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ABSTRACT
The deployment of NFC technology on mobile phones is
gaining momentum, enabling many important applications
such as NFC payments, access control for building or pub-
lic transit ticketing. However, (NFC) phones are prone to
loss or theft, which allows the attacker with physical access
to the phone to fully compromise the functionality provided
by the NFC applications. Authenticating a user of an NFC
phone using PINs or passwords provides only a weak level
of security, and undermines the efficiency and convenience
that NFC applications are supposed to provide.

In this paper, we devise a novel gesture-centric NFC bio-
metric authentication mechanism that is fully transparent to
the user. Simply “tapping” the phone with the NFC reader
– a natural gesture already performed by the user prior to
making the NFC transaction – would unlock the NFC func-
tionality. An unauthorized user cannot unlock the NFC
functionality because tapping serves as a “hard-to-mimic”
biometric gesture unique to each user. We show how the
NFC tapping biometrics can be extracted in a highly ro-
bust manner using multiple – motion, position and ambi-
ent – phone’s sensors and machine learning classifiers. The
use of multiple sensors not only improves the authentication
accuracy but also makes active attacks harder since multi-
ple sensor events need to be mimicked simultaneously. Our
work significantly enhances the security of NFC transactions
without adding any extra burden on the users.

1. INTRODUCTION
Mobile devices, especially smartphones, are rapidly be-

coming ubiquitous. These devices open up immense oppor-
tunities for everyday users offering valuable resources and
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services. A prime example of one such service, now getting
widely deployed on smartphones, is Near Field Communi-
cations (NFC). NFC allows the phone to communicate with
any other NFC device (an external contactless reader or an-
other NFC phone) when they are in close proximity, typ-
ically upon tapping to one another. This facilitates many
important applications in day-to-day life including payments
(using the phone essentially as a digital wallet), access con-
trol for buildings [6, 13, 43] and vehicles [8, 44], and public
transit ticketing [15, 18], to name a few. The NFC technol-
ogy, especially mobile payments, is already popular in many
countries (e.g., China and Japan) [25] and has been gaining
momentum in many other countries (e.g., the US). Intro-
duction of Apple Pay [3], Android Pay [2] and Samsung Pay
[37] have further boosted the growth of NFC payments.

Given the rise of NFC deployments, a natural concern
pertains to the security of NFC phones and NFC applica-
tions. One obvious and serious threat is that of loss or theft
of NFC phones – an unauthorized entity in physical posses-
sion of an NFC phone can fully compromise the NFC func-
tionality leading to severe consequences (e.g., making hefty
purchases on behalf of the user or entering the user’s office
premises). Given many current mobile users do not lock
their phones (e.g., with a PIN or pattern) [14], the abuse of
NFC services becomes a real threat. A report by Boyles et
al. [7] estimates that nearly one third of cell phone owners
have experienced a lost or stolen phone, and 12% have had
another person access the contents of their phone in a way
that made them feel their privacy was invaded. Consumer
Reports reported that 3.1 million smartphones were stolen
in 2013, nearly double the year before [9]. While Lookout re-
ported that 1 in 10 smartphone owners are victims of phone
theft from a survey conducted in 2014 [24].

To address this problem, many NFC apps (e.g., Google
Wallet) authenticate the user prior to making an NFC trans-
action with a PIN or password. This approach, however,
has two major problems. First, given PINs or passwords
are only short and weak secrets (especially in the context of
mobile phones with small form factors), they can be easily
guessed or brute-forced [1, 31, 48]. Second, typing in the
PIN or password for each NFC transaction can be tedious
and potentially annoying for the user, thereby significantly
undermining the usability of NFC technology as it was in-
herently designed for easy and fast transactions [30, 45].

Given the rather poor security and usability offered by
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PINs/passwords for the purpose of NFC user authentica-
tion, we set out to investigate a fully transparent and hard
to compromise authentication mechanism. In short, we pro-
pose a transparent behavioral biometrics [21, 47] mechanism
drawn from the gesture involving the tapping of a phone
with a transaction terminal (e.g., an external NFC reader
at point of service) while completing an NFC transaction.
The tapping gesture is performed by the user prior to mak-
ing a purchase using an NFC phone anyway and therefore
no additional burden is required from the user in our ap-
proach. Our approach is not a general user authentication
mechanism, for example, to unlock the phone, but is a spe-
cific user authentication mechanism to authorize the NFC
transactions.

Our Contributions: The main contributions of this paper
are summarized below:

1. Transparent Authentication of NFC Users: We
show how the user’s phone tapping gesture naturally
exhibited during an NFC transaction can be uniquely
detected in a robust manner using multiple – motion,
position and ambient – sensors and machine learning
classifiers. Such a biometric authentication would be
very hard, if not impossible, for an attacker to compro-
mise as the attacker needs to mimic the victim user’s
subtle hand movement and phone orientations mea-
sured by multiple different sensors. Thus, we believe
that our work significantly enhances the security of
NFC phones without adding any extra burden on the
users.

2. Gesture Detection Design and Implementation:
We design and implement the NFC tapping gesture
detection biometrics as part of the proposed authenti-
cation mechanism. The NFC tapping gesture involves
holding the phone in hand, and tapping and holding
onto a NFC transaction terminal until the user is noti-
fied about the transaction completed/denied message.
We extract multiple features from the phone’s different
sensors when a user taps her phone to NFC transaction
terminal and implement machine learning approach to
identify if the sensor data corresponds to the owner of
the device (or not).

3. Experiments and Evaluation: To demonstrate the
effectiveness of our approach, we have collected data
from multiple users in near real-life scenarios emulat-
ing typical NFC transaction settings, and report on
the overall accuracy of our authentication mechanism.
Our results show that NFC tapping biometrics can be
extracted with a high overall accuracy (92% on an
average), while it does not seem possible for even a
trained active attacker to succeed in mimicking the
tapping gesture of a victim user.

Paper Outline: The rest of this paper is organized as fol-
lows. In Section 2, we outline our system and threat model,
and our design goals. In Section 3, we elaborate on our
approach including the underlying system architecture. In
Section 4, we describe the design of our app system. Next,
in Section 5, we report on our data collection procedures. In

Section 6, we present the design and evaluation results for
our NFC tap biometrics system. Finally, in Section 8, we
discuss other properties of our system, including resistance
to active attacks and NFC unauthorized reading.

2. BACKGROUND

2.1 System and Threat Model
We assume that a user owns an NFC-enabled phone that

she uses to make NFC transactions with transaction termi-
nals for payments or public transit ticketing. As our pay-
ment device in this paper, we focus on an NFC-enabled
phone with an NFC transaction application. The trans-
action terminal accepts the payment when the owner taps
his/her phone to the reader. We assume that the phone is
only used by its owner and not shared with others.

In our threat model, we assume that the phone is in
the possession of an attacker. The attacker might have
stolen the device or could be performing a lunch-time at-
tack. Lunch-time attack [32] is an attack scenario where the
owner might have left the device in an office for a short time
during which the attacker can access the device and perform
malicious activities. In such a situation, the attacker would
have access to the device for a limited time. However, the
attacker has complete control over the device physically.

We assume that the phone’s OS kernel is healthy and the
attacker is unable to alter the kernel control flow. Strength-
ening the kernel is an orthogonal problem [33, 39]. We also
assume that attacker cannot manipulate device’s onboard
sensor hardware. In other words, the attacker only has phys-
ical access to the device but does not have internal control
of the device.

The attacker attempts to make transactions by tapping
the stolen phone at an NFC transaction terminal. The NFC
terminal at the merchant side is not compromised. However,
the terminal is not aware of the fraudulent transaction. The
merchant will process the transaction in a normal fashion
as if the actual user is making the transaction. The goal
of our system is to prevent such an attacker from utilizing
the NFC transaction functionality when the attacker taps
the stolen phone to make transactions. We want to achieve
this transparently without involving additional effort from
the NFC user other than tapping.

2.2 Design Goals
We consider following design goals for our authentication

approach to be useful in practice.

• Lightweight: The authentication mechanism should be
lightweight in terms of the various resources available
on the device, such as memory, computation and bat-
tery power.

• Efficient: The approach should not incur high delay
affecting the overall usability of the system. The entire
authentication process should be completed within few
seconds.

• Robust: The approach should have low error rates.
The owner of the device must be able to authenticate
to the phone with a high probability, while the impos-
tor should be denied access with a high probability.
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Figure 1: Overview of our system. The user gets authenticated just based on the uniqueness of his tapping
gesture, a form of behavioral biometrics. The process is completely transparent to the user – no additional
work is needed beyond what is currently done in NFC systems.

• Consistency & Transparency: The approach should
not require the user to perform additional action while
making a transaction: when the user makes an NFC
transaction, she takes out her NFC-enabled phone,
opens an app for payment, taps the phone to the trans-
action terminal, holds the phone until the transaction
completes and removes her phone from the transaction
terminal. The approach should not alter this model,
thereby making the approach consistent and transpar-
ent to the users. The user should not be required
to perform additional actions such as explicit gestures
[23, 42] or passwords or PIN entry. Since these tasks
add burden to the users which may degrade usability
and, therefore, reduce chances of adoption.

3. OUR APPROACH: TAP BIOMETRICS
3.1 Background and Overview

Different user authentication approaches have been used
based on “something you know”, “something you have” and
“something you are”. In this paper, we set forth to authen-
ticate users while they use the NFC applications based on
“something you are”. This approach has advantage over the
first two approaches since people forget things (e.g., pass-
words) and lose things (e.g., access tokens). In other words,
our approach implements biometric authentication to au-
thenticate users. The biometric characteristics of an individ-
ual are believed to be easily measured accurately but hard
to impersonate by others. Such biometric characteristics
can again be classified into two different categories, physi-
ological biometrics [20, 21] and behavioral biometrics [47].

In physiological biometrics, the authentication system uses
physiological features of the user such as her facial structure,
fingerprint or retina pattern, whereas in behavioral biomet-
rics, the authentication system uses behavior of the user such
as her keyboard typing pattern, or walking pattern. Physio-
logical biometric authentication requires the user to perform
some explicit actions such as using camera for face recogni-
tion or scanning finger/retina/iris while behavioral biomet-
rics are usually transparent to the users and recognizes the
user implicitly. In this paper, we use behavioral biometric
characteristics to authenticate the user while she performs
a tapping gesture before completing an NFC transaction.

When a user makes an NFC transaction using her NFC-
enabled device (let’s say an NFC phone), she taps her phone
to the transaction terminal and holds it for a while. When
the transaction completes or gets interrupted, she removes
her phone away from the terminal. These steps are illus-
trated in Figure 1. Tapping a phone to an NFC transaction
terminal involves a particular motion of her phone which
can be measured using different embedded sensors on the
phone. The motion sensors and the position sensors can
give us information about how the phone was moved. Also,
there may be significant changes in the pressure as detected
by the device when moved. This can also be used to analyze
how the device was moved. We observe in Section 6 that the
features extracted from pressure sensor are indeed one of the
discriminating features for the machine-learning classifiers.

In this paper, we show that the tapping gesture performed
by a user before making NFC transactions is unique to the
user and can be detected in a robust manner using ma-
chine learning classifiers and multiple sensors available on
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Figure 2: Our System Architecture: Control Flow

the phone. In the following section, we will demonstrate
that our approach meets all of our design goals introduced
in the prior section.

In our model, we add another layer of a security check
on top of the default authentication system of Android and
that of an NFC transaction app. Android can authenticate
a user via different options such as passwords, PINs, face
recognition, or fingerprint scanner. However, many users do
not prefer to lock their phones. Also, using PINs or finger-
print scans for each transaction can be burdensome. These
mechanism require explicit action and is not transparent to
the users. We provide a way to authenticate the user before
making the transaction in a way that does not require any
explicit user action – just tapping the phone to the terminal
(as is done currently) is sufficient. Our approach is invis-
ible to users and requires no additional actions from the
users. Our approach accurately identifies legitimate users
and prevents unauthorized NFC transactions. It can also
work seamlessly with other authentication methods, such
as PINs or fingerprint scans when used, to achieve strong
two-factor security.

3.2 System Architecture
Figure 2 depicts the control flow for our approach. Our

system analyzes the collected sensor values and compares
with a pre-registered template of the user’s tapping gesture.
Our system grants permissions to complete NFC transac-
tions if and only if the sensor values match with the user’s
tapping gestures. Our system includes four modules: (1)
NFC Transaction App which provides the user interface and
handles NFC communication, (2) Transaction Processing
Module which processes the NFC transaction messages, (3)

Authenticator Module which is a trained classifier that uniqu-
ely identifies the user’s tapping gesture, and (4) Permission
Manager that reads the sensor values, communicates with
the Authenticator Module and grants the NFC Transaction
App with the permission to interact with the Transaction
Processing Module.

We assume that the Transaction Processing Module exe-
cutes as a Trusted application inside trusted execution envi-
ronment (TEE), e.g. ARM TrustZone [4]. ARM TrustZone
divides a device platform into two execution environments,
namely, normal world and secure world. The normal world
is used to host rich Operating Systems (OS), like Android
OS, and user applications while it allows processing of secu-
rity sensitive codes in isolation within the secure world. The
two worlds communicate with each other via secure monitor.

In our approach, the trusted application is responsible for
processing transaction specific messages, handling necessary
cryptographic operations and maintaining secrets like keys
required for NFC transactions. On the other hand, NFC
Transaction App running on the normal world handles user
interactions and NFC communication. To authenticate a
user based on her tapping gesture, our system begins col-
lecting information from different sensors as soon as the user
opens NFC Transaction App. Our system also records the
time when the phone receives the first NFC message from
the NFC transaction terminal. At this point, the user must
have tapped her phone to the NFC transaction terminal and
she is holding her phone towards the terminal to complete
the NFC transaction.

Whenever the NFC Transaction App starts, it informs the
Permission Manager to indicate that it has started. Permis-
sion Manager immediately starts collecting the sensor val-
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Figure 3: Sensor data collection flowchart.

ues. When the NFC Transaction App requires to process
transaction messages, it requests the Permission Manager
by sending NFC event begin time. The Permission Manager
sends the set of appropriate sensor values to the Authenti-
cator. Once the Authenticator confirms the tapping gesture
as belonging to the user, the Permission Manager permits
the NFC Transaction App to interact with the transaction
module to complete the NFC transaction.

4. APPLICATION DESIGN
To develop and evaluate our authentication mechanism

based on tap gesture biometrics, we first needed to collect
the tap gesture data from different users. After the data
collection, different features were to be generated to robustly
identify individual user data from other user data. We chose
to implement our system in the Android OS. For the data
collection, we created two modules: (1) NFC Transaction
Module for a user to perform the tap gesture on a NFC
transaction terminal which simulates NFC transactions, and
(2) Sensor Module to record sensor values when the user
performs the tap so that underlying data can be analyzed
and later used to identify the user.

4.1 NFC Transaction Module
Android provides NFC Host Card Emulation APIs that

allows the NFC-enabled phone to acts as a contactless card
and allows NFC applications to communicate with external
contactless readers. We designed our NFC module to simu-
late a real-world NFC transaction application. For this, we
chose to implement an NFC based public transit ticketing
system. We designed and implemented both NFC ticket-
ing application on the phone and the ticket reader appli-
cation that controls the NFC transaction terminal. Both
applications use a shared 128-bit AES key to authenticate

each other during an NFC transaction. Specifically, we used
three-pass mutual authentication protocol of MIFARE DES-
Fire EV1 1 as Kasper et al. [22] elaborated. Ticketing ap-
plications based on Mifare DESFire are widely used by pub-
lic transit authorities around the world. NFC ticketing is
only one aspect of an NFC transaction, nevertheless, it can
be used as an analogy to understand user’s NFC tapping
gesture during any NFC transaction (e.g., for payments or
building entry).

4.2 Sensor Module
Android platform provides several sensors that allow de-

velopers to monitor the motion of the device, the position
of the device or the environment in which the device is. To
be specific, the Android platform provides three broad cat-
egories of sensors, namely, motion sensors which measure
acceleration forces and rotational forces along three axes,
position sensors which measure physical position and orien-
tation of the device, and environmental sensors which mea-
sure various environment parameters such as humidity, light
illumination, ambient temperature, pressure and so on.

We created an Android service such that whenever the
service is called by another activity or service, the service
starts recording selected sensor values. The sensors we con-
sidered in our app are listed in Table 1. The sensors values
are logged along with the timestamps so that they can be
used for statistical analysis later on. When the calling app
sends the stop service command to the service, the service
stops recording the sensor data. The flow chart of this data
collection process is shown in Figure 3.

1MIFARE DESFire EV1: http://www.nxp.com/products/
identification and security/smart card ics/mifare smart
card ics/mifare desfire/series/MIFARE DESFIRE EV1
4K.html
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Figure 4: A user tapping an NFC reader at waist-
flat position. In waist-flat scenario, the NFC reader
is kept at the height of 0.75-1 m from the ground
and horizontally on the table.

5. DATA COLLECTION
To develop and evaluate our approach, we first needed to

collect data from multiple users. We also wanted to capture
various types of gestures that users make while tapping their
NFC-enabled phone to the terminals installed for different
types of NFC applications. There is no standard instruc-
tion on how NFC transaction terminals should be placed,
e.g. they can be placed horizontally, vertically or at cer-
tain angle from the surface where they are placed at the
NFC transaction terminals. We designed our data collec-
tion engine to capture four different scenarios based on how
the NFC transaction terminals may be installed: (1) Waist-
Flat : horizontally at the height of 0.75-1 meter above the
ground, (2) Waist-Angular : at 45 degree angle with horizon-
tal surface at the height of 0.75-1 meter above the ground,
(3) Chest-Angular : at 45 degree angle with the vertical sur-
face at the height of 1-1.5 meter above the ground, and (4)
Chest-Vertical : vertically at the height of 1-1.5 meter above
the ground. A user tapping an NFC reader in the waist-flat
scenario is shown in Figure 4. We implemented an app as
discussed in the Section 4 and collected data using Google
Nexus 5 as our phone model. We used NFC reader ACR
122U as the transaction terminal.

As the user opens the app to make NFC transactions, our
system runs in the background as a service as mentioned
in the Section 4.2. We continuously recorded the sensor
values for the experiment and detailed analysis, however, in
the real-life implementation, the sensors can be turned off
as soon as the transaction success message is received or
shortly thereafter.

For data collection, we invited volunteers to our lab via
word of mouth. These volunteers were university students
from different countries situated in the US and Finland.
There were a total of 20 volunteers (17 male and 3 female,
between the age of 25-35) who participated in our study. We
only observed four left handed users, while rest of them were

right handed, and none of them swapped their phone from
one hand to other during the experiment. The experiment
was performed in lab settings. We provided a smartphone
to the volunteers and asked them to tap it to the reader.
Each user opened the app, tapped to the reader to initiate
an NFC transaction and held it there until he/she was noti-
fied about the transaction complete message as displayed on
the phone. Then the user brought the phone away from the
reader. We asked each user to pause for few seconds before
he/she tapped again for another transaction.

In one session, we asked the user to tap and perform the
transaction five times for each of the four different reader
positions mentioned above, i.e., after the user tapped the
reader five times, we changed the position of the reader to
a different setting. Hence, in a session, we collected 20 tap
gesture samples from each user (five each for four different
reader positions). We conducted six sessions collecting 120
tap gesture samples for each user (30 samples of data for
each of the four positions of the reader). These six sessions
were conducted in time spans ranging from either one day to
six days depending upon the availability of the volunteers.
However, each session had sufficient gap to break the user’s
rhythm of tapping and add variation to the user’s hand mo-
tion. Our University’s Institutional Review Board approved
the study.

6. TAP BIOMETRICS DETECTION:
DESIGN AND EVALUATION

6.1 Set-Up and Design
In order to evaluate the feasibility of the proposed tap ges-

ture biometrics as an authentication scheme, we utilized the
machine learning approach based on the underlying readings
of the motion sensors, the position sensors and the ambient
pressure sensors (the different sensor employed are listed in
Table 1).

Classifier: We utilized the Random Forest classifier in our
analysis. Random Forest is an ensemble approach based on
the generation of many classification trees, where each tree
is constructed using a separate bootstrap sample of the data.
In order to classify a new input, the new input is run down
on all the trees and the result is determined based on ma-
jority voting. Random trees have been shown to be a strong
competitor to Support Vector Machine (SVM), and its per-
formance frequently outperforms SVM [29]. Random Forest
is efficient, can estimate the importance of the features, and
is robust against noise [29].

Features: For each of the position and the motion sen-
sor instances, we calculated the square root of the sum of
squares for that instance’s axes components (X, Y, Z), such
that it captures the significance of all the three axes. Then,
we calculated the mean and the standard deviation of all
the instances in the sample that corresponds to a single tap.
This gave us twenty features, which we used for training and
testing of the Random Forest classifier.

The twenty features were used as input to train the clas-
sifier to differentiate a user from other users. We evaluated
two training models for the classification task: (1) scenario-
specific model, and (2) general model. The scenario-specific
model requires each user to train a classifier on all reader
(transaction terminal) positions (described in Section 5) be-
fore using the app. This model assumes that the classifier
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Table 1: Sensors employed for authenticating users based on tap gesture.

Sensor Type Function

Accelerometer

Motion

Acceleration force including gravity

Gravity Force of gravity on the device

Gyroscope Rate of rotation of the device

Linear Acceleration Acceleration force excluding gravity

Rotation Vector Rotation vector of the device (uses geomagnetic field and gyroscope)

Game Rotation Vector

Position

Rotation vector of the device (does not use geomagnetic field)

Geomagnetic Rotation Vector Rotation vector of the devices (uses magnetometer)

Magnetic Field Earth’s magnetic field

Orientation Position of a device relative to the earth’s frame

Pressure Environment Ambient air pressure

knows or is informed about the position of the reader (i.e.,
the scenario for the transaction). The generalized model, in
contrast, uses all the data from all different scenarios of the
user and builds a global classifier per user regardless of the
reader position. Moreover, we have tested multiple gesture
duration by utilizing the sensor data of one, two and three
seconds before the transaction begins. Our goal was to de-
termine the optimal duration of the tapping gesture which
can uniquely identify each user.

In all of the classification tasks, the positive class corre-
sponds to the tap gesture of the legitimate user and the neg-
ative class corresponds to impersonator (other user). There-
fore, true positive (TP) represents the number of times the
legitimate user is granted access, true negative (TN) repre-
sents the number of times the impersonator is rejected, false
positive (FP) represents the number of times the imperson-
ator is granted access and false negative (FN) represents the
number of times the correct user is rejected.

As performance measures for our classifiers, we used Pre-
cision, Recall and F-measure (F1 score), as shown in Equa-
tions (1) to (3). Precision measures the security of the pro-
posed system, i.e., the accuracy of the system in rejecting
impersonators. Recall measures the usability of the pro-
posed system as low recall leads to high rejection rate of
the legitimate users. F-measure considers both the usability
and the security of the system. To make our system both
usable and secure, ideally, we would like to have F-measure
as close as 1.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F -measure = 2 ∗ precision ∗ recall
precision+ recall

(3)

6.2 Classification Results
General Model: As mentioned in Section 5, we collected
data from 20 users. Each user performed a total of 120 taps.
We divided the collected data into 20 sets based on the users’
identities (ids). In order to build a classifier to authenticate a
user based on her tapping biometrics, we defined two classes.

The first class contains the Tap data from a specific user, and
the other class contains randomly selected Tap data from
other users. We analyzed three different duration of the
tapping gesture, by considering one, two and three seconds
before the transaction begins.

After running a 10-fold cross validation, we obtain results
for different duration and different scenarios. The results
show that one second of sensor data is enough for authen-
ticating the user, shown with high F-Measure, recall and
precision. Increasing the gesture duration did not improve
the accuracy; it would rather decrease the accuracy as it
may incorporate random user movement before the actual
tapping gesture starts. We summarize the results for differ-
ent scenarios with one second duration of the tap gesture in
Table 2. The results for longer durations of the tap gesture
(two seconds and three seconds) are shown in Tables 4 and
5 in Appendix A. These results suggest that increasing the
tap duration does not seem to increase the accuracy and
therefore one second duration seems optimal. Hence, the
rest of the experiments reported in this paper are conducted
with the one second duration of the tap gesture.

In our experiment, 12 out of the 20 users performed all
the tapping in one day, and, for this sub-group of users, the
average and standard deviation (for tapping duration of 1
second before) were 0.97 (0.03) for these users. The data
collection from the rest of the users spanned between 4 and
22 days, and, for these users, the average and standard devi-
ation of the F-Measure dropped to 0.88 (0.03). In practice,
the classification models can be re-trained as the user makes
new successful transactions such that the accuracy does not
drop as the time gap between the testing and training data
increases.

Scenario-Specific Model: In our scenario-specific model,
we divided the collected data into 80 sets based on the user’s
ids and the scenario’s (reader positions) id. In order to build
a classifier to authenticate the user based on the tapping in a
given specific scenario, we define two classes. The first class
has the tap gesture data from a specific user in a specific
scenario, and the other class contains randomly selected data
from other users corresponding to the same scenario.

The classification results are calculated after running a 10-
fold cross validation and shown in Table 2. The classification
accuracy for the scenario-specific model is less than its cor-
respondent in the general model. This may be due to the
reduced number of instances in each of the files (30 versus
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Table 3: The results for the active attack. The performance of the classifier built using 120 taps for gener-
alized classification model as well as using 30 taps for different scenario specific classification model for the
particular victim is shown. The last column shows the attack success rate FPR (False Positive Rate) for the
corresponding classifier. FPR represents the rate at which the attacker was falsely classified as the victim.
The attacker was not successful at all in mimicking the victim’s tap gesture.

Victim Attacker

F-measure Recall Precision FPR

Generalized 0.98 0.98 0.99 0

Chest-Angular 0.98 1 0.97 0

Waist-Flat 0.97 0.97 0.97 0

Chest-Vertical 0.97 1 0.94 0

Waist-Angular 0.98 1 0.97 0

Table 2: The results for Generalized and Scenario-
specific models. Each column shows average (Avg)
and standard deviation (S.D.) for F-Measure, Re-
call and Precision for tapping duration of one sec-
ond. Precision captures the security of the system
while recall captures the usability of the system. F-
measure accounts for both precision and recall.

F-Measure Recall Precision

Avg (S.D.) Avg (S.D.) Avg (S.D.)

Generalized 0.93 (0.05) 0.97 (0.03) 0.91 (0.08)

Chest-Angular 0.89 (0.06) 0.92 (0.06) 0.87 (0.07)

Waist-Flat 0.91 (0.06) 0.95 (0.05) 0.88 (0.07)

Chest-Vertical 0.92 (0.07) 0.94 (0.05) 0.89 (0.09)

Waist-Angular 0.91 (0.06) 0.95 (0.04) 0.88 (0.08)

120 in the general model). However, both models seem to
perform about equally well in detecting the tap biometrics.

6.3 Summary of Results
The results obtained from both the classification models

show that the tap gesture can be detected in a robust manner
and thus will serve as an effective method for authenticating
the users of NFC devices. This is reflected in high precision,
recall and F-measure for both models. The general model
can be used in applications where the user can train the
model with tapping gestures in different scenarios (reader
positions). The scenario-specific model can be used in prac-
tice when the phone can acquire the knowledge about the
reader position. This knowledge can be acquired either by
asking the user about the reader position, although this will
require some user involvement in the authentication process,
or the terminal can send its position to the phone.

6.4 Power Analysis
Since our app records sensor values, we set forth to analyze

if our system is lightweight. To measure the battery power
consumption, we used PowerTutor [50]. PowerTutor is
an app readily available on on Google PlayStore2 which es-
timates the power/energy consumed by different apps in-
stalled on the phone. The app provides the power/energy
consumed by apps based on various parameters such as screen
brightness, CPU usage, Wi-Fi polling and so on. We com-

2https://play.google.com/store/apps/details?id=edu.
umich.PowerTutor

pared the energy consumed by our app with NFCtools3,
one of the most popular apps for NFC in Google PlayStore.
We logged the energy consumption for both apps accounting
for CPU usage only.

We ran PowerTutor app to monitor the power consump-
tion of all the apps on the phone. Then, we performed 20
taps with our app against the NFC reader, and then we
performed 20 taps with NFCtools against an NFC tag. We
observed that our app consumes 0.2 J of energy per tap com-
pared to 0.13 J of energy per tap by NFCtools. This shows
that our system is lightweight as it only uses an additional
0.07 J of energy for the sensor recordings.

7. ACTIVE ADVERSARIAL ATTACKS
From the analysis presented in Section 6, we can see that

our approach is robust and can authenticate users with a
high accuracy. That is, the approach can be effectively used
to differentiate one user from the other. However, it is possi-
ble that the attacker may deliberately attempt to mimic the
tapping gesture exhibited by a victim user. In this section,
we assess our tap biometrics system against such an active
adversary.

If the attacker tries to authenticate himself as the victim
user, he has to move his hand in such a way that his hand
motion as sensed by different sensors correlates significantly
with the tapping gesture exhibited by the legitimate user.
Even when the attacker observes how the user taps, it may
still be difficult for the attacker to reproduce the tapping
gesture as our gesture is sensed by multiple sensors and all
of the sensor values should match with the user’s template.
Mimicking multiple sensor events simultaneously would be
harder for the attacker and so our approach should provide
better resistance to active attacks compared to systems that
use single or fewer sensors. While robotic attacks have been
reported against other authentication systems (such as the
one developed in [38], such attacks will not apply to our
system since authentication is to be performed by a real
human user in the presence of retail personnel and using a
robot to make a purchase at the terminal would clearly raise
a suspicion.

We proceeded to evaluate the robustness of our system
against human-based observation and active adversarial at-
tacks. For our evaluation, we designed an active attack that
aimed at maximizing the attacker capabilities in defeating

3https://play.google.com/store/apps/details?id=com.
wakdev.wdnfc
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our system. If our system could defeat this attacker, it could
also defeat other weaker attackers. To this end, we asked one
of our users to serve the role of the victim while a researcher
served the role of an expert attacker. The victim and the
attacker had similar body structures, i.e., their height and
weight were similar, which would have facilitated the at-
tacker to better mimic the victim’s tapping gesture. We
asked the victim user to perform his tapping for 30 times
in each of the four reader orientation scenarios while the at-
tacker recorded a clear video of him tapping. After the total
120 taps were collected from the victim, we built the classi-
fier for this user following the procedure described in Section
6. The attacker then closely watched the previously recorded
video and practiced to re-create the victim’s tapping gesture
against a dummy reader several times while receiving a feed-
back from his friend (a colluding attacker). This simulated
the attacker’s training phase performed at home (i.e., not
at the retail store in the presence of the authentication ter-
minal/reader). Finally, during the actual attack phase, the
attacker performed 20 taps and each of these taps was tested
against the victim’s classifier built earlier.

The success rate of this active attacker against our authen-
tication systems is shown in Table 3. From these results, we
can claim that even when an attacker practices and mimics
the hand motion of the victim, he cannot succeed. Also, we
can claim that we have a strong attacker as the attacker is
fully trained watching the victim’s tap video recording and
getting feedback from a colluding attacker. Moreover, the
victim we chose matched the body structure of the attacker
which may further facilitate the attack. Since our system
can defeat such strong attacker, it can, therefore, defeat at-
tacks in other scenarios where the victim’s structure is dif-
ferent from the attacker’s and/or where the attacker cannot
fully observe the victim and train.

8. DISCUSSION

8.1 Defeating Unauthorized NFC Reading
In our approach, the NFC transaction will not be pro-

cessed until the user is authenticated. Hence, our approach
can serve as a defense mechanism to unauthorized reading
of NFC information as well as relay attacks [34, 35] where an
unauthorized reader in close physical proximity of the phone
tries to leech the NFC information and perform fraudulent
transaction.

8.2 Dealing with Authentication Errors
Our system is robust and has very low error rates as shown

in the Section 6. However, our machine learning approach
learns from the data that user has provided during the train-
ing phase. If the user trains the classifier with tap gestures
from one hand and later taps using the other hand, the sys-
tem may fail to authenticate the legitimate user. Such cases
can be avoided by either training the classifier with both
hands or user switching back to correct hand while tapping.
Further study would be needed to analyze the handedness
of the users and their tapping behavior.

In situations where an authentication error (false nega-
tive) occurs, i.e., when the legitimate user is denied the
transaction, we may need a fallback approach. In the tra-
ditional payment approach, for example, when the access is
denied once due to an error, the user has to swipe the card
again. We can follow the same model by requesting the user

to tap the phone again to the NFC transaction terminal. If
this process fails again, the device may not belong to the user
and the transaction can be blocked. As a fallback strategy,
the user may be authenticated using PINs or fingerprints.

8.3 Power Efficiency
One of the design goals of our system is to be light-weight

as high power consumption may reduce the usability of the
system. Since the authentication procedure in our approach
lasts for no more than few seconds, our approach is quite
power efficient and light-weight as shown in Section 6.4. The
sensors are activated as soon as the NFC transaction app is
turned on and are deactivated as soon as the corresponding
NFC message is received. Only those sensor data which falls
within the considered time window (up to 3 seconds in our
case) will be used by the classifier to make the authentication
decision. The detection approach itself is very lightweight
and requires negligible amount of power.

8.4 User Transparency
Our approach is triggered as soon as the app, which needs

to process the NFC transaction, is turned on. The sensor
data is recorded from the start of that app to the point when
either the user has been authenticated or denied. This entire
process of authentication is transparent to the legitimate
user. This property satisfies one of our design goals of being
transparent and having a consistent usage model to existing
NFC usage.

9. RELATED WORK
There exists prior work that aims at improving security

based on sensors and sensor data. In this section, we review
some of this prior work relevant to our paper that utilizes
on-board sensors to improve the security of authentication
and authorization.

Shrestha et al. [41] proposed authorizing an app utilizing
hand movement of the user for calling, snapping, and NFC
tapping. In their work, the system tries to identify a cor-
responding gesture as calling, snapping or tapping when an
app requests for a permission to access these sensitive re-
sources. They use machine learning classifiers utilizing dif-
ferent sensors to identify if the hand motion matches with
the corresponding gesture. In contrast to this work, we use
hand motion as a biometric measure to authenticate the
users while they use the motion to distinguish the call, snap
or tap gesture with other gestures. Their work aims at pre-
venting against malware which is trying to access the sensi-
tive services without user awareness, but it cannot protect
in case of theft or device misuse by other users, which is
what our work is geared towards.

The work by Conti et al. [10] is well-aligned with ours.
They authenticate users by analyzing the hand movements
while making/answering phone calls. They investigated if
such motion can be used as biometric authentication mea-
sure. They have used Dynamic Time Warping (DTW) algo-
rithm to analyze and detect the gesture of making/answering
phone calls in contrast to our approach where we use ma-
chine learning classifiers to identify if the tapping gesture
is performed by the owner. They have only considered ac-
celerometer and orientation sensors while our approach con-
siders ten different sensors including not only motion and
position sensors but also environment sensor (ambient pres-
sure) for better accuracy. Although our approach may be
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used to authenticate the users while making/answering the
phone calls as well, we focus on tap gesture biometrics, es-
pecially when user wants to make transaction with an NFC-
enabled device.

Hong et al. [19] propose Waving Authentication (WA), a
biometric authentication based on waving hand along with
the phone. WA utilizes accelerometer sensor to extract 8
features, train SVM classifiers to build a model and authen-
ticate users with this model. However, this approach is not
transparent to the user, unlike our method.

Gascon et al. [17] have analyzed typing motion behaviour
of the user to continuously authenticate a user on smart-
phones. It records the touch input along with the times-
tamps when the keys are pressed or released. They use
different sensors such as accelerometer, gyroscope, and ori-
entation sensors and extract 2376 dimensional vector repre-
senting the typing motion behaviour of the user. They use
linear Support Vector Machine (SVM) classifier to identify
if the typing motion belongs to user or not. Other work
[11, 16, 36, 40] share the similar philosophy to authenticate
users based on the touch gesture. They either use only the
touch sensor or use the touch sensor in conjunction with
different inertial sensors.

Some of the other work that focus on behavioral biometric
measure to authenticate users, include, but not limited to
the voice pattern recognition [27, 49], the walking pattern
[12, 26], and the tapping pattern [5, 28, 46]. To authenti-
cate with the voice pattern or the tapping pattern on touch
screen requires users to perform extra action while authen-
ticating themselves. Although these are biometric measures
to authenticate users, these are not transparent when a user
is trying to make an NFC transaction with the phone and,
hence, adds extra burden to users.

10. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach to authenticate a

user transparently before making an NFC transaction. The
approach captures the user’s hand movement and identifies
the user based on the sensor data recorded by the device.
The gesture is very unique to the user and is difficult for
the attacker to mimic. We presented the design and im-
plementation of the proposed authentication approach. Our
results suggest that our approach could be very effective in
authenticating users and preventing misuse of NFC services
in case of theft or loss of NFC phone, without necessitating
any additional user burden.

Our future effort will be focused on exploring new fea-
tures from the available sensors as well as utilizing new sen-
sors as they are introduced by the phone manufacturers and
the operating systems. We also plan to further evaluate
our approach with different smartphone models and a wider
range of users. Moreover, to further improve the authentica-
tion accuracy, we plan to use a smartwatch (when available)
along with the smartphone for detecting the tapping ges-
ture from the user. Using multiple devices may provide a
broader range of features (e.g., wrist movements and hand
movements) which may increase the accuracy of the system
and further reduce the chances for the attacker to mimic the
gesture.
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APPENDIX
A. RESULTS FOR OTHER DURATIONS

In this section, we show the performance of the classifiers
for generalized as well as for different scenarios using 10-Fold
cross validation for two and three seconds duration of tap
gesture. The result for two seconds duration of tap gesture is
summarized in Table 4 while that for three seconds duration
of tap gesture is summarized in Table 5. The accuracy did
not change significantly even when longer duration than one
second of tap gesture was used to classify. Moreover, the
performance of the classifier dropped in some occasions when
longer duration was used.

Table 4: The results for Generalized and Scenario-
specific models for tapping duration of two seconds.
Each column shows average (Avg) and standard de-
viation (S.D.) for F-Measure, Recall and Precision.
Precision and recall captures the security and the
usability of the system, respectively. F-measure ac-
counts for both precision and recall.

F-Measure Recall Precision

Avg (S.D.) Avg (S.D.) Avg (S.D.)

Generalized 0.93 (0.05) 0.95 (0.04) 0.9 (0.07)

Chest-Angular 0.89 (0.06) 0.93 (0.05) 0.86 (0.09)

Waist-Flat 0.92 (0.05) 0.95 (0.06) 0.90 (0.06)

Chest-Vertical 0.91 (0.04) 0.93 (0.04) 0.89 (0.05)

Waist-Angular 0.89 (0.07) 0.92 (0.06) 0.86 (0.08)

Table 5: The results for Generalized and Scenario-
specific models for tapping duration of three sec-
onds. Each column shows average (Avg) and stan-
dard deviation (S.D.) for F-Measure, Recall and
Precision. Precision and recall captures the secu-
rity and the usability of the system, respectively.
F-measure accounts for both precision and recall.

F-Measure Recall Precision

Avg (S.D.) Avg (S.D.) Avg (S.D.)

Generalized 0.92 (0.06) 0.96 (0.03) 0.89 (0.08)

Chest-Angular 0.90 (0.05) 0.93 (0.06) 0.87 (0.05)

Waist-Flat 0.90 (0.06) 0.93 (0.05) 0.87 (0.08)

Chest-Vertical 0.90 (0.06) 0.93 (0.05) 0.88 (0.08)

Waist-Angular 0.89 (0.06) 0.91 (0.07) 0.87 (0.07)
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