
Slogger: Smashing Motion-based Touchstroke
Logging with Transparent System Noise

Prakash Shrestha
University of Alabama at

Birmingham
Birmingham, Alabama
prakashs@uab.edu

Manar Mohamed
University of Alabama at

Birmingham
Birmingham, Alabama
manar@uab.edu

Nitesh Saxena
University of Alabama at

Birmingham
Birmingham, Alabama

saxena@cis.uab.edu

ABSTRACT
Recent research shows that it is possible to infer a user’s touch-
screen inputs (e.g., passwords) on Android devices based on in-
ertial (motion/position) sensors, currently freely-accessible by any
Android app. Given the high accuracies of such touchstroke log-
ging attacks, they are now considered a significant threat to user
privacy. Consequently, the security community has started explor-
ing defenses to such side channel attacks, but the suggested solu-
tions are either not effective (e.g., those based on vibrational noise)
and/or may significantly undermine system usability (e.g., those
based on keyboard layout randomization).

In this paper, we introduce a novel and practical defense to
motion-based touchstroke leakage based on system-generated, fully
automated and user-oblivious sensory noise. Our defense lever-
ages a recently developed framework, SMASheD, that takes ad-
vantage of the Android’s ADB functionality and can programmat-
ically inject noise to various inertial sensors. Although SMASheD
was originally advertised as a malicious app by its authors, we use
it to build a defense mechanism, called Slogger (“Smashing the
logger”), for defeating sensor-based touchstroke logging attacks.
Slogger transparently inserts noisy sensor readings in the back-
ground as the user provides sensitive touchscreen input (e.g., pass-
word, PIN or credit card info) in order to obfuscate the original
sensor readings. It can be installed in the user space without the
need to root the device and to change the device’s OS or kernel.

Our contributions are three-fold. First, we introduce Slogger,
identifying a novel, benign use case of SMASheD that can de-
feat touchstroke logging attacks. Second, we design and imple-
ment the Slogger app system that can be used to protect sensitive
touchscreen input from leaking away. Third, we comprehensively
evaluate Slogger against state-of-the-art touchstroke detection and
inference attacks. Our results show that Slogger can significantly
reduce the level of touchstroke leakage to the extent these attacks
may become unworkable in practice, without affecting other be-
nign apps. We also show that the leakage can be minimized even
when attacks utilize a fusion of multiple motion-position sensors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec’16 , July 18-22, 2016, Darmstadt, Germany
c© 2016 ACM. ISBN 978-1-4503-4270-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2939918.2939924

CCS Concepts
•Security and privacy → Malware and its mitigation; Side-
channel analysis and countermeasures; Mobile platform secu-
rity;

Keywords
Side-channel attacks, mobile security, Android

1. INTRODUCTION
Sensors are becoming an inevitable part of mobile and wireless

computing. With mobile devices coming readily equipped with
multiple, low-cost sensors and mobile OS platforms adding full
software support for developing applications using these sensors,
there is an enormous growth in the adoption of mobile devices.

Different varieties of sensors are available on the current genera-
tion of mobile devices, such as smartphones and tablets, including:
user input sensor (touchscreen and hardware buttons), audio-visual
sensors (microphone and camera), and inertial or motion-position
sensors (e.g., accelerometer, gyroscope and magnetometer). The
mobile apps that are based on these sensors have seen a widespread
deployment in many domains ranging from entertainment, naviga-
tion and transportation (e.g., [12]) to elderly care (e.g., [4, 7]) and
safety (e.g., [24]). In addition, mobile device sensors are used to
build a wide range of security/privacy applications, including those
geared for authentication and authorization (e.g., [9, 10, 19]).

Since mobile sensors provide potentially sensitive information
about the host device, the device’s user or the device’s surround-
ings, protecting sensor data from abuse by malicious applications
becomes paramount. Consequently, most mobile platforms have
established a sensor security access control model. Specifically,
Android, one of the most popular mobile OSs and the subject of this
paper, follows a model where read access to many sensitive sensors
is very restrictive (e.g., an app can only read its own touchscreen
input data) or requires special install-time permissions granted by
the user (e.g., to access microphone or camera).

However, the read access to most other sensors, including inertial
sensors, is not restricted within this model because Android may
not consider these sensors as explicitly sensitive. This openness
in the Android sensor security architecture to the inertial sensors
has given rise to a potentially significant threat of motion-based
side channel attacks. Especially, an interesting line of recent re-
search [17, 23] has shown that it is possible to infer a user’s touch-
screen inputs on Android devices (deemed sensitive, and protected
by Android’s security model), such as passwords, based on these
“globally accessible” inertial sensor measurements. The primary
intuition behind these attacks is that the movement and positional
changes introduced by hitting a key on the device’s touchscreen are
correlated with the key itself and can thus be exploited to make an

inference of the key. These attacks generally follow a two-step pro-
cess. The first step is touchstroke detection, that is, finding the start
and end of the tap event based on the motion sensor readings. The
second step is touchstroke inference, that is, inferring the pressed
key based on the motion sensors readings during the touch event
detected in the first step. (These attacks are reviewed in Section 2.)

Given the high accuracies of such touchstroke logging attacks
[17, 23], they may now be considered a significant threat to user
privacy. For example, as shown in prior research, user’s PINs or
passwords can be extracted with high success rates. Naturally, the
security community has responded by studying defenses to such
side channel attacks. However, the suggested solutions are either
not effective, such as the one based on vibrational noise created by
the mobile phone’s vibration motor [17], and/or may significantly
compromise the usability of the system, such as the one based on
keyboard layout randomization [20, 22]. We analyze the limitations
of prior defense mechanisms in Section 3.

In this paper, we introduce a novel and practical defense to
motion-based touchstroke leakage based on system-generated, fully
automated and user-oblivious sensory noise. Our defense lever-
ages a recently developed framework, SMASheD (“Sniffing and
Manipulating Android Sensor Data”) [16], that takes advantage of
the Android’s ADB (Android Debugging Bridge) functionality and
can programmatically sniff and inject noise to various inertial sen-
sors. Although SMASheD was originally advertised as a malicious
app by its authors [16], we use it to build a defense mechanism,
called Slogger (“Smashing the logger”), for defeating sensor-based
keystroke logging attacks. Slogger transparently inserts noisy sen-
sor readings in the background as the user provides sensitive touch-
screen input (e.g., password, PIN or credit card info) in order to ob-
fuscate the original sensor readings. It does so without impacting
other benign apps that rely upon original sensor readings.

Our Contributions: We believe that our work brings forth the fol-
lowing contributions to the field of mobile and wireless security:

1. Defensive Use of a Malicious Tool: We identify a novel, benign
use case of the SMASheD framework that can be used to defeat
touchstroke logging attacks. We believe that turning an existing
malicious approach into a defensive tool could be valuable to
the advancement of science.

2. Design and Implementation of Slogger: We provide the design
and implementation of the Slogger app system that can be used
to protect sensitive touchscreen input from leaking away using
the motion-based side channel attacks. Slogger works in the
background and is completely transparent to the user and other
benign apps. It can be installed in the user space like any other
ADB app, without the need to root the device and to change the
device’s OS or kernel. Our design and implementation details
are presented in Section 4.

3. Recreation of Prior Attacks and Evaluation of Slogger:
We comprehensively evaluate Slogger against state-of-the-art
touchstroke detection and inference attacks. To achieve this
goal, we first present a re-implementation and evaluation of
the prior attacks in independent settings. Our results show that
Slogger can significantly reduce the level of touchstroke leakage
to the extent these attacks may become completely unworkable
in practice. We also demonstrate that Slogger may not cause
any negative effects to other benign apps that rely upon sensor
measurements while the user provides sensitive input (e.g., the
pedometer and fall detection apps). Our re-validation of prior
attacks is described in Sections 2.2 and 2.3. Our evaluation of
Slogger is presented in Section 5.

4. Evaluation against Fusion of Sensors: We show that the touch-
stroke leakage based on motion sensors can be greatly increased
by utilizing a fusion of multiple motion sensors. That is, we
propose new attacks that achieve much higher accuracies than
the existing attacks employing only single sensor (accelerome-
ter alone). Importantly, we further show that Slogger can still
minimize this leakage thereby defeating even these powerful at-
tacks. The details of this part of the work are presented in Sec-
tion 5.3.

2. BACKGROUND

Several research works have been proposed that utilize motion-
based side-channel attack to log the user’s touchscreen input (e.g.,
passwords) [17, 23]. The general approach of these motion-based
touchstroke logging attacks consists of two steps. The first step
is touchstroke detection, that is, finding the start and end of the
tap event based on the motion sensor readings. The second step is
touchstroke inference, that is, inferring the pressed key based on the
motion sensors readings during the touch event detected in the first
step. Most of the recent work focuses on the second step, in which,
the attacker extracts the features from the sensor readings and em-
ploys one of the standard machine learning techniques to infer the
pressed key. Intuitively, if we can block one or both of these two
steps, it is possible to defend against such attacks. To show that our
proposed defense mechanism – Slogger – works well against both
touchstroke detection as well as inference attacks, we implemented
one of the state-of-the-art touchstroke detection algorithms, as im-
plemented in the TapLogger [23], and one of the state-of-the-art
touchstroke inference algorithm, called ACCessory [17].

In this section, we first present the general threat model that most
of the motion-based side-channel touchstroke logging attacks have
considered. Then, we provide a brief review of TapLogger and AC-
Cessory , and independently re-create and re-validate both attacks.
Next, we present SMASheD [16], a framework that has been pro-
posed to inject sensors events for malicious purposes, that we used
to build our Slogger defense system. Throughout our work, we use
Samsung S4 with sampling frequency of 100Hz.

2.1 Threat Model

As mentioned earlier, motion-based side-channel touchstroke
logging attacks consist of two steps: touchstroke detection and
touchstroke inference. Each of these steps first needs to learn the
patterns (basically extract the features) of the touchstrokes based
on the motion sensor measurements. Later, they utilize the learned
touchstrokes motion pattern to detect and to infer the touchstrokes.
Both steps in motion-based touchstrokes logging attacks have two
phases:

1. Training Phase: In this phase, the touchstroke logging model
acquires the touchstroke information such as the timestamps of
the touch pressed and released events, the coordinates of the
touchstroke on the screen and the motion sensor measurements
during the touchstroke event to learn the motion pattern corre-
sponding to a touchstroke. This model assumes that the adver-
sary fools the user to install and use a malicious application that
stealthily collects this information. The malicious application
can be, for example, a gaming application, such as HostApp
used by TapLogger, that requires the user to tap on various po-
sitions of the screen. The adversary then utilizes the collected
information to extract the features and learn the pattern of the
touchstrokes.

2. Testing Phase: In this phase of the attack, the malicious appli-
cation runs in the background, and records sensor measurements
stealthily whenever user starts entering the sensitive input. Us-
ing the learned knowledge in the training phase, the touchstroke
logging model attempts to detect and infer the touchstrokes.

The model presented above is in line with the general threat
model that motion-based side-channel touchstroke logging attacks
have assumed in their work, such as TapLogger [23], ACCessory
[17], TextLogger [18], and TouchLogger [3].

Slogger aims to defend such attacks by injecting noise into the
sensors files. Slogger threat model also consider attackers with
more capabilities, such as those who try deliberately to remove the
injected noise, or trying to infer the keystrokes over multiple rounds
of sniffing the sensors data.

2.2 TapLogger: Review and Re-Validation
Xu et al. [23] developed “TapLogger” to infer a user’s tap in-

puts to a smartphone by utilizing the accelerometer and orientation
sensors. First, TapLogger learns the motion change patterns of tap
events. Later, TapLogger uses the learned pattern to infer the oc-
currence of tap events and the tapped positions on the touchscreen.
TapLogger shows that tap events have a unique pattern in terms of
the changes in the accelerometer readings, which can be utilized in
detecting the occurrence of taps. This information along with the
orientation sensor readings and the screen layout can be utilized to
infer the user input.

We re-implemented the tap event detection algorithm, Tap-
detector, as described in [23]. Tap-detector calculates the square
sum of accelerometer readings, SqSum = x2 + y2 + z2, which
represents the force induced on the smartphone while typing. Dur-
ing the training phase, as the user is tapping on the attacker’s tro-
jan app, the start and end of the tapping event can be identified
by the timestamps in which Motion.Event.ACTION_DOWN and
Motion.Event.ACTION_UP events are received, respectively. Tap-
detector first extracts the SqSum corresponding to the tap events.
Then, it extracts several features to describe the tap event: the peak
and trough of the readings minus base, difference and time gap
between the peak and the trough, and the standard deviation of the
entire tap event. After the user performs multiple taps, Tap-detector
learns the range between the lower and upper extremes of each of
the features and utilizes these ranges to detect tapping events later.

In our study, we do not use TapLogger ’s tap inference algo-
rithm. This is because TapLogger employs the orientation sensor
measurements for touchstroke inference attacks. Orientation sensor
is a software-based sensor that derives its data from accelerometer
and geomagnetic field sensor which is deprecated starting from An-
droid 2.2 (API Level 8) [1]. Even if Orientation sensor were to be
used, Slogger can still defeat it since it can insert noise to both ac-
celerometer and geomagnetic field sensor from where this sensor
derives its data.
Validation: To validate our implementation, we trained our imple-
mentation of Tap-detector with 1200 taps, and tested it against an-
other 100 taps. We tested our implementation with 5 sets of these
100 taps. These taps were collected in a similar setting as docu-
mented in the TapLogger paper [23], i.e., the phone is held by one
hand and the key on touchscreen is pressed by index finger of the
other hand. Tap-detector was able to get the precision of 88.31%,
recall of 84.02% and F-measure of 85.97%, which is very close to
the one reported in the TapLogger paper. Given these validation re-
sults, we later (in Section 5.1) evaluate our Slogger defense system
against Tap-detector.

2.3 ACCessory: Review and Re-Validation
Owusu et al. [17] provided the design and implementation of

an Android application, ACCessory, which demonstrates that ac-
celerometer can be used as a side channel attack to infer short se-
quence of touchstroke on a smartphone soft keyboard, and machine
learning techniques can be employed to infer input like password.

ACCessory has two collection modes: area mode and charac-
ter mode. In the area mode, the screen was divided into regions,
and the task was to infer the tapped regions at different granulari-
ties level (i.e., 2, 4, or 8). In particular, the goal of the area mode
was to evaluate the inference accuracy at varying levels of granu-
larity. The authors determined that splitting the screen into eight
regions and classifying individual region keys separately yields the
best average key accuracy of approximately 24.5%. The purpose of
the character mode of collection was to extend the attack to infer-
ring a sequence of entered text, in contrast to a per-key inference,
in order to reconstruct typed passwords.

We re-created the area mode collection of ACCessory to later
evaluate the performance of our proposed defense. We designed
an Android application for area mode collection similar to the one
described in [17] that consists of 10x6 array of buttons that com-
pletely cover the entire screen of the smartphone. As the applica-
tion runs, it starts recording every new updated accelerometer read-
ing. Each record contains accelerometer measurement and times-
tamp for the accelerometer measurement. The same application
also monitors the key-pressed and key-released touch events as they
are dispatched by each button and the coordinates of the button
pressed on the touchscreen to establish ground truth for the anal-
ysis. As in the ACCessory design, we first use the linear interpo-
lation technique to obtain consistent sampling interval throughout
the dataset. The average sampling rate of our device’s accelerom-
eter is 100 Hz. We then compute SqSum and extract the features
that describe a tap event in a particular region of the screen. The
features used to describe a tap event in a particular region of the
screen, as described in ACCessory and used in our implementa-
tion, are shown in Table 1. Random Forest algorithm is then used
to obtain the per key inference accuracy corresponding to each of
the regions granularity.

We note that it was important for us to evaluate our Slogger sys-
tem against touchstroke inference, even if Slogger could perfectly
defeat touchstroke detection. This is because the attacker may em-
ploy various strategies other than utilizing the sensor measurements
to perform tap detection which may be more accurate. For instance,
attacker may surreptitiously monitor the process’s shared memory
size while the device’s keyboard app is being used, and uses it to in-
fer the tap events [18]. It is also possible that the attacker is record-
ing a video of user typing on touch enabled devices, which may
be utilized to detect the touchstroke events [21]. To this end, to
evaluate our defense against touchstroke inference attacks, given
touchstroke detection has been launched successfully, we imple-
mented the area mode collection of ACCessory and tested with our
proposed defense mechanism, Slogger.
Validation: To validate our implementation, we consider the set-
ting which is similar to the one used in the ACCessory paper, i.e.,
the device is held by both hands in the landscape orientation, and
thumbs are used to enter the text. Similar to ACCessory, with this
setting, we collected data corresponds to about 1200 key presses,
where each key receives about 20 presses. Using stratified 10-fold
cross-validation, our implementation was able to achieve 90.02%
of accuracy for two region splits (i.e., for two halves of the screen)
which is in line with the result reported in the ACCessory work.
When considering the higher level of granularity, our implemen-
tation was able to achieve 68.73% for 4 regions, and 10.93% for

(a) No Vibration (b) Constant Vibration (c) Random Vibration

Figure 1: Negligible effect of vibrational noise on a stream of accelerometer readings while pressing a key on phone’s touchscreen.

Table 1: List of features used to describe accelerometer stream val-
ues for a tap inference. Dimensional features (D) are computed
separately for each dimension (x, y, z) as well as for SqSum of
acceleration. Meta features (M) describe the window features of
acceleration stream and are calculated only once per feature vector
[17].

Feature Description D/M
RMS The Root-Mean-Square Value D
RMSE The Root-Mean-Square Error D
Min The Minimum Value D
Max The Maximum Value D
AvgDeltas The average sample-by-sample change D
NumMax The number of local peaks D
NumMin The number of local crests D
TTP The average time from a sample to a peak D
TTC The average time from a sample to a crest D
RCR The RMS cross rate D
SMA The Signal Magnitude Area D
Total Time The Total Time of the window M
Window Size The number of samples in the window M

60 regions while ACCessory reported more than 80% for 4 regions
and 24.5% for 60 regions. We attribute these differences to use of
a different device in our experimental set-up. We used a Samsung
Galaxy S4 phone, while ACCessory experiments were done with an
HTC ADR6300. These two devices differ in screen sizes: S4 has
a larger screen (136.6 mm x 69.8 mm) than HTC ADR6300 (117.5
mm x 58.5 mm). The larger the screen size, the higher will be the
motion generated noise while typing, which may have contributed
to lower accuracies in our case.

2.4 SMASheD Framework
SMASheD [16] is a framework that can be used for sniffing and

manipulating Android sensor data. SMASheD leverages ADB to
install a service on an Android device with shell privileges. Specif-
ically, the installed service would have privileges to read from and
write to the Android device sensors files (i.e., the files correspond-
ing to position, motion and environmental sensors as well as user
input sensors: touch screen and hardware buttons).

SMASheD framework consists of a service, two scripts, and an
Android application. The service is responsible to read from and
write to the sensors files. The two scripts are used to push the
service from a PC to an Android device and run it. This way the
service will be granted all the shell privileges. The Android ap-
plication is an application that monitors the device status. For ex-
ample, it checks which applications are installed on the device and
which applications are running in the foreground, and according to
its desired purpose, it sends read or write requests to the SMASheD
service.

In [16], Mohamed et al. provided various functionalities that
SMASheD can achieve given its capabilities in attacking various
sensing-based authentication and authorization applications. That

is, the original use case of the SMASheD framework was mali-
cious in nature. In our paper, we utilized the SMASheD frame-
work for a novel benign use case, specifically defending against
touchstroke logging attacks. We propose Slogger – a defense based
on SMASheD’s sensor event injection functionality in an attempt
to mitigate well-researched attacks that utilize motion sensors for
touchstroke detection and inference. Slogger injects negligible sen-
sor events such that the benign apps are not affected and injects
sensor events only when the user is entering sensitive information
like a password.

3. LIMITATIONS OF KNOWN DEFENSES
In this section, we discuss and analyze various possible defenses

against touchstroke detection and keystroke inference attacks that
have been suggested in prior research, and argue for their ineffec-
tiveness.

Vibrational Noise: One of the possible strategies to mitigate the
sensor-based touchstroke detection and inference attack, as pointed
in [17], is to automatically initiate the phone vibration while the
input is being provided to the phone. However, authors did not
perform detailed evaluation of this intuitive strategy. To this end,
we set out to evaluate the strategy of creating vibrational noise to
defend against sensor-based side-channel attack. We considered
two different types of vibrational noise: (1) Constant Vibration,
and (2) Random Vibration. In the Constant Vibration mode, the
phone is programmed to vibrate constantly over the time with same
vibrational intensity as the user provides the input to the phone,
whereas in the Random Vibration mode, the phone vibrates with a
random pattern, i.e., the phone vibrates for some random duration,
pauses for a random duration and then vibrates again, repeating this
process while the user provides input to the device.

We evaluated whether the creation of such vibrational noise
has significant effects on the motion sensors that may mitigate
the keystroke information leakage. We recorded the accelerome-
ter measurements when a key is being pressed, while holding the
phone with one hand and pressing with index finger of another
hand, in presence of both types of vibrational noise. Figure 1
represents a SqSum plot of accelerometer measurements in pres-
ence and absence of the two types of vibrational noise. Specifi-
cally, Figure 1(a) represents a scenario where there is touchstroke
event without any vibration (i.e., in the absence of the defense). In
this case, the SqSum of the stream of accelerometer can be used
to detect the touchstroke event and later on detected touchstroke
signal can be analyzed to infer the touchstroke. Figure 1(b) and
1(c) represent the scenarios with constant vibration and random vi-
bration, respectively. The figures clearly show that, although both
types of vibrations have some effect on the stream of accelerom-
eter measurements corresponding to the touchstroke event, they
do not offer significant contribution to hide the touchstroke event
from the stream of accelerometer readings. That is, touchstrokes

are still clearly distinguishable and would be subject to inference.
This analysis therefore demonstrates that vibrational noises gener-
ated by the phone’s vibrational motor do not have significant effect
on the accelerometer measurements and is ineffective in defending
against sensor-based touchstroke logging attack, contrary to what
was assumed by the ACCessory authors.

Keyboard Layout Randomization: In the motion-based key in-
ference attack, the goal of the attacker is to learn the key pressed on
the screen to learn sensitive information such as PIN, password, or
even email content. By statistical analysis of motion sensor mea-
surements, the attacker can determine the position of the touch-
stroke on the screen. Since the layout of the keyboard or number
pad on standard devices is typically public knowledge, the key-
board layout is known to the attacker. Once the attacker determines
the position of the touchstroke on the screen, with the knowledge
of keyboard layout, he can map touchstroke position with key-
board/number pad layout and find out the actual key pressed on
the screen.

If the layout information is kept secret from the attacker, even if
the attacker knows the touchstroke position on the screen, it may
fail to determine the actual key pressed and thus the information
leakage can be eliminated. Song et al. [22] have proposed the idea
of randomizing the layout of keyboard to hide the layout informa-
tion from the attacker so that attacker could not figure out which
key has been pressed even if he could find the exact tap position.

Though the idea of randomizing the layout have a sound poten-
tial to defend against motion based touchstroke inference attack,
it may not be practical. Randomizing the keyboard layout signif-
icantly increases the time taken by the user to enter the text, as
the user would need to search for the keys in the randomized key-
board layout every time rather than using his knowledge about the
keyboard layout to locate the keys. Thus, this approach would sig-
nificantly compromise the usability of the system [20] and would
not be a viable defense the users can deploy.

Motion Shielding: One possible strategy to defeat motion-based
touchstroke logging attacks is motion shielding. As proposed in
[15], the use of phone cases, such as the one made up of leather
or rubber, can minimize the motion generation, which in turn can
potentially minimize the information leakage. However, this ap-
proach requires the phone cases to be highly shock absorbent and
thick. Thin leather/rubber cases may reduce the motion leakage by
absorbing certain amount of motion, but there may still be some
motion leakage that the high resolution accelerometers can still
record, which can be used by an attacker to infer the actual keys.
Moreover, many users may not be willing to use such specialized
phone cases due to cost or convenience reasons.

Permission Restriction to On-Board Sensors: As suggested in
[2, 15, 17], on-board sensors, such as accelerometer and gyroscope,
should be considered sensitive to user’s privacy and therefore spe-
cial security permissions must be required to gain access to such
sensors. This approach, however, requires users to have a good un-
derstanding of the security model, and relies upon the users to read
and understand the app’s permission dialog while installing the app.
This approach requires cognitive effort from the user and may not
work in practice as shown by many studies [8, 13].

Sensor Access Control: Another approach as suggested in [2, 15]
to mitigate the sensor-based touchstroke logging attack is the mod-
ification of mobile devices’ operating systems to pause the motion
sensors when sensitive input operation is being performed. This
approach would make it impossible for an attacker to correlate the
sensor data with the keyboard taps. However, there are several ap-
plications that run in background all the time (e.g., pedometer ap-

plications), and withholding such applications from gaining access
to the sensors, or requiring manual shut down before performing
any sensitive operation by the user, would greatly reduce the appli-
cability of this approach.
Reduced Sampling Rate: Varying the sensor sampling rate can
reduce the accuracy of touchstroke detection as well as touch-
stroke inference. Higher the sampling rate, the better the tap in-
ference performance because more sensor samples are available
to capture each tap’s measurements that can model the tap effec-
tively. Increasing the sampling rate improves the inference accu-
racy [15, 17]. Conversely, reducing the sampling rate can reduce
the effect of touchstroke inference attack [14]. However, such ap-
proach may have undesirable effect on several legitimate applica-
tions running in the background (e.g., pedometer). Furthermore,
there exist some sophisticated machine learning techniques that
work well even with sampling frequency as low as 20Hz [2].

4. SLOGGER DESIGN AND
IMPLEMENTATION

Our defense mechanism Slogger aims to cloak the motion-based
touchstroke logging attacks with the use of internal, programmatic
noise which is completely transparent to the user. We follow the
implementation of the SMASheD framework [16] to realize our
Slogger system. We added an initialization phase, in which Slog-
ger learns the range of the sensor values corresponding to the user’s
typing style. When the user installs Slogger on her device, the user
is asked to type on her device in all the settings (i.e., holding a
phone in hand, or keeping phone on a surface of table and typing),
and the minimum and the maximum values of all the axes for all the
position sensors are computed. These values are later used to set
the range of the values of the injected noise. This step is performed
by the user only once. In our experiment, we used Samsung S4
which has only accelerometer and gyroscope as hardware position
sensors. The rest of the position sensors (i.e., gravity, linear accel-
eration and orientation) are calculated based on the readings of the
hardware position sensors.

We implemented the Slogger application such that whenever a
user launches the application that we use for our data collection,
Slogger sends inject request to the Slogger server, when the user
closes the application Slogger sends stop request to Slogger server.
The application that we developed for our analysis purpose can be
updated such that it sends the inject request whenever the keyboard
is running or whenever the user is entering any sensitive data.

Slogger server locates the files corresponding to accelerometer
and gyroscope in “/dev/input/” folder. Slogger server has a socket,
that keeps listening for requests. When Slogger server gets a start
request, it injects random values in both the accelerometer and gy-
roscope that are in the range between the pre-calculated maximum
and minimum values. After injecting sensor events in both the ac-
celerometer and gyroscope sensors, it waits for a random amount
of time between 7 and 12 milliseconds. Slogger server keeps on
injecting till it receives a stop request.

Slogger is installed in the Android device in a similar way as
described in [16]. A script is used to push the Slogger server and
another script to “/data/local/temp/” folder on the Android device,
then run the other script which is responsible for running the Slog-
ger server. Like SMASheD, Slogger does not require the phone to
be rooted.
Evaluation Scenarios: We implemented our system in accordance
with the following three scenarios later used to evaluate Slogger
against touchstroke logging attacks:

• Slogger Absent: In this scenario, we assume that the touch en-

abled device has not implemented any defense mechanism, in
particular Slogger, against touchstroke logging attack. So, both
training and testing phases of the touchstroke logging attacks (as
described in Section 2.1) use normal (noise-free) stream of sen-
sor measurements. We consider this scenario as the baseline sce-
nario to evaluate the impact of our defense mechanism against
the touchstroke logging attack.

• Slogger Present, Attacker Trained with Non-Noisy Data: In this
scenario, we assume that Slogger has been activated on the
touch-enabled devices. We also assume that it has been imple-
mented in a way that it works with only a subset of applications
that the system or the user thinks are sensitive, and the user has
marked the malicious application collecting the training data as
non-sensitive (i.e., unprotected by Slogger). Here, the training
phase of the touchstroke logging attack uses regular (non-noisy)
stream of sensor measurements while the testing phase uses the
noisy stream of sensor measurements containing the Slogger in-
jected noise.

• Slogger Present, Attacker Trained with Noisy Data: Similar to
our second scenario, we assume that Slogger has been imple-
mented on the touch-enabled devices in a way that it works with
only a subset of applications that system or user thinks are sen-
sitive. We also assume that the user has marked the malicious
application collecting training data as a sensitive application. In
such setting, Slogger noise injection will be activated when the
user interacts with the malicious application. In this scenario,
both the training and the testing phases use stream of sensor mea-
surements with Slogger injected noise.

5. EXPERIMENTS AND EVALUATION
In this section, we present our experiment to evaluate the im-

pact of Slogger against touchstroke detection based on the Tap-
detector algorithm described in Section 2.2, followed by the impact
of Slogger against touchstroke inference methodology explained in
Section 2.3. Then, we show that even if fusion of multiple (mo-
tion/position) sensors is used for the touchstroke inference attack,
Slogger serves as a viable defense. We also show that Slogger does
not have a significant impact on any other common benign applica-
tions that utilizes motion sensors.

For our evaluation, we built an Android application with two
view layouts. The first view layout consists of a number pad as
described in TapLogger experiments that portray a standard num-
ber pad on a smartphone. Standard number pad on a smartphone
usually contains 12 keys: 10 keys for (0 - 9) numbers, and the re-
maining two are ‘∗’ and ‘#’. The second view layout consists of
10x6 array of buttons covering the entire screen, as described in
ACCessory experiments. The first layout is used to collect data set
to investigate the impact of Slogger against touchstroke detection
while the second layout is used to collect data set to investigate
the impact of Slogger against touchstroke inference. The data set
includes measurement of various motion sensors (accelerometer,
linear acceleration, gyroscope, gravity, and rotation sensor) and log
of touch events. Since all the sensors that are being recorded are
tri-axial, each sensor record includes three values corresponding
to the three axes and the timestamp of the record. Each record in
the touch event log includes the timestamp of key-pressed or key-
released event as they are dispatched by each button and the coor-
dinates of the touch event that facilitates the establishment of the
ground truth in the subsequent analysis.

We performed the experiments in normal scenario (i.e., Slogger
Absent scenario) and the defensive scenario with Slogger in two

different settings (i.e., when the attacker is trained with or without
the noisy data). In all the experiments, we collected key presses
data samples from one of the researchers involved in this study.

5.1 Slogger against Touchstroke Detection
In this experiment, we evaluate Slogger against one of the state-

of-the-art touchstroke detection attacks, Tap-detector presented in
(Section 2.2).

5.1.1 Data Collection
For evaluation purposes, we collected 1200 samples of key

presses such that each key receives 100 touchstrokes using the num-
ber pad view layout of our application. These samples were used
to train the Tap-detector system. Then, we collected 5 sets of 100
key presses to test Tap-detector, and the detection accuracy is com-
puted by averaging the accuracies for these 5 sets. All the touch-
stroke samples were collected using the same setting as considered
in the TapLogger experiments, i.e., phone is held by one hand and
the keys on touchscreen are pressed by the index finger of the other
hand. We conducted this experiment twice, one without activating
Slogger, the normal scenario, and another with Slogger running in
background, the defensive scenario.

5.1.2 Results
The result of Tap-detector in the normal and the defensive sce-

narios with Slogger are summarized in Table 2. In the absence
of Slogger, Tap-detector successfully detects the touchstrokes with
accuracy (F-measure) of 85.97%, which is in line with the result
reported in [23]. Considering the second scenario, where Tap-
detector is trained with regular stream of sensor readings while it
is supplied with Slogger injected stream of sensor readings to de-
tect the touchstroke event, Tap-detector is not able to detect any
of the touchstrokes. The features that Tap-detector extracts from
each window of the stream of accelerometer readings to predict the
touchstroke events are now no longer present in the touchstroke
signal because the touchstroke signal has been completely obfus-
cated by the noise injected by Slogger. Figure 2 clearly explains
the impact of Slogger in accelerometer readings that completely
prevent Tap-detector from detecting any of the touchstrokes. Even
when both of the training and the testing sensor readings are col-
lected while Slogger is activated (i.e., the attacker was trained with
noisy data), the accuracy of Tap-detector dropped by a considerable
amount, from 85.97% (normal scenario) down to 32.20%.

Table 2: Results of Tap-detector in three different scenarios: Slog-
ger Absent, and two different defensive scenarios with Slogger.

Scenarios Precision Recall F-measure
Slogger Absent 88.31% 84.01% 85.97%

Slogger Present, Attacker
Trained with Non-Noisy Data 0 0 N/A

Slogger Present, Attacker
Trained with Noisy Data 38.07% 27.93% 32.20%

5.2 Slogger against Touchstroke Inference
In this experiment, we evaluate Slogger against one of the state-

of-the-art touchstroke inference attacks, ACCessory (presented in
Section 2.3).

5.2.1 Data Collection
There are several ways in which users hold their phones and sev-

eral typing styles that users employ while providing input to the
phone device. Addressing all possible phone holding patterns and

(a) Slogger absent (b) Slogger present, attacker trained
with non-noisy data

(c) Slogger present, attacker trained
with noisy data

Figure 2: SqSum plot of Accelerometer signal and results of Tap-detector in three different scenarios.

typing styles is not a feasible endeavor. Rather, in our study, we
consider two realistic, commonly used phone holding settings:

• In Hand: In this setting, user holds the touch-enabled device
using both of his hands in the landscape orientation, and provides
the input to the device using the thumbs of both of these hands
(similar to the setting used in [17]).

• On Surface: In this setting, touch-enabled device is placed on a
smooth surface (e.g. a table) and the user types using the index
finger of his dominant hand.

We collected 1200 samples of key presses using 10x6 buttons
view layout such that each key receives 20 key presses. These sam-
ples were used to train the touchstroke inference model. Then, 5
sets of 100 key presses were collected and the inference accuracy
was computed by averaging the inference accuracies over these 5
set of samples. We repeated this experiment for both the In Hand
and On Surface settings in both normal and defensive scenarios.

5.2.2 Results
We evaluated Slogger against the touchstroke inference attack in

all the scenarios described in Section 4. The results are summarized
in Figure 3 and Figure 4.
Slogger Absent: Figure 3 shows the inference accuracy in the ab-
sence of defense system in two different settings, In Hand and On
Surface. The results show that the touchstroke inference accuracy
is more than 90% (compared to 50% for a random guessing attack)
on average for 2 region splits (i.e., for two halves of the screen)
in both the settings. For the eight-region granularity of the screen,
inference accuracy drops to 45.4% in the In Hand setting and to
56.2% in the On Surface setting. Intuitively, it is obvious that in-
creasing the granularity level of screen regions decreases the in-
ference accuracy (but is significantly higher than random guessing
accuracy of 25%). Further increasing regions granularity to 60 re-
gions, the inference accuracy substantially drop to 17.8% in case
of the On Surface setting and to 10.2% for the In Hand setting
(compared to 1.67% for a random guessing attack). From Figure
3, we can find that the inference accuracy is higher in the On Sur-
face setting than in the In Hand setting for all the granularity lev-
els. We believe that the reason behind this is the higher amount of
movement-based noise generated on the phone when it is held in
hand than when it is placed on a smooth surface (table) where the
phone typically remains stationary.
Slogger Present, Attacker Trained with Non-Noisy Data: Fig-
ure 3 shows that in the presence of our defensive mechanism and
when the attacker is trained with non-noisy data, inference accu-
racy significantly drops below the random guessing accuracy. For

instance, inference accuracy drops to 35.5% (random being 50%)
for two halves of the screen, and to 7% (random being 12.5%) for
8 regions while for 60 regions, it drops to 0.6% (random being
1.67%).

Since the inference model is trained with regular (non-noisy)
stream of touchstroke signal and is supplied with totally obscured
signal of touchstroke for inference that it has never encountered (in
the presence Slogger), it does not know how to predict the touch-
strokes. Therefore, it gives a prediction much worse than a ran-
dom prediction model. Thus, Slogger serves to provide a strong
defense system against sensor-based touchstroke inference attack
that enforces the inference model to behave worse than a random
prediction model under all granularity level of screen areas.

Slogger Present, Attacker Trained with Noisy-Data: Figure 4
also shows the inference accuracy when the inference model is
trained and tested with the stream of sensor readings that contain
noise inserted by Slogger. This model seems to reduce the impact
of noise in dropping the inference accuracy, as it may learn the pat-
tern taking into account of the noises. However, the noise injected
by Slogger is randomly generated as described in Section 4, the
touchstroke inference model still could not learn the touchstroke
features well.

In the On Surface setting, Slogger is able to reduce the infer-
ence accuracy to nearly random in all level of regions granularity.
For instance, for two halves of the screen areas, when enabling the
Slogger system, the inference accuracy drops to 56.5%, for 8 re-
gions the inference accuracy drops to 15.8%, and it drops to 1.5%
for 60 regions granularity of screen areas.

In the In Hand setting, inference accuracy of touchstroke infer-
ence model is reduced by nearly or more than 20% in almost all
level of regions granularity. For 16 and 60 regions granularity level,
inference accuracy drops to, nearly random accuracy, 10.4% and
2.6%, respectively.

5.3 Slogger against Sensor Fusion
As the attacker can gain unfettered access to all the mo-

tion/position sensors on an Android device in a similar way as ac-
cess to the accelerometer sensor, the attacker can utilize other sen-
sors or a combination of sensors to enhance the inference accuracy.
In this section, we first show that such a fusion of sensors can sig-
nificantly improve the accuracy of touchstroke inference, and then
evaluate the impact of Slogger against this powerful fusion attack.

5.3.1 Data Collection
We used the same data set that we collected to evaluate Slogger

against touchstroke inference attack in the previous subsections. To

50

25

12.5
6.25

1.67

90.6

63.4

45.6

28.7

10.2

35.5

15.2

7.0 3.5
0.6

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 60

In
fe

re
n

ce
 A

cc
u

ra
cy

 (
%

)

Screen Areas

Random Accuracy

Slogger Absent

Slogger Present - Train Non-Noisy

(a) In Hand

50

25

12.5
6.25

1.67

92.9

77.0

56.2

39.4

17.8

33.2

9.9
4.8

0.7
0.3

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 60

In
fe

re
n

ce
 A

cc
u

ra
cy

 (
%

)

Screen Areas

Random Accuracy

Slogger Absent

Slogger Present - Train Non-Noisy

(b) On Surface

Figure 3: Touchstroke inference accuracy for different screen region granularity in the Slogger Absent scenario and the Slogger Present,
Attacker Trained with Non-Noisy Data scenario.

50

25

12.5
6.25

1.67

90.6

63.4

45.6

28.7

10.2

68.2

37.9

22.2

10.4

2.6

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 60

In
fe

re
n

ce
 A

cc
u

ra
cy

 (
%

)

Screen Areas

Random Accuracy

Slogger Absent

Slogger Present - Train Noisy

(a) In Hand

50

25

12.5
6.25

1.67

92.9

77.0

56.2

39.4

17.8

56.5

27.6

15.8

6.5
1.5

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 60

In
fe

re
n

ce
 A

cc
u

ra
cy

 (
%

)

Screen Areas

Random Accuracy

Slogger Absent

Slogger Present - Train Noisy

(b) On Surface

Figure 4: Touchstroke inference accuracy by screen region granularity in the Slogger Absent scenario and the Slogger Present, Attacker
Trained with Noisy Data scenario.

recall, earlier we considered the touchstroke inference attack based
only on accelerometer sensor readings while now we consider the
fusion of various motion sensors enhancing the touchstroke infer-
ence attack. The motion sensors used in our study are accelerome-
ter, linear acceleration, gravity, gyroscope, and rotation.

5.3.2 Results
We extracted the same set of features for each of the motion sen-

sors that we used for the accelerometer sensor. Out of all pos-
sible combination of sensors, we noted the sensor combinations
which yield the maximum inference accuracy for each of the re-
gions granularity levels in both the In Hand and On Surface set-
tings separately. The results are shown in Table 3. As we can see,
the accuracies resulting from the fusion are higher compared to the
accelerometer only case.

In Slogger defensive scenarios, we evaluated the reduction in
the maximum inference accuracy of the inference model while em-
ploying the fusion of multiple sensors. Results are shown in Fig-
ure 5. In the first scenario, where inference model is trained with
regular stream of sensor readings and tested against Slogger in-
jected stream of sensor readings, inference accuracies drop signif-
icantly below the random guessing inference. In the second sce-
nario, where both the training and the testing stream of signals have
Slogger injected noises, Slogger is able to reduce the maximum in-
ference accuracy to nearly random inference in case of the On Sur-
face setting, while in the In Hand setting, Slogger is able to reduce
the accuracy by more than 25%, which is a significant degradation
in the inference accuracy. This analysis shows that even if fusion of
multiple sensors were to be used for the touchstroke inference at-
tack, Slogger is still able to effectively defend against such attack.

5.4 Impact of Slogger on Benign Applications
Since Slogger works by injecting sensory noise, one natural

question is whether it can have an adverse effect on benign applica-
tions that rely upon the sensor data. To this end, we performed an
experiment to study the impact of Slogger on benign application.
We tested Slogger with one of the Android applications, pedome-
ter1, in two different settings, In Hand and On Surface. Pedometer
primarily records the number of steps the user has walked as well
as the distance covered, walking time and speed per hour. When
the phone was placed on a surface, while the pedometer and Slog-
ger applications were running in the background, the step count as
shown by the application was affected. However, when phone was
held in hand in a similar setting, the step count was not affected.
This is because the range of values of noise that Slogger injects is
similar to the user typing movements. So, when the phone is placed
on the surface, the difference between the injected values and the
readings generated by the hardware sensors becomes high, contrary
to the case when the phone was in hand, that fools the pedometer
application to count it as a step. It is important to note that Slogger
does not inject noise all the time, rather it is activated only when
sensitive input is being provided by the user. Typically, in a real-
world scenario, the user enters the sensitive input while holding the
phone in hand - the scenario in which Slogger does not have no-
ticeable impact on the benign applications such as Pedometer. We
further tested Slogger with other benign apps, such as “fall detec-
tion” 2 and “shake to clear notes” 3, and confirmed that Slogger
injection did not affect these apps.

1Pedometer – https://goo.gl/RFB64p
2FADE: fall detector – https://goo.gl/YFIsO0
3Any.do: To-Do List, Task List – https://goo.gl/7oIHZN

95.3

84.6

66.8

48.5

22.9

39.0

30.9

10.7

3.7
0.6

67.5

37.9

21.1

10.1

2.2

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 60

In
fe

re
n

ce
 A

cc
u

ra
cy

 (
%

)

Screen Areas

Slogger Absent

Slogger Present - Train Non-Noisy

Slogger Present - Train Noisy

Random Accuracy

(a) In Hand

94.0

86.4

71.2

57.2

29.8
33.2

16.9 7.9
1.9

0.3

59.0

27.7

13.8

5.2
1.7

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 60

In
fe

re
n

ce
 A

cc
u

ra
cy

 (
%

)

Screen Areas

Slogger Absent

Slogger Present - Train Non-Noisy

Slogger Present - Train Noisy

Random Accuracy

(b) On Surface

Figure 5: Touchstroke inference accuracy by screen region granularity of fusion of sensors in presence and absence of Slogger.

Table 3: Maximum touchstroke inference accuracy gained for various regions granularity as a result of Fusion of Sensors, and respective
sensor combination.

Screen
Areas

Accelerometer
Only – Accuracy

Fusion – Maximum
Accuracy Sensor Combination Yielding Maximum Accuracy

In
H

an
d 2 90.62% 95.34% accelerometer, linear acceleration, gyroscope, gravity, rotation

4 63.41% 84.62% linear acceleration, gyroscope, gravity
8 45.56% 66.83% linear acceleration, gyroscope, gravity
16 28.71% 48.51% linear acceleration, gyroscope, gravity
60 10.20% 22.91% linear acceleration, gyroscope, gravity

O
n

Su
rf

ac
e 2 92.88% 94.01% linear acceleration, gyroscope

4 77.04% 86.42% linear acceleration, gyroscope, rotation
8 56.21% 71.25% linear acceleration, gyroscope, gravity, rotation
16 39.35% 57.12% linear acceleration, gyroscope, gravity, rotation
60 17.78% 29.78% linear acceleration, gyroscope, rotation

6. DISCUSSION AND FUTURE WORK
Summary of Analysis: Our evaluation demonstrates that Slogger
is able to defeat both the touchstroke detection and touchstroke in-
ference steps, and hence it can defeat sensor-based touchstroke in-
ference attack as a whole.

In both of the attack scenarios, Attacker Trained with Non-Noisy
data, and Attacker Trained with Noisy-Data, Slogger is able to de-
feat the touchstroke detection attack. In the first attack scenario, the
noise injected by Slogger completely prevented Tap-detector to de-
tect any of the touchstrokes present in the sensor signal, while in the
second attack scenario, Slogger is able to significantly reduce the
detection accuracy down to as low as 32%. The touchstroke infer-
ence attack is also undermined by considerable amount with Slog-
ger noise injection. Slogger is able to drop the inference accuracy
nearly as low or even lower than the random guessing accuracy in
almost all the scenarios. One exception is the ‘In Hand’, Attacker
Trained with Noisy-Data scenario, where detection accuracy still
dropped significantly, by more than 20%.

In a realistic keylogging attack, where the attacker has to com-
bine the touchstroke detection and inference steps, the error in the
detection step propagates to the inference step, which would fur-
ther lower the overall inference accuracy. This is because if the
inference algorithm works with wrongly detected tap regions, the
accuracy of inference model will degrade considerably. Even if we
assume a scenario where the attacker achieves the highest possi-
ble accuracies in both of these steps (32% in touchstroke detection
and 68.2% for touchstroke inference step for two-halved regions)
in presence of Slogger, the overall inference accuracy becomes
21.76%, which is far below than the random guessing inference
for two-halved regions.

Further, even if fusion of multiple sensors is used for touchstroke
inference attack, which usually enhances the inference accuracy,

Slogger is still able to effectively defend against such an attack.
All these results show that Slogger serves to provide an effective

defense mechanism against sensor-based touchstroke logging.

Deliberate Noise Filtering: We argue that removing the noise in-
jected by Slogger is a challenging task. First, Slogger injects the
noise at random intervals, and the attacker cannot gain access to
the sensor files and therefore there is no way that the attacker can
get the information as to when the noise is injected. Second, the
injected noise does not have a profile as it is random and there-
fore there is no way the attacker can try to reproduce the noise and
then remove it from the signal. Third, the injected noise some-
times overwrites the original sensor values (or part of them), so any
method that tries to delete part of the signal will delete some of the
original readings as well and therefore degrade the original signal.
Finally, the injected noise values lie within the range of the values
corresponding to the user typing.

Touchstroke Inference over Multiple Rounds: We performed an
experiment to check if the attacker can infer the touchstrokes after
sniffing the accelerometer readings multiple times while the user
is pressing the same sequence of buttons (e.g., in case of a PIN
or password typed during each login attempt) in the (10 × 6 but-
ton grid). In our experiment, the user pressed on a sequence of 8
buttons for 20 times, while the phone is left on a surface, and we
recorded the corresponding accelerometer readings. Then, for each
button in the sequence, we predicted the pressed button as the one
that got predicted in the majority of the trials. Without noise in-
jection, the attack succeeded in predicting all the pressed regions
(for 2 regions screen granularity), 6 out of 8 (for 4 regions screen
granularity), and 5 out of 8 (for 60 regions screen granularity). In
contrast, when Slogger was activated, the attack could only pre-
dict 5 out of the 8 for (2 regions screen granularity), 1 out of the
8 for (4 regions screen granularity) and 0 out of 8 for (60 regions

screen granularity). The results of this study show that Slogger
is an effective mechanism for even defending such a multi-round,
powerful attack. Since the injected noise is random, every time the
attack inferred different touchstrokes in presence of Slogger.

Slogger to Defeat Other Side-Channel Attacks: Other side chan-
nel attacks based on motion sensors have been proposed in prior re-
search, including location tracking and device fingerprinting. Loca-
tion tracking side-channel attack, named “ACComplice”, was pre-
sented in [11]. ACComplice is a malware that can track the loca-
tion information of the users based on the accelerometer data. It
uses the accelerometer readings to infer the trajectory and the start-
ing point of the user who is driving. A device fingerprinting attack,
called AccelPrint, was presented in [6]. The attack shows that each
accelerometer has unique fingerprints which can be exploited for
tracking users. These fingerprints are due to the hardware imper-
fections inculcated during the sensor manufacturing process, which
makes every sensor chip respond to the same motion stimulus in a
different way. Both these attacks are reviewed in detail in the next
section. We believe that Slogger can be utilized in defeating such
attacks given its ability to inject sensor events. To defend against
ACComplice, Slogger can inject noisy accelerometer data to the
system whenever a user is driving at random or specific intervals of
time. To defend against AccelPrint, Slogger can inject accelerome-
ter events with values similar to the accelerometer data used by Ac-
celPrint to fingerprint the phone. However, this approach may also
affect the benign apps which use sensor data for different purposes.
Hence, Slogger should only inject negligible sensor events such
that the benign apps are not affected and/or inject sensor events
for only a short period of time (like in the Slogger defense against
touchstroke logging attacks). Further work will be needed to test
the viability of this defense mechanism.

7. OTHER RELATED WORK
In the current Android security model, motion, position and en-

vironmental sensors are considered insensitive resources – any app
can read these sensors without any security permissions. How-
ever, many researchers have shown that many sensitive information
about the user can be inferred only by monitoring these benign-
looking sensors (especially the motion sensors), and thereby com-
promising the user privacy.

In this paper, we explored the effectiveness of, and defense
against, touchstroke detection and touchstroke inference based on
motion sensors by re-implementing two of the state-of-the-art at-
tacks - Tap-detector [23] and ACCessory [17].

Another side channel attack for touchstroke logging is presented
in [2]. They presented an attack based on accelerometer data to
learn user’s PIN/password or Android’s pattern unlock while the
user is unlocking her smartphone. This attack system uses machine
learning techniques to infer four-digit PINs and password patterns.
Since the accelerometer data is varied by subtle tilts and shifts, the
approach normalizes the data, extracts 774 different features based
on signal processing and polynomial fitting techniques, and then
feeds these features to a classifier. It is worth noting that Slogger
would affect the accuracy of such attack, as it injects random values
in the accelerometer sensor.

Another interesting type of side-channel attack is motion-based
location tracking. Han et al. in [11] presented “ACComplice”,
a malware which can track the location information of the users
based on the accelerometer data. ACComplice uses the accelerom-
eter readings to infer the trajectory and the starting point of the
user who is driving, and thereby compromising the user privacy.
ACComplice first tries to infer the trajectory based on accelerom-

eter readings and then associates that trajectory to the most likely
location on a map. One of the main challenges of this system is
to deal with “drifting error”. The drifting error occurs as the po-
sition of vehicle at time t depends upon the position at time t − 1
and the displacement occurred at the time interval [t − 1, t]. Also,
the drifting error aggregates over time. In order to estimate the
location accurately, Han et al. use a probabilistic dead reckoning
method called Probabilistic Inertial Navigation “ProbIN”. ProbIN
treats sensor measurements only as observation of the underlying
motion and maps the vehicle displacement based on a statistical
model. As discussed in prior section, Slogger may be used as a
defense system to address this attack.

Further, Marquardt et al. [14] showed that it is possible to infer
key presses on a regular keyboard using motion sensor of a phone
when the phone is placed two inches away. They developed an spy-
ing application, (sp)iPhone, that records and interprets the surface
vibrations sensed by the phone’s accelerometer to predict what was
typed on the keyboard.

Moreover, a few sensor and device fingerprinting attacks have
been proposed based on motion sensors. “AccelPrint” presented in
[6] showed that each accelerometer has unique fingerprints which
can be exploited for tracking users. These fingerprints are due to
the hardware imperfections inculcated during the sensor manufac-
turing process, which makes every sensor chip respond to the same
motion stimulus in a different way. They argued that the differences
in responses across accelerometers are negligible for the higher
level apps such that it does not affect their performance. The anal-
ysis of these negligible differences showed that these fingerprints
emerge with consistency and can even be somewhat independent
of the stimulus that generates them. To get the stimulus, they use
the period when the vibration motor is turned on. In order to re-
main stealthy, the developed malware does not turn on the vibration
motor itself, but rather waits for some other apps/event to turn the
vibration motor on. The malware also uses the accelerometer data
to detect this vibration.

Another fingerprinting attack is presented by Das et al. in [5]
utilizing accelerometer and gyroscope sensors readings. Moreover,
Das et al. presented two mitigation mechanisms, one is based
on sensors calibration and the other is based on obfuscating the
anomalies by injecting random noise. Both of the methods have
shown decreased in the accuracy of the fingerprinting and shown
to be promising to defeat device fingerprinting based on motion
sensors imperfections. However, the authors did not show how to
implement such mitigation mechanisms without modifying the op-
erating system or the device manufacture. We believe that Slogger
can serve as a viable defense to such attacks at the app level alone
(i.e., without changing the OS or the kernel).

8. CONCLUSIONS
We presented Slogger, a practical defense to the problem of

motion-based touchstroke logging attacks applicable to current An-
droid devices. The Slogger app can be installed on the device eas-
ily using the ADB workaround (just like typical screenshot apps),
without requiring to root the device or make any changes to the Op-
erating System. Once installed, Slogger can protect the touchscreen
input to any app by obfuscating the motion/position sensor readings
with randomly generated noisy readings. It works invisibly in the
background without affecting the user or other benign apps that
need to use the raw sensor measurements. Slogger also boasts to
defeat powerful and sophisticated attackers who may combine mul-
tiple sensors readings or use deliberate noise filtering mechanisms
to infer the touchstrokes provided by the user.

Acknowledgements
This work is partially supported by National Science Foundation
(NSF) grants: CNS-1209280 and CNS-1526524.

References
[1] A. Al-Haiqi, M. Ismail, and R. Nordin. Keystrokes inference

attack on android: A comparative evaluation of sensors and
their fusion. Journal of ICT Research and Applications,
7(2):117–136, 2013.

[2] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith. Practicality
of accelerometer side channels on smartphones. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 41–50. ACM, 2012.

[3] L. Cai and H. Chen. Touchlogger: Inferring keystrokes on
touch screen from smartphone motion. HotSec, 11:9–9,
2011.

[4] J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan. Perfalld: A
pervasive fall detection system using mobile phones. In
Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010.

[5] A. Das, N. Borisov, and M. Caesar. Exploring ways to
mitigate sensor-based smartphone fingerprinting. arXiv
preprint arXiv:1503.01874, 2015.

[6] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi.
Accelprint: Imperfections of accelerometers make
smartphones trackable. In NDSS. Citeseer, 2014.

[7] S.-H. Fang, Y.-C. Liang, and K.-M. Chiu. Developing a
mobile phone-based fall detection system on android
platform. In Computing, Communications and Applications
Conference, ComComAp, 2012.

[8] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the Eighth
Symposium on Usable Privacy and Security, page 3. ACM,
2012.

[9] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song.
Touchalytics: On the applicability of touchscreen input as a
behavioral biometric for continuous authentication. IEEE
Transactions on Information Forensics and Security, Jan
2013.

[10] H. Gascon, S. Uellenbeck, C. Wolf, and K. Rieck.
Continuous authentication on mobile devices by analysis of
typing motion behavior. In Sicherheit, 2014.

[11] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang.
Accomplice: Location inference using accelerometers on
smartphones. In Communication Systems and Networks
(COMSNETS), 2012 Fourth International Conference on,
pages 1–9. IEEE, 2012.

[12] S. Hemminki, P. Nurmi, and S. Tarkoma.
Accelerometer-based transportation mode detection on
smartphones. In ACM Conference on Embedded Networked
Sensor Systems, SenSys. ACM, 2013.

[13] P. G. Kelley, L. F. Cranor, and N. Sadeh. Privacy as part of
the app decision-making process. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 3393–3402. ACM, 2013.

[14] P. Marquardt, A. Verma, H. Carter, and P. Traynor. (sp)
iphone: decoding vibrations from nearby keyboards using
mobile phone accelerometers. In Proceedings of the 18th
ACM conference on Computer and communications security,
pages 551–562. ACM, 2011.

[15] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R.
Choudhury. Tapprints: your finger taps have fingerprints. In
Proceedings of the 10th international conference on Mobile
systems, applications, and services, pages 323–336. ACM,
2012.

[16] M. Mohamed, B. Shrestha, and N. Saxena. Smashed:
Sniffing and manipulating android sensor data. In
Conference on Data and Application Security and Privacy,
2016.

[17] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang.
Accessory: password inference using accelerometers on
smartphones. In Proceedings of the Twelfth Workshop on
Mobile Computing Systems & Applications, page 9. ACM,
2012.

[18] D. Ping, X. Sun, and B. Mao. Textlogger: inferring longer
inputs on touch screen using motion sensors. In Proceedings
of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, page 24. ACM, 2015.

[19] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang,
and C. Cowan. User-driven access control: Rethinking
permission granting in modern operating systems. In IEEE
Symposium on Security and Privacy (SP), 2012.

[20] Y. S. Ryu, D. H. Koh, B. L. Aday, X. A. Gutierrez, and J. D.
Platt. Usability evaluation of randomized keypad. Journal of
Usability Studies, 5(2):65–75, 2010.

[21] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha.
Beware, your hands reveal your secrets! In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 904–917. ACM, 2014.

[22] Y. Song, M. Kukreti, R. Rawat, and U. Hengartner. Two
novel defenses against motion-based keystroke inference
attacks. arXiv preprint arXiv:1410.7746, 2014.

[23] Z. Xu, K. Bai, and S. Zhu. Taplogger: Inferring user inputs
on smartphone touchscreens using on-board motion sensors.
In Proceedings of the fifth ACM conference on Security and
Privacy in Wireless and Mobile Networks, pages 113–124.
ACM, 2012.

[24] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J.
Bao, M. Montes-de Oca, Y. Cheng, M. Lin, L. Torresani, and
A. T. Campbell. Carsafe app: Alerting drowsy and distracted
drivers using dual cameras on smartphones. In Mobile
Systems, Applications, and Services, MobiSys, 2013.

