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ABSTRACT
Establishing secure voice, video and text over Internet (VoIP) com-
munications is a crucial task necessary to prevent eavesdropping
and man-in-the-middle attacks. The traditional means of secure
session establishment (e.g., those relying upon PKI or KDC) re-
quire a dedicated infrastructure and may impose unwanted trust
onto third-parties. “Crypto Phones” (popular instances such as
PGPfone and Zfone), in contrast, provide a purely peer-to-peer
user-centric secure mechanism claiming to completely address the
problem of wiretapping. The secure association mechanism in
Crypto Phones is based on cryptographic protocols employing
Short Authenticated Strings (SAS) validated by end users over the
voice medium.

The security of Crypto Phones crucially relies on the assump-
tion that the voice channel, over which SAS is validated by the
users, provides the properties of integrity and source authentica-
tion. In this paper, we challenge this assumption, and report on
automated SAS voice imitation man-in-the-middle attacks that can
compromise the security of Crypto Phones in both two-party and
multi-party settings, even if users pay due diligence. The first at-
tack, called the short voice reordering attack, builds arbitrary SAS
strings in a victim’s voice by reordering previously eavesdropped
SAS strings spoken by the victim. The second attack, called the
short voice morphing attack, builds arbitrary SAS strings in a vic-
tim’s voice from a few previously eavesdropped sentences (less
than 3 minutes) spoken by the victim. We design and implement
our attacks using off-the-shelf speech recognition/synthesis tools,
and comprehensively evaluate them with respect to both manual
detection (via a user study with 30 participants) and automated de-
tection. The results demonstrate the effectiveness of our attacks
against three prominent forms of SAS encodings: numbers, PGP
word lists and Madlib sentences. These attacks can be used by a
wiretapper to compromise the confidentiality and privacy of Crypto
Phones voice, video and text communications (plus authenticity in
case of text conversations).
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1. INTRODUCTION
Voice, video and text over IP (VoIP) systems are booming and

becoming one of the most popular means of communication over
the Internet. Today, VoIP is a prominent communication medium
used on a variety of devices including traditional computers, mo-
bile devices and residential phones, enabled by applications and
services such as Skype, Hangout, and Vonage, to name a few.

Given the open nature of the Internet architecture, unlike the
traditional PSTN (public-switched telephone network), a natural
concern with respect to VoIP is the security of underlying com-
munications. This is a serious concern not only in the personal
space but also in the industrial space, where a company’s confiden-
tial and sensitive information might be at stake. Attackers sniffing
VoIP conversations for fun and profit (e.g., to learn credit card num-
bers, account numbers and passwords) as well as wiretapping and
surveillance of communications by the government agencies [1, 3]
are well-recognized threats. Prior research also shows the feasi-
bility of launching VoIP man-in-the-middle (MITM) attacks [54],
which can allow for VoIP traffic sniffing, hijacking or tampering.

In light of these threats, establishing secure – authenticated and
confidential – VoIP communications becomes a fundamental task
necessary to prevent eavesdropping and MITM attacks. To boot-
strap end to end secure communication sessions, the end parties
need to agree upon shared authenticated cryptographic (session)
keys. This key agreement process should itself be secure against
an MITM attacker. However, the traditional means of establishing
shared keys, such as those relying upon a Public Key Infrastruc-
ture (PKI) or Key Distribution Center (KDC), require a dedicated
infrastructure and may impose unwanted trust onto third-party enti-
ties. Such centralized infrastructure and third-party services might
be difficult to manage and use in practice, and may themselves get
compromised or be under the coercion of law-enforcement agen-
cies, thereby undermining end to end security guarantees.

In this paper, our central focus is on “Crypto Phones” (Cfones), a
decentralized approach to securing VoIP communications. Cfones
promise to offer a purely peer-to-peer user-centric mechanism for



establishing secure VoIP connections. A prominent real-world in-
stance of a Cfone is Zfone [8, 10], invented by Phil Zimmermann,
now being offered as a commercial product by Silent Circle [9].
A Cfone involves executing a SAS (Short Authenticated Strings)
key exchange protocol, such as [7,11,51], between the end parties.
The SAS protocol outputs a short (e.g., 20-bit) string per party —
if the MITM adversary attempted to attack the protocol (e.g., in-
serted its own public key or random nonces), the two strings will
not match. These strings are then output, e.g., encoded into num-
bers or words [10], to users’ devices who then verbally exchange
and compare each other’s SAS values, and accordingly accept, or
reject the secure association attempt (i.e., detect the presence of
MITM attack). Figure 1 depicts a traditional MITM attack scenario
against Cfone.

The security of Cfones crucially relies on the assumption that the
human voice channel, over which SAS values are communicated
and validated by the users (Alice and Bob), provides the properties
of integrity and source authentication. In other words, it is assumed
that the attacker (Mallory) is not able to insert a new desired SAS
value in Alice’s and/or Bob’s voice.

In this paper, we systematically investigate the validity of this
assumption. Our hypothesis is that, although impersonating some-
one’s voice in face-to-face arbitrarily long conversations can be
significantly challenging, impersonating short voices (saying short
and random SAS strings) in a remote VoIP setting may not be. In-
deed, we undermine Cfones’ security assumption underlying SAS
validation, and report on SAS voice imitation MITM attacks that
can compromise the security of Cfones in both two-party (2-Cfone)
and multi-party or conferencing (n-Cfone) settings, even if users
were asked to pay due diligence. Figure 2 depicts an example sce-
nario for our short voice imitation MITM attacks against 2-Cfone.

Our Contributions: We make the following contributions:

1. Generalization and Formalization of Cfones: The secure con-
nection establishment problem considered by Cfones, and the un-
derlying solution approach, bear a close resemblance to the do-
main of “proximity-based device pairing”. Based on this parallel
and wealth of prior work in device pairing, we provide a general-
ization and semi-formalization of Cfones, considering C-fones in
both two-party and multi-party settings and adopting prior device
pairing methods in the context of Cfones (Section 2).

2. Voice-Centric MITM Attacks Against Cfones: We present two
types of short voice imitation MITM attacks against Cfones (Sec-
tion 3). The first attack, called the short voice reordering attack,
builds arbitrary SAS strings in a victim’s voice by reordering pre-
viously eavesdropped SAS strings spoken by the victim. The sec-
ond attack, called the short voice morphing attack, builds arbitrary
SAS strings in a victim’s voice from a few previously eavesdropped
sentences spoken by the victim.

3. Attack Design, Implementation and Evaluation: We design
and implement our reordering and morphing attacks using pub-
licly available, off-the-shelf speech recognition and synthesis tools
(Sections 4). Next, we comprehensively evaluate our attack sys-
tem with respect to both manual detection, via a user study with
30 participants, and automated detection (Section 5). The results
demonstrate the effectiveness of our attacks against three promi-
nently used SAS encodings: numbers, PGP word lists [10] and
Madlib sentences [22]. These attacks can be used by a wiretap-
per to completely compromise the confidentiality and privacy of
Cfones communications (plus authenticity in case of Cfones text
conversations). Our objective evaluation shows that the shorter the
SAS string, the harder it is for the user to detect voice imperson-
ation. Our subjective evaluation shows that people can distinguish

1. Your code is: 39715
Provide this code to Alice

4. Is Alice’s code equal to your
code? Press Yes or No

1. Your code is: 24641
Provide this code to Bob

4. Is Bob’s code equal to your
code? Press Yes or No

Code: 39715 Code: 24641

2 . My code is 39715

3. My code is 24641

Step 1: Bob's and Alice's devices show their respective numeric codes as a result of SAS

protocol execution.

Step 2-3: Bob and Alice exchange their respective codes via verbal communication.

Step 4: Bob is asked to compare his code with the one provided by Alice, and Alice is asked to

compare her code with the one provided by Bob, and accordingly accept or reject the process.

In this case, both should be rejecting thereby preventing the attack.

Figure 1: A traditional MITM attack scenario for 2-Cfone – attack is
detected since SAS values do not match

1. Your code is: 39715
Provide this code to Alice

6. Is Alice’s code equal to your
code? Press Yes or No

1. Your code is: 24641
Provide this code to Bob

6. Is Bob’s code equal to your
code? Press Yes or No

Code: 39715 Code: 24641

2. My code is 39715

5. My code is 39715

Step 1: Bob's and Alice's devices show their respective numeric codes as a result of SAS protocol

execution.

Step 2-3: Bob and Alice exchange their respective codes via verbal communication; Mallory drops

these packets.

Step 4-5: Mallory generates Alice’s code mimicking Bob’s voice, and Alice’s code mimicking Bob’s

voice, and inserts them into the respective channels.

Step 6: Bob is asked to compare his code with the one provided by Alice, and Alice is asked to

compare her code with the one provided by Bob, and accordingly accept or reject the process. In

this case, both will accept leading to a successful MITM attack.

4. My code is 24641

3. My code is 24641

Figure 2: Our short voice imitation MITM attack scenario for 2-Cfone
– attack succeeds because of voice impersonation

a different voice from a familiar voice with about 80% success.
However, they are not as successful in detecting our reordering and
morphing attacks. Moreover, we believe that in real-life, attack
detection would be even more difficult due to the presence of the
ambient or channel noise, and the fact that SAS validation is only
a secondary user task (the primary task is establishing the call).

Cfones versus “Device Pairing”: Device pairing is the process of
establishing secure connection between two (or more) wireless de-
vices communicating over a short-range channel, such as WiFi or
Bluetooth. A wealth of prior work exists that uses SAS protocols
and different out-of-band (OOB) channels for the purpose of device
pairing [25, 30]. Device pairing involves devices and their users
who are physically nearby. In contrast, Cfones involve devices and
users which are remote, communicating over an open Internet chan-
nel. However, both systems assume that the SAS transfer or OOB
channel provides integrity and source authentication. While this
is a valid assumption in the context of physically co-located de-
vices/users (pairing), it may not be the case for the remote VoIP
setting (Cfones), since the data transmission still happens over an
open insecure channel, not over proximity communication. This
important aspect is what our work focuses on in this paper.

2. BACKGROUND & FORMALIZATION
2.1 Communication and Threat Model

A 2-Cfone SAS protocol between Alice and Bob is based upon
the following communication and adversarial model, adopted from
[51]. The devices being associated are connected via a remote,



point-to-point high-bandwidth bidirectional VoIP channel. An
MITM adversary Mallory attacking the Cfone SAS protocol is as-
sumed to have full control over this channel, namely, Mallory can
eavesdrop and tamper with messages transmitted. However, an ad-
ditional assumption is that Mallory can not insert voice messages
on this channel that mimic Alice’s or Bob’s voice. In other words,
the voice channel (over which the SAS values are validated) is as-
sumed to provide integrity and source authentication. The latter
assumption is what we are analyzing and challenging in this paper.

This approach and model can be easily extended to the VoIP
group communication or conferencing scenarios (n-Cfones). Here,
more than two remote participants form a group and all data (mes-
sages, video and audio) is broadcast among these participants. The
same assumptions are made over this broadcast channel as the
point-to-point channel in 2-Cfone. In addition, n-Cfone protocols
require the participants to verbally validate the count of the group
members. If undercounting happens, the attacker can simply insert
itself into the group and eavesdrop over all conversation [34].

2.2 SAS Protocols
A number of SAS protocols exist [17,32,35,39,51] in the litera-

ture that a Cfone implementation may adopt. It is an authenticated
key exchange protocol which allows Alice and Bob to agree upon
a shared authenticated session key based on SAS validation over
an auxiliary channel (such as voice channel). The protocol results
in a short (e.g., 20-bit) string per party – matching strings imply
successful secure association, whereas non-matching strings imply
a MITM attack. These protocols limit the attack probability to 2−k

for k-bit SAS data. Once the SAS protocol and SAS validation
process completes, all data between Alice and Bob is secured (e.g.,
using authenticated encryption) using the session key. The data
may include the voice, text or video data. In fact, a Cfone texting
application can utilize the SAS approach to secure the text channel
by means of SAS validation over the voice channel, as employed
by Silent Circle [9].

SAS protocols have been extended to the group setting [33, 50],
and can be utilized in the context of n-Cfones. The idea is the
same: upon executing the group SAS protocol, each device outputs
a SAS value; matching SAS values on all devices imply successful
association whereas non-matching values indicate the presence of
an attack. In addition to requiring comparison of SAS values, an
n-Cfone involves the user(s) to correctly count the number of group
members (i.e., the number n) taking part in the conference.

2.3 SAS Validation Mechanisms
Two-Party Setting: We consider following different 2-Cfone
methods derived from [49], for associating two remote devices A
and B, which encode the SAS data into decimal digits [49], PGP
words [10] or Madlib phrases (grammatically correct Madlib sen-
tences) [22]:
1. Compare-Confirm: A and B display SAS encoded number, PGP

words, or Madlib phrase, each on their respective screens. Al-
ice compares the number, PGP words or phrase displayed on A
with the number displayed on B via verbal exchanges with Bob.
Based on the comparison, both Alice and Bob accept or reject
the secure association attempt.

2. Copy-Confirm: A displays a SAS encoded number on its screen.
Alice verbally provides the number to Bob who inputs it onto B.
B indicates the result of association (match or mismatch) on its
screen. Bob indicates the same result to Alice verbally. Alice
accepts or rejects the association process on A accordingly.

Multi-Party Setting: In case of n-Cfones, some SAS validation
methods involve a centralized group member, called a leader, while

others are peer-based (as discussed in the context of proximity
group association [34]). For the latter, a circular topology is as-
sumed among the group members. Recall that, in addition to com-
paring SAS values, n-Cfone requires the participants to correctly
determine the group size. The leader, who knows the group size,
will either input this number to its own device as well as announce it
to others so they can enter to their respective devices, or the leader
will compare the count with the one displayed by its device and
announces the count to others so they can also compare with the
value displayed by their respective devices. The SAS values can be
validated in a leader-driven or a peer-to-peer fashion, by compar-
ing or by copying (in case of numbers). Below is a list of methods
(derived from [34]) suitable for n-Cfones.

1. Leader-VerifySAS: After the group size has been validated, the
leader’s device displays the SAS value encoded into a num-
ber, PGP words or phrase and the leader announces it to the
group. Other members’ devices display respective SAS values.
Each member compares their respective SAS values with that
announced by the leader. If SAS values do not match, a mem-
ber aborts the process on its device and asks everyone else to
do the same. If no one identifies an error, each member accepts
group association on its device.

2. Leader-CopySAS: After the group size has been validated, the
leader’s device displays the SAS value encoded as a number and
the leader announces it to the group. Other members input the
announced SAS value into their devices. If the devices indicate
failure (SAS value mismatch) they abort the process and warn
others to do the same. Otherwise, everyone accepts.

3. Peer-VerifySAS: After the group size has been validated, each
device displays a numeric SAS value and each member com-
pares its SAS value with that of their neighbor on the right (pre-
defined via a virtual circular topology). In case of a mismatch, a
member aborts the process and instructs others to do the same.
Otherwise, everyone accepts.

3. ATTACK OVERVIEW & BACKGROUND
We discuss why recognition of the identity of a speaker (espe-

cially from short speech) can be a complex task for human users,
and provide an overview of our Cfone voice imitation attacks that
exploit this inherent limitation of the human cognitive system.

3.1 Manual Speaker Recognition Limitations
In an MITM attack against the SAS protocol of a Cfone, Mallory

can insert herself into a session and gain full access to the data be-
ing transferred between the Alice and Bob. To do so, Mallory needs
to hijack the session and impersonate each party. As discussed in
Section 2.1, Cfone’s security assumption is that although Mallory
has full control over the communication channel, it cannot insert
voice messages that mimic Alice/Bob. Should this hypothesis be
valid, the SAS value which is verbally exchanged on this channel
can always authenticate Alice and Bob, foiling the MITM attack. A
Cfone MITM attack seems relatively straight-forward against data
communication (i.e., non verbal communication messages of the
SAS protocol) [54], however, it is assumed that voice is unique to
each individual, and therefore it is impossible to impersonate it.
This assumption relies on special characteristic of speech which
appears to make it difficult to impersonate at first glance.

Speech construction is a complex area. In simple terms, speech
consists of words, each of which is a combination of speech sound
units (phones). However, in reality, human voice is not as simple
as this definition. Voice signal created at the vocal folds travels and
gets filtered through vocal tract to produce vowels and consonants.



Figure 3: High-level diagram of the attack

Human body structure, vocal folds, articulators and human physi-
ology and the style of speech provide each individual a potentially
distinguished voice characteristic. Pitch, timbre and tone of speech
are some of the features that may make a voice unique (for further
information, we refer the reader to [15]). Therefore, the assump-
tion that voice is unique, just like fingerprint or iris, does have some
validity (although how much is a question explored in this paper).

Speech perception and recognition, the tasks that Cfone users
have to perform while validating the SAS values, are even more
complex than speech construction. There exists considerable lit-
erature on how speech is recognized [18, 19, 38]. Linguistics re-
searchers have conducted various experiments and analyzed the
capabilities of human speech recognition over different parameters,
such as length of the samples, number of different samples, samples
from familiar vs. famous people, and combinations thereof [38].
In an experiment, conducted in [31], the participants were asked
to identify a voice when the sample string presented to them was
“hello”, which resulted in a correct recognition rate of only 31%.
However, when a full sentence was presented to the participants,
the recognition rate increased to 66%. In the study of [23], a 2.5
minute long passage was presented as a sample to the participants,
resulting in the average recognition accuracy of 98%. Many other
experiments have been performed over the years evaluating human
users’ performance in voice recognition [28]. They show that the
shorter the sentence, the more difficult it is to identify the source.

Based on this literature survey, it appears that the task of es-
tablishing the identity of a speaker may be challenging for human
users, especially in the context of short SAS, and serves as a weak-
link in the security of the Cfone SAS communication.

3.2 Attack Components
Our short voice imitation attacks involve the following compo-

nents (our higher-level attack is depicted in Figure 3).
Data Relaying: In a Cfone, first an unauthenticated SAS pro-
tocol performs a key exchange during session initiation or Real
Time Protocol (RTP) media stream (see Figure 4). This gener-
ates a session key, which will contribute to the encryption of the
media during the Secure RTP (SRTP) session. So far the proto-
col is unauthenticated, therefore it is susceptible to a MITM [36]
attack, and the session key might have already been revealed to
Mallory. To ensure that Mallory was not present during unauthenti-
cated key exchange, Alice and Bob verbally communicate the SAS
over an SRTP session. In our attack, we assume that an MITM was
performed during the unauthenticated key exchange protocol, and
therefore Mallory has access to the plain audio during the conver-
sation. Mallory is now interested in manipulating the SAS to hide
her presence in unauthenticated phase of the protocol (i.e., non SAS
communication). Mallory is not interested to alter any conversation
except for the SAS dialogue (but of course interested in listening to
all). Therefore, such conversations are simply relayed by Mallory,
as is, to Alice and Bob.
Training Data Collection: Mallory needs to collect some data in
advance to be used as the training set for the SAS voice imper-
sonation attacks. For the reordering attack, Mallory needs to build
a dictionary of distinct SAS words (e.g., digits for numeric, and
words for PGP word list and Madlib SAS). In contrast, in morph-

Figure 4: Cfone Protocol Flow (SIP: Session Initiation Protocol; RTP:
Real-Time Transport Protocol)

ing attack, she requires a few sentences to train the system to mimic
the victim’s voice. To do so, Mallory can listen to several samples
of the victim’s voice and collect words spoken by the victim from
a previous VoIP session, or even the session under attack. Alter-
natively, Mallory can fool the victim into recording these training
samples with social engineering trickeries (discussed in Section 6).
Keyword Spotting: To replace a valid SAS with a new desired
SAS, Mallory needs to first look up the SAS in the first few con-
versations over SRTP, while Alice and Bob verbally exchange the
SAS. She can simply relay any non-SAS dialogue, and only ma-
nipulate the SAS at the right time. Manually performing this look-
up for the presence of SAS within arbitrary conversations might
be tedious. An alternative is keyword spotting, which can be per-
formed automatically. Keyword spotting deals with identifying a
specific word in an utterance. It can be performed online on an
audio stream or offline on audio files in audio mining application.
Several keyword spotting methods have been proposed in litera-
tures. The work of [42] provides a comparison of different key-
word spotting approaches. Any of these approaches can be used by
Mallory to detect the SAS values (numbers or words). In Section
4, we will describe our implementation of a keyword spotter based
on off-the-shelf voice recognition systems.
Interruption and Insertion: Once the SAS dialogue is found,
Mallory should “drop” it to make it unavailable to the other party,
and replace it with an forged SAS (recall that our threat model al-
lows dropping arbitrary packets). At this point, the voice MITM
on SAS happens. The forged SAS is either derived from previously
recorded voice of the victim saying the same SAS, or is constructed
by making a collage from the victim’s speech (reordering attack),
or is constructed by morphing victim’s voice signal (voice morph-
ing attack). It is not implausible to imagine that Mallory could be a
professional impersonator who can speak a thousand voices (“Rich
Little”). Usually this is not the case. Hence, we rely on automated
reordering attack and voice conversion techniques.
Voice Reordering: An attacker who wants to insert a forged SAS
into the conversation can build a dictionary of all possible words,
and impersonate a legitimate party by remixing SAS in his/her
voice, which we call reordering attack. After collecting SAS
atomic units, she can cut pieces of the legitimate audio signal and
make an offline collage of SAS messages for future use. Another
attack similar to reordering attack is a text-to-speech system which
is specifically trained to produce synthesized voices only on a lim-
ited domain of vocabulary. An example of such a synthesizer is
presented in [16].
Voice Morphing: Although a limited domain synthesizer may pro-
duce audio with almost the same quality as a human being, de-



Figure 5: High-level diagram of morphing attack

pending on the SAS encoding, pre-collecting all words is not al-
ways practical. And, if the attacker does not have all possible
units of SAS in the dictionary, she can not produce remixing or
a limited domain synthesizer. In this situation, Mallory can try to
mimic victim’s voice. Attack could be successful if the adversary
can “convert”, for example, his own voice to the target’s (victim’s)
voice. We call this the voice morphing or conversion attack. There
are several voice conversion and transformation techniques which
change the characteristic of voice such as frequency, pitch, and tim-
bre [40, 41, 53]. Other techniques find a relation between human
articulators and voice features [16, 43–46]. All these techniques
work on a training system to adapt the system and can eventually
convert any utterance in Mallory’s own voice to the target voice
even though such voice is not available in the training set. Mallory
only needs to collect a few minutes worth of training data of the
victim voice in order to perform this conversion. Later, Mallory
may also produce an offline dictionary of all possible SASs in the
victim voice. Figure 5 is the high-level picturization of this attack.

3.3 Attacking Different Mechanisms
The attacks presented above can be applied to undermine the se-

curity of 2-Cfones mechanisms. To attack Compare-Confirm, Mal-
lory needs to do voice impersonation in both directions: imperson-
ating both Alice’s and Bob’s voices. To compromise the Copy-
Confirm mechanism, Mallory only needs to impersonate the SAS
in one direction. If Mallory is interested in doing only a one-way
MITM attack (e.g., Alice to Bob), it only needs to do imperson-
ation on the channel over which the result of SAS comparison is
conveyed (e.g., by Bob to Alice). Here, Mallory simply needs to
impersonate “Yes” in Bob’s voice thereby fooling Alice into ac-
cepting an attacked session.

With n-Cfones, the Peer-VerifySAS can be attacked in the same
way as 2-Cfones, except that Mallory may need to do the attack on
multiple point-to-point SAS exchanges in case of the latter. Leader-
CopySAS can be attacked in the same way as Copy-Confirm in one-
direction or both directions. Leader-VerifySAS can be similarly
attacked. In addition, all the mechanisms can be relatively easy
compromised via the “group count impersonation” attack whereby
Mallory simply increases the group count by at least 1 and imper-
sonates that “increased count” in leader’s or a peer’s voice.

4. DESIGN & IMPLEMENTATION
Communication Channel: Java Media Framework API (JMF) en-
ables audio, video and other media to be captured, played, and
streamed. We used JMF API to capture and transmit RTP pack-
ets at each party (Alice, Bob and Mallory). JMStudio open source
code was adopted to implement the communication channel, to re-
ceive, capture and transmit media streams across the network.
Datasets Used: We used a variety of samples in different noise
profiles, including samples recorded in professional recording en-
vironment as well as data collected using basic audio recorders. To
have a good variety of recordings, we used three different datasets:
First is the Arctic US English single speaker databases which has
been constructed at the Language Technologies Institute at CMU.
A detailed report on the structure and content of the database and
the recording environment is available in [24]. The databases con-

sist of around 1150 utterances include US English male and fe-
male experienced speakers. The second dataset is VoxForge, set
up to collect transcribed speech for use with Free and Open Source
Speech Recognition Engines. We picked US English male record-
ings with 16KHz sampling rate. The data samples we used are all
recorded in unprofessional recording environment with free tools
such as Audacity and the narrators are non expert speakers. Finally,
we recorded two other voices using the basic audio recorder on an
iPhone 5s, and two voices recorded by Audacity 2.0.5 on a Mac-
book Air laptop with internal microphone. Same as the VoxForge
dataset, the narrators are not expert speakers. The Audio files in
all our datasets are in WAV (Microsoft) 16 bit signed PCM format
with a sampling rate of 16 KHZ in mono with single channel.
Keyword Spotting: For the purpose of keyword spotting, we used
CMU’s Sphinx open source speech recognition system. We utilized
Sphinx4 recognizer. Sphinx-4 is very flexible in its configuration,
providing a high-level interface to setup most of the components of
the system. The configuration file is used to set all variables includ-
ing recognizer, decoder, search manager, acoustic model, language
model and dictionary components as well as configuration param-
eters such as: the absolute beam width that specifies the maximum
number of hypotheses to consider; relative beam width that defines
a trade-off between accuracy and search time; language weight or
language scaling factor; insertion probability that controls word
breaks recognition; and the silence insertion probability that con-
trols how aggressive Sphinx is at inserting silences.

Sphinx takes the voice waveform as input, splits it into utterances
by silences, then recognizes it based on the best matching combina-
tion of words. First, it gets a feature vector of each frame and then
uses models to match this feature vector with the most probable
feature vector in the model. So, it was important for us to adapt the
models to fit our purpose and obtain accurate recognition results.

Three models are used in Sphinx speech recognition system.
First is the acoustic model that contains acoustic properties for
each phone. We evaluated the speech recognition with CMUS-
phinx acoustic models, which was quite acceptable for numeric
SAS recognition. However, we adopted the acoustic model for PGP
word list and Madlibs based on our speakers. As we will present in
Section 5, it is enough to have 5 minutes of speech of a speaker to
achieve a high accuracy. The second model involves a phonetic dic-
tionary that contains a mapping from words to phones. We adapted
the CMU’s Pronouncing Dictionary (CMUdict) to cover all words
available in PGP word List. The third model is language model
or a language grammar that defines the structure of the language,
such as the probability that two specific words come consequently.
Such model is essential to restrict word matching. Compared to
natural language structure, SAS language structure is very simple,
it is a series of digits, or is two (or more) words from a PGP word
list, or a sentence based on a Madlib phrase. Therefore, we built a
grammar for our specific design.

There are some implementations of CMU Sphinx as keyword
spotter. We changed Sphinx Audio Alignment code to transcribe
and retrieve the time information for certain words. Once the ap-
pearance time of a SAS is captured, we snip that frame and add it
as a single SAS to our SAS attack dictionary.
Reordering Attack: To implement the reordering attack, we de-
veloped a simple Java application that reads individual SAS words
and produce any SAS combinations. Later, any of these combi-
nations are picked and inserted in the voice MITM attack. Obvi-
ously, rather than building an offline dictionary of all combinations,
remixing can be performed on the fly at the time of the attack. An
alternative is a limited domain synthesizer speaking in the victim
voice. Festival [2] limited domain synthesizers can produce voices



very similar to the target voice, but its performance is optimized
whenever all SAS atomic units are pre-recorded at least one time.
Morphing Attack: A text-to-speech tool that can speak with a vic-
tim’s voice might be suitable for a morphing attack. Such systems
usually require a large collection of good quality training data to
capture features, style, and articulation of the source voice. For
example, AT&T Natural Voices [5] and Model Talker [6] promises
good quality synthesis. However, still after hours of training, voices
generated by such systems may sound synthesized and unnatural.

An alternative is voice converters that convert a source voice to a
target voice by mapping features between the two voices. The voice
conversion framework we used in our morphing attack is CMU’s
Festvox [4] voice transformation. Festvox gets trained by only a
few sentences (less than three minutes) spoken in both the source
(attacker or default Text-to-Speech, TTS voices) and the target (vic-
tim). Therefore it requires much less effort than other synthesizers.
Once trained, a synthesized voice is built based on the target sys-
tem. It can either act as a TTS tool in the victim’s voice or can
be used to convert any utterance spoken by Mallory to the same
utterance in the victim’s voice. Rather than converting properties
of the voice, Festvox predicts the position of articulators from the
speech signal and maps between the speakers and create voices in
the target voice.

We trained the system with less than 50 sentences from the
victim and an attacker voice, and converted all the possible SAS
atomic units from the attacker voice to the victim voice. Using this
system, we built an offline dictionary of all possible SAS combi-
nations even though the SAS atomic units have not been spoken
by the victim before. The offline dictionary can be queried at the
MITM attack time to insert new forged SAS.
Attack Implementation – Putting the Pieces Together: To eval-
uate the feasibility of our attack, we setup an RTP communication
channel between Alice and Bob with Mallory acting as the router
in the middle. We used the JMF framework to send audio captured
from the built-in microphone of Alice’s computer to Mallory. Mal-
lory receives the RTP stream and stores it in WAV format audio file.
Duration of each audio file is set to be 3 seconds.

In the attack, Mallory’s initial goal is to search for the presence
of a SAS in the regular conversation between Alice and Bob. To
this end, after receiving the first audio file, our application on Mal-
lory’s node calls CMU Sphinx keyword spotter to look up possible
SAS in the captured audio files. We evaluated the performance of
the attacking application with two different grammars. The first
grammar looks up all possible SAS combinations. For example, a
two word PGP word list SAS could be “dashboard liberty” which
is included in our keyword spotter grammar. The second grammar
just looks up some possible phrases that Alice and Bob might say
just before confirming the SAS such as “SAS shown on my side
is ...", or “My SAS is ...”. The second grammar makes the key-
word spotting faster but it is not completely predictable, as there
are many ways which users can confirm their SASs.

We assume that SAS atomic units (e.g., digits or words) have
already been forged and are stored on Mallory’s system for further
use following the morphing or reordering attack discussed earlier
in this chapter. The keyword spotter works in parallel with RTP
receiver, audio files are stored and processed in a First-In-First-
Out (FIFO) order. Those files containing SAS are replaced with
same size (bit-wise) recording matching the MITM desired SAS,
and files not containing the SAS are simply relayed to Bob.

SAS might split in two audio files in some situations. This means
that one part of the SAS is located at the end of one file and the
other part is located at the beginning of the second file. To detect
such combinations, our keyword spotter concatenate current cap-

tured file with the previous file and looks for the SAS in the mixed
file. The performance of this attack is provided in Section 5.

5. EXPERIMENTS AND EVALUATION
In order to measure the effectiveness of our attacks, we per-

formed objective and subjective evaluations. The objective evalua-
tion quantitatively measures the similarity of a forged voice to the
original voice. The subjective evaluation measures human users’
qualitative capability of differentiating a forged voice and the orig-
inal voice so as to detect our attacks. In this section, we present
both forms of evaluations and the respective results. Moreover, we
report on the delay introduced by our attacks.

5.1 Objective Evaluation
In speech and speaker recognition systems, it is common to ex-

tract a multi-dimensional vector of components of the underlying
audio to identify the linguistic features of the signal. We used
Mel-Cepstral Distortion (MCD) to measure the similarity between
a forged (converted) SAS and an original SAS by calculating the
Euclidean distance between feature vector of the forged SAS and
that of the original SAS. A similar strategy has been used in several
speech conversion and synthesis systems [20,27,29] to measure the
distance between a synthesized and an original version of the same
utterance. If the difference between feature vector of the original
SAS and the forged SAS is minimized, the forged voice is close
to the original voice and detecting the attack would be inherently
difficult. Lower MCD shows better conversion (a forged SAS is so
similar to the original one that it is not easy to distinguish the two).

To compute MCD, we extract features of the forged SAS (fSAS)
built from attack engine (morpher) and features of the original
SAS (oSAS) spoken by the victim, and calculate the difference be-
tween the two. MCD computation is defined in Equation 1, where
vfSAS
d denotes the d-th MCEP1 of fSAS and voSAS

d denotes the d-
th MCEP of oSAS. In TTS applications, typical parameters are 25
dimensional mel-frequency scaled cepstral coefficients (d between
0 to 24). The 0-th dimension represents the overall signal power
(loudness). Therefore, to eliminate the effect of speaker loudness,
MCD has been calculated for d = 1..24.
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In our objective evaluation, we trained the voice conversion en-
gine to convert between pairs of 8 different male and female speak-
ers from our voice dataset (Section 4) representing victims and at-
tackers. A combination of 20 different conversions was built. To
first test the effect of the training set size on the conversion perfor-
mance, we trained the system with 50, 100, and 200 sentences. We
noticed an average MCD improvement of only 1.6% by increasing
the size of the training set from 50 to 100 and an average MCD
improvement of only 1.1% by increasing the size of the training set
from 100 to 200. This means that increasing the training set size be-
yond 50 sentences does not significantly improve the performance
of conversion. As a result, in the rest of the experiments, we use 50
first sentences of Arctic dataset in the training phase. The average
duration of each utterance of the training set is 5 seconds, and the
average duration of the whole set of 50 sentences is 2 minutes and
30 seconds. This means that in order to train a system to speak in
the victim’s voice, we are required to collect less than 3 minutes of
her voice. This is quite short and therefore training does not seem
to impose a challenge for the attacker in the conversion process.

Table 1 presents the results of our objective evaluation. We
present the results of only 4 conversions between same genders and
1Weighted average of the magnitudes of cepstral peaks.



Table 1: Objective evaluation results for the morphing attack
Source (Attacker) Female 1 Male 1 Female 2 Male 2

Row Utterances Conversion Name Target (Victim) Female 2 Male 2 Male 2 Female 1
1 MCD Before Conversion (dB) 5.28 5.65 5.65 6.15
2 Single Speaker MCD After Conversion (dB) 2.11 2.34 2.34 2.39
3 MCD Before Conversion (dB) 7.27 8.28 8.94 9.41
4

First 50 Sentences of Arctic
Source to Target MCD After Conversion (dB) 4.64 4.91 4.97 4.96

5 SAS Size (bits) 20 80 128 20 80 128 20 80 128 20 80 128
6 Single Speaker MCD After Conversion (dB) 1.95 1.97 2.01 2.17 2.21 2.27 2.17 2.21 2.27 2.23 2.31 2.34
7 20 SASs of Different Sizes Source to Target MCD After Conversion (dB) 4.18 4.33 4.44 4.53 4.61 4.68 4.72 4.77 4.86 4.45 4.63 4.70

different genders. The other 16 conversions yielded similar results
and are not reported here due to space constraints.

To obtain a measure of how good the conversion process is, we
first performed a conversion between utterances of a single speaker
(the victim) spoken and recorded in two different noise profiles. We
call this the “Single Speaker” conversion. Rationally, such conver-
sion would gain the optimum conversion result. Row 1 of Table
1 shows MCD between the two set of 50 recordings (in different
noise profiles) of the victim before the conversion, averaged across
all recordings, which can be used as a reference of what MCD val-
ues are acceptable. Row 2 of the table shows the result of conver-
sion. The Single Speaker conversion gives us a baseline MCD to
measure the quality of other conversions from attacker voice to the
same speaker as the victim.

Row 3 depicts the MCD between an utterance in the training
dataset spoken by the source and the same utterance spoken by the
target before the conversion, averaged across all utterances. This
parameter characterizes the actual similarity/dissimilarity between
the attacker and victim voice before conversion. Recall that we
used 50 utterances spoken by the source and the target to train the
system to convert from attacker to the victim. We refer to this con-
version as the “Source to Target” conversion. Row 4 shows result
of this conversion. By comparing row 3 and row 4, it can be seen
that after conversion, the distance between source and converted
voice becomes less than the initial distance. This demonstrates the
effectiveness of the converter.

Comparing the result of Single Speaker and Source to Target
conversions (row 2 and 4 of the table), we can observe that the
MCD between converted voice and the original voice is higher in
the Source to Target conversion (which is the real attack scenario)
than the Single Speaker conversion (the optimum conversion re-
sult). This is intuitive. However, by comparing row 1 and 4, it is
interesting to note that the MCD values after conversion are slightly
less than MCD values of single speaker before conversion, which
suggests that Source to Target conversion produces a voice that is
comparable to the voice of the victim in a different noise profile.

Subsequently, we tested the performance of the converter for the
purpose of our attack (i.e. SAS morphing). Here, we used the
trained system (described in the above two paragraphs) to convert
60 utterances from our potential attackers to victims representing
20 short, medium and long SAS with size of 20 bits, 80 bits and
128 bits respectively. Average duration of saying short, medium
and long SAS is approximately 1.2, 2.1 and 4.4 seconds respec-
tively. Row six of Table 1 shows the distance between the con-
verted SAS (resulted from Single Speaker converter) and the orig-
inal SAS (spoken by the victim). And finally last rows show the
average distance between the forged SAS (resulted from Source to
Target converter) and the original SAS (spoken by the victim).

For all pairs of speakers, we see a clear pattern of increase in
MCD with increase in the SAS size. This suggests that the quality
of SAS conversion degrades as the SAS size increases, which may
make longer SASs more detectable than shorter ones. Comparing

rows six and seven, we see that the quality of SAS conversion de-
grades only slightly when source and target are different speakers
(similar to the case of non-SAS samples as discussed above).

Unlike the morphing attack that maps between features of the
attacker and the victim, in reordering, filtering characteristics of
vocal cords of the speaker are not changed. As the name suggests,
reordering simply remixes the ordering of words or digits. There-
fore, unlike morphing attack, no new voice is generated in reorder-
ing and in fact the attacked voice has the same features as that of
the victim’s voice [13, 47]. Hence, we did not conduct objective
evaluation test on the reordered SASs.

5.2 Subjective Evaluation: User Study
We report on a user study we conducted to measure users’ capa-

bility to detect our voice imitation attacks against Cfones. Specif-
ically, we conducted a survey, approved by our University’s IRB,
and requested 30 participants to answer several multiple choice as
well as open-ended questions about the quality and (speaker) iden-
tity of certain recordings. There were basically two categories of
questions: one related to the quality of the forged SAS (9 questions)
and another related to speaker identification (9 questions).
Survey and Participant Details: The survey2 was created using
the Question Pro online survey software which gave us the flexibil-
ity in designing multiple choice multimedia questions. Participants
were recruited by word of mouth and were only told that the pur-
pose of the study is to assess speech recognition quality. Following
best practices in usable security research, we did not give details
about the security purposes behind the survey in order to prevent
explicit priming which may have biased their responses. However,
in real-life, users should be warned that an incorrect SAS valida-
tion may harm the security of their communications. Moreover,
our attack study was targeted towards average users, and therefore
we can not deduce the performance of more or less security-aware
users.

The demographic information of the participants is presented in
Table 2. They were mostly young and well-educated, with almost
equal gender split. Such a sample is suitable for our study because
if the study results indicate that it is hard for young and educated
participants to detect our attacks, it may be harder for older and less
educated (average) people. The survey took each participant about
15 minutes to complete.

The quality test in the survey is similar to the Mean Opinion
Score (MOS) test [37]. It consisted of 9 questions, each asks the
participants to listen to the embedded SAS recording and rate the
quality, in terms of genuineness (naturalness) on a scale of one
to five (5: excellent; 4: good; 3: fair; 2: poor; 1: bad). Each
question presents two SAS recordings, that could be the origi-
nal speaker recording in different noise profiles, reordered SAS or
morphed/converted SAS. Different set of original recordings were
played when subjecting the participants to reordered SAS and mor-
phed SAS.

2Available at: http://surveys.questionpro.com/a/t/AKvTXZQtoV



Table 2: Demographic Info: User Study
N = 30

Gender
Male 53%
Female 47%

Age
18-24 years 34%
25-34 years 62%
35-44 years 3%

Education
High school graduate, diploma or the equivalent 5%
Some college credit, no degree 7%
Bachelor’s degree 55%
Master’s degree 24%
Doctorate degree 9%

English as First Language
Yes 28%
No 72%

Hearing Impairment
Yes 10%
No 90%

The speaker identification test contained 9 questions, each
presents three sentences spoken by the same speaker and asks the
participant to listen to these three recordings so as to first get famil-
iar with the voice. Then, the participants should listen to another
two recordings (forged or real by the same or different speaker),
and answer “yes” if they think any of the recordings are of the same
person, and “No” if they think it is a different person, and “Maybe”
if they can not make a distinction. The participants were asked to
ignore any dissimilarity in the quality of the recordings.

We collected different types of SAS recordings, including four
16-bit numerical SAS, eight PGP word lists and four Madlibs. We
also presented four longer SASs including 32-bit PGP word list
and 32-bit Madlibs. Generally, 32-bit numeric SAS is not secure
against reordering attack (since in only one transmission of SAS,
all 10 distinct digits might appear). Therefore 32-bit numeric SAS
was not questioned. In addition, the two samples of morphed ver-
sion of “Yes” and “No” phrases that can be used to attack Copy-
Confirm approach (Section 3.3) and launch Denial-of-Service at-
tacks (Section 6) were played. Finally, to evaluate the group count
impersonation attacks (Section 3.3), we played two recordings of
individual forged numbers in victim’s voice to represent a group
leader who is announcing the (increased) group count.

As mentioned in Section 4, the voice dataset for the evaluation
consists of four collections from CMU Arctic, four collections from
VoxForge and four unprofessional recordings collected by us. For
the morphing attack, we trained the system with 50 sentences from
each speaker. The survey audio samples consist of male and female
speakers in different noise profiles.
Results for Quality Test: Table 3 summarizes the result for the
quality test, showing the average ratings provided by the partici-
pants assessing the quality of original and forged SAS recordings.

As the table shows, in all the cases, participants rated original
recordings between “fair” and “good” except for 32-bit Madlib,
which is rated as “poor.” Participant rated reordered SAS as “fair"
or “good" except for 32-bit Madlib, which is rated as “poor". The
results also show that they did not notice much difference between
the reordered SAS (rated mostly between good and fair) and the
original SAS. The participants rated morphed SAS somewhere be-
tween “poor” and “fair”. Interestingly none of the forged voices
were rated as “bad” quality, while none of the original voices were
rated as “Excellent” quality. No statistically significant differences
emerged between the two types of ratings when tested with the
Wilcoxon Signed-Rank. We observed a relatively high standard

deviation in all answers that we believe originates from different in-
terpretation each person has of the word “quality”. Answers to our
open-ended question reveal that participants had a different defini-
tion of quality and genuineness, and therefore their quality rating
is affected by their own definition. For example, participants men-
tioned “background noise”, “loudness”, “clarity”, and “speed” as
their measure for quality. Only three participants rated the record-
ings based on “genuineness”, “naturalness”, and “machine gener-
ated versus human.”

Moreover, we can see that the difference between the ratings for
morphed SAS and original SAS is generally more than the differ-
ence between the ratings for reordered SAS and original SAS (only
exception is 32-bit Madlibs). This suggests that reordering attack
might generally be harder to detect for the participants than morph-
ing attack. It is interesting to note that for PGP words, participants
rated the reordered SAS higher than the original recording. This
implies if the attacker collects enough data to perform the reorder-
ing attack on PGP words, the quality of the forged SAS may even
be perceived better than the original one. However, the same was
not true for Madlibs as the participants rate the attacked samples
slightly lower than the original ones. Madlibs have a correct gram-
matical structure and therefore people usually read them following
a sentence flow, which may make it difficult for the attacker to split
and remix.

Results for Speaker Identification Test: We next evaluated the
speaker identification test. Recall that in each question of the
speaker identification test, participants first get familiar with a
voice, then they are asked if any of the two subsequent SASs is
spoken by the same person or not. In all of our calculations, we
treated half of the uncertain answers (“Maybe") as “Yes” and half
of them as “No”.

We define the “Yes" answer as the Positive class and the “No"
answer as the Negative class. By this definition, True Positive (TP
or hit) is the instance of recognizing a legitimate familiar voice
correctly (higher values show Cfone system works well under be-
nign, non-attack, setting). False Positive (FP or false alarm) is
the instance of considering an attacked voice as a familiar voice
(higher values represent that the attack is working and partici-
pants are not able to detect it). True Negative (TN or miss) is
the instance of not recognizing a legitimate familiar voice. And,
False Negative (FN) is the instance of correctly recognizing that
an attacked voice is unfamiliar (higher value represents that the at-
tack is not successful and participants can detect it). To evaluate
Cfones, we calculated Accuracy and False Discovery Rate (FDR)
in the presence of different types of attacks. Accuracy is defined as
(TP + TN)/(TP + TN + FP + FN) (the proportion of true
results), and FDR is defined as FP/(TP +FP ) (the proportion of
the false positive against all the positive results). In presence of an
effective attack, FP increases, which is reflected in lower accuracy
and higher FDR values.

Table 4 depicts our evaluation metrics corresponding to a SAS
spoken by a “different” person (second column, representing the
naive attack), a SAS generated by converting attacker voice to vic-
tim voice (third column), and a SAS spoken by the same person
but reordered (fourth column). The results are shown for different

Table 3: Mean (Std. Dev) ratings for original and attacked SAS
Numeric PGP Words 16-Bit

Madlib
32-Bit
Madib

1 Original SAS 4 (0.95) 3.05 (1.21) 4.15 (0.9) 3.28 (1.28)
2 Reordered SAS 3.67 (1.08) 3.23 (1.22) 3.64 (1.35) 2.68 (1.30)

3 Original SAS 3.51 (1.19) 3.74 (1.09) 3.34 (1.30) 2.56 (1.41)
4 Morphed SAS 2.33 (1.20) 3.18 (1.25) 2.75 (1.39) 2.26 (1.35)



type of SAS. Also shown is the overall aggregated result among all
three types of SASs (the last matrix).

First of all, the table illustrates a relatively high TN for SASs
played in a “different voice” (row 2, column 2 – bold fonts in dark
gray shade), which means that when a totally different voice is pre-
sented, people successfully detect the difference with a high chance
(about 80%). This demonstrates that if the (naive) attacker just in-
serts a different voice in its MITM attack, it would be detected by
the users with a high probability. This provides an important quan-
titative benchmark to compare the performance of attacks with.

The effectiveness of our voice imitation (morphing and reorder-
ing) attacks is represented by FP (first row results for column 3 and
4 – bold fonts in light grey shade), which is also reflected in FDR
(last row results for column 3 and 4). Although FDR is not very
high (somewhere around 50-60%), it is important to look at the cor-
responding Accuracy of the Cfone system under our attacks (row 3,
column 3 and 4), which is roughly around 50% or lower, and shows
that people are not accurate in recognizing the familiar voice saying
SAS even in non-attack (benign) scenarios, and almost 50% of the
times participants detect original voice in a different noise profile
as fake voice. That is, even in non-attack scenario, participants are
making almost random guesses to decide whether the voice is real
or fake. Thus, we can conclude that, under our attacks, users do not
perform any better than a random guess in recognizing an forged
SAS, and in fact the result is very similar to recognizing original
similar voice in a different noise profile. In short, people are as
successful as recognizing a forged SAS as they are successful in
recognizing an original SAS in a different noise profile.

Similar to the quality test, the speaker identification test shows
that reordering attack generally works better (e.g., has higher FDR)
than the morphing attack. The performance metrics, however, do
not indicate any significant differences in the way users may detect
the attacks against different SAS types (numeric, PGP or Madlibs).
They all seem almost equally prone to our attacks. In Section 3, we
referred to the linguistic studies that demonstrate people are more
successful in recognizing familiar voices when they are presented
with long sentences rather than short sentences. Our experiment
for short SAS confirms this insight.
Copy-Confirm and Group Count Attacks: Copy-Confirm SAS
validation mechanisms work by Alice reading the SAS and Bob
accepting or rejecting by saying a “Yes” or “No" phrase. In our
evaluation, we converted two type of Accept/Yes and Reject/No
phrases (i.e. “Yes, It’s a match”) to represent Mallory who drops a
reject response from Bob and rather injects an accept response in
Bob’s voice to authenticate a connection. We repeated our speaker
identification test for Yes and No phrases. The results show that
this conversion follows the same pattern as SAS conversion. The
TN is relatively high (between 70-80%) for different voices (peo-
ple can detect a different voice), but precision and FDR are around
50% for non-attacked and attacked scenario. That means reorder-
ing and morphing attack on the yes and no phrases is as successful
as SAS conversion. Reordering works the best in such situation as
the attacker only needs to replay a previously spoken phrase.

The group count attack is an attack in n-Cfone where Mallory
announces the (increased) group count in the leader’s voice. Simi-
lar to numeric SAS conversion, Mallory need to generate and insert
a number. However, here it is much easier as the number is only
one digit long. Due to similarity between Numeric SAS conver-
sion and group count conversion, we did not evaluate group count
conversion, and rely on the result of Numeric SAS morphing and
reordering attack to prove effectiveness of this attack.
Open-Ended Feedback: As part of the survey, we also requested
the participants to provide open ended feedback as to how they

found the experiment overall. Majority of the participants felt that
recognizing even a familiar voice is difficult and confusing. Some
of them believed it is the background noise in the recordings that
makes the recognition task difficult. The answers to the open-
ended question in these series of question such as, “In noisy data,
it is more difficult to compare the tracks.”, or “Challenging” and
“Confusing” show that people find it difficult to recognize familiar
voices especially in the presence of some background noise, which
may be common in telephonic VoIP conversion.

Video-Audio Synchronization Test: Our final question in the
survey was designed to test the effectiveness of video SAS, i.e.,
whether users can detect the asynchrony between the forged ver-
bal SAS and the lip movement associated with the original SAS
in the video stream. For example, under our voice MITM attacks,
the audio SAS may be “1234” but the lip movement in the video
may correspond to “8604”. If the users can detect the presence of
this asynchrony, the attack could be detected. We recorded a one-
minute video of a person and later replaced part of the audio on this
recording with a different SAS from another recording of the same
speaker. We asked participants to watch the video and provide their
opinion about the quality and the genuineness of the video. Only
two participants, recognized the mismatch between the audio and
video, while others found the video to be "genuine", "excellent",
and "good". This experiments shows that even the use of the video
channel would be vulnerable to the audio MITM attack.

Study Limitations: Two attack variants, three SAS types, and
Yes/No conversions, and video SAS, had to be included in the sur-
vey. Moreover, in our speaker identification questionnaire, partici-
pants had to listen to three additional recordings of a person (prob-
ably multiple times) to get familiar with the voice. Therefore, to
keep the survey concise, we limited ourselves to play one or two
samples of each of the attacks. While ideally more samples would
give a better judgment, it would also make the survey long, and may
reduce the user experience and accuracy. Furthermore, in quality
test, results seem biased due to the definition of “quality”. The core
idea was to rate “genuineness” of the recordings, while peoples’
answers seemed affected by the parameters such as noise and loud-
ness. Finally, all the samples were drawn from US English, while
the first language of a majority of participants was not English (Ta-
ble 2). The familiarity with English might affect the result. To our
knowledge, most Cfone applications are developed in English, so
we did not perform a language-centric study.

5.3 Delay of the Attack
The voice MITM attack naturally introduces a delay associated

with the MITM attack on the non-voice, non-SAS channel com-
munication, and with the voice impersonation on the SAS channel
communication. Prior work [54] shows that MITM attack on non-
voice channel can be efficiently performed and therefore we focus
on the delay related to the SAS voice impersonation. The dominat-
ing delay in voice impersonation could be because of the keyword
spotting procedures Therefore it is critical to analyze the spotting
delay in our attack implementation (discussed in Section 4).

Using simpler grammars (i.e. the SAS confirmation phrases) can
improve the keyword spotting method. In offline keyword spotting
(such as the one that we used), duration of each stored audio file
can affect the performance, since we are running the RTP receiver
and the keyword spotter in parallel. So if the duration of the stored
audio file is less than the execution of keyword spotting method, no
delay would be introduced by the keyword spotter.

We evaluated execution time of the attack with different keyword
spotting grammar sizes and different duration of the audio file in
offline keyword spotting. Table 5 summarizes our attack timing ex-



Table 4: Results of subjective evaluation for different attacks and SAS types. TP (row 1, column 1) and TN (row 2, column 1) show answers to
benign setting (instances that are successful or not successful in detecting a familiar voice). FP (row 1, column 2-4) and FN (row 2, column 2-4) show
effectiveness of each attack (naive different voice attack; reordering and morphing attacks). Higher FP (lower FN) shows more powerful attack.
Accuracy is the accuracy of Cfones under different attacks (lower values show the system is not working well under the attack). FDR represents the
overall effectiveness of the attacks (higher values mean better attack).

Presented Numeric SAS voice Presented 16-Bit PGP SAS voice
Original Different Morphed Reordered Original Different Morphed Reordered

Detected as: Yes 57.50% 14.52% 61.25% 87.50% Detected as: Yes 51.67% 17.71% 50.00% 68.75%
Detected as: No 42.50% 85.48% 38.75% 12.50% Detected as: No 48.33% 82.29% 50.00% 31.25%
Accuracy 71.49% 48.13% 35.00% Accuracy 66.98% 50.83% 41.46%
FDR 20.16% 51.58% 60.34% FDR 25.53% 49.18% 57.09%

Presented 16-Bit Madlib SAS voice Aggregated Rates on All SAS Types
Original Different Morphed Reordered Original Different Morphed Reordered

Detected as: Yes 50.83% 21.67% 51.39% 81.67% Detected as: Yes 55.42% 17.96% 50.58% 78.23%
Detected as: No 49.17% 78.33% 48.61% 18.33% Detected as: No 44.58% 82.87% 49.42% 21.77%
Accuracy 64.58% 49.72% 34.58% Accuracy 68.86% 52.42% 38.59%
FDR 29.89% 50.27% 61.64% FDR 24.48% 47.72% 58.53%

Table 5: Attack Timing (highlighted cells denote only cases where delay is introduced by the attack: file duration < attack duration)
# Words in Grammar 10 10 10 10 20 20 20 20 256 256 256 256
Audio File Duration (s) 1 3 5 10 1 3 5 10 1 3 5 10
Average Attack Duration (s) 1.28 1.63 2.04 2.08 1.48 1.86 2.26 2.35 3.15 4.5 6.59 9.38

periment. Number of words in the grammar is defined as 10 words
for numerical SAS, 256 for 16-bit PGP word list and Madlibs, and
20 words for SAS confirmation phrases. For an audio recording
with an average length of 3 and 5 seconds, and a grammar of 10
and 20 words, the attack duration is computed to be less than the
audio recording duration itself, and therefore the attack does not
introduce any delay in such cases. For a longer grammar of 256
words, the keyword spotting produces an average delay of less than
2 seconds, for an audio file of 1, 3 and 5 seconds. However, im-
portantly, for all tested grammar sizes, the attack does not produce
any delay if the offline keyword spotter stores and processes 10 sec-
ond audio file. Grey-colored columns show the combinations that
introduce delay.

As mentioned earlier, in cases the delay exists in our attack, it is
mostly due to keyword spotting, particularly because the keyword
spotter is looking for the SAS in the current file as well as a 1s file
created by concatenating the current file and the previous file (to
find those SAS that are distributed in two files). Real-time keyword
spotters such as [21, 48] might be helpful in further improving the
performance of the attack in such cases.

6. DISCUSSION AND SUMMARY
Evaluation Summary: Our objective evaluation shows that the
distortion between the original SAS and morphed SAS increases
with the size of the SAS. In other words, shorter SAS values show
less distortion, which means that shorter forged SAS are more sim-
ilar to the original SAS, and they would be more difficult to distin-
guish (and more prone to our attacks). This supports our hypothesis
that short voice impersonation is easier for the attacker (harder for
the users to detect) compared to long speech impersonation. We
also observed that if attacker voice is similar to the victim voice,
the result of conversion would be better.

Our subjective evaluation shows that in a non-attack scenario, al-
most only 50% of the times participants can detect familiar voices
and 50% of the times they can not detect familiarity of a voice
(played in a different background noise). This means that partic-
ipant are making almost random guesses in normal, benign situa-
tion. However, people can distinguish a different voice from a fa-
miliar voice with about 80% success, and therefore a naive attack,
where the attacker simply inserts her own voice (or that of another

user), is not successful, and more complex attack is needed. This
is where our reordering and morphing attacks are a good candi-
dates, as 50-80% of observed instances can not detect such attacks,
which means that, in the worst case, our attack works as good as
the non-attack condition. Unlike our evaluation, in real-life, users
may not pay due diligence when asked to validate the identity of
the other speaker (secondary task) when making a call with Cfone
(primary task). It would result in higher true negatives (i.e., fewer
rejections in non-attack cases, or better usability) than what we ob-
served, but would also lead to higher false positives (i.e., weaker
security) especially when a reordered/morphed SAS is inserted. In
other words, the Cfone system may be more usable in practice but
less secure against our attacks.

Both evaluations support that a reordered SAS is more effective
for the attacker (harder to detect) compared to a morphed SAS.

Acquiring Training Data: Our attacks require collecting prior au-
dio samples from the victim. While the reordering attack requires
previously spoken SASs to build a dictionary, the morphing attacks
only require a few previously spoken sentences from which vic-
tim’s voice features can be derived. Building training sets for the
latter case is quite easy. The attacker can eavesdrop prior unpro-
tected VoIP sessions of a victim. Since only a few sentences are
needed, eavesdropping only a few minutes of conversation would
be sufficient. The attacker can also record such samples from a
victim by being physically close to the victim while the victim is
talking in a public place or giving a public presentation.

As far as building training sets for reordering attack is concerned,
the difficulty depends on the underlying SAS encoding type. While
eavesdropping all (10) digits for numeric SAS is relatively easy
(e.g., waiting for the victim to speak phone numbers, zip codes,
and other numeric utterances), learning all PGP words or Madlib
words might be challenging given these words may not be com-
monly spoken in day to day conversations. However, it is possible
for the attacker to use social engineering techniques to address this
challenge. Number of possibilities exists to this end. For exam-
ple, the attacker can create crowd sourcing tasks on online websites
(e.g., freelancer or Amazon Mechanical Turk) which asks the users
to auditize proses which contain all PGP words or Madlib phrases.
Similarly, the attacker can create audio CAPTCHAs, and use them
on its own websites or other compromised sites, that challenge the



users to auditize words from books (similar in spirit to the idea of
reCAPTCHAs).

Moving forward, we believe that our work also raises a more
broader and general threat of “voice privacy.” The malicious actors
may use various approaches to record someone’s voice samples and
use these samples to compromise the security and privacy in an-
other application (such as Cfones or voice recognition systems).
While people seem quite concerned about their “visual privacy” in
today’s digital world (e.g., someone taking their picture), they may
not consider their voice to be so sensitive (e.g., people often talk
out loud in a restaurant and even talk to strangers). Given that au-
dio sensors are very common and do not require explicit efforts
from an attacker to record audio (unlike camera, for example), we
believe that voice privacy can have several implications that may
need careful attention.

Potential Defenses and Challenges: In light of our attacks against
Cfones, a natural question is what can be done to improve the secu-
rity of the underlying SAS validation process. One possibility is to
rely upon multiple preceptory channels rather than just audio. For
example, users may be asked to pay attention to the video (assum-
ing video is available) while validating verbal SAS. In other words,
if the attacker performs the voice impersonation against SAS, users
may be able to detect this attack by looking at and analyzing the ac-
companying video of the communicating party – the lip movement
of the person stating the SAS would not match with the spoken
SAS. This could serve as a potentially useful defense to our attacks.
However, it may present significant challenges in practice. First,
the users may not be in a position to look at the video or may simply
not pay enough attention to spot the lack of audio-visual SAS syn-
chronization. In fact, our voice-audio synchronization test (Section
5), shows that only 2 out of 30 (only 7%) survey participants were
able to detect such an audiovisual synchronization. Second, it is not
hard to imagine that the attacker can manipulate the video packets
in addition to the audio packets so the spoken audio matches with
the video stream. The video impersonation attacks are feasible due
to the same underlying weakness of the VoIP channel with respect
to manipulation as the audio attacks. There exists some prior work
that suggests image/video morphing attacks are feasible [52]. The
need to influence both audio and visual channels at the same time
may increase the complexity of the attack, however.

Another potential defense to our attacks could be integration
of an automated voice recognition or voice biometrics system to
Cfones. That is, in place of, or addition to, human voice recogni-
tion, a software component may be used to detect potential SAS
forgeries. While voice biometrics is a rich area, achieving robust
detection rates (i.e., low false negatives and low false positives)
is still a challenging problem. In addition, existing voice biomet-
rics system may not work well to thwart active voice imperson-
ation and synthesis attacks [26]. Furthermore, given that the SAS
challenge being authenticated in Cfones application is short (only
few seconds worth of audio sample), it may not provide sufficient
“knowledge” to the biometric system to extract features from the
voice using which detection can take place. Our objective evalua-
tion showed that the MCD distortion level increases with the length
of SAS, which means shorter converted SASs may not be distin-
guishable from the original SASs even at a quantitative level.

Yet another potential solution to thwart the voice impersonation
attacks against Cfones is to perform the SAS validation over an
auxiliary channel that can be more resistant to voice and packet
manipulation. PSTN communication is believed to offer such prop-
erties, and, when available, may be used to secure VoIP communi-
cation. For example, if the communicating devices support both
VoIP capability (Internet connection) and PSTN connectivity (e.g.,

cellular connection), the non-SAS communication can take place
over the former and SAS validation can take place over the lat-
ter. This mechanism is suitable for mobile phones – the Cfone app
switches to a PSTN call when SAS comparison is performed by
the user (Android, e.g., allows making VoIP and cellular calls si-
multaneously). A limitation of this defense mechanism is that it
is only applicable to devices which have PSTN capability (such as
cell phones).

An independent defense could be increasing the dictionary size
to make reordering difficult, and to reduce the efficiency of auto-
matic keyword spotting. Moreover, if the dictionary is not fixed,
reordering will be impossible. An idea suggested in [12] is to
choose words from a large dynamic space (e.g., front pages of
today’s newspapers). The dictionary can be chosen by users, or
programmatically during key exchange. However, the security and
user experience of this approach needs further investigation.

Another possibility is to employ the approach proposed by Bal-
asubramaniyan et al. [14], which identifies and characterizes the
network route traversed by the voice signal and creates a detailed
fingerprints for the call source. For VoIP connection, this method
is based on network characteristics, and therefore may only be ef-
fective if the attacker and the victim reside in different networks.

7. CONCLUSIONS
Crypto Phones aim to solve an important problem of establish-

ing end-to-end secure communications on the Internet via a purely
peer-to-peer mechanism. However, their security relies on the as-
sumption that the voice channel, over which short checksums are
validated by the users, provides integrity/authenticity. We chal-
lenged this assumption, and developed two forms of short voice im-
personation attacks, reordering and morphing, that can compromise
the security of Crypto Phones in both two-party and multi-party
settings. Our evaluation demonstrate the effectiveness of these at-
tacks, when contrasted with a trivial attack where the attacker im-
personates with a totally different voice. We suggested potential
ways and associated challenges to improve the security of Crypto
Phones against the voice MITM attacks. A comprehensive future
investigation is needed to develop a viable mechanism to thwart
such attacks.
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