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Abstract—Two-factor authentication (TFA), enabled by hard-
ware tokens and personal devices, is gaining momentum. The
security of TFA schemes relies upon a human-memorable pass-
word p drawn from some implicit dictionary D and a t-bit
device-generated one-time PIN z. Compared to password-only
authentication, TFA reduces the probability of adversary’s online
guessing attack to 1/(|D| ∗ 2t) (and to 1/2t if the password p is
leaked). However, known TFA schemes do not improve security
in the face of offline dictionary attacks, because an adversary who
compromises the service and learns a (salted) password hash can
still recover the password with O(|D|) amount of effort. This
password might be reused by the user at another site employing
password-only authentication.

We present a suite of efficient novel TFA protocols which
improve upon password-only authentication by a factor of 2t

with regards to both the online guessing attack and the offline
dictionary attack. To argue the security of the presented protocols,
we first provide a formal treatment of TFA schemes in general.
The TFA protocols we present enable utilization of devices that
are connected to the client over several channel types, formed
using manual PIN entry, visual QR code capture, wireless commu-
nication (Bluetooth or WiFi), and combinations thereof. Utilizing
these various communication settings we design, implement, and
evaluate the performance of 13 different TFA mechanisms, and
we analyze them with respect to security, usability (manual effort
needed beyond typing a password), and deployability (need for
additional hardware or software), showing consistent advantages
over known TFA schemes.

I. INTRODUCTION

User authentication is critical to many online (and offline)
services. Textual passwords form the most dominant means
of user authentication deployed on the Internet today. How-
ever, passwords suffer from a number of well-documented
security and usability problems [22], [25], [16]. Specifically,
the passwords are often “weak” (low-entropy – short and
non-random) due to the human-memorability requirement. As
a result, an attacker can build a relatively short dictionary
D of all possible passwords, which can be used to guess
passwords in an online attack. Moreover, it also enables an

offline dictionary attack whereby the attacker compromises the
service storing (salted) one-way functions (typically hashes) of
passwords and recovers these passwords with O(|D|) amount
of effort per password. Such offline dictionary attack is a
serious concern, especially in light of frequent attacks against
major commercial vendors, such as PayPal [1], LinkedIn [9],
and Blizzard [3]. The offline dictionary attacks are attractive
for malicious entities because a single server break-in leads
to compromising multiple user accounts. Furthermore, since
many users re-use their passwords across multiple services,
compromising one service typically also compromises user
accounts at many other services.

To improve the security of password authentication, two-
factor authentication (TFA) incorporates user’s personal com-
putational device in the authentication process. This device
could be a dedicated hardware token (such as RSA SecureID
[13]) or a personal gadget, such as a mobile phone (running,
for example, the Google Authenticator App [6]). The device
creates a short (t-bit) one-time PIN that the user has to copy
over to the authentication terminal in addition to providing
her password. If the PIN is generated via a pseudorandom
function Fk whose key is shared by the device and the server,
the probability of attacker’s success in an online guessing
attack is reduced from 1/|D| for password-only systems
to 1/(|D| ∗ 2t). However, existing TFA schemes (just like
password-only schemes) store a (salted) one-way function of
the password on the server, and therefore an adversary who
compromises the server and learns the password hash, can still
recover the password with O(|D|) effort.

In this paper, we set out to improve the security of TFA
systems against both online guessing attacks and offline dic-
tionary attacks. To this end, we design a suite of novel simple
and efficient TFA protocols and mechanisms, each offering
different security and usability advantages. The idea underlying
all our TFA protocols is for the server to store a randomized
hash of the password, h = H(p, s), and for the device to store
the corresponding random secret s. The authentication protocol
then checks whether the user types the correct password p
and owns the device which stores s. Crucially, such protocol
must be secure against a lunch-time attack on the device,
hence the device cannot just display its secret s to the user.
However, it turns out that the secret s can be easily masked
with one-time values derived by the pseudorandom function
Fk. (Alternatively the server can encrypt such one-time mask
under the device’s public encryption key.) If Fk is computed
on a nonce x – e.g. equal to the current time, or chosen as a
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challenge by the server – the device could output z = s⊕Fk(x)
as its PIN, and the server can verify the (password, PIN) pair
(p, z) against the hash H(p, s) by recomputing s as z⊕Fk(x).
Such protocol is 1/(|D| ∗ 2t)-secure against online guessing
even in the presence of lunch-time attacks on the device and
man-in-the-middle attacks on the communication between the
user’s client and her device. As for offline dictionary attack
given a server corruption, such symmetric-key based TFA
protocols allow the adversary to learn s (and hence spend only
O(|D|) effort in recovering p) by either lunch-time attacks
or by eavesdropping on client-device communication. This
motivates public-key versions of the above scheme (which
we present also), that hide s even from an adversary who
corrupts the server, hence forcing the dictionary attack time
to O(|D| ∗ 2t) operations.

The crucial security parameter t in our protocols is bounded
by the bit capacity of the device-to-client (D-to-C) channel, i.e.
by the bit-length of the PIN. However, the security properties
of our TFA protocols depend also on the (existence and the)
capacity of the client-to-device (C-to-D) channel, which is
not typically used in existing TFA schemes. This motivates
exploring different implementations of the D-to-C and C-to-
D channels, namely via a manual PIN entry, a visual QR
code capture, wireless communication (Bluetooth or WiFi),
and combinations thereof. We go on to design, implement
and evaluate the performance of the resulting low-, medium-
, and full-bandwidth TFA mechanisms based on our TFA
protocols, and compare them with respect to security (i.e.
primarily the length t of the PIN z and of the device secret
s), usability (i.e. the manual effort involved beyond typing a
password), and deployability (i.e. whether additional hardware
or software is needed). These mechanisms typically provide
much stronger security properties than existing TFA schemes,
at modest usability costs. Interestingly, one of our mechanisms
provides 2t factor improvement in security over traditional
TFA mechanisms but adds no extra cost in usability and de-
ployability, and is therefore ready for immediate deployment.

Our Contributions: The main contributions brought forth by
our paper are summarized below:

1. TFA Formalization (Section III): We provide what we be-
lieve is the first formal treatment of two-factor authentication,
modeling different forms of TFA attacks, including offline and
online attacks, eavesdropping and man-in-the-middle attacks
against the client-device communications, and lunch-time at-
tacks against devices.

2. Novel TFA Protocols (Section IV): We design four novel
cryptographic protocols for two-factor authentication resilient
to server compromise. One of these protocols is time-based
(in line with the traditional TFA protocol). The other three are
challenge-based, one involving symmetric-key encryption and
the other two involving public-key encryption. The strength
of these protocols is their security, simplicity, efficiency, and
broad applicability to a wide range of devices (traditional
phones, smartphones, smart watches, dedicated security tokens,
and more).

3. Mix-Bandwidth Device TFA Mechanisms (Section V): Based
on these protocols, we design different TFA mechanisms
enabled by a wide range of mix-bandwidth communication
channels that can be established between the device and the

client browser. Specifically, our TFA mechanisms are based
on (1) unidirectional and bidirectional low-bandwidth (t = 19
bits or 6 digits) channels formed via manual PIN entry or
QR codes; (2) bidirectional mid-bandwidth channel formed
by QR codes (t = 19 to 128 bits); (3) bidirectional full-
bandwidth Bluetooth or point-to-point WiFi channel (t = 128
or more bits), and combinations thereof. This results in a total
of 13 TFA variants, offering different security guarantees and
usability advantages. Also, to our knowledge, this is the first
use of point-to-point WiFi and bidirectional QR codes as a
means of proximity-based communication for the purpose of
authentication.

4. Implementation and Evaluation (Sections V and VI): We
provide the server-side (PHP scripts), client-side (Chrome
browser extensions for the full-bandwidth model) and device-
side (Android app) implementation of all of these TFA mech-
anisms, and estimate their performance quantitatively in terms
of the login time as well as qualitatively in terms of security,
user effort and deployability.

II. RELATED WORK

The most common form of TFA employs hardware tokens,
dominant example being RSA SecureID [13]. These are spe-
cialized devices used solely for the purpose of authentication,
and typically a unique token is needed to authenticate to
each service. The user needs to carry n tokens with her to
enable authentication to n services, which may not scale well.
Moreover, due to the need for specialized tokens, provisioning
of tokens might become difficult as well as costly. Although
our proposed TFA mechanisms are geared for soft token
deployment, they are equally suitable for hardware tokens
with different capabilities (e.g., presence of screen vs. camera,
or wireless interfaces). (Some hardware tokens can also be
connected to a personal mobile device, such as a smartphone
[14].)

Key advantages of soft tokens over hardware tokens in-
clude scalability and flexibility (single personal device can
be used with multiple services) as well as cost savings
(provisioning soft tokens is logistically much simpler). Many
commercial soft token TFA schemes are available, including
Google Authenticator [6], Duo Security Two-Factor Authen-
tication [5], Celestix’s HOTPin [4] and Microsoft’s Phone-
Factor [10]. These tokens essentially use the same time-based
cryptographic protocol to generate one-time passwords as the
hardware tokens. However, similar to hardware tokens, these
schemes store hashed passwords on the server, which means
that an attacker who compromises the server can retrieve the
passwords with O(|D|) amount of offline effort.

PhoneAuth [19] is a recent academic (soft token) TFA
scheme. In contrast to traditional TFA, PhoneAuth does not
use a low-bandwidth manual channel (to transfer one-time
password between the phone and client), but rather employs a
full-bandwidth Bluetooth channel over which a cryptographic
authentication protocol is run between the phone and server
(with client as the router). This is inline with our FBD
TFA variants that use Bluetooth communication. PhoneAuth,
however, provides the same weak level of resistance to offline
dictionary attacks as the traditional TFA schemes.



Other authentication approaches have been proposed in
the literature that aim to strengthen password-authentication
by leveraging a personal device (but not as a second factor).
MP-Auth [20] leverages a phone to improve the security of
password authentication when used on a potentially malicious
client terminal connected with the phone over Bluetooth.
Phool Proof’s [23] goal is to prevent phishing by involving
the phone in the authentication process. MP-Auth and Phool
Proof store hashed password on the servers and thus provide
only O(|D|) level of security against offline dictionary attack.
PIN-Audio [24] and Tapas [21] use the phone as a mobile
password manager that is used to store long and random
passwords. These two schemes make the offline dictionary
attacks infeasible because passwords are no longer human-
memorable and a dictionary attack is not viable. However, they
do not provide two-factor authentication (e.g., if the password
is phished, there would be no security). Only remotely relevant
to our work is the approach presented in [18], which aims
to address the problem of password entry on an untrusted,
potentially compromised, terminal by using a camera-equipped
trusted personal device.

III. BACKGROUND AND MODELS

We describe the setting of a Two-Factor Authentication
scheme TFA, we formalize the model of such scheme, and we
define the security properties such scheme should have.

Participants. A TFA scheme involves three computational
entities, the Server S, the Client C, and the Device D, in
addition to the human user U. Server S runs a web service
accessed by users identified by user names. Client C is a
web browser used by a user U, who wants to authenticate
to the service under her user name. Device D is a hand-
held personal device which belongs to the same user U, and
which U will use as a secondary “security token” in order to
authenticate her web session to S. D can be any programmable
device capable of storing data, keeping a persistent clock,
performing computation, and displaying characters on a screen.
We also consider TFA schemes relying on additional properties
of device D, namely assuming that D can take photographs
or that it can communicate wirelessly with a laptop, e.g.
over Bluetooth or WiFi. All these assumptions are met by
smart phones, which are the primary targets of our TFA
schemes. However, these conditions are satisfied by several
other personal electronic devices, e.g. an e-book reader or
a smart watch. Finally, D could also be implemented as a
dedicated hardware token, similar to e.g. RSA SecurID.

Computation and Communication Models. We assume that
C and S communicate over open internet, but we assume
that they can rely on a Public Key Infrastructure (PKI) for
establishing a secure channel with one-sided authentication
of the server S by the client C. In other words, we assume
that S has a public key with an SSL certificate signed by a
certification authority recognized by the client browser C, and
that C and S establish an SSL connection via a TLS handshake
using S’s certificate. We assume that the code followed by C
in a TFA protocol is either an HTML page which C receives
from S over this SSL connection, or C executes a code of
a browser plug-in which was installed from a trusted source.
Note that the PKI assumption is a standard way of securing

communication between web services and their users. (At the
end of Section IV we point out that the trust in the PKI can be
somewhat relaxed if C is implemented as a browser plug-in.)

While C and S communicate over the internet without
particular concern about protocol bandwidth, by contrast we
assume that device D might have heavily restricted communi-
cation abilities. We consider four types of devices, depending
on the restrictions on the C-to-D and D-to-C communication
channels. Type I is a device like those used by traditional
TFA schemes such as Google’s authenticator smart phone app.
Namely, D cannot receive any message from C during protocol
execution, and it can send a single response message resp to
C which must be short, e.g. up to 20 or 30 bits. (In addition,
we assume that device of type I can maintain a clock, or other
updatable state e.g. a counter.) Devices of type II,III, and IV,
can receive a single challenge message ch from C and reply
with a single response resp. For device of type II message ch
is medium-sized, e.g. between 100 and 2000 bits, while resp is
short; for device of type III both ch and resp are medium-sized,
and for device of type IV both ch and resp can be long, e.g.
several thousand bits would still be fine. As we explain below,
some of these D-to-C and C-to-D channels are authenticated by
a human in the loop to verify that the PIN which C receives is
the same PIN that D sent. However, this is not the case for all
device types, and so in our security security model, we allow
a man-in-the-middle attack on these channels (in addition to
an eavesdropping attack); and all of our protocols (Section IV)
and mechanisms implementation (Section V) are secure in the
presence of such attacks.

Motivating Scenarios of Four Device-Client Interaction
Types. These four device types are motivated by different
implementation scenarios which make different software and
hardware demands on both the device D and on the client
C, and which make different demands on the way the user U
enables the communication between C and D. Device of type
I does not need any data connectivity, except for a way to
periodically synchronize its internal clock (or counter). D must
only have a small screen on which it can display its message
resp encoded into a short numerical or alphanumerical string,
i.e. a PIN. The user U will have to read this PIN and type
it into the client browser C. Therefore this D-to-C channel is
low-bandwidth, it is authenticated by the human in the loop,
but it can be eavesdropped upon by a “shoulder surfer”.

Device of type II models e.g. a camera phone which can
photograph the browser’s screen display. In this case C could
display message ch encoded using a Quick Response (QR)
code, user U could position device D until this QR code is
detected and photographed by D’s camera, D can decode the
QR code into message ch, and reply to C with a PIN resp
in the same way as device of type I. While a QR code can
encode even several thousand bits, ensuring good reliability
with a budget camera phone probably precludes ch longer than
2Kb. We call this bandwidth medium because whereas it can
be much longer than the PIN we call short, the lower it is the
better reliability/usability characteristics of the system. As in
the case of a PIN D-to-C channel, this channel is authenticated
by the human in the loop, but subject to eavesdropping.

Device of type III has the same C-to-D capability as the
device of type II, but the medium-sized bandwidth on the D-



to-C channel can be implemented e.g. with a larger display on
D on which it can display a QR-encoded response resp, and
with client C which has a front-facing camera, e.g. because
the browser is running on a laptop, which can be accessed
from the HTML on the browser, or because C is a browser
plug-in. This D-to-C channel is also medium-sized, humanly
authenticated, and subject to eavesdropping. Finally, device of
type IV is capable of higher bandwidth communication with
the client C, e.g. via a WiFi or a Bluetooth channel. While such
channels could be authenticated by shared keys established in
the initialization process, having to bind device D with each
client terminal is not user-friendly, moreover any shared key
permanently residing on a browser would be subject to attacks.
We will therefore assume that such channel could be subject
to both eavesdropping and man-in-the-middle attacks.

TFA Protocol Syntax and Execution. A TFA scheme consists
of an algorithm Init and a three-party protocol Auth =
(AuthS,AuthC,AuthD) executed between parties S, C, and D.
We assume that server S keeps users’ authentication data in
a table indexed by user names. (Since we assume PKI, S
also has a public key pair and a certificate, but in the TFA
model we simply assume that the C-S communication goes
over a secure channel on which S is authenticated to C.)
Algorithm Init is executed separately for each user U on input a
security parameter 1τ , on an additional parameter t which fixes
the upper-bound on the bit-length of D’s response message
resp, and on password p. Algorithm Init(1τ , t, p) outputs a
pair (stS, stD), where stS will be kept by server S under U’s
user name UN, and stD is securely loaded onto device D that
belongs to U. Note that we assume that the client C does not
have any permanent state. In our implementations (see Section
V), C is either a browser which downloads the authentication
protocol code AuthC it follows from the server S every time
the authentication protocol executes, or it is a browser plug-in,
but the cryptographic model assumes a state-free client.

Whenever user U wants to authenticate to S from her
browser C, C and S establish a secure connection using S’s
public key certificate, and over this connection U specifies
her user name UN to S.1 S retrieves stS indexed by UN and
executes the interactive algorithm AuthS on local input stS,
communicating with C which executes an interactive algorithm
AuthC on local input p. In addition, at some point in its
interaction with S, algorithm AuthC can generate a single
message ch which will be received by D, and receive a single
response resp from D s.t. |resp| ≤ t, computed by algorithm
AuthD on inputs (ch, stD). (For device type I C’s message ch
to D is fixed as a special sign ⊥ which triggers D to compute
response resp but carries no further information.) Finally,
algorithm AuthS outputs a bit b which designates whether S
authenticates this user or not. The correctness requirement is
that for all τ, p, t values, if (stS, stD)← Init(1τ , t, p) then bit b
output by AuthS in an execution of (AuthS,AuthC,AuthD) on
respective local inputs (stS, p, stD), with all messages delivered
between the parties correctly, will be equal to 1 except for
probability negligible in τ .

Notes on the Timing Assumption. A TFA scheme can
additionally rely on a synchronized clock between device D

1In most of our implementations U actually does not have to send UN to
S in this first message. See the note at the end of Section IV.

and server S, in which case algorithms AuthS and AuthD take
an additional time-encoding input, resp. TS and TD, and the
correctness property guarantees that b = 1 only if TS = TD.
We say that such TFA scheme is time-based. Alternatively to
the timing assumption, a TFA scheme could assume that both
D and S have an updatable storage, which in the simplest (but
sufficient) case can be a strictly increasing counter. Such TFA
scheme can be called counter-based, where the correctness
requirement would guarantee authentication only if S and D
execute on the synchronized counter. We will not formally
model the security of counter-based TFA schemes, but it is a
plausible alternative to a time-based scheme.

TFA Adversarial Model. The adversary Adv who attacks
a (two-factor) password authentication system can have two
distinct goals. The first goal is an authentication attack where
Adv breaks into the account of some innocent user U by
successfully authenticating to S under U’s user name. The
second goal is a password recovery attack where Adv learns
U’s password, for example in order to re-use it in some other
system where U uses the same password, as many real-life
users are known to do. The first attack is sometimes called an
on-line attack, and the second an off-line dictionary attack, but
this terminology could be misleading because in both cases the
attacker has on-line access to the participating parties.

The adversarial ability to stage either attack must be
considered in a scenario which models adversary’s ability to
access, eavesdrop on, and even learn the private data of some
participating parties by a local corruption. Furthermore, we
must differentiate between (1) the case of a party corruption
(active or passive), where adversary (perhaps temporarily)
“resides” on this protocol party, steals its local data, and this
party becomes either an eavesdropping or a malicious agent
of the attacker, and (2) the case when adversary corrupts
a party, passively learns it’s private data, and then leaves.
For the second case we will consider leakage of the server’s
data stS, the device’s data stD, and the user’s password p.
However, for the case of player corruptions we will not
consider active corruptions of the server because we are in the
PKI model where the client trusts the server S it authenticates
via PKI certificates. In particular in all our TFA schemes if
an adversary does corrupt the server then it can learn the
passwords of all users who authenticate to the server while
such corruption lasts. Similarly we assume that client C runs
a trusted code (in practice C often downloads this code from
the same PKI-authenticated trusted server S). Indeed, if C runs
a corrupted code then the adversary can steal the password of
C’s user U. However, we do consider an active corruption of
the user’s device D, which we model by letting the adversary
steal D’s data and perform a man-in-the-middle attack on the
C-D communication.

We will make two further simplifying assumptions in the
security model: First, we will formally consider the password
recovery attack only for the adversary that (passively) cor-
rupts the server S. Conversely, we will formally consider an
authentication attack only if the adversary does not corrupt S.
However, it is easy to see that in all our TFA schemes the
adversary’s probability to recover the user’s password without
corruption of the server is the same as the probability of staging
an authentication attack. Secondly, in all of our schemes an
adversary who corrupts the server can stage an authentication



attack either with the same probability as the adversary that
does not, or it has to perform the same off-line computation
as we formally argue for the password recovery attack.

In our security notions below we consider the following
execution of an authentication game, denoted AuthTFA,Adv,
which takes as input a tuple (τ, t, d,D, qS, qC, qD) (all w.l.o.g.
known to algorithm Adv) where D is an arbitrary set of size
2d and t is the bit-length of the device response resp in the
TFA scheme, and executes as follows:

1) First p is chosen uniformly at random in D and
Init(1τ , t, p) is executed to generate (stS, stD).

2) Adv can make qC client session queries, i.e. it can
interact with qC instances of the algorithm AuthC.
Each instance of AuthC will run on input p and
locally interact with algorithm AuthS running on
input stS and algorithm AuthD running on input
stD. Adv does not see the messages passed between
AuthC and AuthS, but it does see the messages passed
between AuthC and AuthD, and it learns a bit b output
by AuthS, which models the fact that a network
adversary can tell whether the server authenticates the
user by observing the C-S traffic. Additionally, Adv
has an option to replace message resp sent by AuthD
to AuthC with a message of Adv’s choice, in which
case we call such client session hijacked. (Modifying
the C-to-D message can be done via a device session
query, see below.) If Adv does not modify message
resp we call such client session eavesdropped.

3) Concurrently, Adv can make qD device session
queries, i.e. it can interact with qD instances of the
algorithm AuthD running on local input stD.

4) Concurrently, Adv can make qS server session
queries, i.e. it can interact with qS instances of the
algorithm AuthS running on local input stS. We
distinguish between two types of server sessions: We
call it network-only if Adv completes it without an
interaction with any AuthD session, and we call it
with-device if between the moment it is triggered and
the moment that session completes Adv interacts with
any device session AuthD.

5) Adv can make server, device, and client leakage
queries, on which it receives resp. stS, stD, and p.

6) Finally Adv outputs a bit-string p∗ and the experiment
ends. We define the following two events:
◦ SuccP = 1 iff p∗ = p [a password recovery attack];
◦ SuccA = 1 iff AuthS outputs b = 1 on any server
session query [an authentication attack].

If the TFA scheme is time-based we assume that throughout
the authentication game S and D execute AuthS and AuthD
protocols on TS and TD values which are equal to a global
time counter T , which starts from 1 and is incremented e.g.
every time the adversary triggers the AuthS protocol session.
If an adversary has lunch-time or viral access to D can move
its clock forward or backward this is equivalent to Adv being
able to make a with-device AuthS session.

Note that the above authentication game allows Adv to
interact qS times with the server S as a purported user client,
it allows Adv up to qD lunch-time accesses to the device D,
and it enables Adv to witness or interact with qC executions of

user U running an authentication protocol on an honest client C
with the server S. In such execution Adv has an eavesdropping
access to the C-D communication, but Adv can also stage a
man-in-the-middle attack between C and D, e.g. if it tricks the
user to use a modified device which runs some other code than
AuthD(stD), or if the C-D communication goes over a wireless
medium, and there is either no keys established between these
devices or if Adv learns these keys via a virus or a lunch-time
attack on C or D.

TFA Security Properties. As is standard for password au-
thentication schemes, we define security of a TFA scheme
assuming that the user chooses her password p uniformly at
random from some dictionary set D of size 2d. Since users
are known to pick passwords with only moderate entropy, we
must assume D is medium-sized, e.g. d is no more than 20 or
30, and in particular that it is feasible, and indeed easy, for an
adversary to iterate through the dictionary D. Another crucial
parameter for the security of a TFA scheme turns out to be the
bandwidth t on the D-to-C channel, i.e. the bit-length of D’s
response resp. We define the following two security notions:

Definition 1 (Authentication-Attack Resistance): We call a
TFA scheme (Init,Auth) (T, δN, δD, δC)-authentication-attack
resistant for parameters (τ, t, d, qS, qC, qD) if for any D of size
2d and any algorithm Adv whose running time is bounded by T
the following holds for random execution of an authentication
game AuthTFA,Adv(τ, t, d, qS, qC, qD):

1) Pr[SuccA] ≤ qS · δN assuming that Adv is a network
adversary, i.e. it is precluded from server leakage,
client leakage, device leakage, and any with-device
server session queries;

2) Pr[SuccA] ≤ qS · δD assuming that Adv is precluded
from server leakage and client leakage queries (but
w.l.o.g. Adv makes device leakage or with-device
server session queries);

3) Pr[SuccA] ≤ qS · δC assuming that Adv is precluded
from server leakage, device leakage, and with-device
server session queries (but w.l.o.g. Adv makes a client
leakage query).

We call scheme TFA (δN, δD, δC)-authentication-attack re-
sistant for parameters (t, d) if for all polynomials T (τ),
qS(τ), qC(τ), qD(τ) there exists a negligible function
ε(τ) s.t. for every τ , TFA is (T (τ), δN + ε(τ), δD +
ε(τ), δC + ε(τ))-authentication-attack resistant for parameters
(τ, t, d, qS(τ), qC(τ), qD(τ)).

In other words, in all authentication attacks we assume the
secret stS stored by the server S does not leak to the adversary,
and we upper-bound the probability of the authentication attack
per each server session in the following three cases: (1) δN is
the attack probability without leaks from either C or D, and
while Adv can get a lunch-time access to D, and even play a
man-in-the-middle adversary on the C-D channels during U’s
authentication sessions, we assume that Adv cannot attempt to
authenticate to S during the time Adv has access to D; (2) δD is
the attack probability without leaks from C, but Adv can learn
D’s secret and/or it can attempt to authenticate to S while it
has access to device D; (3) δC is the attack probability without
leaks from D, but Adv can learn U’s password, e.g. because it
was cashed on C to which Adv gained access, or because Adv



has learned it from some other authentication system where U
re-used her password.

Definition 2 (Password-Recovery Resistance): We call a
TFA scheme (Init,Auth) (T, ε, T̄ , nN, nD)-password-recovery
resistant for parameters (τ, t, d, qS, qC, qD) if for any
D of size 2d and any algorithm Adv, the following
holds for a random execution of an authentication game
AuthTFA,Adv(τ, t, d,D, qS, qC, qD), for any γ:

1) If Adv is prevented from making client or device leak-
age queries (but w.l.o.g. Adv makes a server leakage
query), and from making any device session queries
after the server leakage query, and if Adv’s time is
limited by min(T, γ ·nN · T̄ ), then Pr[SuccP] ≤ γ+ε.

2) If Adv is prevented from making client leakage query
(but w.l.o.g. Adv makes server leakage and device
leakage queries), and if Adv’s time is limited by
min(T, γ · nD · T̄ ), then Pr[SuccP] ≤ γ + ε.

For any function T̄ of the security parameter, we call scheme
TFA (T̄ , nN, nD)-password-recovery resistant for parameters
(t, d) if for all polynomials T (τ), qS(τ), qC(τ), qD(τ) there
exists a negligible function ε(τ) s.t. for every τ , TFA is
(T (τ), ε(τ), T̄ (τ), nN, nD)-password-recovery resistant for pa-
rameters (τ, t, d, qS(τ), qC(τ), qD(τ)).

We call scheme TFA (T̄ , nN, nD)-password-recovery resistant
without adversarial device access if it satisfies the above under
an additional restriction on Adv in item (1), namely that Adv
is also prevented from any device and client session queries
(recall that client session query allows Adv to eavesdrop on
C-D traffic). Note that these restrictions cut Adv off from
all queries in the authentication game, except for the server
leakage query which gives stS to Adv.

In other words, we define password-recovery resistance in
terms of some “base time” function T̄ of the security parame-
ter, s.t. the only way an adversary can find a (randomly chosen)
password p of an honest user, given state stS leaked from
the server, is to do one of the following: (1) Adv can search
through γ fraction of guesses, where each guess can be tested
at cost at most T̄ , thus lower-bounding adversary’s time by
γ ·n · T̄ , and upper-bounding the probability of finding p by γ;
(2) Adv can break some underlying cryptographic assumption
which could speed-up his search by leaking some additional
information on p or stD, hence the additional probability term
ε which should be negligible (in the security parameter) for
any polynomial (in the security parameter) time bound T .

The parameters nN and nD designate the size of different
spaces for which Adv performs a brute-force attack: If Adv is a
network attacker in the sense that it leaks stS from server S, but
does not leak stD from device D (and does not perform active
attacks against the device D after leaking stS), Adv’s search
space should be lower-bounded by nN, and if Adv leaks stS
and either leaks stD or performs an active attack against D
after leaking stS, its search space will be nD.

The notion of password-resistance without adversarial de-
vice access reflects a (small) weakness of two TFA schemes we
present below, TFA-T and TFA-SC, where an adversary who
corrupts the server can recover in 2d · T̄ time the passwords of
those users for whom it either eavesdrops on their client-device
sessions or otherwise gains access to their personal device D.

TFA Security: Fundamental Limits. The most interesting
feature of a two-factor authentication scheme is how it can
strengthen the security of plain password authentication. First,
note that any TFA scheme can be at most (1/2d+t, 1/2d, 1/2t)-
authentication-attack resistant. This is easy to see: No matter
what the probability distribution of message resp is in an
Auth protocol instance on inputs (stS, p, stD), a network ad-
versary who executes AuthC on (p∗, resp∗) chosen uniformly
in D × {0, 1}t will make AuthS(stS) accept with probability
at least 1/(|D| · 2t) = 1/2d+t. Similarly, an adversary who
corrupts D and learns stD, or has access to D while interacting
with some AuthS(stS) instance, can execute AuthC on p∗

chosen uniformly in D, and will make AuthS(stS) accept if
p∗ = p which holds with probability 1/|D| = 1/2d. Finally,
an adversary who learns password p can always succeed with
probability at least 1/2t by running AuthC on p and resp∗

chosen uniformly in {0, 1}t.

Secondly, we argue that any TFA scheme that achieves op-
timal authentication-attack resistance of (1/2d+t, 1/2d, 1/2t)
can have at most (2d+t, 2d)-password-recovery resistance.
Note that for a random AuthS generated by Init on a random
p, there should be only one pair (p, resp) in D × {0, }t s.t.
AuthS(stS) accepts in interaction with AuthC on input p and
D’s response resp. Otherwise Adv would successfully authen-
ticate to S with probability higher than 1/2d+t by running
AuthC on random (p∗, resp∗) in D × {0, 1}t. Consequently,
given st, adversary Adv can test a guessed password p∗ by
executing AuthS(stS) interacting with AuthC(p∗, resp∗) on
random resp∗, because this test will succeed, with high enough
probability, only if p∗ = p. Thus if T̄ is the time to execute
(AuthS,AuthC) as above, Adv can find the correct p (for a
random p, except for negligible probability) with probability
γ, for any γ, by testing a γ fraction of the D × {0, 1}t
search space, and the time of such attack is upper-bounded
by γ · 2d+t · T̄ , thus nN can be at most 2d+t. Clearly, if Adv
learns stD, it can run AuthD(stD) to compute resp instead of
guessing it, thus reducing the search space to just the password
dictionary D, hence nD can be at most 2d.

These parameters should be contrasted with the security
bounds achievable by plain password authentication, which
are 1/2d for an on-line authentication attack and 2d for
password recovery given stS. A two-factor authentication can
improve both, respectively to 1/2d+t and 2d+t given a personal
device with just t bits of output bandwidth. Moreover, such
scheme could and should gracefully degrade to the security
of a plain password scheme if an adversary gets hold of
this personal device. Note that the simplistic TFA schemes
available today do achieve 1/2d+t on-line attack resistance, but
their password-recovery resistance given stS is unnecessarily
just 2d. As we show, the optimal password-recovery resistance
bound of 2d+t can be achieved with inexpensive TFA schemes
which are easy to deploy and to operate, without doing any
harm to the active attack resistance property.

Finally, we note that a TFA scheme could make recovering
a user’s password given the leaked server’s state stS not only
harder, i.e. requiring 2d+t instead of 2d off-line tests, but
actually impossible. However this can come only at a price
of weakening the 1/2d+t bound on the on-line authentication
attack. Consider for simplicity of the argument D = {0, 1}d
and t = d. In this case we could make stD a random string s in



{0, 1}d, stS could be a string σ = s⊕p, and the authentication
algorithm would check if C (on input p), given access to D
(on input s), can recover the same string σ = p⊕ s which is
held by S. In such scheme password p is effectively secret-
shared between S and D, hence corruption of S (or D) leaks
no information about p, and thus makes password recovery
impossible, but the on-line authentication attack resistance of
such protocol is only 1/2d, because Adv could authenticate by
guessing the correct d-bit value σ. Trading on-line authentica-
tion attack resistance for password-recovery resistance in case
of server’s memory leakage does not seem to be a good deal,
but it is a good deal to increase password-recovery resistance
without damaging on-line authentication attack resistance, as
is the case for the TFA schemes we present in this paper.

IV. PROTOCOLS AND SECURITY ANALYSIS

We describe four TFA protocols, each of which can be
executed given any bandwidth limit of t bits for the response
message resp flowing from the device D to the client C.
The first protocol, TFA-T, which stands for time-based TFA
protocol, is applicable to all device types, including devices
of type I, which can receive no input during the TFA protocol
execution, but which rely on a clock synchronized with the
server (or, alternatively, on a counter). The second and third
protocols, TFA-SC, and TFA-PC, which stands respectively
for symmetric-key and public-key TFA protocols, are applicable
for devices of type II and higher, because they do require D to
receive a single challenge message ch from C to D. The fourth
protocol, TFA-PC-Alt, is a variant of protocol TFA-PC, which
reduces the bandwidth requirements of TFA-PC by replacing
public key encryption with key encapsulation with some spe-
cial properties which happen to be satisfied by hashed ElGamal
in the random oracle model. Using reasonable cryptographic
parameters, protocols TFA-SC, TFA-PC, and TFA-PC-Alt,
require the C-to-D message ch to take respectively 80, 344,
and 196 bits.

All protocols achieve optimal authentication-attack resis-
tance, except that the security of the TFA-T protocol degrades
to password-only authentication if the adversary can shift
the internal clock of Alice’s personal device D, e.g. by a
virus, or because of an occasional access to D, or because
of a human-engineering attack which modifies causes Alice to
erroneously shift the clock on D. Moreover, protocols TFA-T
and TFA-SC achieve optimal password-resistance only in its
weaker form, i.e. without adversarial device access, while the
public-key based protocols TFA-PC and TFA-PC-Alt remove
that weakness as well. In the summary, taking D-to-C channel
capacity as a constant, the security of the TFA protocols we
present increases with the growing demands on the C-to-D
communication channel.

Time-Based TFA Protocol. The TFA-T protocol (Init,Auth)
assumes a Collision-Resistant Hash (CRH) function H (mod-
eled as a random oracle) and a Pseudorandom Function (PRF)
F . Given parameters (τ, t), H maps onto 2τ -bit strings, and
for |k| = τ , Fk maps domain {0, 1}τ onto range {0, 1}t. For
t ≤ τ PRF F could be implemented as the first t bits of an
output of a block cipher. For t > τ one can implement F
e.g. using a CBC-mode block cipher cascade. Since TFA-T is
a time-based protocol, AuthS and AuthD take additional time
input encoded as τ -bit string, denoted resp. TS and TD.

Time-Based TFA Scheme TFA-T

Init(1τ , t, p): Pick s ← {0, 1}t and k ← {0, 1}τ , compute
h = H(p, s), and set stD = (s, k) and stS = (h, k).

Protocol Auth:
(assuming secure C-S channel s.t. S is authenticated to C)

1) Device D on input stD = (s, k) and time TD computes
r = Fk(TD) and z = s⊕ r and sends resp = z to C.

2) Client C on input p and D’s message resp = z, sends
(p, z) on the secure channel to S.

3) Server S on input stS = (h, k), time TS, and C’s
message (p, z), computes r = Fk(TS), and accepts if
and only if h = H(p, z ⊕ r).

Theorem 1: If F is a secure PRF and H is a Random
Oracle then TFA-T is (1/2t+d, 1/2d, 1/2t)-authentication-
attack resistant and (T̄H , 2

t+d, 2d)-password-recovery resistant
without adversarial device access for parameters (t, d), where
T̄H is the time required to compute H on any input.

Proof: We first argue authentication-attack resistance.
Note that by the security of PRF security of F without server
or device leakage, which reveal k to Adv, probability SuccA
remains negligibly close (in τ ) if we replace rT = Fk(T )
values by random t-bit strings. Note also that by CRH security
of H , probability SuccA remains negligibly close if S stores
(p, s) instead of h = H(p, s) and the acceptance bit b = 1 on
any AuthS session is decided by checking if (p′, z′) received
by AuthS is equal to (p, s ⊕ rT ). Finally, if zT is defined as
s ⊕ rT for any T then instead of picking random s and then
random rT ’s the game could equivalently just pick random
zT ’s. Thus the authentication game (without either server or
device leakage query) can be rendered as follows: AuthD at
time T sends out zT , and AuthS accepts at time T if it
receives (p, zT ) and rejects otherwise. Therefore Adv gains
nothing from learning the server acceptance bit on honest
client’s sessions even if Adv hijacks the C-D channel, and if
Adv cannot do with-device server sessions (and cannot violate
the timing synchrony assumption), then seeing zT ′ values for
any T ′ < T carries no information about zT . Therefore Adv
has to guess p together with zT , and hence the probability of
SuccA after this chain of modifications is at most qS/2d+t, and
therefore in the actual authentication game it is negligibly close
to the same amount. If Adv makes the client leakage query
then it can use the real password in its server sessions, but it
succeeds again only if it predicts zT for some unseen index
T , hence SuccA is at most qS/2t. Finally if Adv makes the
device leakage query then the authentication game reduces to
just on-line password-guessing, where SuccA is at most qS/2d.

For password-recovery resistance (without adversarial de-
vice access) note that Adv is so heavily restricted in this
authentication game that it reveals no additional information
on top of stS = (h, k) learned from the server leakage query.
If Adv is prevented from device leakage, the PRF key k bears
no relation to h = H(p, s), and so the only way to find p is
for Adv to query the random oracle H on (p, s) pairs in the
D×{0, 1}t search space, so Pr[SuccP] ≤ γ after γ · 2d+t · T̄H
search time. If Adv also learns s from a device leakage query,
the search goes over just p’s, so Pr[SuccP] ≤ γ after γ ·2d · T̄H
search time.



Note that the assumption that the adversary has no access
to the device is essential for the nN = 2d+t time bound for
password-recovery given stS = (h, k). Indeed, from eaves-
dropping on a single C-D session where D runs AuthD(s, k),
Adv learns z = s⊕fk(T ) for a known T , and since Adv knows
k from stS, it gets s, which reduces the search space to 2d.

Symmetric-Key TFA Protocol. The time-based protocol has
very low C-D communication requirements, but it requires
clock synchronization between D and S, and it is vulnerable
to attacks if an adversary can modify D’s clock, e.g. by
shifting it forward after having gained temporary access to D.
TFA-SC eliminates this vulnerability, but just like TFA-T, it
is password-recovery resistant only without adversarial device
access. This last weakness is eliminated only by the public-key
based protocols TFA-PC and TFA-PC-Alt.

The TFA-SC protocol is very similar to the TFA-T proto-
col, and it differs from it only in how the random value r is
derived by D and S. As in TFA-T, it is computed via a PRF F
whose key k is shared by D and S, but instead of applying Fk
to the current time, here Fk is applied to a nonce x chosen by
S. To enable adjusting the protocol to different constraints on
the C-to-D bandwidth, we use an additional security parameter
τ ′. In the asymptotic security analysis we assume that τ ′ is a
positive linear function of τ , but in practice τ ′ could be a little
smaller, e.g. one could use an AES block cipher for F with
τ = 128, while setting τ ′ at 80. We discuss these exact security
parameters below.

Symmetric-Key TFA Scheme TFA-SC

Init(1τ , t, p): Pick s ← {0, 1}t and k ← {0, 1}τ , compute
h = H(p, s), and set stD = (s, k) and stS = (h, k).

Protocol Auth:
(assuming secure C-S channel s.t. S is authenticated to C)

1) Server S picks x← {0, 1}τ
′

and sends x on the secure
channel to C.

2) Client C passes x as its message ch to D.
3) Device D on input stD = (s, k) and message ch = x,

computes r = Fk(x) and sends z = s ⊕ r as message
resp to C.

4) Client C on input p and D’s message resp = z, sends
(p, z) on the secure channel to S.

5) Server S on input stS = (h, k) and C’s message (p, z),
computes r = Fk(x), and accepts if and only if h =
H(p, z ⊕ r).

The asymptotic authentication-attack resistance and
password-recovery resistance properties of TFA-SC are as
for TFA-T, the only difference being that TFA-SC does not
depend on D’s internal clock. (On the other hand TFA-SC
requires a device D of type II or higher because D receives
message from C.)

Theorem 2: If F is a secure PRF and H is a Random
Oracle then TFA-SC is (1/2t+d, 1/2d, 1/2t)-authentication-
attack resistant and (T̄H , 2

t+d, 2d)-password-recovery resistant
without adversarial device access for parameters (t, d), where
T̄H is the time required to compute H on any input.

Proof: The argument for authentication-attack resistance
is similar as for TFA-T: Without server or device leakage, by

security of PRF we can replace values rx defined as Fk(x)
by random t-bit strings, and by CRH security of H we can
have S accept (p′, z′) if it is equal to (p, s ⊕ rx). Also, if
zx = s ⊕ rx then instead of picking random s and random
rx’s we can just pick random zx’s. Thus the authentication
game (without either server or device leakage query) can be
modified as follows: On device sessions, for any x chosen by
Adv, D outputs zx, and on either server or client sessions,
AuthS sends out a random τ ′-bit x. On client sessions Adv
learns zx, on hijacked client sessions Adv can reply with any
z′x and learn whether z′x = zx, and on server sessions Adv
succeeds if it sends (p′, z′x) = (p, zx). The only way Adv
can win with probability larger than qS/2

d+t is if there is a
collision in x values, namely if on any server sessions S picks
x on which D has been queries before, either on device or
on client session. However, the probability of such collision is
upper-bounded by qS(qD + qC) · 2−τ ′

, which is negligible. An
additional device leakage query reduces the game to on-line
password-guessing, where SuccA is at most qS/2d, exactly as
in the case of the TFA-T protocol.

As for password-recovery resistance (without adversarial
device access), the situation is as in the case of the TFA-T
protocol, i.e. Adv is so heavily restricted in this game that it
reveals no additional information on top of stS = (h, k) learned
from the server leakage query. As in the case of TFA-T,
without device leakage the PRF key k bears no relation to
h = H(p, s), and so Adv has to query the random oracle
H on (p, s) pairs in the D × {0, 1}t search space, hence
Pr[SuccP] ≤ γ after time γ · 2d+t · T̄H . If Adv in addition
learns s via the device leakage query, the search goes over
just p’s, so Pr[SuccP] ≤ γ after time γ · 2d · T̄H .

As in the case of TFA-T, the assumption that the adversary
has no access to the device is essential for the nN = 2d+t time
bound for password-recovery given stS = (h, k), because given
k one compute r from x and recover s.

Public-Key TFA Protocols. The TFA-PC and TFA-PC-Alt
protocols modify protocol TFA-SC (and TFA-T) in only one
respect, namely that the random challenge r is agreed-upon
using a public-key encryption for which S holds the encryption
key pk and D a decryption key sk. In this way the adversary
who corrupts the server cannot derive past or future challenge
values r from eavesdropping on the C-D channel, via an
eavesdropped client session query. Note that an adversary
who corrupts S and performs an active attack on D via a
device session query can always encrypt some known value
r and then derive s as z ⊕ r from D’s response z. However,
a service whose secret storage gets compromised can often
detect that the compromise took place, and can respond by
asking users to re-run the setup of an TFA protocol. Thus an
adversary’s ability to perform additional attacks against users,
e.g. by active attacks on their devices, might be limited after
the server’s compromise. On the other hand, we do want to
maintain security against an adversary who corrupts S and tries
to recover users’ passwords even if personal devices of some
of these users were previously subjected to active attacks.

Using just public key encryption for transferring the chal-
lenge r from S to D does not suffice, because even if the
public key pk is stored only at server S, an adversary might
still be able to create a valid encryption of message r together



with some information about r. In the first public-key based
protocol, TFA-PC, we address this by simply adding a Mes-
sage Authentication Code (MAC) on the ciphertext encrypting
r, computed under a symmetric key shared by S and D. The
advantage of this protocol is that it can use any public key
encryption, but the challenge message ch which needs to be
sent on the C-to-D channel becomes at least 344 bits long,
if it is instantiated with ElGamal encryption on a 196-bit
elliptic curve, a 128-bit MAC, and 20-bit challenge r. (The
challenge value r can be shorter than in TFA-SC because
of the presence of a MAC, as we explain below.) Further
down, in protocol TFA-PC-Alt, we will show that under more
specific assumptions we can significantly reduce this C-to-D
bandwidth, e.g. from 344 to 196 bits.

The TFA-PC protocol assumes a CRH H as in
TFA-SC above, a semantically-secure public key encryption
(Kg,Enc,Dec), and an unforgeable MAC (Mkg,Mac,Ver).

Public-Key TFA Scheme TFA-PC

Init(1τ , t, p): Pick s ← {0, 1}t, (sk, pk) ← Kg(1τ ),
k ← Mkg(1τ ), compute h = H(p, s), and set stD = (s, sk, k)
and stS = (h, pk, k).

Protocol Auth:
(assuming secure C-S channel s.t. S is authenticated to C)

1) Server S on input stS = (h, pk, k), picks r ← {0, 1}t,
encrypts c ← Enc(pk, r), computes a MAC σ ←
Mac(k, c), and sends (c, σ) on the secure channel to
C.

2) Client C passes (c, σ) as its message ch to D.
3) Device D on input stD = (s, sk, k) and message ch =

(c, σ), stops if Ver(k, c, σ) 6= 1, otherwise decrypts r ←
Dec(k, c), and sends z = s⊕ r as message resp to C.

4) Client C on input p and D’s message resp = z, sends
(p, z) on the secure channel to S.

5) Server S on C’s message (p, z), accepts if and only if
h = H(p, z ⊕ r).

The authentication-attack resistance property of TFA-PC
is as in TFA-T and TFA-SC, but the password-recovery resis-
tance is stronger since it holds whether or not the adversary
eavesdrops on client-device sessions or has active access to the
user’s device prior to server corruption.

Theorem 3: If (Kg,Enc,Dec) is a semantically se-
cure PKE, (Mkg,Mac,Ver) is an unforgeable MAC (in
the sense of universal unforgeability under the chosen
message attack), and if H is a Random Oracle, then
TFA-PC is (1/2t+d, 1/2d, 1/2t)-authentication-attack resistant
and (T̄H , 2

t+d, 2d)-password-recovery resistant for parameters
(t, d), where T̄H is the time required to compute H on any
input.

Proof: We first argue authentication-attack resistance. To
see the δN = 1/2d+t bound, first observe that by MAC
unforgeability we can discount as occurring with negligible
probability the event that Adv manages to get D to respond on
any device session otherwise but by forwarding some (c, σ)
pair received on a server session or eavesdropped on a client
session. In either case Adv sees (c, σ, z) where c = Enc(pk, r),
σ = Mac(k, c), and z = s ⊕ r. Whenever Adv sends some
z′ back to S on a hijacked client session, Adv learns if
z′ = s⊕r for some (c, σ) as above, but this gives no additional

information because it holds iff z′ is equal to z which Adv can
see by merely eavesdropping on this client session. Note that
σ’s add no additional information on secrets (p, s) so we can
ignore them. Event SuccA holds if any (p′, z′) on a server
session satisfies p′ = p and z′ = s ⊕ r. By semantic security
of PKE, event SuccA holds with at most negligibly different
probability in a game where all c’s are replaced by encryptions
of independent random values, and therefore we can ignore the
ciphertexts c, in which case Adv’s view is reduced to values
z = s ⊕ r for random strings r, which leaks no information
about s. (Even repeats in values r are not a problem.) Therefore
after this series of modifications Pr[SuccA] is upper-bounded
by qS ·1/2d+t. Client leakage query changes the game only by
giving p to Adv, in which case Pr[SuccA] is upper-bounded by
qS · 1/2t after the same modifications. Device leakage query
reveals s but gives no information about p, hence in this case
Pr[SuccA] ≤ qS · 1/2d.

For password-recovery resistance, note that even stS =
(h, pk, k) does not significantly change the above arguments,
as long as Adv is prevented from making device session queries
after receiving stS containing the MAC key k. The same
series of modifications shows that Adv’s view in device and
client sessions before learning stS and of eavesdropped client
sessions afterwards, is indistinguishable when z’s are replaced
by random values, in which case Adv’s search for (p, s) is
reduced to querying the random oracle H on any γ fraction
of the search space D× {0, 1}t, hence lower-bounding Adv’s
time by γ ·2d+t ·T̄H . A device leakage query reveals (s, sk, k),
making all network interactions predictable to Adv, but Adv’s
view still leaks nothing about p, thus Adv’s time is still lower-
bounded by γ · 2d · T̄H .

Our final protocol, TFA-PC-Alt, is a variant of protocol
TFA-PC. First, we observe that in protocol TFA-PC-Alt public
key encryption (PKE) is used to encrypt a random value
r, and therefore we can save bandwidth by replacing PKE
with a key encapsulation mechanism (KEM). In the case of
hashed ElGamal this saves |r| ≥ 20 bits from the ciphertext.
Moreover, we will assume a special property of KEM, satisfied
by hashed ElGamal encryption in the random oracle model,
that without knowledge of the public key an adversary has a
negligible probability of creating a ciphertext with any sideline
information on the encapsulated plaintext, thus shaving off also
the 128 bits needed by a MAC.

A KEM is a triple (Kg,Enc,Dec) s.t. (1) a key generation
algorithm Kg(1τ , t) outputs a public key pair (sk, pk), (2) an
encapsulation algorithm Enc(pk) outputs a pair (c, r) where
r is random t-bit string, and (3) a decapsulation algorithm
Dec(sk, c) outputs the same r value chosen by the encapsula-
tion algorithm. A key encapsulation mechanism is semantically
secure if for every polynomial time Adv, we have that the
probability that b′ = b is a negligible function of ε where b′, b
are defined by the following game: The challenger generates
(pk, sk) ← Kg(1τ , t), then it generates (c, r) ← Enc(pk),
then it picks bit b← {0, 1}, defines rb as r, picks r1−b{0, 1}t,
finally b′ is computed by Adv(pk, r0, r1, c).

We call KEM Σ = (Kg,Enc,Dec) outsider oblivious if
the key generation algorithm Kg(1τ , t) outputs a ciphertext
space C together with the public key pair (pk, sk) and for
every polynomial-time adversary Adv and every t polynomial
in τ , function ε defined as ε(τ) = |p0

Adv,Σ(τ) − p1
Adv,Σ(τ)|



is negligible where pbAdv,Σ for b = 0, 1 is defined as the
probability that Adv(1τ ) outputs 1 in the following game: The
challenger generates (sk, pk, C) ← Kg(1τ , t), and whenever
Adv(1τ , t) sends a decryption query c ∈ C, it receives
m = Dec(sk, c) if b = 1 and a random t-bit value rc if b = 0
(for every c the corresponding rc is chosen only once, so if
c′ = c then rc = rc′ ). The game ends when Adv outputs
a bit b′ designating its judgment whether b is 0 or 1. Note
that hashed Diffie-Hellman is outsider oblivious in the random
oracle model as long whenever the cyclic group has super-
polynomial number of elements: Let R be a hash function onto
{0, 1}t, modeled as a random oracle. Let Kg(1τ , t) choose a
cyclic group G of prime order q and generator g where the DH
assumption holds with sec.par. τ , let x be a random element
in Zq , let y = gx, and let sk = x, pk = y, and C = G. Let
Enc(y) pick a ← Zq and output c = ga and r = R(ya), and
let Dec(x, c) check if c is an element of G (e.g. by checking if
cq = 1, and if so output r = R(cx). Note that Adv’s ability to
distinguish R(cx) for any c from a random value is to query
R on cx for any of its decryption queries c. Since x is random
in Zq , q is exponential in τ , and the number of Adv’s queries
is polynomial in τ , this happens with negligible probability.
It is also easy to see that this hashed Diffie-Hellman KEM
is also semantically secure in the random oracle model if the
(computational) Diffie-Hellman assumption holds in group G.
Apart of the outsider oblivious and semantically secure KEM,
the TFA-PC-Alt protocol also assumes a CRH H as all the
other TFA protocols shown above.

Bandwidth-Improved Public-Key TFA Scheme TFA-PC-Alt

Init(1τ , t, p): Pick s ← {0, 1}t and (sk, pk, C) ← Kg(1τ , t),
compute h = H(p, s), and set stD = (s, sk) and stS = (h, pk).

Protocol Auth:
(assuming secure C-S channel s.t. S is authenticated to C)

1) Server S on input stS = (h, pk), generates (c, r) ←
Enc(pk) and sends c on the secure channel to C.

2) Client C passes c as its message ch to D.
3) Device D on input stD = (s, sk) and message ch = c,

checks if c ∈ C and if so computes r = Dec(sk, c) and
sends z = s⊕ r as message resp to C.

4) Client C on input p and D’s message resp = z, sends
(p, z) on the secure channel to S.

5) Server S on C’s message (p, z), accepts if and only if
h = H(p, z ⊕ r).

Theorem 4: If (Kg,Enc,Dec) is a semantically secure and
outsider oblivious KEM, and if H is a Random Oracle,
then TFA-PC-Alt is (1/2t+d, 1/2d, 1/2t)-authentication-attack
resistant and (T̄H , 2

t+d, 2d)-password-recovery resistant for
parameters (t, d), where T̄H is the time required to compute
H on any input.

For lack of space, we defer this proof to the extended
version of this paper, but the argument is very similar as in
the case of the TFA-PC protocol. The key difference is that
instead of using the MAC to disable Adv’s active attacks on
the device sessions, we rely on outsider obliviousness of KEM
to argue that D’s responses z = s ⊕ r for r = Dec(sk, c) on
ciphertexts c chosen by Adv are indistinguishable from random
strings no matter how Adv chooses queries c to D.

Implementation/Extension Notes. (1) The only protocol

where S needs UN to retrieve stS at the beginning of the
Auth protocol is TFA-PC. However, in TFA-T, TFA-SC, and
TFA-PC-Alt instantiated with hashed Diffie Hellman KEM, if
all users are initialized using the same security parameter τ
(and τ ′ in the case of TFA-SC) then S needs stS only in the
last step, hence C can send UN together with (p, z). This is
reflected in Section V, e.g. compare when UN is sent in Figures
2 and 3. (2) If a TFA protocol is implemented on device
of type III or IV, where D’s response resp to C can contain
more information, and if the D-to-C channel is authenticated
(e.g., as in our implementation involving bidirectional QR
codes), or because D and C can establish authentication keys
in the initialization process (as in our Bluetooth pairing based
implementation), then D could include a hash of server’s S
public key in its message resp, and C could check, before
sending its (p, z) (and UN) message to S, that the SSL session
with S is established under the correct S’s public key. This way
we can extend user’s security to the case when the adversary
does not simultaneously corrupt the PKI and the device D
and/or the authentication on the D-to-C channel.

V. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the design, implementation
and performance evaluation of the different TFA mechanisms
built on top of the TFA protocols presented in Section IV.
As introduced in Section III, these mechanisms are catego-
rized based on: (1) the underlying device type, namely, low-
bandwidth device (LBD; type I and II), mid-bandwidth device
(MBD; type III) and full-bandwidth device (FBD; type IV);
(2) the underlying C-to-D and/or D-to-C channel, namely,
based on PIN entry, QR codes, Bluetooth or WiFi; and (3) the
underlying protocol, namely, TFA-T, TFA-SC and TFA-PC.2
The mechanisms are: LBD-PIN which is based on the protocol
TFA-T, and LBD-QR-PIN, MBD-QR-QR, FBD-BT-BT, FBD-
WF-WF, FBD-QR-BT and FBD-QR-WF which can be based
on either TFA-SC or TFA-PC. This results in a total of 13
TFA mechanisms that we have developed. Table II highlights
the different features of these mechanisms.

In our implementation, S is a web server maintaining and
accessing user accounts database to authenticate each user U
labeled with a unique user name UN . In all our mechanisms,
S communicates to C over a secure SSL channel. We used an
Apache web server with MySQL database running our server-
side PHP scripts. C is a terminal having a plain HTML browser
in our LBD mechanisms, and having a browser extension (writ-
ten in JavaScript) in all our FBD mechanisms, except of MBD-
QR-QR which requires an HTML5 browser. C communicates
to D over mix-bandwidth channels, formed using manual
PIN entry, QR codes, Bluetooth or WiFi, and combinations
thereof. Finally, D is an Android smartphone running the TFA
authentication application (TFA-App) written in Java (SDK
10 or up) that supports all of our proposed mechanisms. The
crypto operations in our implementation utilize the OpenSSL
and PHP mcrypt libraries on S, and java.security class on

2Our current implementation excludes the TFA-PC-Alt protocol as it
requires certain crypto primitives not built into off-the-shelf crypto libraries.
However, since it requires shorter bandwidth over D-C channel than the TFA-
T, TFA-SC and TFA-PC protocols as well as crypto operations of similar
complexities, by implementing and testing these protocols and underlying
channels, we are implicitly demonstrating the feasibility of TFA-PC-Alt
protocol also.



D. The QR code encoding and decoding, when needed, uses
the ZXing library [15]. We next elaborate on the design and
implementation of our LBD TFA mechanisms, our MBD TFA
mechanism and our FBD TFA mechanisms We describe their
initialization phase followed by their authentication phases.

A. Initialization Phase

Before using the TFA mechanism, U needs to register with
the service deploying that TFA mechanism. This is done using
the Init procedure of our protocols, during which protocol
parameters and keys are agreed upon between S to D. This
information varies across our protocols but it follows a generic
URI syntax (as per RFC39863). Regardless of the type of
underlying protocol (TFA-T, TFA-SC or TFA-PC), S transfers
set-up information to D via C using QR codes, following the
approach adopted by Google Authenticator [6]. Generally the
URI includes protocol type, service domain name, encryption
keys, and secret value, and PRF key. S embeds this information
into a QR Code and delivers to C, which is captured by D
and interpreted by TFA-App on D. Subsequently, one TFA
authentication phase (see next subsection) round is completed
to accomplish enrollment.

Only a one-time initialization phase is required for each
user account after which user account information including
protocol type, username UN , random salt value salt (128
bits), salted hash of password h (= H(p, s, salt)), and key
k (128 bits), and additionally D’s public key pk (for TFA-
PC protocol), is stored in server database, and domain name
DN , key k and secret s (19 bits in LBD mechanisms and
128 bits in FBD mechanisms), and additionally D’s private
key sk (for TFA-PC protocol), is stored on device database.
To provide better security, unlike Google Authenticator, we
do not store UN on the device unless a user has more than
one account with a service. This prevents an attacker, who
compromises the user’s device, from determining which user
account corresponds to the key k stored on the device. The
service’s DN is stored on the device to identify different
TFA services user has registered with. Similar to known TFA
mechanisms (such as Google Authenticator), we assume that
the initialization phase is not compromised by an attacker.

B. LBD Authentication Phase

1) LBD-PIN: LBD-PIN is essentially an improvement to
Google’s TFA system. Here, U first launches the app on D
and manually identifies the service she wants to authenticate
to. D then creates the PIN z (19 bits encoded into 6 digits)
derived from s and a PRF computation of current timestamp
Td (Unix time in compliance with RFC 6238) using k. U then
copies z onto C and inputs the username UN and password p,
and submits (UN, p, z) to S. Finally, S evaluates the response
by computing the PRF using k on its own current timestamp,
and authenticates the user based on the received information.
In our implementation, we instantiated the PRF using HMAC-
SHA256.4 Figure 1 depicts the mechanism as implemented.

We re-purposed Google Authenticator’s open source code
[6] to fit our LBD-PIN mechanism. Fresh PIN is generated
every 30s and U is given up to 1min to copy the PIN to C.

3https://tools.ietf.org/html/rfc3986
4HMAC is proven to be a PRF under the assumption that the underlying

hash compression function is a PRF [17].
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1-  z = s  xor Fk(Td)      2- (UN, p, z)

[UN, h=H(p, s), K] [DN, s, K]

3 – Accept if:
H(p, z xor Fk(Ts)) = hCopy PIN

Fig. 1. LBD-PIN

2) LBD-QR-PIN: In the LBD-QR-PIN mechanism, S gen-
erates a random (128-bit) challenge. When using TFA-SC,
no computation is further performed on the challenge. When
using TFA-PC, S encrypts the challenge with D’s public key
pk using RSA-OAEP-30725 and authenticates the resulting ci-
phertext using k with HMAC-SHA256. S encodes the response
and DN into a QR code and sends the QR code image to
C. U takes the snapshot of the QR code displayed on C’s
screen using camera on D, which then reads the contents of
the code, processes/verifies it and produces a response PIN
z (19 bits encoded into 6 digits) as per the protocol used
(TFA-SC or TFA-PC). U then copies z onto C and inputs
p, and submits (p, z) to S. Finally, S evaluates the response
and authenticates the user based on the received information.
Note that the LBD-QR-PIN version based on TFA-SC allows
the user to input (UN, p, z) in one single page, whereas
the version based on TFA-PC requires sending UN before
providing (p, z). The TFA-SC and TFA-PC versions of the
mechanisms are depicted in Figures 2 and 3. Figures 4 depicts
the implementation snapshots of the client terminal and device
during an authentication session.
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    3-  z = s  xor Fk(x)        4- (UN, p, z)

[UN,h=H(p,s),K]
     
[DN,s,K]

5- Accept if:
H(p, z xor Fk(x)) = hCopy PIN

          1- x

Fig. 2. LBD-QR-PIN (SC)
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           2- c

 3-  z = s  xor Decsk(a)          4- (p, z)

[UN,h=H(p,s),K, pk]
  [DN,s,K, sk]

5- Accept if:
H(p, z xor r) = h

Copy PIN

1- UN 

2- c = (a,b)                             
a = Encpk(r)
b = MACK(a)

Fig. 3. LBD-QR-PIN (PC)

C. MBD Authentication Phase (MBD-QR-QR)

HTML5 introduced video, audio and canvas, which make
handling multimedia and graphical contents easy in a plain
browser without extensions and plugins. Some JavaScript APIs
use this functionality to access webcam. getUserMedia is an
example of such an API. It is supported on most of the
browsers, some of which request user consent before opening
webcam. An application of such APIs is a webcam QR Code

53072-bit RSA provides security equivalent to 128 bits in a symmetric key
system [12].



Fig. 4. LBD-QR-PIN Server Challenge; Device Scanning and Response

Fig. 5. FBD-WF-WF in action

reader operating in the browser, which we used to form a D to
C QR visual channel central to our MBD-QR-QR mechanism.

In this mechanism, same as LBD-QR-PIN, the challenge is
encoded in a QR Code and is shown on the web page, which
D captures and interprets. In contrast to LBD-QR-PIN, the
device-generated response is also encoded in a QR code by the
TFA-App using ZXing encode class. To receive the response,
LazarSoft JavaScript QR Code reader [7] is integrated with
our server-side PHP scripts. LazarSoft uses getUserMedia to
capture the QR Code and ZXing to interpret the QR code. Once
decoded, response is transferred automatically to the webpage
to be submitted to S. U should assist by showing the generated
response to the terminal webcam and submitting UN and/or
(p, z). Figures 6 and 7 depict the MBD-QR-QR mechanisms
based on TFA-SC and TFA-PC, respectively. Our tests show
that this channel is robust for sending between 20-128 bits
from D to C (the details are provided in Section V-E).

D. FBD Authentication Phase

The authentication phase of each FBD mechanism is de-
scribed next. These mechanisms follow the TFA-SC and TFA-
PC protocols in the same way as the LBD-QR-PIN or MBD
mechanisms, with an exception that the length of the response
PIN can be long (e.g., 128 bits).

1) FBD-BT-BT: In the FBD-BT-BT authentication scenar-
ios, D and C establish a bidirectional Bluetooth channel. On
D, this channel is implemented as an Android application
operating in server mode by listening on a RFCOMM socket,
which is addressed using a UUID (universally unique iden-
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    3-  z = s  xor Fk(x)     4- (UN, p, z)

[UN,h=H(p,s),K]     
[DN,s,K]

5- Accept if:
H(p, z xor Fk(x)) = h

            1- x

Fig. 6. MBD-QR-QR (SC)
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            2- c

 3-  z = s  xor Decsk(a)           4- (p, z)

[UN,h=H(p,s),K, pk]
  [DN,s,K, sk]

5- Accept if:
H(p, z xor r) = h

1- UN 

2- c = (a,b)                             
a = Encpk(r)
b = MACK(a)

Fig. 7. MBD-QR-QR (PC)

tifier) in accordance with the Serial Port Profile (SPP).6 C
runs a Google Chrome browser extension which employs the
use of the Bluetooth API. D must run the application in the
background to establish connectivity.

The Bluetooth API enables Google Chrome to operate in
either client or server mode. In our case, we have developed
a packaged extension, called “TFA-BT-App”. When TFA-BT-
App is run, the terminal browser loads the authentication
page on S. When U initiates the log in process, the web site
JavaScript hosted on S calls the browser extension using a
well-known ID7 with the challenge sent by S as input. The
extension (1) establishes Bluetooth connectivity using the BT
adapter address of D (which is provided to C during the initial-
ization phase) rather than going through the slow process of BT
device discovery during the authentication session, (2) sends
the challenge to D, (3) receives the response PIN (128 bits
or more), and finally (4) returns the response to the terminal
browser. The browser then sends the response including the
password to S which then authenticates U. Figures 8 and 9
illustrate the FBD-BT-BT mechanisms.

One limitation of our implementation is that it requires a
paired Bluetooth connection (although our protocols do not
require the C-D channel to be secure). In our implementation,
this one-time pairing is established during the initialization
phase after which C and D can take part in the authentication
process without involvement from U (except of launching the
app). The pairing process will need to be repeated whenever
U roams over to another client terminal. It is also possible
to establish unpaired (insecure) BT connection as shown in
PhoneAuth [19], but it requires developing a new NPAPI
plugin embedded with the browser extension. While NPAPI
provides more flexibility in the design space for browser
plugins, it allows access to the host system libraries subverting
the sandbox security of Google Chrome. Due to the security
consequences of NPAPI this traditionally makes wide-scale
deployment more difficult to achieve. We aim to comply with
browser security features and to remain forward-compatible,

6By using an insecure RFCOMM socket, C can establish a connection to
D without pairing, but this requires support from the host platform Bluetooth
stack.

7The ID is essentially a signature to uniquely identify the extension.



 

Mechanism  LBD-PIN LBD-QR-PIN MBD and FBD mechanisms 
Protocol TFA-T TFA-SC 1 TFA-PC 2 TFA-SC TFA-PC 
|z| =  |s| 19 bits 19 bits 19 bits 128 bits 128 bits 
Creating Challenge at 
“S” 

N/A 1.3 x 10-5 µs 8.7 x 10-4 µs 1.3 x 10-5 µs 8.7 x 10-4 µs  

Challenge “c” is:  c = x; 128-bit c = (a = Enc(r), b = 
MAC(a));  3328-bit 

Same as LBD-QR-PIN Same as LBD-QR-PIN 

Verification at “S”  1.3 x 10-4 µs 3.7 x 10-5 µs 1.2 x 10-5 µs 4.9 x 10-5 µs 1.3 x 10-5 µs 

Accept if: H(p, z xor r) = h 
r is: 

PRF(Ts)  PRF(x)  PRF(x)  

Verify message 
integrity at “D” 

N/A N/A 0.48 ms N/A 0.48 ms 

Accept if MAC(a) = b   a = Enc(r),  
b = MAC(a) 

 a = Enc(r),  
b = MAC(a) 

Creating response at 
“D”  

3.2 ms 0.54 ms 114 ms  0.59 ms 114 ms  

Response “z” is:  s xor PRF(Td) s xor PRF(x) s xor Dec(a)  s xor PRF(x) s xor Dec(a)  

Reading of QR Code 
by “D”3 

N/A ≅ 5 s ≅ 8 s N/A N/A 

Reading of QR Code 
by “C”4 

N/A N/A N/A ≅ 870ms ≅ 870ms 

WF Auto response5 N/A N/A N/A ≅ 239 ms ≅ 553 ms 
BT Auto response N/A N/A N/A ≅ 2s ≅ 2s 
 
Execution times were evaluated on a dual-core 1GHz processor smart phone with 8.0 MP Camera and an Intel Core 
Due 2.26 server and client. The values presented represent the average across 10,000 trials for each computation. 
For QR, 20 manual scans were repeated. To time BT/WF auto-response, 100 trials were performed.  
 
1 PRF is instantiated using an HMAC function. It starts by inputting a random generated 128-bit session “r” and a 128-bit “key” 
to an HMAC-SHA256 function. Output is a truncation of the HMAC starting at an offset defined by the last nibble of the HMAC. 
HMAC output is presented in Hex-String.  
2 In this model, a 3072-bit RSA with OAEP padding is implemented, message is authenticated using HMAC-SHA256. The output 
is presented in Base64 encoding to maximize efficiency when embedding the challenge in a QR Code.  
3 QR size: 350x350, Error correction: M (15% of code words get restored) 
4 The time shows an average cost of scanning and decoding a well posed QR code, user time to align the device is ignored but it 
is estimated to be up to 5 seconds.   
5 Auto-Response denotes the delay between the time browser extension receives a challenge from S and the time it responds back 
to “S”. It includes the entire computation performed on D and the 2-way C-D communication (for both WF and BT). 

 TABLE I. EXECUTION TIME FOR THE DIFFERENT TFA MECHANISMS

trading off the usability aspect of allowing unpaired Bluetooth
communication.
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Fig. 8. FBD-BT-BT/FBD-WF-WF (SC)
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Fig. 9. FBD-BT-BT/FBD-WF-WF (PC)

2) FBD-WF-WF: The FBD-WF-WF mechanism utilize
WiFi as a bidirectional D-C communication medium. While
Bluetooth has been explored in user authentication domain
in prior work (e.g., [19], [24], [20]), WiFi has received little
attention so far. Ad hoc mode WiFi is a common point-to-point
infrastructureless wireless channel that can be formed between

a device and client terminal equipped with WiFi adaptors.
However, laptops terminals may dedicate wireless adaptor
to the Internet connection, which may render ad hoc WiFi
unavailable for D-to-C communication in our TFA application.
We show that this constraint can be addressed by utilizing a
tool called Virtual WiFi (offered by Microsoft Research), also
known as Wireless Hosted Network [11].

Virtual WiFi features two coexisting functionalities: “virtu-
alizing a physical wireless adapter”, and “running a software-
based wireless access point (SoftAP),” which is appropriate for
use in our TFA application. We used Virtual WiFi to establish
a direct connection between C and D upon a request from S
in order to transfer a challenge to D through C and receive
a response back whenever wireless adaptor is serving other
networks. Therefore, by virtualizing one physical wireless
adapter, we can connect D to C whilst user is surfing web on
C. Virtual WiFi is built-into some Microsoft platforms (e.g.,
Windows 7 and 8) and installable on some others, and is easy
to configure and fairly stable. Still in our implementation,
we had to adapt it to address the constraint that all devices
connected to SoftAP should use the WPA2-PSK/AES cipher
suite. In other words, an insecure connection is not an option
with Virtual WiFi, and therefore we specified a static key



and hard-coded it into the application8. After the wireless
connection is established between C and D, applications on
the two sides can communicate back and forth.

We have developed a chrome packaged app, titled “TFA-
WiFi-App”, that is launched on the client browser, and ex-
tended our TFA-App on the device to interact with the client.
TFA-WiFi-App stands between the server and the client to
relay challenges received from the web page to the device,
receive device’s responses and forward it to the web-page.
Chrome provides the chrome.socket API to the packaged apps
to send and receive data over the network using TCP and UDP
connections; we used this API to create a UDP channel be-
tween the client and the device. Furthermore, chrome.runtime
API allows the chrome extensions and apps to listen for and
respond to events; we used this API for message passing
between the web-page and WiFi-App. Every time the user
opens a login web-page the server sends a challenge, which
fires a function in our TFA-WiFi-App to “multicast” the
challenge on the created UDP socket to the device. The device
receives the datagram packet, processes it, creates a response
and sends it back on the UDP socket to the TFA-WiFi-App to
be forwarded to the server.

The authentication process implemented by TFA-WiFi-App
is shown in Figures 8 and 9. The underlying protocol flow is
exactly the one used in the FBD-BT-BT mechanism. In the
resulting FBD-WF-WF mechanism, similar to FBD-BT-BT,
the user is not involved in transferring the challenge to the
device (in contrast to LBD-PIN, LBD-QR-PIN or MBD-QR-
QR). Moreover, device response PIN is automatically passed
to the web page through the applications on the browser and
the device, and it can be easily long (at least 128 bits), as in
FBD-BT-BT. Hence, besides entering username and password,
the user’s role is minimized to simply launching the application
on the terminal browser and the device. This would provide
increased usability and security at the cost of the need for
additional software on the client terminal browser (and the
Virtual WiFi application in case the terminal dedicates WiFi
to an internet connection). Figure 5 shows a snapshot of our
implementation in action.

3) FBD-QR-BT and FBD-QR-WF: Our implementation of
the FBD-QR-BT and FBD-QR-WF mechanisms simply uses
the QR codes for C-to-D communication and BT/WiFi for D-
to-C communication. Since BT/WiFi is only used for receiving
data (not for sending), this might provide better security against
potentially malicious extensions which could leak sensitive
information from the client terminal over BT/WF without
user’s knowledge. Figures 10 and 11 show these mix-capability
mechanisms.
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Fig. 10. FBD-QR-BT/FBD-QR-WF (SC)

8This does not affect the security of our protocols because we do not require
the C-D channel to be secure.
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Fig. 11. FBD-QR-BT/FBD-QR-WF (PC)

E. Performance Measurements

To estimate the performance of our TFA prototypes, we
measured the execution times corresponding to each operation
(except of manual PIN transfer and password entry) as part of
the prototypes. These average timing measurements are pre-
sented in Table I, along with measurement details, platform and
devices used, and other relevant information. It is clear from
the table that all server side operations in our implementation
are very fast (although we tested these on a personal laptop, not
a real server). As one would expect, the device computation
is more time-consuming compared to server computation but
still not exceeding 114 ms on an average.

Scanning the (C-to-D) QR code takes about 5-8 s de-
pending on whether a public-key challenge (3328 bits) or a
symmetric-key challenge (128 bits) is used. The more the
information embedded within the QR code, the longer it takes
to scan the code. This can be reduced to 3-5 s by using a
lower error correction code at the cost of potential for increased
errors in code scanning. We have also tested the D-to-C QR
channel by trying to interpret 20 to 128-bit long PIN numbers.
Evaluation shows that once the user properly aligns the device,
QR code can be decoded between 820-950 milliseconds. For
a trained user, it takes up to 5 seconds to show the QR
code correctly to the webcam. Good webcam quality, device
brightness and resolution, and correctly aligning device helps
Client ZXing JavaScript to interpret the QR code faster. WiFi
2-way average response time (inclusive of device computation)
is not exceeding 550 ms or so. Bluetooth response time, on
the other hand, is much longer, about 2 s. This seems to imply
that WiFi, when available, is a better communication medium
for our application.

In summary, these measurements show that FBD-WF-
WF mechanism yields the shortest execution times, which
would likely not cause a perceivable delay to the user when
authenticating to a service, except of the time taken to input the
password and launch the app on the device. The LBD-QR-PIN
mechanism may take more than 10 s overall, because the user
has to type in the password and launch the application besides
scanning the QR code. LBD-PIN takes the same amount of
time as the traditional TFA mechanism with bulk of the time
spent in copying the PIN and typing the password.

VI. DISCUSSION

In this section, we summarize, and provide a comparison
of, our different TFA mechanisms in terms of security, usability
and deployability, and contrast them with the traditional TFA
mechanism (called Traditional). Table II depicts this summary.

The primary advantage offered by our new TFA mecha-
nisms over Traditional is improved resilience to offline dic-



 
 Traditional LBD-PIN LBD-QR-PIN MBD-QR-QR FBD-BT-BT / 

FBD-WF-WF 
FBD-QR-BT / 
FBD-QR-WF 

Time or Challenge 
Response (CR)? Time Time CR CR CR CR 

Protocol Traditional TFA-T TFA-SC or 
TFA-PC 

TFA-SC or 
TFA-PC 

TFA-SC or 
TFA-PC 

TFA-SC or  
TFA-PC 

Device Type type I type I type II type III type IV type IV 

|z| 19 bits 19 bits 19 bits t = 20 - 128 bits 128 bits (or 
more) 

128 bits (or 
more) 

Online Attack Success 
Probability  1/(|D|*219 ) 1/(|D|*219 ) 1/(|D|*219 ) 1/(|D|*2t ) 1/(|D|*2128 ) 1/(|D|*2128 ) 

Offline Attack 
Overhead ≤ |D| hashes ≤ 219*|D| 

hashes ≤ 219*|D| hashes ≤ 2t*|D| hashes ≤ 2128*|D| hashes ≤  2128*|D| hashes 

Lunch-Time Security? 
Yes (but can 
manipulate 

clock) 

Yes (but can 
manipulate 

clock) 
Yes Yes Yes Yes 

Secure against 
Lunch-
Time/Eavesdrop + 
Server Compromise? 

No No Yes (with TFA-
PC) 

Yes (with TFA-
PC) 

Yes (with TFA-
PC) 

Yes (with TFA-
PC) 

Time-Sync 
Necessary? Yes Yes No No No No 

Client Software/   
Special Hardware 

HTML 
Browser/ 

None 

HTML 
Browser/  

None 

HTML    
Browser/      

None 

HTML5 
Browser/            
Webcam 

Browser 
Extension/ 

Bluetooth  or 
WiFi 

Browser 
Extension/    

Bluetooth or 
WiFi 

User Effort 
 

Input user 
name on C 

Input user 
name on C 

Input user    
name on C 

Input user     
name on C 

Input user     
name on C 

Input user     
name on C 

  
Enter to send 

user name (with 
TFA-PC) 

Enter to send 
user name (with 

TFA-PC) 

Enter to send 
user name (with 

TFA-PC) 

Enter to send 
user name (with 

TFA-PC) 

Launch app 
on D 

Launch app  
on D 

Launch app       
on D 

Launch app      
on D 

Launch app       
on D 

Launch app      
on D 

Select DN  Select DN     

  Take snapshot of 
QR shown on C 

Take snapshot of  
QR shown on C  Take snapshot of 

QR shown on C 

Copy z      
onto C 

Copy z 
onto C 

Copy z 
onto C    

   Take snapshot of 
QR shown on D   

Input p 
on C, and 

submit     
(UN, z, p) 

Input p 
on C, and 

submit     
(UN, z, p) 

Input p 
on C, and      

submit UN 
and/or (z, p)  

Input p 
on C, and      

submit UN 
and/or (z, p) 

Input p 
on C, and      

submit UN 
and/or (z, p) 

Input p 
on C, and      

submit UN 
and/or (z, p) 

 

TABLE II. COMPARISON OF DIFFERENT TFA MECHANISMIS (cells with lighter shades represent positive features)

tionary attacks. Specifically, our LBD mechanisms provide
a 219 factor improvement (|z| = 19 bits) and MBD/FBD
mechanisms provide a 2128 factor or more improvement
(|z| ≥ 128 bits). This is a significant improvement since
offline dictionary attacks allows an attacker to compromise
(and undermine the security of) the passwords of multiple
user accounts (these passwords might be re-used on another
service). Clearly, FBD and MBD mechanisms provide a
significantly stronger (computationally sufficient) protection
compared to LBD mechanisms. In terms of security against
online attacks also, FBD mechanisms are significantly stronger,
whereas LBD mechanism and traditional scheme have the
common fundamental limitation – the one-time PINs can not
be longer than 19 or so bits due the requirement of manual
PIN transfer.

Clearly, LBD-PIN and Traditional are time-based schemes
whereas others are challenge-response. As such, these two
schemes require time synchronization between D and S. Es-
tablishing and maintaining such a synchronization can be
challenging in practice, and any loss of synchronization will

result in the user not being able to authenticate to the service.
Google Authenticator has a time-synch feature which can be
used to re-synchronize the device with the server but requires
network connectivity at the time of re-synchronization. An-
other limitation of the time-based mechanisms is that they
are not secure against a lunch-time attacker. This attacker can
manipulate the timestamp on D to future values, record the
PINs corresponding to those values, reset the timestamp, and
then use the recorded PIN values in the future to authenticate
on behalf of the user. This suggests that challenge-response
(CR) mechanisms might be more appealing in practice. Such
mechanisms also have an usability advantage in that the
domain name (DN) of the site can be embedded within the
challenge and sent to D, which then automatically locates
the account information (e.g., (K, s)). The time-based mech-
anisms, in contrast, requires the user to manually select the
DN/account on D.

In terms of usability also, FBD mechanisms have an edge
over other mechanisms because the user does not need to
manually transfer the PIN from D to C. Between mechanisms



that use WF or BT, the former seems preferable due to short
response time (BT response time was much higher as shown
by our performance measurements in Section V-E). MBD-QR-
QR mechanism does not involve a manual PIN transfer, but
still needs the user to take a snapshot of QR displayed on the
phone using webcam, which may have usability implications
compared to the FBD mechanisms, although mobile device QR
“reading” is also becoming popular (e.g., in mobile payment
systems [2], [8]).

Where the FBD mechanisms may have a limitation com-
pared to all other mechanisms is in their requirement of extra
hardware (Bluetooth or WiFi, or webcam) and extra software
(browser extension) on C. Traditional and LBD schemes, in
contrast, all just work with a plain browser and no special
hardware interfaces, which can be a prominent advantage in
practice due to deployability reasons.

Comparing the LBD schemes, we can claim that LBD-
PIN could immediately replace Traditional because the former
offers all the same properties but significantly better resilience
to offline dictionary attacks. Overall, for other schemes, our
analyses suggest that each scheme has its own advantages
which would make it attractive to be deployed per the desired
requirements of the application and usage scenario at hand.

VII. CONCLUSION

We provided a formalization of two-factor authentication,
and designed novel TFA mechanisms built on top of four TFA
protocols resilient to server compromise. These mechanisms
leveraged a wide range of capabilities of devices and client
terminals, ranging from a plain display to camera and wireless
interfaces, which enable mix-bandwidth unidirectional or bidi-
rectional device-client communication. All these mechanisms
offer different level of security and usability advantages.

As per our overall analysis of these mechanisms and
protocols, we provide the following recommendations. If a
compatible browser extension and radio interface are available
on the client, the FBD-WF-WF mechanism would offer the
highest level of security and usability, followed by FBD-BT-
BT. The versions of these mechanisms based on TFA-PC pro-
vides the strongest security guarantees. The TFA-SC versions
may also be preferable due to usability reasons (in particular,
the advantage of submitting (UN, p, z) in a single login page,
which TFA-PC-Alt also provides). FBD-QR-WF or FBD-QR-
BT could also be used if malicious browser extensions, that
may exploit outgoing radio communications, is a concern. If a
browser extension is not supported and time-synchronization
between the device and server is difficult, LBD-QR-PIN would
be a good choice, followed by MBD-QR-QR. If browser
extensions are not supported and time-synchronization (and
re-synchronization) is feasible, as assumed in the currently
deployed TFA systems, LBD-PIN should be used instead.
LBD-PIN offers all the same advantages of traditional systems
plus improved resilience to offline dictionary attacks and can
immediately replace the traditional deployment.
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