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ABSTRACT
Crypto Phones aim to establish end-to-end secure voice (and text)
communications based on human-centric (usually) short checksum
validation. They require end users to perform: (1) checksum com-
parison to detect traditional data-based man-in-the-middle (data
MITM) attacks, and, optionally, (2) speaker verification to detect
sophisticated voice-based man-in-the-middle (voice MITM) attacks.
However, research shows that both tasks are prone to human er-
rors making Crypto Phones highly vulnerable to MITM attacks,
especially to data MITM given the prominence of these attacks.
Further, human errors under benign settings undermine usability
since legitimate calls would often need to be rejected.

We introduce Closed Captioning Crypto Phones (CCCP), that re-
move the human user from the loop of checksum comparison by
utilizing speech transcription. CCCP simply requires the user to an-
nounce the checksum to the other party—the system automatically
transcribes the spoken checksum and performs the comparison. Au-
tomating checksum comparisons offers many key advantages over
traditional designs: (1) the chances of data MITM due to human er-
rors and “click-through” could be highly reduced (even eliminated);
(2) longer checksums can be utilized, which increases the protocol
security against data MITM; (3) users’ cognitive burden is reduced
due to the need to perform only a single task, thereby lowering the
potential of human errors.

As a main component of CCCP, we first design and implement
an automated checksum comparison tool based on standard Speech
to Text engines. To evaluate the security and usability benefits of
CCCP, we then design and conduct an online user study that mimics
a realistic VoIP scenario, and collect and transcribe a comprehensive
data set spoken by a wide variety of speakers in real-life conditions.
Our study results demonstrate that, by using our automated check-
sum comparison, CCCP can completely resist data MITM, while
significantly reducing human errors in the benign case compared
to the traditional approach. They also show that CCCP may help
reduce the likelihood of voice MITM. Finally, we discuss how CCCP
can be improved by designing specialized transcribers and carefully
selected checksum dictionaries, and how it can be integrated with
existing Crypto Phones to bolster their security and usability.
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1 INTRODUCTION
Online voice, video and text communications (VoIP) is one of the
most dominant means of real-time communication deployed today.
This popularity is exemplified by a plethora of VoIP applications,
such as Skype, Viber, WhatsApp or FaceTime, enjoying a burgeon-
ing user base. In contrast to traditional telephony networks, VoIP
communication may be more easily susceptible to various forms
of attacks, including eavesdropping [3, 4] and man-in-the-middle
(MITM) attacks [2, 63]. Governments, intelligence agencies, private
organizations, and cyber criminals, often monitor VoIP calls [15],
for criminal investigation, political or military endeavors [1], and
theft of sensitive information [20]. Considering these vulnerabil-
ities, a fundamental security task is to protect, that is, encrypt as
well as authenticate all VoIP sessions. Ideally, this objective should
be achieved without relying on third-parties (e.g., an online server)
or a centralized infrastructure (e.g., PKI) because such centralized
services may themselves get compromised, be malicious or under
coercion of law enforcement authorities.

Crypto Phones, such as Zfone [33], Silent Circle [28], and Signal
[24] are mobile, PC or web-based VoIP applications that aim to
offer end-to-end VoIP security guarantees based on a decentral-
ized, human-centric mechanism. Crypto Phones seem to be in high
demand in both commercial and personal domains [25]. Promi-
nent mobile apps, WhatsApp and Viber, have also started to offer a
similar end-to-end security feature [36, 37].

In order to secure the voice, video or even text communications,
Crypto Phones require a cryptographic key, which is agreed upon
by the end parties using a specialized key exchange protocol (e.g.,
[40, 62]). This protocol produces a usually short (e.g., 16-bit or
2-word) checksum, called a Short Authenticated String (SAS), per
each communicating party, with the characteristic that if an MITM
attacker attempts to interfere with the protocol, the checksums will
not match.

To ensure that the MITM attacker does not interfere with the
protocol messages and compromise the protocol security (over the
data/voice channel), Crypto Phones rely upon the end users to
perform the following tasks (Figure 1 visualizes the benign setting):
• Checksum Comparison (required): Verbally communicating
and matching checksums displayed on each user’s device. This
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Figure 1: Traditional Crypto Phones Checksum Validation

task is needed to defeat data MITM, an MITM attack over the
data/IP channel.

• Speaker Verification (optional): Ascertaining that the voice
announcing the checksum is the voice of the legitimate user at
the other end of the call. This task may be needed to defeat voice
MITM, an MITM attack over the human voice communications.
The checksum comparison task is crucial and mandatory given

that data MITM is a prominent and commonly occurring attack
in real-world [19, 30]. The speaker verification task may be op-
tional (like in many traditional designs of Crypto Phones) since
voice MITM is considered a more sophisticated attack (Crypto
Phones attack hierarchy is depicted in Figure 5). Unfortunately, in
practice, the human errors in executing the checksum verification
and/or speaker verification tasks may adversely affect the secu-
rity of Crypto Phones. Specifically, failure to detect mismatching
checksums or imitated voices (different speakers’ or synthesized
voices) would result in a compromise of Crypto Phones session
communications (eavesdropping over voice communications and
MITM over text communications).

Indeed, recent research [58, 59] emphasizes such human errors
demonstrating that current designs of Crypto Phones are highly
vulnerable to both data and voice MITM attacks. Moreover, due
to these dual-task human errors (in case both tasks are required),
the security level provided by Crypto Phones protocol actually
degrades with the use of longer checksums, contrary to the theoret-
ical guarantees provided by the protocol (which limits the MITM
attack success probability to 2−k for a k-bit SAS checksum). These
above tasks may also be susceptible to a “click-through” (or skip-
through), i.e., the user just accepting without paying attention or
duly performing the task, as observed in prior device pairing [49]
and security warnings research [41]. Furthermore, the human er-
rors in the benign case, i.e., rejection of matching checksums or
legitimate users’ voices, adversely affect the usability of the systems
since legitimate calls may often be rejected (and then need to be
re-established).

In this paper, we set out to address some of these fundamental
problems facing traditional Crypto Phones designs, especially fo-
cusing on threat model involving data MITM attacker. We introduce
Closed Captioning Crypto Phones (CCCP), a novel Crypto Phones
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Figure 2: Proposed CCCP Checksum Validation

design that removes the human user from the loop of the checksum
comparison task by utilizing speech transcription. CCCP requires
the user to simply announce the checksum to the other party, and
the system automatically transcribes the announced checksum and
performs the comparison on behalf of the user (Figure 2). Automat-
ing the checksum comparison task in CCCP provides several key
advantages over the traditional approach:

(1) The success probability of data MITM, due to human errors
or click-through behavior in checksum comparison, could be
highly reduced (or even eliminated).

(2) Longer checksums can be optionally utilized, which increase
the underlying protocol security against data MITM.

(3) The overall checksum validation task becomes more reliable
since the user only needs to perform a single task which reduces
the cognitive burden [46, 47].

Our Contributions: We believe that our work provides the fol-
lowing contributions to the domain of end-to-end secure commu-
nications:

(1) A Novel Crypto Phones Checksum Validation Design: We
propose CCCP, a novel Crypto Phones checksum validation
methodology based on a simple yet effective idea of automated
speech transcription, which can be seamlessly applied to any
Crypto Phones protocol and reduce the chances of MITM at-
tacks (especially data MITM) arising from human errors or
click-through in the mandatory checksum comparison task,
thereby considerably improving the security and usability of
the current Crypto Phones design.
Transcription is now considered a mature technology [22, 31],
used reliably in many real-life domains, and is, therefore, an
excellent candidate to automate the checksum comparison task
in Crypto Phones without much added cost. Although transcrip-
tion may not by itself be fully error-free [18, 27, 38, 55], we show
how it can be carefully used to yield a robust automated check-
sum comparison tool as part of our CCCP system. We design and
implement this tool based on standard transcription engines,
including Google Speech API [17], Apple Mac Dictation [35]
and IBM Watson Speech to Text Service.
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Figure 3: Data MITM

(2) Comprehensive Security-Usability Evaluation via an On-
line User Study: To evaluate the security and usability benefits
provided by CCCP, we design a human factors online study
(with N = 66 Amazon Mechanical Turk participants), that mim-
ics a realistic VoIP scenario and feeds several challenges to the
participants having matching and mismatching 4-word and 8-
word spoken in the legitimate user’s voices, different speaker’s
voices and automatically synthesized voices. We transcribe this
comprehensive data set consisting of 1188 audio files spoken
by a wide variety of speakers in real-life conditions. Our study
results demonstrate that, by using our automated checksum
comparison, CCCP can: (1) drastically reduce the chances of
false positives under data MITM to 0% (leading to a security level
equivalent to what is promised by the underlying cryptographic
protocol), and (2) reduce the false negatives down to about 5%,
much lower than traditional designs (Figure 9).
When further considering the optional, more powerful security
model involving voice MITM, we find that CCCP can reduce
the false positives under different speaker voice MITM attack
down to around 12% and under synthesized voice MITM attack
down to around 20%, which may be significantly lower than
the traditional approach as shown in Figure 9.

2 BACKGROUND
2.1 Protocol and Threat Model
Many checksum-based key exchange protocol exist [44, 50, 52, 62]
that Crypto Phones implementations may adopt. A checksum-based
key exchange protocol is an authenticated key exchange protocol
(over IP channel) which allows Alice and Bob to agree upon a key,
based on checksum validation over an auxiliary channel (e.g., the
human voice channel as in Crypto Phones). The protocol results in
a Short Authenticated String (SAS) checksum per party, commonly
encoded into words or numbers (e.g., “skydive amulet”). Compare-
Confirm is the most popular SAS Checksum Comparison method
[60]. In this method, the checksum is displayed on each party’s
screen, they verbally exchange their respective checksums, and
both accept or reject the connection by comparing the checksums.
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Figure 4: Voice MITM

Copy-Confirm, is another approach in which one party reads the
checksum to the other party, who types it onto his/her device and
gets notified whether the checksum is correct or not.

In the security model of Crypto Phones, devices are connected
via a remote, high-bandwidth bidirectional (Vo)IP channel, and are
assumed to be trusted or uncompromised. An MITM adversary
Mallory attacking the protocol has full control over the channel,
namely, she can eavesdrop and tamper with messages transmitted.

Due to the inherent nature of the Crypto Phones key exchange
protocol, matching checksums imply the successful secure associa-
tion, whereas non-matching checksums imply an MITM attack. The
MITM attacker’s goal is to intercept or tamper with the communi-
cations; not to prevent the users from communicating (or denial of
service). The protocol limits the success probability of the attack to
2−k for k-bit checksums1.

The simplest form of attack against the Crypto Phones key ex-
change protocol is a data-based man-in-the-middle or data MITM
attack. The data MITM attacker acts as an MITM on the data chan-
nel and interferes with the key exchange in an attempt to establish
impersonated sessions with the two parties (Figure 3). As a result of
the attack, the generated checksums do not match at the two parties.
However, if the users erroneously accept mismatching checksums,
the data MITM attack will succeed.

Another type of attack against the Crypto Phones key exchange
protocol was introduced in [58], in which the attacker can tamper
with the voice channel (apart from the data channel). We refer to
this attack as voice MITM (Figure 4). The voice MITM attack utilizes
current advancement in voice synthesis/conversion [5, 21]. In this
attack, after tampering with the key exchange protocol (i.e., running
the data MITM attack), the attacker inserts his/her own voice (i.e.,
“different speaker attack”), or a morphed/converted voice of the

1Current implementation of Crypto Phones usually keeps the checksum short. This
is because: (1) short checksums give practical level of security (i.e., 2−16 success
probability of the attack for a 16-bit checksum), and (2) verifying long checksums is
harder for the users. Some Crypto Phones use a different variation of the key exchange
protocol, where the checksum is long, like a 160-bit collision-resistant hash of the
public keys of two parties [36, 37]. Nevertheless, the main functionality remains the
same in terms of the human tasks.
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Figure 5: Crypto Phones attacks ordered by complex-
ity/practicality

other user (i.e., “voice conversion attack”) into the communication,
attempting to fool the user into accepting the speaker as valid. In
the different speaker attack, the adversary does not perform any
voice synthesis, while in the voice conversion attack the adversary
transforms his voice into the victim’s voice based on some prior
recordings of the victim’s voice.

Data MITM is the most straight-forward and hence a common
form of attack in practice, as Figure 5 shows. Compared to data
MITM attack, voice MITM attack is more complex to establish.
Firstly, it involves manipulation of both voice and data channels.
Secondly, it imposes a delay to look up the checksum in the audio
stream, to drop the legitimate checksum, and to insert an imitated
checksum [58]. Lastly, in the case of the voice conversion attack, it
requires training of the voice conversion tool based on previously
collected audio samples spoken by the victims. Collecting the sam-
ples in victim’s voice may not always be easy or possible. Clearly,
a different speaker attack is simpler than a voice conversion attack
since the attacker does not need to collect voice samples and train
the voice converter, but can easily use his/her voice 2.

Given the hierarchy of the threat model, as a mandatory goal,
real-world Crypto Phones implementations must attempt to make
data MITM attacks as difficult (or infeasible) as possible. Option-
ally, it may attempt to resist voice MITM attacks. Indeed, most
current Crypto Phones only ask the users to perform the Checksum
Comparison task to detect data MITM attacks [34, 64], and do not
explicitly ask the users to perform the Speaker Verification task
to detect voice MITM attacks. Among this class of attacks, differ-
ent speaker attack should be considered a more practical threat
followed by conversion attack, which is the most powerful attack.
This same tiered threat model is what we consider in this paper.

2.2 Limitations of Related Work

Problem 1—Susceptibility to Human Errors and MITM At-
tacks: Crypto Phones checksum validation protocol involves the
essential task of Checksum Comparison (to defeat data MITM).
However, it has been shown that the errors committed by hu-
man users in comparing the checksums lead to false acceptance
of an MITM attack session or false rejection of a valid checksum

2In practice, it is often assumed that the voice MITM attack is very difficult to perform
[34, 64], and therefore, traditional Crypto Phones usually do not explicitly ask the user
to perform the task of Speaker Verification.

[49, 57, 59]. This is a serious vulnerability of the current Crypto
Phones that CCCP aims to primarily address.

Crypto Phones checksum validation also involves the second
optional task of Speaker Verification (to defeat voice MITM). How-
ever, manual speech perception and recognition is a complex task
[54]. Therefore, Speaker Verification is challenging even in benign
settings. On top of that, voice conversion and reordering attacks are
possible against Crypto Phones, which make Speaker Verification
even harder [58].

The results of prior studies show that current designs of Crypto
Phones offer a weak level of security (significantly weaker than
that guaranteed by the underlying protocols), and their usability
is low. Quantitatively, the overall average likelihood of users fail-
ing to detect an attack session is about 25-50%, while the average
likelihood of accepting a legitimate session is about 75% [58, 59].
These drawbacks with the currently deployed approach in Crypto
Phones provide a sound motivation to investigate other checksum
validation models.

Problem 2—Security Degradation with Increase in Check-
sum Size: Checksum size is a crucial security parameter for Crypto
Phones. Theoretically, the security of Crypto Phones should in-
crease exponentially in presence of a data MITM attacker with
increase in the checksum size.

However, [59] shows that increasing the checksum size makes
the Checksum Comparison task more difficult for human users,
eventually decreasing the usability and the security of the system.
Based on this prior study, while the theory guarantees that increas-
ing the checksum size, from 2-word to 4-word increases the security
exponentially, by a factor of 65536 (216), the attacker success prob-
ability increased (from about 30% to 40%). This situation emerges
because, as the checksums became longer, Checksum Comparison
became much harder.

In this light, there is a need to design new validation models,
which preserve the increase in system security with increase in
checksum size, to be consistent with the theoretical bounds of the
protocols.

3 OUR APPROACH: CLOSED CAPTION
CRYPTO PHONES

We introduce a novel Crypto Phone checksum validation design,
with the goal of making the Checksum Comparison and Speaker
Verification tasks highly robust (significantly more robust compared
to the traditional design). The introduced CCCP model (Figure 2)
is built using the speech transcription technology, and carefully
leverages the strengths of both humans and machines.

Transcription Primer: Automated Checksum Comparison in our
suggested schemes is based on a Speech to Text (STT) tool. STT,
which we also refer to as transcriber, takes the voice waveform as
input and recognizes it based on the best matching combination of
words. STT tools use machine learning techniques to incorporate
information about grammar and language structure to generate a
transcription. First, it gets a feature vector of each word and then
uses models to match this feature vector with the most probable fea-
ture vector in the model. Transcription is a fairly mature technology
with extensive applications in various domains involving human
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Figure 6: Path for improved security and usability in CCCP

speech, including closed captioning of videos [10], journalism, and
medical transcription [23].

There are several open-source transcription tools available for
different platforms. These tools are designed for general use, hence
they incorporate the language model and optionally the speaker
model to improve the accuracy of the transcription. They also bene-
fit from signal processing algorithms, neural networks, deep learn-
ing, and big data to provide high accuracy. There are built-in Speech
to Text tools for dictation, voice commands and accessibility on
smartphones (e.g., Siri on iPhone [8] and “Ok Google” command en-
gine on Android phones [32]). Other apps, such as Nuance Dragon
Mobile Assistant [13], are also available and are gaining popularity.
These tools and apps are built on top of powerful Speech to Text
APIs, such as iOS Speech Recognition API [7], android.speech [6],
and Dragon NaturallySpeaking [14]. Other systems such as IBM
Watson Speech to Text [29] and Google Cloud Speech API [17] are
available for cloud and web platforms.

Increasing the Robustness of Checksum Comparison
through Transcription: Our key idea in CCCP is to automate the
process of Checksum Comparison by using the automated human
speech transcription technology. We propose to place automated
checksum comparison tool in the Crypto Phones, which receives
the audio checksum from one end (Alice’s checksum referred to as
SASA in Figure 2), and transcribes it at the other end (Bob) followed
by comparing the transcribed output with the local checksum
(Bob’s checksum referred to as SASB in Figure 2). Alice only needs
to verbally announce the checksum (like in current Crypto Phones)
but does not need to compare the checksum (unlike current Crypto
Phones). To initiate the transcription process, similar to speech
recognition systems, CCCP can spot a specific keyword (e.g., “Go
Secure”). Alternatively, tapping a “checksum matching” button
embedded within the UI could trigger the transcriber.

An indirect advantage of using the transcription technology is
the capability to use long checksums since Checksum Comparison
is being performed by a machine, not a human. To recall, the longer
the checksum, the better the theoretical security offered by the

checksum validation protocol against MITM attacks. That is, we can
push towards achieving a nearly negligible probability of success
for the data MITM attacker.

In addition to enhancing security against the data MITM attack,
CCCP promises to improve usability by taking the human user out
of the loop of the Checksum Comparison task, except for verbally
announcing the checksum, and thus, reduces the chances of false
negatives (i.e., disconnecting valid calls).

As part of CCCP, we build a Checksum Comparison tool suitable
for our purpose, based on the off-the-shelf transcription systems.
The current transcription technology [42] is known to be robust
and is in wide use as discussed above (primer), and thus we hope to
have excellent accuracy in the Checksum Comparison task based on
the transcription systems, thereby offering a high level of resistance
to data MITM attack.
Optionally Increasing the Robustness of Speaker Verifica-
tion through Single-Tasking: To optionally resist against voice
MITM, similar to current Crypto Phones, CCCP relies on the human
user to verify the speaker and judge if the received checksum is
spoken by the original speaker. In particular, the user should decide
if the voice that speaks the checksum belongs to the person he/she
is calling, either based on pre-familiarity with the speaker, or, if the
speaker is not already familiar, by assuring that the person who
speaks the checksum is the one who takes part in the rest of the
conversation [34].

However, there is a crucial difference between traditional Crypto
Phones and CCCP in Speaker Verification. Relieving the user from
the task of Checksum Comparison (through transcription as de-
scribed above), may improve the overall performance of the user
since the user is now only involved in a “single task” of Speaker
Verification. Therefore, by automating the Checksum Comparison,
we may also improve the performance of Speaker Verification under
benign and voice MITM attack settings. In contrast, current Crypto
Phones require the user to “multi-task”, which could be detrimental
to users’ performance [46–48, 51].

Our hypothesis is that in CCCP, original and different speakers
will be reasonably well-recognized, and even the converted voice
samples will be fairly recognized.

Summary of Projected Advantages of CCCP: Based on the
above discussion, CCCP could significantly improve the security
and usability of the traditional design. Figure 6 illustrates how
CCCP strives to increase security and usability of Crypto Phones,
as a direct or indirect result of automating Checksum Comparison,
the use of longer checksums, and single-tasking. We summarize the
advantages of our scheme (CCCP) compared to the current scheme
(traditional Crypto Phones) in Table 1.

4 CCCP EVALUATION STUDY DESIGN
4.1 Objectives
Our study is designed to measure the security and usability of
CCCP, based on the threat model depicted in Figure 5. The goals of
the studies are outlined below.
(1) Robustness against Data and Voice MITMAttacks: For se-

curity assessment against the data MITM attack, we are in-
terested in determining how often the transcriber accepts a
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Table 1: The projected usability and security properties of CCCP contrasted with the traditional design. The highlighted cells
represent the key security and usability improvements offered by CCCP over the traditional designs under the required task
of Checksum Comparison.

SECURITY USABILITY
Voice MITM (Optional)Checksum Size Data MITM Different Voice Converted Voice Matching Checksums Original Speaker

(Optional)
Traditional Design Short Poor Poor Poor Poor Poor
CCCP Short (and Long) Excellent Good Fair Very Good Good

mismatching checksum due to potential transcription errors.
False Positive Rate of Checksum Comparison (FPRcc ) denotes
the probability of accepting such instances.
Moreover, for security assessment against the voice MITM at-
tack, we are interested in determining how often the user fails
to detect a different speaker’s voice or a converted voice. False
Positive Rate of Speaker Verification (FPRsv ) denotes the proba-
bility of accepting such attacked instances.

(2) Accuracy in Benign Settings: For usability assessment, we
are interested in finding how often the system rejects matching
checksums spoken in an original speaker’s voice. False Negative
Rate of Checksum Comparison (FNRcc ) represents the prob-
ability of rejecting a valid checksum by the transcriber (due
to failure of the transcriber, and potential failure of users in
correctly speaking the checksum).
In addition, as an optional task in CCCP, we would like to
find out how often the users reject the caller announcing the
matching checksum spoken in the original speaker’s voice. False
Negative Rate of Speaker Verification (FNRsv ) represents the
probability of the listener rejecting a valid speaker.

(3) Efficiency: The delays incurred in performing the Checksum
Comparison and/or Speaker Verification tasks, referred to as
completion time, may impact the overall usability of the system.
This delay might arise due to: (1) users speaking the check-
sum (referred to as “Duration of Checksum”), (2) users’ delay
in verifying the speaker (referred to as “Tsv ”), and (3) users
requesting the other party to repeat the checksum (referred to
as “Replay Rate” or “RR”). The delay may prolong the process
and establishment of the phone call. Perhaps less significant is
the time taken by the transcriber (referred to as “Tcc ” in our
study).

(4) Comparison with Traditional Crypto Phones: As a base-
line for our study, we intend to compare the performance and
accuracy of CCCP with traditional 2-word and 4-word Crypto
Phones.

4.2 System Setup
To show the feasibility of our CCCP model in practice, and to sup-
port the security and usability study, we developed an application
for web-based clients to make web-based VoIP to our system. Next,
we describe the main components of this setup in more detail as
listed in Figure 7.

Web Application

Web-based VoIP Client

and IVR Navigator 

HTML5 Audio Recorder

Instructions

Response Recorder

IVR on FreeSWITCH

Study Websites

FreeSWITCH Telephony

PostgreSQL Server

Questionnaire Forms

Server

Audio File Storage

Figure 7: The study implementation and setup

Web-based Interface: The web-based interface was developed in
PHP, JavaScript, and HTML5 and was the entry point for the partic-
ipants in the study. It consisted of web-based WebRTC (Web-based
Real-time Communications) voice client, and a database client to
connect to the database server to read questions and store partic-
ipants’ responses. It also included a web-based audio recorder to
record the voices of the participants when they spoke the checksum.
The web-server was hosted on an Amazon Elastic Compute Cloud
(Amazon EC2) t1.micro instance with up to 3.3Ghz CPU, 1GB of
Memory, and Debian 8 Jessie operating system.

Web-based Voice Application: We set up a softswitch server on
the same EC2 machine as the webserver. We installed and config-
ured FreeSWITCH 1.6.7 as the softswitch [16]. We configured the
security group (firewall) on the EC2 instance to accept web and
voice communication protocols (HTTP, HTTPS, WS, WSS, SIP, and
RTP). The open source FreeSWITCH software supports VoIP proto-
cols including Session Initiation Protocol (SIP), IVR, and WebRTC
that are essential components to connect the web-based clients to
the switch.

We designed and implemented the web-based VoIP client based
on SIP session initiation protocol, and WebRTC transport protocol.
We used the SIP server on our cloud-based telephony platform
to initiate the session. The web-based voice client uses sipML5
open source HTML5 SIP client API [39], and supports Dual Tone
Multi-Frequency signaling (DTMF).

In our study (described in Section 4.3), we configured the IVR
system on FreeSWITCH system to play the instructions, voice
recordings of speakers and checksum challenges (from the pre-
recorded audio files of the original speaker, different speaker and
converted voice), based on the DTMF signals it receives from the
web- based application (i.e., clicking buttons on the web-page is
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Figure 8: The protocol flow and methodology of our CCCP
human factors study

translated to DTMF and is sent to the softswitch). To randomize the
ordering of the displayed and played checksums, we generated a
18 × 18 Latin Square3 using which we set the IVR to play the audio
samples. The same ordering was used to display the checksum that
the participant should speak.

Response Database: We set up a PostgreSQL database on our
Amazon EC2 server to store the answers that participants provide
to the demographic questionnaire, and to the Speaker Verification .

Audio Storage:We recorded the audio collected from the partici-
pants in the same EC2 server.

Voice Dataset We picked one male speaker from the
CMU_ARCTIC US English dataset [11] as the original speaker of
the study (victim of the attack). As a different speaker (simple voice
MITM attacker), we picked another male speaker from the same
dataset. We converted voice of the different speaker (attacker) to
the voice of the original speaker (victim) using the Festvox voice
transformation tool [5]. This type of voice synthesis was used
in [58, 59] to perform the conversion attack against traditional
Crypto Phones. We used 100 sentences spoken by the victim and
the attackers to train the voice conversion system.

4.3 Study Protocol
The study design and protocol flow are shown in Figure 8. The
study is in line with [59]–the participants are asked to speak the
checksum and verify the speaker, but, unlike [59], they do not
compare the checksum.

In the pre-study step, we asked the participants to follow a link to
our web-based VoIP application. The participants were first asked to
fill out a demographic questionnaire. These questions poll for each
participant’s age, gender and education. An additional question
was asked for participants’ familiarity with VoIP applications. Also,
they were asked if their first language is English, and whether
they suffer from any hearing impairments (relevant to the task of
3Latin square is an n × n array filled with n different symbols, each occurring exactly
once in each row and exactly once in each column.

Speaker Verification). Then the participants were given instruction
on how to perform the main study tasks, i.e., how to establish a call,
speak the checksum, and verify the speaker.

In the main study phase, first, participants were asked to make a
web-based VoIP call to our soft-switch through the web-based appli-
cation. Once they get connected to the telephony system, they could
listen to the instructions through the IVR and read the displayed
instructions about how to proceed in each step of the study. Second,
the voice of a speaker was played for 2 minutes and participants
were instructed to get familiar with the speaker’s voice4. Third,
participants were asked to speak a displayed checksums picked
from CMU_ARCTIC sentences (listed in Section A.1) (“Checksum
Speaking” task), and fourth to verify a speaker who speaks the same
checksum (Speaker Verification task). The manual Speaker Verifi-
cation task was performed online and the automated Checksum
Comparison task was performed offline.

In the Checksum Speaking task, participants were asked to speak
the displayed checksum. The spoken audio was recorded and up-
loaded to our system for offline transcription and analysis. In the
Speaker Verification task, they were asked to listen to a voice that
speaks the checksum and verify if the voice is the one that they
originally got familiar with. In this part of the experiment, the sam-
ples of the original speaker’s voice, the different speaker’s voice,
and the converted voice, were played randomly one at a time.

The total number of challenges presented in themain study phase
consisted of 18 samples. The samples included: 9 samples of short-
size checksums (4 words) and 9 samples of long-size checksums (8
words). An equal number of samples of the original speaker, differ-
ent speaker and converted voices (9 samples each) were played.

We published a Human Intelligence Task (HIT) on Amazon Me-
chanical Turk (MTurk) and recruited 66 subjects. The study was
approved by our university’s IRB. Participants who completed the
HIT were compensated $1.25 each. The average duration of the ex-
periment was around 20 minutes. We chose the incentive based on
similar MTurk HITs (e.g., [59]). Appendix A.3 shows a screenshot
of several other similar studies.

4.4 Statistical Analysis Methodology
All results of statistical significance of our data analysis pursued
in the next section are reported at a 95% confidence level. The
non-parametric Friedman test is used to test for the existence of sta-
tistical differences within the groups, and, if it succeeded, Wilcoxon
Singed-Rank test is used to examine in which pairs the differences
occurred. The statistically significant pairwise comparisons are
reported with Bonferroni corrections.

5 ANALYSIS AND RESULTS
5.1 Demographic Information
There were 55.8% males and 44.2% females among the 66 partici-
pants in our study. Most of the participants were between 18 and
44 years old (33.8% 18-24 years, 32.5% 25-34 years, 23.1% 35-44

4In line with [58, 59], our study was designed to test a scenario involving a unfamiliar
speaker’s voice. Current Crypto Phones also ask the users to verify that the voice
speaking the checksum matches the voice used in the rest of the conversation for an
unfamiliar speaker.
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years, 8.0% 45-54 years, and the rest 55-64 years). 26.1% of partici-
pants were high school graduates, 32.7% had a college degree, 33.4%
had Bachelor’s degree and 7.9% had Master’s degree. This analysis
shows that participants represent a diverse population by gender,
age, and education. More than 96.7% of the participants declared
that they did not have any hearing impairment5.

5.2 Design of Checksum Comparison with
Standard Transcribers

Using the collected data, we ran a basic analysis of several speech to
text tools including Google Speech API [17], Apple Mac Dictation
[35], IBMWatson Speech to Text Service, and CMUSphinx [12]. We
transcribed 100 audio samples checksums (about 800 words) using
each of the tools.

For CMUSphinx, we used the Sphinx4 transcriber demo devel-
oped in Java, which showed very high latency. Therefore, we dis-
carded it from the study. To test Google Speech, we played back
the audio files using an iPhone 7 and used the dictation add-on
on Google Docs to transcribe the audio. Similarly to test Apple
Mac dictation, we enabled the Dictation and Speech on a MacBook
laptop, played back the audio files on the phone and transcribed
the audio. To test IBM Watson tool, we set up the environment
on Watson Developer Cloud and developed a Java application that
executes curl requests to the transcriber.

The average Word Error Rate (WER) from this pilot experiment
was 12% for Google Speech API, 10% for Apple Mac Dictation, and
10% for IBM Watson service. This preliminary evidence demon-
strates the strong capability of the existing transcription tools ap-
plied to SAS checksum transcription, which can yield to robust
Crypto Phones systems.

We selected the IBM Watson Speech to Text service for the rest
of our analysis, due to its high accuracy and simplicity of devel-
opment. We developed a Java application that uses IBM Watson
Speech to Text service to build an automated comparison tool. After
receiving the result of transcription, we processed the output (gen-
erated in JSON format) to compare the transcribed audio against
the checksum. We stored the result of the analysis in the database.

Although IBM Watson Speech to Text is a cloud-based tool, we
are not suggesting a cloud-based service. We note that our idea is
not limited to this tool, considering the high performance of many
transcribers (built on top of large training models). Other on-board
tools with similar accuracies, such as Nuance [23], can be integrated
into the apps.

5.3 Resistance to Attacks
Robustness against Data MITM: We first analyze the instances
of accepting mismatching checksums (FPRcc ), which leads to the
success of a data MITM attack as shown in column 3 of Table 2.
Given the frequency and simplicity of data MITM (as per Figure 5),
FPRcc is the most important parameter in CCCP.

To measure FPRcc , we compared the incorrectly transcribed
words against all the words in our checksum dictionary. The results
show that regardless of checksum size, FPRcc for all samples is

5Given a small fraction of potential hearing impaired users, we report our analysis
results in aggregate corresponding to all participants.

Table 2: Analysis of the data MITM attack. FNRr (the actual
FNR of the system) shows the error when at most half of the
words in the checksum are transcribed incorrectly. FPRcc re-
mains the same with or without the relaxed mode.

Checksum
Size

Checksum
Duration FPRcc FNRr FNRcc

4-word 5.79s (1.81) 0% 4.38% 24.57%
8-word 10.28s (2.87) 0% 7.44% 63.17%

Table 3: Analysis of Speaker Verification for the Different
Speaker attack

Checksum
Size

Checksum
Duration FPRsv Tsv RR

4-word 2.72s 6.56% 4.33s 5.56%
8-word 6.07s 12.13% 5.54s 4.04%

Table 4: Analysis of Speaker Verification for the Voice Con-
version attack

Checksum
Size

Checksum
Duration FPRsv Tsv RR

4-word 3.85s 18.43% 5.27s 6.57%
8-word 5.50s 20.45% 5.91s 1.51%

0%. Knowing that none of the incorrectly transcribed sequences
matched any possible checksum shows that it is highly unlikely
or impossible for the transcriber to decode an attacked checksum
to the valid checksum for a particular session. This result is the
most encouraging outcome of our CCCP solution that proves how
automated Checksum Comparison can eliminate the possibility of
data MITM attacks.

Robustness against Voice MITM: Our study shows that FPRsv
for the different speaker attack is at most 12%, which suggests that
CCCP can resist this attack in a large majority of cases. The result
is shown in column 3 of Table 3.

For the voice conversion attack, our study shows a higher FPRsv
(about 20%) compared to different speaker’s voice (participants were
less successful in detecting the attack since the voice is now more
similar to the victim’s voice). The result is shown in column 3 of
Table 4.

Again, since FPR under data MITM attack is 0%, FPRsv in Table
4 captures the rate with which the voice conversion attack will
succeed. These results suggest that even the sophisticated voice
conversion attack can be detected reasonably well for practical
purposes. We recall that this attack is not easy to launch due to the
delays introduced in the voice channel and the need to collect prior
voice samples [58].

5.4 Accuracy in Benign Setting
Accuracy of Checksum Comparison in Benign Case: The er-
rors that happened in transcribing might be the result of incorrect
pronunciation by the human user or incorrect transcription by the
transcriber tool. The collected audio samples in our experiment
were over 1100 files (over 200 minutes) and we could not manually
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verify if the participants had spoken all the words accurately. How-
ever, in a random selection of 50 audio files, we did not notice any
incorrect pronunciation of the words. Therefore, we assume that the
reported error rate is related to incorrect automated transcription
and not incorrect pronunciation by the users.

We analyze FNRcc based on the number of incorrect words in
each checksum. FNRcc is 24.57% and 63.17% for 4-word and 8-word
checksum, respectively, when at least one word is incorrectly tran-
scribed. Although these results by themselves may seem high, we
show how we can effectively improve them by orders of magnitude.

The higher error rate in the 8-word checksum compared to the
4-word checksum is not surprising. As one may expect, there is a
higher probability of generating a single-word error in an 8-word
sentence compared to a 4-word sentence. In theory, if the probability
of incorrectly transcribing at least one word in a 4-word checksum
is p1, such probability increases to 2p1 − p21 in a 8-word checksum.

Wilcoxon signed-rank test conducted using alpha levels of 0.05.
and showed statistical significance (p = 0.008) for the compari-
son between FNRcc of 4-word and FNRcc of 8-word checksum.
This analysis confirms that FNRcc significantly increases when the
checksum becomes longer.

Relaxing Automated Checksum Comparison to Signifi-
cantly Reduce RejectionRate: Since FNRcc leads to the rejection
of a benign call (which may degrade the usability of the system), our
goal is to reduce this error. To decrease the error rate, we propose
to relax the assumption of accepting the checksums. For example,
we suggest accepting the checksum even if at least half of the words
in the checksum are incorrectly transcribed (such as for a 4-word
checksum, the transcriber accepts it even if one or two words are
transcribed incorrectly).

FNRr in Table 2 (to be read as FNR of Checksum Comparison
in “r”elaxed mode) shows the result of such relaxation. Using this
approach, FNRcc significantly reduces from around 25% and over,
to around 5%. With this approach the usability of the system may
increase since rejecting the calls due to the incorrect matching
of the valid checksum will be less frequent. Figure A.1a and A.1b
in Appendix A.3, further show the effect of “number of tolerated
incorrect words” on FNRr .

We did not find a statistically significant difference in FNRr
between the two checksum sizes, which implies that longer check-
sums may not change the usability of the system induced by an
unwanted rejection of calls.

Relaxing the Automated Checksum Comparison has an impact
on the theoretical security of CCCP. Using this approach, the secu-
rity of a k-word checksum (2−k ) is reduced to the security provided
by a k/2-word checksum (2−k/2). For example, in our study, the
security offered by a 4-word checksum reduces to that of a 2-word
checksum, similarly, 8-word to 4-word. Although, the security of
CCCP will be reduced in the “relaxed” mode, still if more than 4-
word checksum is incorporated, CCCP can offer significantly higher
security compared to traditional Crypto Phones with 2-word check-
sum as argued next.

Since FPRcc is essentially 0% in CCCP, the security provided by
CCCP is close to the theoretical security promised by the underlying
protocol. Therefore, in a relaxed mode (if transcription error in up
to half of the checksum is accepted), a 4-word checksum offers a

Table 5: Analysis of Speaker Verification for the original
speaker

Checksum
Size

Checksum
Duration FNRsv Tsv RR

4-word 3.66s 25.76% 5.71s 10.61%
8-word 6.79s 21.72% 5.96s 2.02%

security level close to the security of 2-word checksum, that is 2−16.
However, in the traditional Crypto Phones although the security
provided by a 2-word checksum is expected to be 2−16, due to
human errors in Checksum Comparison the security degrades to
around 30% [59]. In practice, we can pick any number of tolerated
incorrect words to optimize accuracy and security.

Accuracy of Speaker Verification in Benign Case:We are also
interested in investigating FNRsv , which represents the instances
where the user mistakenly rejects the CCCP call due to the failure
in recognizing a legitimate user’s voice. Our study shows that FNR
for the 4-word and 8-wordchecksums were 25.76% and 21.72% re-
spectively as shown in column 3 of Table 5. In analyzing this higher
error rate we should recall that the voice MITM is a less plausible
attack (especially with the converted voice).

5.5 Efficiency

SAS Length: Column 2 of Table 2 shows the average duration of
speaking the checksum. As expected, the duration of the checksum
increases as the number of words increases. Wilcoxon signed-rank
test showed statistical significance when comparing the 4-word
and 8-word (p = 0).

Time Taken by Speaker Verification (Tsv ) and Replay Rate:
The average duration of making a decision to accept or reject the
different speaker, conversion attack, and original speakers voice are
shown under Tsv in column 4 of Table 3, 4, and 5, respectively. We
did not find any statistically significant difference in Tsv between
4-word and 8-word checksums in any of the attack and benign
settings.

Note that the average Tsv in some cases is less than the average
duration of the samples, which shows that users did not fully listen
to the samples before accepting or rejecting the call. However, in all
cases, Tsv increases by the increase in the duration of the sample.
We will discuss how we should incorporate this result in designing
checksums in Section 6.

The results of Replay Rate (RR) is shown in column 5 of Table 3,
4, and 5. Replay Rate is around 5% when averaged over all instances
of attack and benign cases. The maximum Replay Rate is around
10% in the benign case for 4-word checksum. It seems that the
participants did not frequently replay the samples more than once
before deciding to accept or reject them.We did not find statistically
significant difference in RR between the two checksum sizes in any
of the attack and benign settings.

Time Taken for Checksum Comparison (Tcc ): Since in our
study, Checksum Comparison analysis is performed offline, the
efficiency of the transcriber (Tcc ) does not play a major role in the
imposed delay. However, for the sake of completeness, we report
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Figure 9: Comparison of FPRcc and FPRsv between CCCP and traditional design

Tcc analysis here. Our analysis shows that IBM Watson Speech to
Text tool can operate at near real-time speed. Using our dataset, Tcc
is 59 words per minute, which seems to be efficient for all practical
checksum sizes. Therefore, the transcriber can run in parallel with
receiving the checksum (i.e., while the user speaks the checksum).
This performance analysis was performed on a MacBook Air with
1.3GHz Intel Core i5 processor with 4GB of DDR3 Memory, over a
300Mbps Internet link. There are faster Speech to Text tools that
have reported the speed of 450 words per minute [9], which may
be utilized in future real-life implementations of CCCP.

5.6 CCCP vs. Traditional Designs
Although our study was not designed to directly compare CCCP
with the traditional designs, we summarize an indirect quantitative
comparison and illustrate it in Figure 9. The MTurk participants
in the study of [59] had demographic characteristics similar to the
participants in our study, which allows for us to compare the results
between the two studies meaningfully. Therefore, this represents a
relatively fair, between-subjects comparison with a study involving
a similar design/dataset and similar set of participants. In this com-
parison, we consider CCCP in the relaxed mode (i.e., when at most
half of the words in the checksum are transcribed incorrectly), and
therefore compare our 4-word and 8-word results against 2-word
and 4-word results of [59], respectively. This is a fair comparison
at the equivalent level of security offered by CCCP relaxed mode
versus the traditional design tested in [59].

Mandatory Threat Model: Data MITM: The most appealing
contribution of our work is that CCCP eliminates the chances of
data MITM — the most commonly occurring attack in practice
([19, 30, 56]) (Figure 9). With respect to Checksum Comparison, our
study shows that if the only applicable attack is data MITM, then
the FPR for CCCP is close to 0%6. In contrast, the results of [59]
show that in the traditional Crypto Phones, with manual Checksum
Comparison, due to human errors, the average FPR of accepting
a mismatching checksum is on average around 28% and 39% for

6Precisely, FPR would be no more than the success rate of the random attack against
the protocol, that is, 2−k , for a k-bit checksum

2- and 4-word checksums, respectively. Our automated Checksum
Comparison basically eliminates this error.

Also with respect to the average FNR, [59] reports the error
rates of about 22% and 25% for 2- and 4-word checksums, respec-
tively, while CCCP reduces the error rates to around 4% and 7%
in the relaxed mode for the 4- and 8-word checksums. Therefore,
CCCP not only drastically reduces FPR, but also eliminates the
click-through effect by automating Checksum Comparison. We
believe these improvements constitute an important breakthrough
in Crypto Phones’ security. Moreover, CCCP’s time duration is low
(about 5s).

Optional ThreatModel: VoiceMITM: Even consideringmore so-
phisticated, i.e., less common, voice MITM attacks, CCCP provides
a significant security improvement (Figure 9), which we attribute
to CCCP’s “single tasking” feature, since, in our study of CCCP,
users are only involved in one task of Speaker Verification, whereas
in [59], participants had to perform both Speaker Verification and
Checksum Comparison. The Speaker Verification task in [59] shows
FPRsv of about 40% for 4-word checksum for the different speaker
attack (compared to 6% in our study) and 43% for voice conversion
attack (compared to 18% in our study). For the 8-word checksum,
the Speaker Verification task in [59] shows FPRsv of about 38% for
the different speaker attack (compared to 12% in our study) and
39% for voice conversion attack (compared to 20% in our study).

In terms of usability, although our FNRsv are in line with those
of traditional designs (21-25%), we believe that single tasking would
make the CCCP system more usable by reducing the cognitive
burden on the users, which might also prevent them from clicking
through speaker verifications in practice. Therefore, with respect
to Speaker Verification, our study also shows that users generally
performed better in detecting the voice MITM attack in CCCP
compared to the reports of [59].

6 SUMMARY AND KEY INSIGHTS

(1) Defeating Data MITM Attacks due to Human Errors and
Click-Through: By automating the Checksum Comparison task,
we effectively reduced FPRcc to 0%. This result implies that CCCP
drastically improves security against data MITM attack, compared
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to traditional Crypto Phones. This is a notable result, considering
that data MITM attack is the most dominant and practical form of
attack against Crypto Phones.

In current Crypto Phones and even CCCP, user’s primary task
is to have a conversation, while the establishment of the secure
channel is their secondary task. Therefore, users may skip the
security task or accept a mismatching checksum without fully
verifying it to proceed with the call. This click-through or rushing
user behavior has also been reported in the context of localized
device pairing schemes [49], security warnings [41] and end-to-end
encrypted messaging apps [57].

CCCP seems naturally more robust to such a click-through be-
havior in detecting data MITM attacks compared to traditional
designs, due to the automation of Checksum Comparison. Since
the FPRcc for existing designs is high, they can not be sure when
the users are under attack and therefore can not reliably inform the
users of the presence of the attack. In contrast, since the FPRcc for
CCCP is 0%, the Crypto Phones built on the CCCP model can very
reliably alert the users about an ongoing attack, therefore, the users
can make an informed decision to drop the call. The app can also
optionally drop the call if the automated Checksum Comparison
detects an ongoing data MITM attack. Automatically dropping the
calls may have some usability price as CCCP’s FNRcc is around
5% and therefore around 5% of the valid calls may have to be re-
jected. However, it is important to notice that CCCP’s FNRcc is still
much lower compared to that of the current Crypto Phones designs
(around 25%) (as reported in Section 5.6), which means that current
designs can not at all afford to automatically drop the calls under
the suspicion of the attack.

(2) Other Significant Benefits: Automating the Checksum Com-
parison task offers two additional/optional benefits that further
improves security indirectly:

2a) Longer Checksums: Automating the Checksum Compar-
ison task facilitated the use of longer checksums and as a result
increases the security of the system significantly. For example, the
probability of the attack success in CCCP (relaxed mode) reduces
from 2−16 for a 4-word (32 bit) checksum to 2−32 for a 8-word (64
bit) checksum.

2b) Single-Tasking: By automating Checksum Comparison in
CCCP, users are only involved in one task of Speaker Verification,
while in current Crypto Phones models, users are involved in two
tasks of Speaker Verification and Checksum Comparison. There are
several research work, which studied and argued that multitasking
reduces efficiency and performance since the brain can focus on
one task at a time (e.g., [46–48, 51]). Therefore, automating Check-
sum Comparison might have an implicit effect on improving the
manual Speaker Verification task by reducing the number of the
simultaneous tasks that users need to perform at a given time.

(3) Efficiency: Longer checksums improve the security of CCCP.
However, longer checksums increase the time taken to speak the
checksum and the time taken to reject or accept the speaker’s voice
(Tsv ). This may impact the usability of the system. For example,
our study showed that on average it takes about 10s to speak the
8-word checksum and users took on average about 6s to accept or
reject the speaker’s voice. Assuming that the transcriber works in

real-time, and the transcription and Speaker Verification runs in
parallel, in practice, the checksum validation would take about 10s
to complete. For a 4-word checksum, this time is around 6s.

The analysis also shows that the users do not wait for the whole
checksum to be spoken before accepting or rejecting the voice.
Hence, it seems the dominant delay in CCCP checksum validation
is in speaking the checksum.

We infer that while the size of the checksum in bits increases the
theoretical security, the duration of the checksum in seconds may
affect usability. Since our study shows that users take no more than
6s for Speaker Verification (regardless of the checksum size and
duration), a practical CCCP may design a checksum dictionary to
incorporate this result to limit any n-word checksum (e.g., 8 words
to provide 2−32 theoretical security against MITM) to a certain
duration (e.g., 6s, since users take no more than 6s to verify the
speaker).

7 DISCUSSION AND FUTURE DIRECTIONS
7.1 Defeating Voice Reordering Attacks
In Copy-Confirm checksum validation, where the users are asked
to copy the checksum spoken by the other party into their device
(and let the device compare it), typically numerical checksums are
used. This is because the use of phrases is not practical due to the
limitation of users in typing the (random) words. However, numer-
ical checksum is highly susceptible to reordering attacks [58]. Since
in CCCP, Checksum Comparison is now automated, several types
of checksums become possible (e.g., words from a large, dynamic
dictionary) making reordering attacks practically impossible.

7.2 Study Strengths and Limitations
In our human factors study designed to evaluate CCCP, we col-
lected data set from a large and diverse sample of users, operating
from their own computers (potentially with diverse hardware and
software, including microphones to record the spoken samples).
Our collected data included over 1100 audio samples, and responses
to around 400 questions in each category of checksum challenges
(attacked and benign setting for 4- and 8-word). This study was
supported by our online setup that emulated a realistic VoIP call in
a web-based setting. The web-based VoIP architecture helped us to
gather data that would have not been easily collected if the setup
were based on a mobile VoIP app or a lab study.

Similar to any study that involves human users, our study also
had certain limitations. First, we recruited native American English
speakers through Amazon Turk and our study did not cover any
other accent. At this stage of the study, we preferred to focus on
one language to show the promising feasibility of the CCCP notion.
Future research may be needed to evaluate other accents. Second,
some of the recorded data samples in our study had very poor
quality and were not recognized by the speech recognition tool or
were generating unusual number of errors. After manually listening
to and checking these samples with high error rates, we noticed
that the quality of these samples was so poor, due to excessive
noise, that they were not even easily recognized by the human user.
Therefore, we discarded these data samples collected from 6 users
from our analysis. We assume that such low audio quality will be
discarded by the users in a phone call and users will drop the call.
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7.3 Future Work

Integrating with Existing Crypto Phones: Our study showed
that automated Checksum Comparison is a practical and feasible
approach that can effectively eliminate the data MITM attacks. We
also derived several insights for Crypto Phones designs regarding
the duration of the checksums and the number of words in the
checksum, using which the performance of transcription and the
performance of humans user in – now the only – task of Speaker
Verification (if required) is improved.

In our future work, we plan to develop an SDK that can indepen-
dently be used by Crypto Phones. Since in current Crypto Phones,
Checksum Comparison is a human task independent of the key ex-
change protocol, integration of automated Checksum Comparison
tool with the current Crypto Phones would be straight-forward. We
will incorporate the insights drawn from our study into designing
such tool.

We also plan to develop a real-time automated Checksum Com-
parison tool using off-the-shelf STT engines designed for mobile
platforms (e.g., Nuance Dragon Mobile SDK) and we will customize
it for the specific needs of checksum transcription. To activate
the transcriber for automated Checksum Comparison, we suggest
Crypto Phones to ask the user to speak a fixed preamble phrase
during the checksum validation phase (e.g., similar to “Ok Google”
in Android) through their checksum validation screen. Traditional
Crypto Phones, such as Silent Circle, can then use our tool to con-
vert the received checksums to text and automatically compare it
with the checksum generated by the protocol locally.

Further Improving the Accuracy of the Transcriber:

1) Limited-Domain Transcribers: The existing off-the-shelf
STT tools are designed for the natural language grammar (i.e.,
arbitrary speech communications). This allows the tools to predict
the words based on the context of the speech. However, this may not
be ideal for the Crypto Phones Checksum Comparison functionality
where a string of isolated words (not meaningful text) should be
transcribed. Since a general purpose transcriber may not always
perform accurately in the context of Crypto Phone application
domain, designing a specialized grammar for the tool may improve
the accuracy of the transcriber. A future research avenue is to
consider the requirements of the Crypto Phones to design a special-
purpose transcriber that fulfills the narrow and specific need of
the automated Checksum Comparison task by designing a limited-
domain transcriber on top of the existing off-the-shelf speech-to-
text engines.

2) Optimal Checksum Dictionary: The checksum vocabulary
is very compact compared to the natural language. For example,
PGP word list [26], which is commonly used in Crypto Phones,
consists of two lists of 256 phonetically distinct words. We envision
that limiting the dictionary of the spoken words would have a
significant impact on the accuracy of the transcriber.

We manually analyzed several samples of the transcription and
observed that for instance, homophones that sound alike but have
different meanings and different spellings (e.g., ate and eight), are
not transcribed accurately in our application. By removing the
homophones from our data set, we observed that we may improve
the overall transcription WER from about 10% to about 9%. In this

light, as part of future research, we suggest designing a dictionary
of words that are generally transcribed more accurately by the tools
(e.g., avoiding homophones in the dictionary).

Integrating with Other Defenses: An orthogonal defense
against data or voice MITM attack is to detect the caller source.
An interesting caller detection approach is PinDr0p, which deter-
mines the source of the call and the path taken by a call [43]. This
technique detects and measures audio features to identify the voice
codecs, packet loss and noise profiles to identify the caller. However,
such approach on its own may not fully detect the MITM attacker
which resides on the same network as the victim. Another recent
approach to identify the entities in a call is AuthLoop [53], which
provides authentication within the voice channel. Unlike Crypto
Phones, AuthLoop does not require an Internet connection to ex-
change the keys, and it authenticates the callers solely within the
voice channel. We believe that CCCP is an independent solution
and may work in conjunction with these prior techniques. Such
integration may be explored in future work.

Potential Sophisticated Attacks on Transcription: Sophisti-
cated attacks against transcription technology have been proposed
in recent work [45, 61]. Such attacks produce audio samples unin-
telligible (though audible) to the human user but interpretable by
the transcriber, and may be used to compromise virtual personal
assistant apps by running potentially hidden commands given by
the attacker. Although such attacks may be conceptually applicable
to the automated Checksum Comparison task in our scheme, we
assume that in a phone conversation, the user who attends the call
(and optionally verifies the speaker) can supposedly detect such
suspiciously malformed (robotically sounding) audio samples. A
careful further study is needed to evaluate the effect and practicality
of such attacks in the context of CCCP.

8 CONCLUSIONS
In this paper, we introduced and studied CCCP, a novel approach to
Crypto Phones built on top of speech transcription. CCCP works by
automating the checksum comparison decisions, thereby reducing
the reliance on human users who are prone to making errors, or
even clicking-through, such decisions. Our work shows that CCCP
can fully detect mismatching checksums and therefore defeat man-
in-the-middle attacks that only tamper with the data channel (the
most realistic form of attack against any secure communication
protocol, including Crypto Phones). CCCP can also drastically re-
duce the chances of rejecting matching checksums compared to the
traditional approach, thereby improving the rates at which secure
calls/connections can be established. CCCP can optionally facilitate
the use of longer checksums. Longer checksums also increase the
security level provided by the underlying cryptographic protocols.

As an important side-effect of automating Checksum Compari-
son, CCCP unburden the users to only perform the single task of
validating the identity of the checksum announcing speaker. Our
work shows that this fundamental attribute may help increase the
robustness of human users in detecting even more sophisticated
forms of man-in-the-middle attacks that tamper with both data and
voice channels, especially when contrasted with currently deployed
Crypto Phones, although at the cost of increased delay in speaking
longer checksums.
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A APPENDIX
A.1 Evaluated ChecksumWords
across, adrift, adverb, advisedly, again, Alberta, ally, almost, already,
amount, anguish, announce, anyway, appreciation, approach, argu-
ment, around, articulate, artist, artistic, associate, Australia, back,
bankruptcy, bargain, beady, before, behind, bell, beside, beyond,
Billy, biologist, black, bless, bored, bourgeois, bow, branch, breed,
bright, brought, burst, bursting, business, butchers, California, can-
didate, canoe, canyon, carefully, carried, case, cash, catch, cease,
certainly, chair, challenge, change, charcoal, charge, charm, chat-
tering, cheerful, chivalry, choking, class, clothes, club, cluster, com-
mand, commissionaire, commit, companion, compound, conduct,
confidence, consider, contemplating, continue, contribute, convince,
criticize, cryptic, curious, cutter, day, daylight, dead, delicate, de-
light, determine, devil, devotion, diameter, die, direction, disgust,
disturb, diversion, document, dog, dominate, door, doubling, down,
dreadfully, drop, duality, each, earth, editorial, eighteen, employer,
encourage, escape, ethic, every, everywhere, exclamation, existence,
expect, expectancy, experience, express, face, fact, fail, faith, fasci-
nate, father, feeling, fellow, fifty, fighting, finality, finger, fingertip,
fire, fish, fix, flaming, flash, follow, foolish, forever, forgot, forgot-
ten, forth, forward, free, fresh, gaunt, general, giant, girl, gloom,
glorious, go, gone, graduate, grain, great, greatly, growth, happen,
here, hesitate, hiding, himself, Honolulu, hoof, hour, humanity, hun-
dred, hyena, hypothesis, individualism, instinct, intention, intermit-
tent, interurban, irritation, joy, judge, junk, jury, lake, last, laugh,
life, linger, lips, long, luxury, magnificent, maintain, man, manage,
market, match, meat, minute, miracle, mirth, moist, more, much,
muzzle, nauseating, nice, nope, normal, now, obedient, object, once,
oppression, oppressive, organization, orthodox, oursel, outsider,
oversee, pain, pal, pan, part, partnership, pass, passionately, path,
people, Philips, physique, place, plantation, plausible, player, plea-
sure, point, preferring, present, price, princess, proceed, produce,
promise, property, prostrate, puzzle, quadrupling, quarrel, quiet,
quivering, quotation, rapid, recollection, recover, refugee, refuse,
release, resident, resist, restaurant, return, review, revolver, reward,
rhythm, riffle, rising, road, rock, round, scare, scream, sensation,
service, seven, seventeen, shaking, shoulder, Siberia, sign, simple,
singing, situation, sketchy, slave, sleep, smash, smile, smoothly,
snap, soft, solicitor, sound, speech, spite, spokesman, stable, state,
States, stick, stranger, strength, struck, suddenly, sufficient, sugar,
sunshine, suppress, surprise, table, teeth, temptation, terribly, terror,
themsel, there, thirty, thousand, thrill, time, tobacco, today, together,
tomorrow, tremendous, trouble, trout, turn, Unconsciously, under-
stand, United, untoward, urge, value, view, violate, vital, vitality,
vocabulary, voice, walk, way, weapon, week, weight, widely, wildly,
willing, wolf, woman, word, worth, yard, year, yet, yield

A.2 Study Instruction
Making the call Instruction
1) Click “Start Call” to initiate the call.
2) Allow your browser to access microphone.
3) Wait for the call to get connected.
4) After hearing the prompt, click “Next” to listen to the instruction.
Speaking Instruction
1) Click “Start Recording” to record your voice.

2) Speak the displayed words slowly and deliberately.
3) Once you are done speaking click “Stop Recording” to stop record-
ing.
4) Click “Next” to move forward.
5) System is set to disconnect you from the call if you don’t answer
within 10 seconds.
Familiarization Instruction
Listen to the story to get familiarize with the voice. Click “Listen
Again” to hear the voice again and click “Next” to move forward.
Speaker Verification Instruction
Regardless of the quality of recordings, you should answer “Yes” if
you can recognize the speaker’s voice. Answer “No” if you think it
is not the speaker’s voice. Click “Replay” if you need to hear the
voice again.
1) You can replay the voice once.
2) System is set to disconnect you from the call if you don’t answer
within 10 seconds.

A.3 Additional Figures and Tables
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