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Abstract. Mobile devices, such as smartphones and tablets, offer a wide
variety of important services to everyday users. Many of these services
(such as NFC payments) are highly sensitive and can be abused by ma-
licious entities, without the knowledge of the device user, in the form
of insider attacks (such as malware) and/or outsider attacks (such as
unauthorized reading and relay attacks).

In this paper, we present a novel application permission granting ap-
proach that can be used to protect any sensitive mobile device service. It
captures user’s intent to access the service via a lightweight hand waving
gesture. This gesture is very simple, quick and intuitive for the user, but
would be very hard for the attacker to exhibit without user’s knowledge.
We present the design and implementation of a hand waving gesture
recognition mechanism using an ambient light sensor, already available
on most mobile devices. We integrate this gesture with the phone dialing
service as a specific use case to address the problem of malware that
makes premium rate phone calls. We also report on our experiments to
analyze the performance of our approach both in benign and adversarial
settings. Our results indicate the approach to be quite effective in pre-
venting the misuse of sensitive resources while imposing only minimal
user burden.

1 Introduction

The deployment and usage of mobile devices, such as smartphones and tablets, is
continuously rising. These devices open up immense opportunities for everyday
users offering valuable resources and services. In addition to traditional capa-
bilities, such as voice calling, SMS and web browsing, many smartphones come
equipped with the NFC (Near Field Communication) functionality, a form of
RFID (Radio Frequency IDentification). An NFC phone can be used as a RFID
contactless payment token, such as a credit or an ATM card. It can also be used
as an RFID reader that can “read” other RFID cards or NFC phones in close
physical proximity. NFC equipped devices, such as Samsung Galaxy Nexus and
Nexus 7 are already in the US market. All these different features on modern
mobile devices have attracted not only millions of consumers to smartphones
and tablets but have also motivated the developers to write varieties of apps
for these devices, such as the Google Wallet app for NFC-based payment using
Android phones.



1.1 Security and Privacy Threats

Due to the increasing popularity of mobile devices, they have become a prime
target of malicious attackers and cyber criminals. In particular, such malicious
entities attempt to misuse the sensitive services provided by these devices. For
example, they might be interested in making free (premium rate) phone calls or
sending free SMS using a legitimate user’s phone, or want to make NFC payments
which will be charged to the user’s account. Specifically, two major threats exist
that form the primary focus of this paper: (1) the insider attacks in the form of
malware, and (2) the outsider attacks in the form of NFC unauthorized reading,
as explained below.

Mobile Device Malware: There has been a rapid increase in mobile device
malware targeting different smartphone platforms [15, 17, 16, 7, 33, 22, 28, 30].
This is made possible especially because users often download applications from
untrusted sources, many of which may contain hidden malicious code. Such mal-
ware, once installed on the smartphone, can exploit the smartphones in many
different ways. For example, the malware can use the resources/sensors of the
phone to learn something sensitive about the user, such as it can use the camera
and take the pictures of the user and surrounding, or it can make premium rate
phone calls or send premium rate SMS messages without user’s knowledge, or
use NFC reader to skim for physical credit cards in close proximity. Indeed, a
proof-of-concept Trojan Horse electronic pickpocket program under the cover of
a tic-tac-toe game has already been developed by Identity Stronghold [2].

Unfortunately, current operating systems (e.g., Android and iOS) provide
inadequate security against these malware attacks. For granting permission to
an application requiring access to the resources, these operating systems either
require out-of-context, uninformed decisions at the time of installation via mani-
fest [3, 32] or prompt users to determine their interest via system prompt [29, 32].
This approach relies upon user diligence and awareness — it is well-known that
most users do not pay attention to such “Yes/No” prompts and frequently just
select “Yes” so as to proceed with the installation. Once granted the permission,
applications have full authority over the resources and can access them without
owner’s consent. In addition to relying upon user permission, application review
process is also undertaken. However, review process has failed in the past [40, 23],
and users gaining the root permission/ jail-breaking the phone can easily install
the third party applications which may not have been reviewed [40, 23].

NFC Unauthorized Reading and Relay Attacks: The NFC (tag) chip
on a smartphone stores sensitive information. In particular, it stores the credit
card number and other relevant information. Such an information can easily
be subject to clandestine eavesdropping. For example, an adversary with an
NFC reader can walk past a victim carrying an NFC phone, and can read the
credit card information stored on the NFC chip. This clearly allows for fraud or
illegitimate purchases for which the owner will be charged. It can also lead to
owner tracking and privacy problems [1]. This information may also be used to
impersonate an NFC device via cloning [1].



Furthermore, similar to RFID tags, NFC devices are susceptible to “ghost-
and-leech” relay attacks [42]. Here an adversary, called a “ghost,” relays the
information surreptitiously read from a legitimate RFID device to another col-
luding adversary, called a “leech.” The leech transmits this information to a
legitimate reader and vice versa, and can thus impersonate the RFID tag. All
cryptographic authentication protocols are vulnerable to this form of an attack
[18].

1.2 Controlling Access via Intuitive Gestures

In this paper, we set out to defend against the aforementioned insider attacks
(malware) and outsider attacks (unauthorized reading and relay attacks) against
critical mobile device services. We observe that all these attacks, in order to
remain stealthy, occur in scenarios where the device user has no intention to
access the underlying services. Thus, if the user’s intent to access the services
can be captured in some way, these attacks could be prevented. We propose to
elicit user’s intent via simple gestures performed by the user prior to accessing
the services. In other words, whenever the user wants to access the service, she
will simply perform a particular gesture. On the other hand, if the attacker
attempts to access the service, the gesture will be missing and the access request
will be blocked. This general idea was first introduced in a recent (short) paper
[27] limited to address the specific problem of NFC malware-based attacks. In the
current paper, we extend the scope of the approach to cover NFC unauthorized
reading and relay attacks as well as introduce novel gesture recognition schemes
for malware-based attacks against any sensitive service.

Access control using a simple gesture has significant usability advantages
when compared to typing in a complex password, which are often forgotten, and
has significant security advantages over using nothing at all. The approach is also
more secure than using a “Yes/No” dialog box, given that most users are already
habituated to pressing “Yes” when prompted. Hand waving gesture is only one
of the gestures for human-enabled authorization of actions, and there can be a
number of gestures in the future, which when used carefully can overcome the
problem of habituation of pressing “Yes.” Moreover, a Yes/No dialog box will
require the user to explicitly press a button when an application requires access
to a resource while the user is performing another activity on the device. The
gesture-based approach, on the other hand, would not require a user interface,
but rather the user can just be prompted using a “Toast” mechanism, available
for example in Android, or notified using a notification bar.

1.3 Owur Contributions

We propose how a gesture-based mechanism can be used to elevate the permis-
sion for applications which require access to critical mobile device resources and
services (see Figure 2). The main contributions of this paper are summarized as
follows.



1. We propose a novel approach to malware defense for mobile devices based
on intuitive gesture recognition. Specifically, we suggest a new lightweight
hand waving gesture that utilizes the ambient light sensor and accelerometer,
ubiquitously available on smartphones and tablets.

2. We also introduce the use of the waving gesture for the purpose of selec-
tive unlocking for NFC/RFID tag. Instead of promiscuously providing the
information to any reader, we argue for a model which only approves the
permission to read the tag’s information once the gesture is detected.

3. We report on the implementation of our prototypes for the wave gesture
recognition scheme on the Android platform. As a specific use case for de-
fending against malware that makes premium rate phone calls, we integrate
this gesture recognition scheme with the phone’s voice dialing service. The
resulting app requires the user to perform the wave gesture before making a
phone call (or a phone call to a premium rate number) .

4. To evaluate our approach, we conduct many experiments simulating the
behavior of malicious attacker and normal user usage activity. Our results
demonstrate the waving gesture to be quite effective in protecting critical
mobile device services without imposing much burden on the user.

2 Related Work

2.1 Malware Detection and Prevention

There is a plenty of prior work on defending against malware on traditional
desktop computers. Static analysis[10, 38, 36], also known as signature-based
detection, is based on source or binary code inspection to find suspicious patterns
(malware) inside the code. However, malware authors can evade this analysis by
simple obfuscation, polymorphism and packing techniques. Also it cannot detect
zero day attacks. Dynamic analysis[14, 39, 5, 41], also known as behavior-based
detection, monitors and compares the running behavior of an application (e.g.,
system calls, file accesses, API calls) against malicious and/or normal behavior
profiles through the use of machine learning techniques. It is more resilient to
polymorphic worms and code obfuscation and has the potential to defeat zero-
day worms.

These techniques for desktop computers are still considered too time consum-
ing for resource-constrained mobile devices operated on battery. Most existing
research focuses on optimizing desktop solutions to fit on mobile devices. The
work of [38] tries to speed up the signature lookup process in static analysis by
using hashes. Several collaborative analysis techniques have been proposed to
distribute the work of analysis by a network of devices [34, 37]. Remote server
assisted analysis techniques have also been proposed to reduce the overhead of
computation on individual devices [9, 6].

2.2 Gesture Recognition and Security

Gesture recognition has been extensively studied to support spontaneous inter-
actions with consumer electronics and mobile devices in the context of pervasive



computing [4, 8, 25]. Due to the uniqueness of gestures to different users, per-
sonalized gestures have been used for various security purposes.

Gesture recognition has been used for user authentication to address the
problem of misuse of stolen devices [19, 11]. In [19], a mobile device gets unlocked
for use when it detects the gait (walking pattern) of the legitimate owner. In [11],
a smartphone gets locked when it does not detect the “picking-up phone” gesture
which the owner naturally performs to answer a phone. Both works provide
transparent user authentication and do not require explicit user involvement.
[26] reports a series of user studies that evaluate the feasibility and usability
of light-weight user authentication based on gesture recognition using a single
tri-axis accelerometer.

Related to our work, gesture recognition has also been suggested to defend
against unauthorized reading and ghost-and-leech relay attacks in RFID systems
[12, 21]. The secret handshakes scheme proposed in [12] allows an RFID tag to
respond to reader query selectively when the tag owner moves the tag in a
certain pattern (i.e., secret handshake). In contrast to our hand waving gesture
recognition, secret handshakes requires a pre-stored template, and the underlying
gestures themselves may not be very intuitive for the user. The work of [21] uses
posture as a valid context to unlock an implanted RFID device without changing
the underlying user usage model. This approach, however, can have high false
positive rate in practice and is not applicable in the context of mobile devices
that are not implanted.

The use of unique key press gestures or secure attention sequences (SASs),
such as CTRL-ALT-DEL, may also serve as a means to defend against malware
and unauthorized reading attacks. However, we are not aware of SASs being
currently used on mobile phones. SASs need to be unique and usually require
multiple key presses simultaneously (e.g., CTRL-ALT-DEL). Such sequences will
be very hard for the user to perform on phones. The hand waving gesture pro-
posed in our paper can be viewed as a form of novel and user-friendly SAS
suitable for phones.

Recently published paper [20] is also relevant to our work. Like ours, it fo-
cuses on the hand-wave gesture but utilizes reflected sound waves instead of
light. Specifically, it applies “Doppler Effect” to sense hand waving gestures. It
uses speaker to generate inaudible sound waves and microphone to receive the re-
flected frequency-shifted wave. The approach involves calculating the frequency
of the received signal to infer various gestures such hand wave, double-tap, and
two-handed seesaw movements. Based on these “in-air” gestures, the paper sug-
gests different non-security use cases and applications. It might be possible to
use this gesture recognition scheme for the purpose of protecting sensitive mobile
device services. However, there are a few caveats. First, an adversary can send
inaudible sound waves to a victim’s smartphone with varying frequency so as to
mimic one of the gestures. This will undermine the security of this scheme. Sec-
ond, the sound wave generated by the speaker can be annoying for children and
pets who can hear the high frequency sound waves. Furthermore, compared to



our gesture recognition mechanism, this approach is computationally-intensive,
and power-exhaustive, for mobile phones.

3 Threat Model and Design Goals

3.1 Threat Model

In our security model, we consider both insider attacks and outsider attacks
against mobile devices. In the context of an insider attack, the attacker is as-
sumed to be a malicious application or malware. We assume that attackers use
malware to access sensitive services (such as phone call, SMS, NFC, or GPS)
for various malicious intentions. The malware can be hidden in a normal ap-
plication. Malware can spread through various paths to the phone via various
communication channels such as Bluetooth, WiFi, and GSM. We assume that
the malware has already been downloaded and installed on the phone without
any user suspicion. This can happen, for instance, when a user downloads an
application from an untrustworthy source that looks like a game but contains
malicious code. How to prevent malware from being installed on the phone is
beyond the scope of our model.

In the context of an outsider attack against the NFC service running on
a mobile device, the attacker is a device that can read the contents stored on
the NFC chip and can later use this information for illegitimate purposes. The
attacker could also constitute two colluding entities who can launch a ghost-and-
leech attack against NFC.

We assume the mobile device OS kernel itself is healthy and immune to
malware infection; hardening the kernel is an orthogonal problem [35, 31]. So the
malware is not able to maliciously alter the kernel control flow. The malware is
not able to alter data values of on-board sensors too. Otherwise, the malware can
supply fake sensor data to escape detection. However, the action from malware
is neither human triggered nor can it maliciously alter the kernel control flow.

We assume the attacker may be physically near the user. The attacker is
unable to persuade the user to perform the gesture to access a particular service.
However, she may coerce/fool the user into moving a particular manner with a
hope that such movement can generate similar motion as a valid gesture. We
do not, however, allow this attacker to have physical access to the phone. That
is, if the attacker has physical access to the phone, then he can lock/unlock
a resource just like the phone’s user. In other words, our mechanisms are not
meant for user authentication and do not provide protection in the face of loss
or theft of phone.

3.2 Design Goals

For our security approach to be useful in practice, it must satisfy the following
properties:



— The approach should be lightweight in terms of the various resources avail-
able on the phone, such as memory, computation and battery power. A
biometrics-based approach does not satisfy our goal as it is not lightweight
and can be time-consuming [24].

— The approach should incur little delay. Otherwise, it can affect the overall
usability of the system. We believe that no more than a few seconds should
be spent executing the approach.

— The approach should be tolerant to errors. Both the False Negative Rate
(FNR) and False Positive Rate (FPR) should be quite low. A low FNR
means that a user would, with a high probability, be able to execute an
application (which accesses some sensitive services) without being rejected.
Low FNR also implies a better usability. On the other hand, low FPR means
that there should be a little probability to grant access to a sensitive service
when a user does not intend to do so. Low FPR clearly implies a little chance
for malicious entity to evade detection.

— The solution should require little changes to the usage model of existing
smartphone applications. An intuitive gesture should be required from the
user that may involve simple hand movements defined by that gesture. In
this case, only minor changes to the adopted usage model will be imposed.

4 Hand Wave Detection

The primary sensor that we use to detect the hand waving gesture is an ambient
light sensor, commonly available on smartphones and tablets.! A light sensor
measures the intensity of ambient light. The light intensity is measured in luz
which defines how bright or dark the surrounding environment is. The primary
reason the light sensors are deployed on smartphones, and tablets and laptops,
is for prolonging battery life. The brightness of the screen display of the phone is
adjusted according to the intensity of the surrounding light measured by the light
sensor. For example, in a dark environment, the display is dimmed which helps
reduce the battery consumption. This is the reason the light sensor is located
in the front of the mobile phone at the top of its display (see Figure 1). This is
true for most, if not all, smartphones and tablets, including the Androids and
iPhones. We note that this is a property that we carefully leverage in developing
our waving gesture mechanism aimed at improving the security of mobile phones.
Specifically, our gesture interfaces with the light sensor, and due to the location
of the light sensor, it does not interfere with the gestures made by the user
while interacting with the device’s (touch screen) display, thereby significantly
reducing the False Positive Rate (FPR).

In order to utilize the light sensor for our purpose, we needed a human gesture
that can “trigger” the sensor in some way and is not likely to be exhibited
in daily activities. We chose waving (depicted in Figure 2) as a simple and a
convenient gesture mechanism since it can be easily executed by a human user

1 A proximity sensor may also be used to detect a hand wave as suggested in [27], but
tablets do not commonly come equipped with this sensor.



Fig. 2. Permission Granting via a Hand
Waving Gesture. In order to access a sensi-
tive service, the user is asked to simply wave
her hand in front of the phone; this unlocks the
service for use. A malicious application, in con-
Fig. 1. Location of the Light Sen- trast, would fail to exhibit such a gesture and
sor (Samsung Galaxy Nexus) will not be able to access the service.

and easily detected by a smartphone. The algorithm to detect quick fluctuations
in the reading of the light sensor is very simple and straightforward, and, unlike
many other gesture recognition algorithms, do not even need any pre-established
templates. This makes our approach extremely lightweight, satisfying one of our
design goals (Section 3.2).

To detect the hand wave gesture, whenever there is a change in reading from
the light sensors, we record the light sensor readings along with their respective
timestamps. We then analyze this light data and time recorded to determine
the fluctuation in the light intensity. If the light value fluctuates beyond a given
threshold for certain number of times within an allocated time, then we consider
such fluctuations in light values as being triggered by the hand wave gesture.
The threshold to determine if the light has fluctuated depends upon the current
ambient light intensity. When it is dark, i.e, the ambient light intensity is below
200 lux, then using a threshold of 20 lux is optimal to detect the fluctuation as
per our measurements. However, when ambient light is around 60,000 lux, i.e,
in the presence of bright sunlight, optimum value of threshold is around 15,000
lux.

We used eight different thresholds for eight different ranges of light intensity
to accurately determine the wave gesture.? For the analysis of fluctuation, we
used certain number of light readings WINDOW _SIZE_FOR_LIGHT (16).
If we detect the change in light intensity beyond the LIGHT THRESHOLD
(20 — 15,000 lux), then we add up the light change count (extremaCount). Af-
ter analysis of WINDOW _SIZE_FOR_LIGHT readings of data, if the light
change count is greater than CHANGE_ COUNT_FOR_LIGHT (6) and all
the light under analysis is within WAVE TIME_LIMIT FOR_LIGHT (2

2 All the thresholds and range buckets were determined through active experimenta-
tion.



Algorithm 1 Wave Detection using Light Sensor (and Accelerometer)

1: IF sensors are locked THEN wait for MOVEMENT _LOCK TIMFE
ELSE get accelerometer sensor readings x, y and z.

2: IF
Vazxy?xz2 > ACC.THRESHOLD

THEN lock the sensors for MOVEMENT_LOCK _TIME and RETURN to step
1.

3: IF sensors are not locked THEN get light sensors reading to check if wave gesture
is detected.

1. Analyze WINDOW _SIZE_FOR_LIGHT data to find out how many ex-
tremas (maximas and minimas) were there using LIGHT THRESHOLD.
2. IF extremaCount > CHANGE_COUNT_FOR_LIGHT AND All the light
data are recorded within WAV E TIME_LIMIT_FOR_LIGHT THEN
SET wunlockAttempted = true,
RECORD first unlock attempted time
DISPLAY Message “Stop Waving” for WAVE TIME_LIMIT _FOR_LIGHT.
3. IF unlock Attempted THEN

(a) IF  another unlockAttempt is obtained within less than
WAVETIME_LIMIT_FOR_LIGHT THEN Do not unlock, reset
everything and start over, i.e., return to Step 2.

(b) IF another unlockattempt is not obtained within
WAVETIME_LIMIT_FOR_LIGHT THEN Unlock the phone
for UNLOCK TIME_FRAME.

seconds; the maximum duration for the hand wave gesture), then we deter-
mine it as a wave gesture. However, sometimes environmental effects may trig-
ger the light sensors to detect it as wave gestures. So instead of unlocking the
phone straightaway (i.e., allowing access to the requested service), we delay the
unlock for certain time WAVE TIME_LIMIT_FOR_LIGHT. If no gesture
is detected within this timeframe, then we unlock the phone for certain time
UNLOCK TIME_FRAME (1 second).

In our scheme, the light sensor data is used in conjunction with the accelerom-
eter data to detect the wave gesture. The accelerometer sensor is used for the
purpose of reducing FPRs. Whenever the phone is moved, there will be a relative
change in the position of the phone with respect to the light source triggering a
change in light intensity. This will in turn be detected as a wave gesture, leading
to a high FPR (since the user did not wave in front of the phone). In order to
reduce this effect, if the phone detects movement, greater than a certain thresh-
old (ACC_THRESHOLD), as per the accelerometer data, it does not register
it as a hand wave gesture; further it locks the light sensor as well. Thus, when
an application requests for the permission to access the resource/service, the
algorithm will first check if the sensors are locked. If the sensors are locked, then
the algorithm will wait for certain time (MOVEMENT_LOCK _TIME) before
it starts reading the light and accelerometer signal again. Note that when the



algorithm is first executed, both sensors are active, and the corresponding data
is read. A detailed pseudocode for this simple procedure is outlined as Algorithm
1.

5 Implementation and Evaluation

5.1 Test Prototype: Wave-to-Call

To evaluate the feasibility of the wave gesture detection mechanism, we devel-
oped our prototype in Android Operating System using Motorola Droid X2. The
project build target was chosen for Android 2.3.3 platform or above using API
level 10. A simple Ul was created to emulate the unlocking of a service using the
hand waving gesture. The goal of the prototype was to add a layer of security
to Android permission model where user needs to provide a gesture to use a
resource/service. In our prototype, we specifically asked user to wave their hand
in front of the phone as a gesture to make an outgoing call. If the gesture is not
received within 10 seconds, the application will not allow a call.

We created a service that intercepts all the outgoing calls and two activities,
one for turning on/off the service and another for receiving the wave gesture.
When the service is turned on, whenever there is an intent to make a phone call,
our service will intercept that intent and start the activity to receive the gesture.
This activity turns the sensors on and reads the sensor value to analyze it using
our gesture recognition algorithm (Algorithm 1). If the readings from the sensor
satisfy the algorithm, then it will return true and provides an approval token to
make a call. If the sensor data does not satisfy the algorithm within certain time
duration, then the service will shut down the activity waiting for gesture along
with the sensors, i.e., sensors are only activated whenever there is an intent to
use a service and not all the time. These steps while making a call are shown in
Figure 3.

The service to intercept outgoing calls is turned on when user sets his pref-
erence via one of the activities mentioned above. However, the service must also
be turned on when the device boots up from being shutdown. We utilized the
BroadcastReceiver from Android SDK for this purpose. This is explained in
Figure 4.

Our approach does not involve any modification to the Android OS, rather
we created an application with about 500 lines of Java Code to turn on the
service as well as intercept the intent and make a call. Adding another intent
intercept will require few additional lines of code. Android OS provides limited
number of intents that we can intercept. Available intents can be found in [13].

5.2 Hand Wave Detection Experiments and Results

In this section, we report on the evaluation of our hand wave gesture recognition
scheme. This scheme is designed to protect against the malware and other mali-
cious entities trying to access phone’s resources or services without user aware-
ness. We conducted several experiments to evaluate our prototype implementing
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the hand-wave detection mechanism. The goal of our tests was to primarily esti-
mate the error rates, i.e., FNR and FPR. A summary of our experimental results
is depicted in Table 1, and the details are explained below.

FNR Experiments: In order to determine the FNR, one of the authors at-
tempted to unlock the phone himself using the hand waving gesture. Out of
forty trials performed, the user failed to unlock the device only 3 times. Most of
these failures occurred when the user tried to wave the hand far away from the
phone (farther than 30 cm), resulting in an average recognition rate of 92.5%
(or FNR of 7.5%).

Since multiple trials may have trained this user significantly, likely leading to
a bias, we further conducted our tests with multiple other users. These volunteers
were drawn from our Department (Computer Science) and were mostly students
at undergraduate and graduate levels. The users were first explained the purpose
of the study and then demonstrated the gestures using which they were to unlock
a service on the phone. The users were specified the location of the light sensor
on the phone. Although in real life, users may not be aware of the location of
the light sensor, they can be easily provided with this information using a simple
interface. For example, an arrow pointer could be provided on the screen which
points to the light sensor, and user could be asked to execute the wave gesture
accordingly.

A total of 20 volunteers participated in our study. Each of them was requested
to perform the hand waving based unlocking procedure 10 times and the results
were recorded automatically by our program. The resulting average recognition



Table 1. Recognition Rates for Hand Waving Detection. White cells: hand
waving attempts correctly detected as hand waving; Gray cells: other activities falsely
detected as hand waving

» Phone Unlock Light Readings
Activity Hand Wave Change (Attempt)
Count
Count
Hand Wave (> 700 lux) 95.71% 67 70
Hand Wave (350-700 lux) 87.00% 87 100
Hand Wave (< 350 lux) 83.33% 25 30
Hand Wave (average conditions) 90.50% 181 200
Walking, phone in backpack 0.00% 0 155
Walking with phone held in hand 0.08% 4 5138
Walking, phone in pocket 0.00% 0 103
Car, phone on passenger seat 0.00% 0 7098
Car, phone on dashboard 0.15% 14 9053
Routine Usage 0.00% 1 8729
Infront of TV 0.67% 3 449
Watching movie in theater 0.00% 0 64
itor Blinking 10 times/sec 0.32% 2 623
Monitor Blinking 5 times/sec 0.47% 3 633
Monitor Blinking 3.3 time/sec 1.15% 5 435
Monitor Blinking 1.67 times/sec 0.00% 0 257
Monitor Blinking 1 times/sec 0.00% 0 183
Manually flickering the light 40 times/min 0.00% 0 176
Manually flickering the light 30 times/min 0.49% 2 408
Drop Test 0.00% 0 43
Game Playing Landscape 1 0.44% 4 911
Game Playing Landscape 2 0.43% 4 925
Game Playing O3 Portrait 0.23% 2 871

rate observed was 90.5% (181/200; FNR of 9.5%). Most of these FNR occurred
when there was less ambient light. When the light intensity was greater than
700 lux, recognition rate was observed to be 95.71% (67/70) whereas when it
was between 350 lux and 700 lux, the rate was 87% (87/100), and when it was
lower than 350 lux, it was observed to be 83.3% (35/40).

In general, these error rates can be deemed to be fairly low and are in line
with prior research on gesture recognition (e.g., [12, 21]). We expect them to
further reduce significantly as users become more and more familiar with the
hand waving gesture.

FPR Experiments: Next, we set out to evaluate the likelihood of false un-
locking under different activities. These activities might be just routine user
activities, or activities coerced by a nearby attacker. The experimenter con-
ducted several tests emulating different user activities that have the potential of
triggering the light sensor fluctuations. The phone recorded the number of times
it has been unlocked, i.e., when the activity is recognized as a wave gesture by
our algorithm, out of a total number of registered light fluctuations.



First, to simulate a walking activity, the mobile phone was stowed in a back-
pack and the experimenter, carrying the backpack on the shoulders, walked
around for 20 minutes. No unlocking events occurred in this case, although 155
light fluctuations were observed. This experiment was repeated at a later point
of time, but the phone was held in hand emulating the reading of text messages
while walking (for 20 minutes). This time, the phone was unlocked 4 times, out
of 5138 light fluctuations, leading to an FPR of 0.08%. The phone was unlocked
when sunlight was coming from behind and shadow from the moving shoulder
was partially obstructing the phone. We further continued this walking experi-
ment for a duration of another 20 minutes but this time the phone was kept in
a pocket. No unlocking events occurred even in this case.

To verify if the phone will get unlocked when it is carried by its owner inside
a car, the phone was first kept on the passenger seat of a car, while the car was
driven. The phone did not get unlocked in this scenario. Next, the phone was
placed on the dashboard of the car underneath the windshield and the car was
driven around for one hour. In this case, we noticed that the phone got unlocked
14 times out of a total of 9053 light reading changes, which yields an FPR of
0.15%. Note that once the car moves at a constant speed, the accelerometer
reading will not change significantly, allowing the light sensor to detect the wave
gesture. Although not frequent, in general, we can see a potential for the phone to
get unlocked when there is bright light from windshield coming onto the phone,
while the car passes beneath a tree. The phone was further carried in the car in
the same way as above in dark (i.e. light intensity below 300 lux) for 5 minutes,
but, as expected, no unlocking was observed.

Next, the phone was treated as a user’s own phone for about one day (20
hours). Different routine activities were performed during this experiment, such
as walking with the phone in pocket, going upstairs/downstairs, and sending
messages and making/taking calls. The phone was also placed on a desk alongside
the user’s laptop. Only 1 unlock was registered in this case, out of a total of 8729
changes in the light values. This suggests that normal usage of the phone will
only have a little likelihood of unlocking.

Another experiment was conducted to see if a bright and dynamic light
source, such as a Television, can trigger the phone’s unlocking. Here, the phone
was placed in front of a Television, 6ft away from it, while watching a program
for 1 hour. In this case, we found that the phone got unlocked 3 times, out of a
total of 449 light fluctuation events, equivalent to an FPR of 0.67%. Interestingly,
we also noticed that such event occurs only if the surrounding is dark enough
such that the threshold is low enough for the TV to fluctuate the light intensity.
Also, to unlock, the TV screen must display a bright light and flicker quickly.
Extending this general experiment further, the phone was also carried to a movie
theater, where it was kept outside the user’s pocket while the user watched a 2
hour long movie. In this case, interestingly, no unlocking was registered.

A similar experiment was conducted using a computer monitor. Here again,
we held the phone in front of a flickering monitor. We flickered the monitor with
different frequencies. The phone got unlocked twice, out of 623 light change



events (FPR of 0.32%), when the monitor was flickering with a frequency of 10
times/second. It unlocked thrice when the frequency was 5 times/second (633
light changes; FPR 0.47%), and five times when time interval for flickering rate
was 3.3 times/second (435 light changes; FPR 1.15%). When the frequency of
flickering was reduced, it could not unlock the phone since time interval exceeded
WAVETIME_LIMIT_ FOR_LIGHT.

To trigger sudden fluctuations to the light sensor readings, we next conducted
a “drop and fall” test. This mimicked a situation where the phone accidentally
drops on, or is thrown at, a surface. Clearly, we could not just drop or throw our
test device on the floor to avoid damaging it. To do this meaningfully, therefore,
we first threw our test device on a bed from a height of around 1 meter. Number
of trials of this test were performed for two minutes. Phone was thrown straight
to the bed as well as rolled over so that there is change in the relative position
of the light source. No unlocking events were recorded over this set of tests since
the change in accelerometer readings was large enough to even trigger the light
reading detection.

We also conducted tests to simulate a nearby adversary who may (delib-
erately) try to change the surrounding ambient light and unlock the phone.
Although, this may create suspicion, we simulated such a scenario as the at-
tacker would have a high incentive to exploit. For example, the attacker can
flicker lights in a building which may enable all malware-infected mobile devices
in that building to access the phone’s resources. To do this, the light was turned
on and off in the evening when the primary source of light was the fluorescent
lamps. When the light was switched on/off slowly, i.e., 30 times per min, it
did not unlock the phone. However, when the light was turned on/off 40 times
per min, it unlocked the phone twice, out of a total of 408 light change events,
leading to a FPR of 0.49%.

Finally, we analyzed a scenario where the user would be playing a game on
her smartphone. We were interested in finding out the likelihood of unlocking
the phone by hand movements which may trigger the light sensor fluctuation
mimicking hand waving. We emulated the game play activity on the phone under
portrait and landscape orientations. When the phone was held in portrait mode,
fingers are far away from the light sensor and may not trigger the light sensor.
However, when the phone is held in either of the landscape orientations using
two hands, fingers plays a vital role in light sensor readings. The game playing
activity was mimicked by our experimenter for two minutes. It unlocked the
phone four times in each landscape orientation (out of 911 and 925 light changes;
FPR of 0.44% and 0.45%), and twice in portrait (out of 871 light changes; FPR
of 0.23%). Indeed, this confirmed our hypothesis that game play under portrait
mode is less likely to unlock the phone than under landscape modes.

6 Discussion

Overall, our experiment results in previous section show that hand waving can be
effectively used to infer the “right” human activity in order to unlock the use of



sensitive services/resources on smartphones, thus preventing unauthorized and
stealthy access by malicious entities. The low FNR (less than 10%) and short
delay (up to 2 seconds) demonstrate the usability of our approach. Note that, in
practice, the user will be given up to 3 attempts to perform the gesture correctly,
which would mean that the effective FNR will be nearly 0%, and it will still
take only a few seconds to perform the gestures. We believe that the FNR can
be further reduced as users become more and more familiar with the underlying
gesture. The low FPR (less than 1% in most cases), on the other hand, shows that
our approach will provide a high degree of security in practice. Although there
exists some potential for unlocking the phone (e.g., while the user is watching
a TV or riding a car), the likelihood is extremely low. Moreover, it will be very
hard for the malicious attacker to constantly wait for, and synchronize with,
scenarios in which unlocking is possible, further confirming the robustness of
our approach.

In the rest of this section, we further analyze and interpret the performance of
our hand waving gesture recognition scheme, and discuss other relevant aspects.

Ease of Use and Convenience: Hand waving is a gesture that captures users’
intent to access a mobile device service. It simply requires user to perform a sim-
ple hand movement to unlock a desired service/resource. This does require an
extra user effort to access a service. However, hand wave gesture is quite intuitive
and can be easily performed unlike traditional passwords and PINs which user
has to memorize and input diligently, and add an extra burden when the user
forgets them. Certainly, passwords and PINs are more secure compared to ges-
tures, but we are, in this work, concerned about protection against the malware
and unauthorized reading attacks rather than against theft and unauthorized
usage by other person. The explicit gesture is a minimal cost required to add
security against such attacks. We believe that the hand waving gesture is as easy
as a "finger-swiping” gesture commonly deployed on many smartphones.

The hand wave gesture is user-independent as shown by our experiment re-
sults. That means, the service/phone can be shared by multiple users without
registering his/her own template. In fact, there is no template employed in this
scheme and there is no need to train the device. This scheme therefore offers a
high level of convenience to the users, and might be easily adoptable. A men-
tioned above, it does not prevent unauthorized use of such service when the
phone is stolen. However, allowing the user to change the threshold and wave
time limit parameters are future modifications to personalize and detect the
wave gesture accurately for a specific device owner.

Battery Consumption and Efficiency: Another important issue to cover
in our work is the power consumed by the sensors while trying to capture the
user gesture. Since the battery-life is one of the most important factors to be
considered for user’s day to day activity, our design needs to be battery-friendly.

The waving gesture proposed by our design is very short (up to 2 seconds).
When there is a request for the sensitive service/resource which requires users
gestures, only then the sensors will be turned on and the gesture detection
algorithm will be executed. Once the kernel captures the required gesture, the



permission will be granted to the active application and sensor will be turned
off. If kernel fails to capture the gesture for certain duration, the sensor will be
turned off and application will be denied to use the resources.

For the sake of our experiments, we have turned on the sensor all the time.
This was done so as to determine the FPRs, i.e., to calculate the rate at which
the algorithm will fail to provide security.

Effect of Light: Since we are using the light sensor, the ambient light plays a
crucial role in the detection of hand wave gesture. We can see from our experi-
ment that, as the surrounding light intensity decreased, the FNR increased. As
soon as the light intensity drops below a certain level, the hand wave gesture
will not be able to alter the light intensity even by a minimum threshold. Hence,
when it is completely dark, our hand wave detection will not work. This situa-
tion can be remedied by resorting to a more complex touch screen gesture from
the user, such as tapping on the screen a few times in succession, whenever the
phone detects the surrounding to be dark enough.

Targeted Attacks: Our experiments demonstrate very low FPR, which means
that there is little probability that an application will gain access to resources
without the knowledge of its owner. This is based on an assumption that the
attacker can not create the required gesture. However, a malware can fool a user
by launching a social-engineering attack. For example, a malware developer can
design a game such that user has to move his hand in certain ways mimicking the
hand wave gesture. While such attacks are likely, they still require the malware
program to constantly wait for, and synchronize with, the desired user gesture,
which may make these programs easily detectable by the OS. Nevertheless, our
approach still significantly raises the bar against many existing malware attacks,
a prominent advancement in state-of-the-art in smartphone malware prevention.

Sensitivity of Sensors: We are using two sensors to detect the hand wave
gesture, namely a light sensor and an accelerometer. There are different types of
these sensors available on different devices. The frequency at which the sensor
feeds the data to the kernel not only depends upon the kind of sensor but also
on the processor speed, and number of application the phone is running, among
other things. When we compared the sensor of our prototype device (Motorola
Droid X2 running Android 2.3.3 on a Dual-core 1 GHz Cortex-A9 processor)
with other devices (Samsung Galaxy Nexus (Android 4.0.3, Dual-core 1.2 GHz
Cortex-A9), we found that light sensor reading on our device (Droid X2) changes
quite frequently, i.e., the light sensor on this device is highly sensitive. On the
other hand, the accelerometer readings changes more rapidly on the other device
(Galaxy Nexus). For the hand wave gesture to be recognized accurately on a
given device, the threshold and the wave time limit should be modified according
to that device’s configuration and the sensitivity of its sensors.

Extending to RFID Tags: Our scheme is also applicable for preventing unau-
thorized reading and relay attacks against standalone RFID tags (such as con-
tactless credit cards or access cards). In this case, the RFID tag will need an
on-board ambient light sensor and an accelerometer, and the user will simply



need to wave in front of the tag to access it. Unlike prior security mechanisms
that use sensor-equipped tags (e.g., [12, 21]), our approach is very simple and
lightweight, and can be easily accommodated within the constraints of typical
RFID tags.

7 Conclusion and Future Work

In this paper, we presented a novel approach to protecting sensitive mobile device
services against many prominent attacks. The approach captures user’s intent to
access a given service via a lightweight hand waving gesture. This gesture is very
simple, quick and intuitive for the user, but would be very hard for the attacker to
exhibit without user’s knowledge. We presented the design and implementation
of the hand waving gesture using an ambient light sensor, already available on
most smartphones and tablets. We also reported on our experiments to analyze
the performance of our approach. Our results indicate the approach to be quite
effective in preventing the misuse of sensitive resources with a very little user
effort. Our future work constitutes further evaluating our approach on different
devices and integrating it with services/resources beyond voice dialing, such as
SMS and NFC.
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