. In Section 5, we explain our experiment setup, and
present the evaluation of the e�ectiveness of YELP against audio-
only opportunistic keyboard-only a�ackers. Finally, we review prior
works relevant to our study in Section 6, and conclude and point to
future research items in Section 7.

2 BACKGROUND
2.1 ZEBRA Review
ZEBRA is intended for the scenarios that have multiple terminals.
In these scenarios, users o�en move between terminals. In Mare et
al. [33], hospital scenario is presented as their motivating scenario.
Hospital environment o�en has shared terminals that are used by
hospital sta�. Regardless of shared terminals, a user/sta� should
not, intentionally or unintentionally, access the terminals where
other user has logged in. Users may leave terminals without log-
ging out, but may still remain in close locality. In such scenarios,
proximity-based zero-e�ort deauthentication schemes like ZIA [15]
or BlueProximity cannot be used because these methods are not
accurate enough for short distances. Although ZEBRA is intended
for the scenarios with shared terminals, transparent deauthentica-
tion schemes like ZEBRA are broadly applicable to any scenario
where users may leave their terminals una�ended.

ZEBRA [33] is representative of continuous authentication
schemes designed for the scenarios where users authenticate to the
terminals (desktop PCs). Users, once authenticated, are required
to either manually deauthenticate and lock the terminal, or be au-
tomatically deauthenticated by the system a�er a su�ciently long
period of inactivity. �e former approach requires user interac-
tion which reduces the usability while la�er approach lacks the
promptness thereby sacri�cing security. ZEBRA intends to make
the deauthentication process both prompt and transparent. Once
user is authenticated, it will continuously, yet transparently, re-
authenticate the user making the user deauthentication process
prompt without requiring any explicit user interaction.

2.1.1 Threat Model: ZEBRA is designed with the intent to pre-
vent the threat of unauthorized access to a terminal when a user
steps away from the terminal without logging out and remains in

2



the vicinity of the terminal. Zebra considers two types of adver-
saries: (1)“innocent”, and (2) “malicious”. Innocent adversary is an
authorized user who uses an una�ended terminal for her own pur-
poses either without realizing that another user (“victim”) is already
logged-in or because she does not want to go through the login
step. On the other hand, malicious adversary uses the una�ended
terminal with the intention of executing some actions on behalf
of the victim. Malicious adversary may observe the actions and
behavior of the victim. He can fool the authenticating system by
mimicking the hand movement of the victim and may authenticate
himself as the originally logged-in user.

2.1.2 System Architecture: ZEBRA correlates the user activities
observed at the terminal with the motion sensor measurements of
wrist activities of the user captured by a wrist-worn device. For
simplicity, we call the wrist-worn device, a “bracelet”, but it can
be a general purpose smartwatch. We use a normal smartwatch
(LG G watch R) in our implementation and analysis similar to the
implementation of [25]. �e goal of ZEBRA is to continuously and
transparently verify whether the user accessing the terminal is
indeed the one who is originally logged in and instantly deauthen-
ticate the unintended user. ZEBRA assumes a computer/terminal
with keyboard and mouse, and a bracelet, personal to each indi-
vidual using system. �e bracelet is equipped with motion sensors
(e.g., accelerometer, gyroscope) that record the wrist movement of
the wearer. �e bracelet and the terminal are connected through a
wireless channel such as Bluetooth that is used for securely inter-
acting with each other. �e terminal keeps record of the bracelet
associated with each authorized users. When a user authenticates
to the terminal, it connects to the bracelet and starts receiving
the sensor data from it. ZEBRA compares the sequence of user
interactions observed on the terminal with the sequence of user
interaction inferred from motion sensor data of bracelet. If these
two sequences do not match, ZEBRA deauthenticates the user.

�e main components of ZEBRA are Interaction Extractor, Seg-
menter, Feature Extractor, Interaction Classi�er, and Authenticator.
ZEBRA considers three types of interaction: typing, scrolling, and
hand movement from keyboard to mouse and vice-versa (termed as
“MKKM”). An Interaction Extractor identi�es the actual sequence
of interaction based on the keyboard/mouse events observed on
the terminal. It also logs the timestamps of each type of interaction
in actual interaction sequence. Segmenter receives timestamps of
each interaction from Interaction Extractor, in addition to sensor
data from bracelet. It segments the sensor data into blocks based
on the timestamps from Interaction Extractor. Note that the Seg-
menter considers only the sensor data that falls inside these time
slots. From each block received from Segmenter, Feature Extractor
extracts salient features, and supplies them to Interaction Classi�er
that has been trained to infer the type of interaction based on the
sensor data. �e Interaction Classi�er infers the type of interaction
based on the features from each block and outputs the predicted
interaction sequence. Finally, an Authenticator compares the actual
interaction sequence from Interaction Extractor and the predicted
interaction sequence from Interaction Classi�er and determines if
the current user is same as, or di�erent from, logged in user.

Authenticator can be tuned through window size(w), thresh-
old(m) and grace period(g). Authenticator compares a window,

formed by a sequence of w interactions, at a time. In a window,
if the percentage of matching interactions exceeds threshold m,
the window is marked 1, otherwise it is marked 0. If Authenticator
marks 0 for g consecutive windows, it outputs “di�erent�� and
instantly deauthenticate the user.

2.2 Opportunistic Attacks on ZEBRA
�e primary goal of ZEBRA is to deauthenticate the unintended user
or malicious entity promptly and transparently from accessing the
terminal. In order to compromise the security of the ZEBRA system,
an a�acker would need to observe and imitate the behavior and
actions of the victim. To evaluate ZEBRA against such an a�acker,
Mare et al. [33] have considered a “malicious” adversary who
accesses the original terminal of the victim while victim is using
another nearby terminal. �e objective of the malicious adversary
is to mimic all of the user’s hand movements as close as possible. In
ZEBRA [33] experiment, ordinary non-expert users play the role of
a malicious adversary. In order to make the scenarios advantageous
to a�acker, they were given visual as well as verbal cues to indicate
what victim was doing. �ey demonstrated that their system was
able to deauthenticate such a�ackers in reasonable time, while
maintaining low false negative rates.

Since underlying techniques rely on observable hand movements,
ZEBRA is vulnerable to more e�ective impersonation a�acks. In
[25], an opportunistic strategy based on impersonation a�ack was
proposed that could compromise the security of ZEBRA scheme. In
the proposed a�ack strategy, a human a�acker observes victim’s
activities at the nearby terminal and opportunistically mimics only
subset of victim’s activities (e.g., keyboard activities) at victim’s
original terminal. With this strategy, authors have shown that the
opportunistic a�acker have a high probability to break the scheme.

Based on the observation channel and a�ack strategy, Huhta et al.
[25] have considered four di�erent types of a�acks, namely naive
all-activity a�ack, opportunistic keyboard-only a�ack, opportunis-
tic all-activity a�ack, and audio-only opportunistic keyboard-only
a�ack. In �rst three a�acks, a�acker can see as well as hear the
user interacting with the terminal while in audio-only a�ack, at-
tacker can only hear but not see the user interactions. In naive
all-activity a�ack and opportunistic all-activity a�ack, a�acker tries
to mimic all activities of the victim while in opportunistic keyboard-
only and audio-only opportunistic keyboard-only a�ack, a�acker
tries to mimic only a subset of typing interactions of the victim.

�e a�ack scenarios where a�acker can see the victim interaction
can be easily defeated by creating a visual barrier around the login
terminals. However, the system is still vulnerable to audio-only
a�ack because audio emanation due to the user interaction with
terminal can still pass through the visual barrier. So, to defeat
audio-based a�ack, audio signals emanated from keyboard-mouse
interaction should be muddled. In this paper, we propose a scheme
that can prevent audio-only a�ack (depicted in Figure 1) by masking
the sounds generated during the user-terminal interactions.

3 OUR DEFENSE: A DESIGN-INDEPENDENT
APPROACH BASED ON SOUND MASKING

As detailed in Section 2.2, in an audio-only opportunistic keyboard-
only a�ack, the a�acker is only able to hear victim’s interactions
but is barred from receiving any visual cues related to victim’s
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Figure 1: Audio-only opportunistic keyboard-only attack.

interactions. Speci�cally, a�acker is tuned to listen only for key-
board interactions meaning a�acker starts typing when he hears
keystrokes emanating from victim’s keyboard and stops typing as
soon as the keystroke emanations from victim’s keyboard stop. We
classify this type of a�ack as an audio based side-channel a�ack
on ZEBRA scheme.

In [25] and ZEBRA [33], the countermeasures against an adver-
sary revolved around creating a visual barrier that could potentially
block the adversary from mimicking the victim’s interaction with
the aid of visual cues. However, in an audio-only opportunistic
keyboard-only a�ack, the a�acker can mimic the keyboard interac-
tions of the victim by just listening and does not require any visual
cues about victim’s interactions. A visual barrier does not prevent
such an a�acker from eavesdropping on keystroke emanations
generated from victim’s keyboard interactions.

For defending ZEBRA authentication scheme against an audio-
only opportunistic keyboard-only a�ack, we need to design a defense
mechanism that can potentially thwart this class of a�ack while hav-
ing a minimal impact on the design of the original ZEBRA scheme.
�us we put forth the design principles that should be followed by
such a defense mechanism to be e�ective while retaining usability:
(1) E�ectiveness: �e proposed design system should be able to

reduce the success rate of an audio-only opportunistic keyboard-
only a�acker to an extent that the a�ack success rate is close
enough to that of a random a�ack, whereby the a�acker does
not get any audio (and visual) cues to listen onto the keystroke
sounds and a�empts to mimic the victim’s interactions arbi-
trarily.

(2) Design Independence: It should have minimal to no e�ect
on the original design of ZEBRA system working transparently
with the existing scheme.

(3) Zero-e�ort: �ere should be no user interaction required at
any time for the defense mechanism to be operational.

In this work, we come up with YELP, a defense mechanism based
on sound masking that tries to remain true to the design principles
that we laid down for an e�ective and practical defense against
audio-only opportunistic keyboard-only a�acker.

3.1 Choice for Defense Mechanism
As stated earlier, we need countermeasure against an audio-based
side-channel a�ack on ZEBRA scheme. Since the principle source
of side channel emanation relevant to an audio-only opportunistic

keyboard-only a�acker is the keyboard, the problem of designing
a competent defense mechanism involve eliminating or hiding
the keystroke emanations generated from the keyboard. Several
countermeasures have been proposed for handling unwanted audio
leakage from systems that constitute a security concern especially
in the light of audio based side-channel a�acks. We divide these
countermeasures into two classes based on their way of handling
acoustic side channel leakage: acoustic leakage elimination (active
noise control) and acoustic leakage masking (passive noise control).

Acoustic Leakage Elimination: Elimination of unwanted acous-
tic emanations can be done either physically or programatically.
So�er keyboards that produce almost no sound when the keys are
pressed have been proposed to eliminate acoustic leakage. How-
ever, such keyboards are costly to produce and their behavior a�er
prolonged usage is unknown. Since not all keys on a keyboard are
used frequently, over time more frequently used keys may start
demonstrating di�erent behavior from the less frequently used keys.
Touchpads do not have mechanical components as keys and present
as another option that could replace the traditional keyboards. An-
other method involves creating an audio barrier similar to visual
barrier as proposed in ZEBRA scheme as a countermeasure to shield
acoustic leakage. �e acoustic leaking system could be contained
inside a specially designed construct that absorbs audio leakage.
However, this method would require placing every terminal under
such a construct and this exercise could be costly and impractical.

Acoustic leakage can also be eliminated by noise cancellation
techniques implemented in the so�ware. So�ware implementation
has the advantage of being less costly and easier to implement
on multiple devices. In noise cancellation, an anti-noise signal is
generated, that is used to cancel out the generated noise. An anti-
noise signal is calculated by estimating the inverse of the noise
that is to be canceled. Roy et al. [40] proposed a mechanism for
noise cancellation in real time that involved calculating fast fourier
transformation (FFT) of the noise signal and picking the k-strongest
frequencies based on their FFT values. �ese values are then com-
bined and reversed in sign to build an estimated inverse of the noise
signal. �is estimated inverse signal is then phase aligned with the
actual noise signal to produce the anti-noise signal.

Similar technology is used in noise cancellation headphones that
utilize an extra microphone to measure the noise and generate
the anti-noise waveform that is mixed using analog technology
with the original sound to deliver the noise-free sound to the user.
�is technique however requires extra hardware in the form of a
supplementary microphone and analog technology for mixing the
waveforms hard-wired in the circuit. For implementation in ZE-
BRA scheme, it would require additional cost to supplement all the
terminals with the necessary hardware and circuit modi�cations.

Acoustic Leakage Masking: �is approach is aimed at cloaking
the emanation by producing a signal that e�ectively masks the
intended acoustic emanation making it di�cult to identify it. For
e�ective masking, the masking signal should cover the frequency
range of the signal to be masked and should be at least as loud
as the original signal. �us the properties of the masking signal
depend upon the frequency and amplitude characteristics of the
signal that needs to be masked.
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�e use of sound masking is commercially wide spread in o�ces,
medical facilities, meeting rooms and military facilities. Most of
these applications of sound masking aim to achieve speech privacy
and lower distraction level in a speci�ed environment. Abosrb,
Block, and Cover (”ABC”) is a common principle used in sound
masking an environment. For example, in order to achieve speech
privacy, sound masking is used in conjunction with sound proo�ng
the walls and the ceiling (absorb), blocking the sounds from spread-
ing by using partitions (block) and �nally pu�ing in sound masking
speakers in proper locations (cover).

Pink noise (equal energy per octave) is the most common mask-
ing noise used by majority of sound masking solutions. Another
alternative is white noise (equal energy per hertz) that may be used
in place of pink noise. �e noise that is to be used as the mask-
ing signal should also be random in nature. �is feature helps in
thwarting a pro�ling a�ack where an a�acker can choose a small
sample of the noise and try to reduce it from the overall audio.

Our aim while designing YELP is to ful�ll previously mentioned
design principles namely: e�ectiveness, design independence and
zero-e�ort. In addition, we have to consider the cost of defense
mechanism as ZEBRA scheme is geared towards authentication on
multiple terminals in medical facilities and installation of additional
hardware on each terminal would increase the cost linearly. Keep-
ing in mind above factors, we decided to go with sound masking as
our choice for YELP.

3.2 Design and Implementation
Our YELP design based on sound masking involves producing ap-
propriate masking sound at each authentication terminal that is
able to hide keystroke emanations generated during victim’s in-
teractions. �ey also serve to obfuscate the auditory channel of
audio-based a�acker that result in cloaking of any keystroke sounds
reaching the a�acker with the help of masking sound. Masking
sound can be generated using speakers installed at every authenti-
cation terminal that uses ZEBRA scheme. Most computer terminals
already come equipped with speakers and in case of terminals
devoid of inbuilt speaker, portable speakers can be used that are
conveniently cheap. We also include speakers that could be wall
mounted, thereby giving a more dispersed coverage for the masking
sound. �ese wall mounted speakers should be installed in a way
that maximizes the e�ect of masking sound and does not have any
blind spots near authentication terminals where the masking sound
is less audible than any other authentication terminal.

3.3 Design Principles and Rationale
Choice of Masking Sounds: �e choice of proper masking sound
is important for an e�ective defense against audio-only opportunistic
keyboard-only adversary. A masking sound should be able to make
sure that the a�acker is unable to make out the keystrokes being
typed by the victim and the masking sound should not be disruptive
to the natural state of the surrounding environment. Commonly
used masking sounds include pink noise, white noise, music, com-
monly occurring background sounds like raindrops, ocean waves,
wind blowing, co�ee shop cha�er, etc. Some of these noises are
also used as relaxation aids and reduce distraction from unwanted
sounds.

We tested white noise, music and naturally occurring sounds as
possible candidates for masking sound based on precedent of their
usage. White noise was generated using the noise generator AM
1200 [5], music was produced by playing “top 40 hits this week” and
naturally occurring sounds were chosen from Noisli [37]. White
noise has been used in commercial sound masking applications for
suppressing unwanted sounds in o�ces, airplanes cockpits, mili-
tary buildings etc. Our choice of music was inspired by co�ee shops
and cafes that play popular music on loudspeakers to provide a re-
laxing atmosphere as well as tone down surrounding conversation.
Commonly occurring background sounds, in particular co�ee shop
cha�er and white noise from [37], were used for similar purpose
as previously described.

We conducted experiments in ZEBRA setup with masking sound
generated at both a�acker and victim’s terminal. �is setup seems
most suitable as it hides the victim’s interaction with the terminal
as well as make it di�cult for the a�acker to eavesdrop on victim’s
keystrokes. In case of musical sounds, we used a centrally located
loudspeaker equidistant from both the a�acker and the victim. We
measured the sound pressure level of masking sound at victim’s
and a�acker’s terminal se�ing it to be no more than 65db. From all
the masking sounds described earlier, white noise generated at both
ends and music from an equidistant loudspeaker performed the
best. Combinations of co�ee shop cha�er along with white noise
and other sounds such as ocean waves, wind, train track noises
when played along with white noise failed to mask the keystrokes.
�us we proceeded with white noise generated at both the ends
and music playing from an equidistant loudspeaker as our choices
for defense mechanism design. A high level design of our defense
setup is depicted in Figure 2.

4 REIMPLEMENTING ZEBRA
In this section, we report on our reimplementation of the ZEBRA
system as documented by Mare et al. [33] and Huhta et al. [25],
which is essential to evaluating our YELP defense system.

4.1 Preliminaries and Design
Hardware: In our implementation, we considered a standard PC
as a terminal and LG G Watch R smartwatch as a bracelet. LG
watch is a widely available smartwatch with 1.2 GHz CPU and
512MB RAM that comes with accelerometer and gyroscope. It has
sampling rate of 200Hz similar to the smartwatch used in [25].
So�ware: Our implementation of ZEBRA consists of two applica-
tions: AndroidWear Application that runs on the LG watch, and Java
application that runs on the terminal. Android Wear application
captures motion measurements of the user’s wrist while terminal
application captures the actual keyboard/mouse interaction that
it observes at its terminal. Android Wear application and Java
application communicate through Bluetooth to synchronize their
clocks and to send motion measurements from the watch to the
terminal. Rest of the components of ZEBRA, speci�cally Interaction
Extractor, Segmenter, Feature Extractor, Interaction Classi�er, and
Authenticator that comprises “ZEBRA Engine”, are implemented in
MATLAB with the functionalities as described in Section 2.1.
Feature Set and Classi�er We used same set of 12 features ex-
tracted from each of the accelerometer and gyroscope signals of
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Figure 2: Defense Design Model

segmented blocks as considered in [33] and [25]. �ey aremean, me-
dian, variance, standard deviation, median absolute deviation (MAD),
inter-quartile range (IQR), power, energy, peak-to-peak amplitude,
auto-correlation, kurtosis, and skew. Similar to the implementation
in [25], we used Random Forest classi�er [10]. It consists of 100
weak-learners and each of the learners considers sqrt(n) features,
where ‘n’ is total number of features, 24 in our case. Moreover, the
classes were weighted to account for any imbalances in the training
dataset. We used the exact parameters as provided in [25]. A full
list of parameters are shown in Appendix Table 2.

4.2 Performance Evaluation
Benign Setting: We followed the same approach as in [25, 33] to
evaluate the usability of the system i.e., we computed the false neg-
ative rate (FNR) as the fraction of interaction windows from a user
that the Authenticator marked as from “di�erent user”. Similarly,
we used leave-one-user-out cross validation approach over the 39
samples collected from 13 user sessions, each session consisting
of three di�erent scenarios, as described in Section 5. We trained
the classi�er using 36 samples of bracelet data from all the other
12 sessions. We then tested the classi�er using 3 samples from the
current session. �us, we built 12 di�erent classi�ers, and reported
the aggregate classi�cation results of 39 samples.

Figure 3: Fraction of users remaining logged in to ZEBRA
a�er ‘n’ authentication windows (with w = 20, m = 60%)

Table 1: Confusion matrix for 39 legitimate user samples.

Predicted

Actual

Typing Scrolling MKKM
Typing 8139 72 331
Scrolling 100 1068 5
MKKM 483 39 5157

FNRs of our implementation of ZEBRA system (shown in Ap-
pendix Figure 9) are in the range between 0-10% which is inline
with [33] (0-18% ). FNRs are less than 6% for window sizes above
15. We also computed the estimated time (in terms of number of au-
thentication windows) for which a legitimate user remained logged
in. Similar to [25, 33], we �xed w = 20 and m = 60% for estimating
this time. Figure 3 shows fraction of users still logged in a�er given
‘n’ authentication windows for a grace period (g) of 1 and 2. With
a strict grace period of (g) = 1, 90% of the users were recognized
as a correct user through out the session while with lenient grace
period of g = 2, this fraction slightly increases to nearly 92%. �ese
fractions seems in line with the results reported in [33].

Table 1 shows the classi�cation performance of Interaction
Classier combining all 39 (13 x 3) classi�cations in the form of
confusion matrix. �is confusion matrix shows that our classi�er is
good at correctly inferring the events similar to the implementation
of [25]. For an instance, we obtain a precision of 93.33% (8139/8722)
and a recall of 95.28%(8139/8542) for recognizing the typing events.
�ese values are in line with those reported in [25].

Security against Innocent Adversaries: Innocent adversaries
are the general users who inadvertently start using a terminal
where another user has already logged in. Similar to [25], we
evaluate the security of our implementation of ZEBRA against
such innocent adversaries by computing True Negative Rate (TNR)
for mismatching sequences where actual interaction sequence of
one sample is compared to predicted interaction sequence of a
di�erent sample. While mismatching the sequences, traces were
synchronized by aligning the starting point of the sequences being
compared. TNR for such mismatching sequences is the fraction of
windows that are correctly classi�ed as a wrong user.
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Figure 4: Results for simulated innocent adversaries against
ZEBRA. Fraction of “wrong” users remaining logged in a�er
‘n’ authentication windows for di�erent grace period (g).

For the threshold of 60-70% for TNR (Appendix Figure 10), most
(more than 85%) of the authentication windows are correctly classi-
�ed as non-matching windows for the window size above 20. Figure
4 shows the fraction of innocent adversaries remaining logged in
while interacting with the terminal for a given number of authen-
ticating windows when using w = 20 and m = 60%. It can be seen
that all the wrong users were kicked out within 5 authentication
windows which indicates that our system is robust against such
innocent adversaries.

5 YELP EXPERIMENT AND EVALUATION
5.1 Data Collection
In our study, we recruited 13 users by word of mouth. Participants
were mostly students with age ranging from 18 to 35. 9 of the
participants were males and 4 were females. All the participants
were required to play the role of users (victim) while two of the
trained researchers played the role of expert a�ackers following
the methodologies used in [25]. Participants were told that the
purpose of the experiment was to study the e�ect of ambient sound
on user-behavior towards the terminal. We purposely did not tell
the participants about the actual motive of the experiment before
the experiment because it might have impacted the user-behavior.
�ey were also told that either white-noise or music will be played
during the experiment. Before starting the experiment, they were
asked about their general demographic information. During the
course of experiment, the participants performed three 10-minute
tasks of �lling a web form similar to [25, 33] in three di�erent
se�ings: (a) in devoid of YELP (ZEBRA only), (b) in presence of
YELP with music, and (c) in presence of YELP with white noise.
Experiments were conducted in a lab se�ing (quiet environment)
to make the scenario advantageous to a�acker. Our study and the
data collection followed the IRB procedures at our institutions.

From each 10 minute task, two sets of user data were collected.
First set of user data consisted of accelerometer and gyroscope
readings from the bracelet worn by the user and the second set
contained the actual sequence of user-terminal interaction extracted
by Interaction Extractor on the terminal. An a�acker assigned to
a user performed audio-only opportunistic keyboard-only a�ack in
each of the three se�ings mentioned above. In each of the se�ings,
a�acker and victim were positioned approximately at a distance of
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Figure 5: Results for audio-only opportunistic keyboard-only
attackers against ZEBRA (without YELP). Fraction of attack-
ers remaining logged in a�er ‘n’ authenticationwindows for
di�erent grace periods (g).

2m, both facing away from each other so that a�acker could not
see the victim but could hear victim interacting with the terminal.
�e 13 user sessions resulted in a total of 39 samples, each sample
consisting of three di�erent measurements: the motion sensor data
from bracelet of the user, the actual interaction sequence of the user,
and the interaction sequence of the a�acker. All the measurements
within a sample were synchronized.

5.2 Results
5.2.1 Keyboard-only Opportunistic A�ack against ZEBRA (with-

out YELP). To validate audio-only opportunistic keyboard-only a�ack
against ZEBRA, we used only the samples collected in the se�ings
without implementation of YELP. For each of the user, we built
a separate classi�cation model by employing leave one user out
approach. In particular, we used 36 samples from 12 user sessions
to build a classi�er for a given user’s sample set. Finally, result
was computed by aggregating the results from 13 classi�ers for
each of the traces. In the benign se�ing, 12 out of 13 users were
recognized correctly as a legitimate user by ZEBRA and they were
able to remain logged for entire duration of experiment at both g =
1 and g = 2.

Similar to [25], we computed the average False Positive Rate
(FPR) for di�erent thresholds(m) between 50% and 70%, and for
di�erent window sizes(w) from 5-30 (presented in Appendix Figure
11). �e FPR represents the fraction of a�ackers’ authentication
windows that were incorrectly marked as from the original user.
With a lenient threshold of 50%, the FPR values range from 75%
to 98% while with a strict threshold of 70%, the FPR values range
from 55% to 70%. General perception is that the high FPR will
indicate the high probability of an a�acker remaining logged in
to the system for longer period of time. However, as most of the
activities of victim and a�acker constitute typing (as can be seen
from confusion matrix in Table 1), keyboard interaction from an
a�acker may match accidentally with motion sensor from a victim.
�erefore, in our case, FPR is not an e�ective measure to visual-
ize the impact of masking sound on the a�acker’s performance.
Instead, a measure of how quickly ZEBRA recognize the a�acker
successfully would show the actual impact of masking sound on
the a�ackers’ performance. So, in the rest of this section we use the
measure of how long a�acker can remain logged in to the system
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Figure 6: Results for simulated keyboard-only random at-
tackers against ZEBRA. Fraction of attackers remaining
logged in a�er ‘n’ authentication windows for di�erent
grace periods (g).
to evaluate the e�ectiveness of our defense YELP using m = 60%
and w = 20.

We plot the fraction of logged-in adversaries as a function of
number of authentication windows by se�ing m = 60% and w = 20 to
see how long an opportunistic a�acker can remain logged in to the
system. �is represents the period of time in terms of authentication
windows during which the a�ackers remain logged-in to the system.
Figure 5 depicts this fraction for g = 1, 2. Note that an opportunistic
a�acker against ZEBRA creates very less number of interactions,
and hence less number of windows, as he is selectively mimicking
only the subset of victim keyboard activities. In our experiment,
we get the number of interactions equivalent to 30 windows from
normal users while with opportunistic a�ackers we get the number
of interactions equivalent to only 10 windows on average. So, for the
benign case, we present result for 30 authentication windows while
for a�ack case we present result for 10 authentication windows.

�e high FPR of approximately 90% (for w = 20 and m = 60%)
results in more than 45% of the a�ackers remaining logged in at g =
1 and more than 75% of a�ackers remaining logged in for g = 2 for
the whole duration of the experiment. With the same parameter
se�ings, [25] reported that approximately 15% of the opportunis-
tic a�ackers remained logged in for whole 10 minutes duration
at g = 1. �e higher fraction of successful a�ackers in our case
as compared to that in [25] may be because of the higher FPRs of
our implementation of ZEBRA. More than 75% a�ackers remain
logged in successfully up to third authenticating windows at g = 1
and more than 90% at g = 2. Nearly 70% of the a�ackers remained
logged in until ��h authenticating windows at g = 1. �is result
shows that ZEBRA system is vulnerable highly against audio-only
opportunistic keyboard-only a�ackers. �erefore, it highlights the
need to either minimize, if not eliminate, the acoustic emanation
through keyboard or use the masking sounds to hide the acous-
tic emanation to disable the a�acker from hearing the keystroke
sounds.

5.2.2 Keyboard-only Random A�ack. In keyboard-only random
a�ack, an a�acker tries to access the victim’s terminal using only
keyboard. Unlike audio-only opportunistic keyboard-only a�ack
where a�acker tries to selectively mimic the victim keyboard activ-
ities based on audio cues from the victims’ keystrokes, keyboard-
only random a�acker performs only keyboard activities in normal

fashion without any audio or visual cues from victim. As we are
interested in evaluating the e�ectiveness of masking sound against
audio-only opportunistic keyboard-only a�ackers, we use keyboard-
only random a�ack scenario as a baseline for our evaluation.

We simulate this scenario by mix-matching the samples, where
interaction sequence of one sample is applied against motion sensor
readings from a di�erent sample. While mix-matching the samples,
they were synchronized by aligning the starting point of interaction
sequence of a sample being used with starting point of interaction
sequence of a sample whose motions sensor readings are being
used. All the mouse related events (i.e., scrolling and MKKM) were
also removed from the interaction sequence as we are interested in
keyboard-only random a�ack. For each mix-matched sample, we
used the classi�cation model (built earlier in audio-only opportunis-
tic keyboard-only a�ack analysis) corresponding to the user whose
motion sensor data is being used.

Figure 6 shows the performance of ZEBRA against keyboard-
only random a�ackers. It shows the fraction of random a�ackers
remaining logged in successfully for given number of authentica-
tion windows for g = 1, 2. At g = 1, more than 50% of the a�ackers
were kicked out a�er 5 authentication window and nearly 65%
of the a�ackers were kicked out a�er 10 authentication window.
When using g = 2, only 20% of the a�ackers were logged out a�er
5 authentication window while more than 35% of the a�ackers
were logged out a�er 10 authentication window. At g = 1, more
than 30% (and 60% at g = 2) of the random a�ackers were able
to withstand the ZEBRA system for the whole 10 minute session.
�e success of random a�ackers to remain logged in during the
entire session may be because most of the interactions constitute
keyboard interactions and interaction from one sample may have
match accidentally with the motion sensor readings from a di�erent
sample while mix-matching.

5.2.3 Keyboard-only Opportunistic A�ack against YELP. We now
present the evaluation of the e�ectiveness of YELP, in particular the
e�ect of white-noise and music of YELP as a masking sound, against
audio-only opportunistic keyboard-only a�ack while considering the
a�acks without YELP scenario as a base scenario.

In presence of White-Noise: To see the e�ectiveness of YELP
withwhite-noise as a defense measure against audio-only opportunis-
tic keyboard-only a�ackers, we use all the user samples collected
in presence of white-noise. �e training and classi�cation results
were computed in a similar manner as in Section 5.2.1.

Figure 7 shows the performance of the users with ZEBRA (Figure
7a) and the performance of audio-only opportunistic keyboard-only
a�ackers against ZEBRA in presence of YELP with white-noise
(Figure 7b). Figure 7a shows the fraction of normal users remaining
logged in for given number of authentication windows. At g = 1,
more than 75% of the users were correctly recognized as a correct
users through out the duration of the experiment. When using g =
2, nearly 85% of the users were correctly identi�ed as a legitimate
user during the whole 10 minute session.

Figure 7b shows the fraction of audio-only opportunistic keyboard-
only a�ackers remaining logged in successfully for given number of
authentication windows in presence of YELP with white-noise. �e
fraction of a�ackers kicked out in presence of YELP withwhite-noise
(Figure 7b) is statistically signi�cant (Wilcoxon signed-rank test,
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(a) Fraction of users remaining logged in a�er ‘n’ au-
thentication windows for di�erent grace period (g).
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(b) Fraction of attackers remaining logged in a�er ‘n’
authenticationwindows for di�erent grace period (g).

Figure 7: Results for the users and audio-only opportunistic
keyboard-only attackers in presence YELP with white-noise
as a masking sound.

z = −2.803 and p = 0.003 < 0.05) compared to the se�ing without
YELP (Figure 5) across all the windows. For example, when using
g = 1, almost 70% of the a�ackers were kicked out in presence of
YELP with white-noise while in the se�ings without YELP, less than
25% of a�ackers were kicked out at third authentication window.
In case of keyboard-only random a�ack, 40% of the a�ackers were
kicked out at the same authentication window.

For YELP with white-noise, only 30% of the a�ackers were able
to remain logged-in during the entire experiment which is nearly
the same fraction as in keyboard-only random a�ack (30%) while
more than 45% of audio-only opportunistic keyboard-only a�ackers
were able to remain logged-in for entire duration of experiment
in the se�ing without YELP. �is shows that the white-noise can
potentially mask the keystrokes sounds, thereby making it di�cult
for the audio-only opportunistic keyboard-only a�acker to hear any
keystroke sounds. �erefore, the system with g = 1, can quickly
and e�ectively detect larger fraction of a�ackers successfully in
presence of white noise. At g = 2, nearly 70% of the a�ackers were
able to remain logged in during the entire experiment in presence
of white-noise. �is fraction lies between the fraction (nearly 75%)
of audio-only opportunistic keyboard-only a�ackers in the se�ing
without the implementation of YELP and the fraction (60%) of
keyboard-only random a�ackers who remain logged in through out
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(a) Fraction of users remaining logged in a�er ‘n’ au-
thentication windows for di�erent grace period (g).
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(b) Fraction of attackers remaining logged in a�er ‘n’
authenticationwindows for di�erent grace period (g).

Figure 8: Results for the users and audio-only opportunistic
keyboard-only attackers in presence of YELP with music as
a masking sound.

the session. �is shows that white-noise of YELP works fairly as a
defense measure against the opportunistic a�ackers at g = 2.

In presence of Music: We use the similar approach as in YELP
with white-noise scenario to see the e�ectiveness of the use of YELP
with music as a masking sound against audio-only opportunistic
keyboard-only a�ack. We use all the 13 user sample sets collected
in presence of music as described above.

�e performance of the users and the opportunistic a�ackers
against ZEBRA in presence of YELP with music as a masking sound
is presented in Figure 8. Figure 8a shows that all the users were rec-
ognized correctly as a legitimate user during the entire 10 minute
session for both g = 1, and 2. Figure 8b shows the fraction of a�ack-
ers remaining logged-in as a function of number of authentication
windows for g = 1, 2. �e fraction of a�ackers kicked out in pres-
ence of YELP with music (Figure 8b) is statistically signi�cant (with
z = −2.934 and p = 0.002 < 0.05) compared to the se�ing without
YELP (Figure 5). For an instance, using g = 1 almost 60% of the
a�ackers were logged out a�er third authentication window in
presence of YELP with music while in the se�ing without YELP less
than 25% of the a�ackers were kicked out at the same authentication
window.

As compared to the se�ing without YELP, a smaller fraction (30%
over 45%) of audio-only opportunistic keyboard-only a�ackers were
able to remain logged in during the entire session in presence of
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music as a masking sound. When comparing with keyboard-only
random a�ack, nearly same fraction of a�ackers were able to logged
in during the entire session. When g = 2, though there seems to be
less impact on the fraction of a�ackers remaining logged in through
out the entire experiment duration, YELP with music works fairly
well similar to white-noise. It is indicated by the fraction (more than
85%) of a�ackers being logged out (at ��h authentication window)
in presence of YELP with music that lies in between the fraction
(more than 90%) of audio-only opportunistic keyboard-only a�ackers
in the se�ing without YELP and the fraction (80%) of keyboard-only
random a�ackers. �is shows that YELP with music can reduce the
performance of audio-only opportunistic keyboard-only a�ackers at
the level of the performance of the random a�acker at g = 1 while
when g = 2, music tends to reduce the performance of audio-only
opportunistic keyboard-only a�ackers towards the performance of
keyboard-only random a�ackers. �erefore, YELP with music as a
masking sound works almost at the same level as the white-noise
for g =1, and a bit less for g = 2.

6 RELATEDWORK
�e most common form of user authentication on computing de-
vices has been passwords. As time has progressed, passwords have
become longer and more complex requiring the users to extra e�ort
to remember or securely secure their only means of authentication.
However, humans always have a tendency to choose a simple, easy
to recall password [9, 11, 17, 19, 27, 36, 38, 39]. �is fact leads to an
inherent vulnerability due to human factor in user authentication.

In order to improve upon user authentication mechanism, several
other schemes have been proposed that do not involve passwords.
Secure physical tokens [41] have been proposed in conjunction with
passwords to bolster user authentication. Biometric authentication
takes it one step further by utilizing various metrics like �ngerprint
pa�ern [14], hand veins[29], iris pa�ern [13], facial structure [8] or
blood vessel [43] information to establish the identity of a human
user. �ey o�er a be�er solution to user authentication than tradi-
tional authentication mechanism as it is easy to test their accuracy
based on prediction of false positive and false negative rates for
each type of metrics used [2, 16, 22, 26]. Behavioral biometrics like
gait of a user [20], keystroke typing pa�ern [28, 34, 35], mouse
dynamics [1] have all been proposed as authentication schemes
that are less intrusive from a user’s perspective. Continuous user
authentication (e.g. [30]) elevates the security o�ered by previously
mentioned authentication schemes by continuously determining
the identity of the user as a trusted entity in the background.

Audio channels have previously been exploited for launching
side channel a�acks against keystrokes ([3, 7, 18, 23, 44, 45]), me-
chanical printers [6], RFIDs/wireless devices [24] and CPU emis-
sions [21]. �e a�acks on keystroke emanations have been success-
ful at extracting individual keystrokes with a reasonable degree
of accuracy. Random passwords as well as typed text have been
decoded using the techniques described in such a�acks. Halevi et
al.[24] were able to extend acoustic eavesdropping from keystrokes
to vibrations and Genkin et al. [21] showed that it is feasible to
extract the full RSA key from CPU acoustic emanations.

Sound masking has traditionally been used as a commercial
solution ([4, 12, 31, 32, 42]) for providing speech privacy in call

centers, o�ces, libraries, medical facilities, law and government
facilities etc. It has been proposed as a way to reduce distraction,
improve focus and protect sensitive conversations. It is touted as a
low cost measure to achieve privacy as compared to architectural
improvements in the environment. Zhuang et al.[45] also proposed
addition of masking sound while typing as a way to reduce the
quality of the acoustic emanations that may impede keystroke
classi�cation.

7 CONCLUSION AND FUTUREWORK
ZEBRA is a representative zero-e�ort deauthentication system.
However, it has been shown susceptible to a practical audio-visual
based vulnerability where a clever opportunistic human a�acker,
by observing/listening victim’s activities with the authentication
terminal, can compromise the security of ZEBRA. Since the visual
observation a�acks can be relatively easily addressed by the use
of visual barriers around the login terminals, our work focused
on defending against audio-based observation a�acks. Given the
severity of this threat against ZEBRA system, we designed an ef-
fective defensive approach – YELP– that works transparently with
ZEBRA. In order to cloak the typing sounds, YELP utilizes the no-
tion of sound masking that has already been in use as a commercial
solution for providing speech privacy, and also as a way to reduce
distraction, improve focus and productivity. In particular, YELP
uses two types of masking sounds, white noise produced by the
computer terminals themselves and musical sounds produced by a
centrally located loudspeaker system present in the environment.

To evaluate the e�ectiveness of YELP, we recreated the audio-
based opportunistic a�acks on ZEBRA as proposed in [25] and
tested it against ZEBRA and YELP. Our results showed that YELP
can improve the security of ZEBRA without signi�cantly impacting
its performance in the benign se�ing. We demonstrated that YELP
with both white-noise and music as a masking sound can e�ectively
hide the acoustic leakage from ZEBRA system, and can reduce the
a�ack success rate of an audio-based opportunistic a�acker.

In the future work, YELP may need to be evaluated against
potentially more sophisticated a�acks, such as those employing
noise �ltering techniques, for example, using noise cancellation
headphones. Noise cancellation occurs by measuring ambient noise
and producing an anti-noise signal to cancel the ambient noise.
Since ambient noise is generally considered to be any sound except
speech, it remains to be seen if noise cancellation can be geared
towards �ltering masking sound from keystroke sounds without
a�ecting the quality of the keystroke sounds themselves.

On a broader note, we believe that the sound masking based
defensive approach like YELP can be broadly applied against other
audio-based side channel a�acks (e.g., those involving information
leakage through CPU and printer sounds). �is approach would
constitute an independent as well as low cost system when com-
pared to architectural improvement techniques that are usually
deployed against audio-based a�acks and may be expensive. While
designing defensive tool based on sound masking, proper selection
of masking sounds entails choosing sounds that are less distracting
and at the same time e�ective at masking sensitive audio leakage of
the vulnerable system. Further study is required to create a re�ned
design methodology for practical and secure sound masking based
defensive tools against audio-based a�acks.
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APPENDIX: ADDITIONAL TABLES AND
FIGURES

Table 2: Parameters and their values used in our implemen-
tation of ZEBRA (same as in [25]). ForMKKM, idle threshold
and maximum duration is 5s.

Parameter Value
Mininum duration 25 ms
Maximum duration 1 s
Idle threshold 1 s
Window size (w) 5-30
Match threshold (m) 50-70%
Overlap fraction (f ) 0
Grace period (g) 1, 2

Figure 9: Performance of legitimate users. Average FNR vs.
window size (w) for di�erent threshold (m) values. Fraction
of windows that are incorrectly classi�ed as mismatching.

Figure 10: Average TNR for di�erent threshold (m) and dif-
ferent window size (w) values. Fractions of windows that
correctly identify a wrong user in simulated accidental us-
age of the terminal.
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Figure 11: Results for audio-only opportunistic keyboard-
only attackers without YELP. Average FPR for di�erent
threshold (m) values and for di�erent window sizes (m).
Fraction of attacker windows that are incorrectly classi�ed
as from legitimate users.
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