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ABSTRACT
Reducing the level of user effort involved in traditional two-factor
authentication (TFA) constitutes an important research topic. A
recent effort in this direction leverages ambient sounds to detect
the proximity between the second factor device (phone) and the
login terminal (browser), and eliminates the need for the user to
transfer PIN codes. This approach is highly usable, but is completely
vulnerable against far-near attackers, i.e., ones who are remotely
located and can guess the victim’s audio environment or make the
phone create predictable sounds (e.g., ringers), and those who are in
physical proximity of the user.

In this paper, we propose Listening-Watch, a new TFA mechanism
based on a wearable device (watch/bracelet) and active browser-
generated random speech sounds. As the user attempts to login, the
browser populates a short random code encoded into speech, and
the login succeeds if the watch’s audio recording contains this code
(decoded using speech recognition), and is similar enough to the
browser’s audio recording. The remote attacker, who has guessed the
user’s environment or created predictable phone/watch sounds, will
be defeated since authentication success relies upon the presence
of the random code in watch’s recordings. The proximity attacker
will also be defeated unless it is extremely close to the watch, since
the wearable microphones are usually designed to be only capable
of picking up nearby sounds (e.g., voice commands). Furthermore,
due to the use of a wearable second factor device, Listening-Watch
naturally enables two-factor security even when logging in from a
mobile phone.

Our contributions are three-fold. First, we introduce the idea
of strong and low-effort TFA based on wearable devices, active
speech sounds and speech recognition, giving rise to the Listening-
Watch system that is secure against both remote and proximity at-
tackers. Second, we design and implement Listening-Watch for an
Android smartwatch (and companion smartphone) and the Chrome
browser, without the need for any browser plugins. Third, we eval-
uate Listening-Watch for authentication errors in both benign and
adversarial settings. Our results show that Listening-Watch can result
in minimal errors in both settings based on appropriate thresholdiza-
tion and speaker volume levels.
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1 INTRODUCTION
Two-factor authentication (TFA), combining the use of a password
(“something you know”) and a token (“something you have”), is gain-
ing momentum for web authentication. A traditional TFA scheme
requires the user (Bob) to enter his password and copy a short,
random and one-time verification code from the token over to the
authentication terminal. This improves security because the attacker
now needs to not only guess the user’s password but also the cur-
rent verification code to hack into the user’s account. The use of a
general-purpose smartphone as a token [5, 16, 18], as opposed to a
dedicated device [1, 29], helps improve usability and deployability
of TFA, and is currently a commonly used approach on the Internet.

However, the need to interact with the phone, and copy the verifi-
cation code during a TFA authentication session lowers the system’s
usability, which may prevent users from adopting this approach for
authentication [20]. In this light, researchers and practitioners have
recognized the need for reducing, and ideally eliminating, the user
burden underlying traditional TFA, giving rise to an important re-
search direction. The goal of such minimal-effort TFA scheme is
to allow the user to login using the TFA approach by ideally only
typing in his password.

An interesting representative minimal-effort TFA approach in
this direction, Sound-Proof [20], leverages ambient sounds to detect
the proximity between the phone and the login terminal (browser).
Except of entering the password, Sound-Proof does not require any
user action (i.e., transferring PIN codes) – mere proximity of the
phone with the terminal is sufficient to login. Unlike other minimal-
effort TFA approaches [7, 31], which rely upon proximity channels,
such as Bluetooth or Wi-Fi, to automatically transfer the PIN codes,
a compelling deployability feature of Sound-Proof is that it does not
require browser plugins or any changes to the current browsers.

In the usability evaluation reported in [20], Sound-Proof was
shown to be highly user-friendly, when contrasted with a traditional
TFA scheme involving manually copied verification codes [18]. How-
ever, this system has two fundamental security vulnerabilities:

(1) Susceptibility to Remote Attacks: A remote attacker, who can
guess the acoustic environment of the user (phone) and be in a similar
environment, can successfully authenticate on behalf of the user. For
example, as shown by the authors of [20] themselves (“Same Media
Attack”), the attacker who knows what media or TV channel the
user is watching and tunes into the same channel himself, can login
successfully with a very high probability. Further, as demonstrated
in the recent work of [32] (from CCS’16), a remote attacker against
Sound-Proof can login on behalf of the user without predicting
the acoustic environment but rather by making the phone to create
predictable or previously known sounds or waiting for the phone to
create such sounds (e.g., ringer, notification or alarm sounds) and
supplying corresponding sounds (highly correlated sounds) at the
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browser in control of the attacker. This constitutes a significant threat
in practice, for example, when popular TV programs, live sports
events or news telecasts are being broadcast, and when users’ phone
numbers or account information is leaked through hacked databases.

(2) Susceptibility to Proximity Attacks: An attacker, who is in the
vicinity of the phone, can succeed in logging in as the user from
his own terminal (assuming the attacker knows the user’s password,
as in the threat model of [20]) given the proof-of-possession of
the phone is determined based on the audio-proximity between the
phone and the login terminal. The audio-proximity is determined by
the similarity of the ambient acoustic sounds recorded by the two
devices. Since the ambient sounds remain very similar even when the
two recording devices are a distance apart (e.g., several meters away,
like in the same office or conference room), a proximity attacker can
successfully authenticate without necessarily been in close contact
with the user. This represents a viable threat, for example, in settings
where people work in shared spaces, located within a distance of
few meters from one other (as we demonstrate in Section 5.4).

In this paper, we propose a complete re-design of the sound-based
TFA system to thwart both remote and proximity attacks, while
still retaining their minimal-effort property. Specifically, we propose
Listening-Watch1, a TFA mechanism based on a wearable device
(watch/bracelet) and browser-generated random speech sounds (not
ambient sounds). In this scheme, as the user attempts to login, the
browser plays back a short random code encoded into human speech,
and the login succeeds if the watch’s audio recording contain this
code (decoded via speech recognition technology) and is similar
enough to the browser’s audio recording (i.e., audio recorded through
the microphone at the login terminal). Listening-Watch offers two
key security features: (1) use of random code encoded into audio
to withstand remote attackers, and (2) use of low-sensitivity micro-
phone (that cannot capture distant sounds) found in current wearable
devices to defeat proximity attackers. It is important for any authenti-
cation system to defeat proximity attacks in order to provide physical
security.

A remote attacker against Listening-Watch, who has guessed the
user’s environment, will be defeated since authentication success
relies upon the presence of the random code in watch’s record-
ings. Furthermore, a proximity attacker against Listening-Watch
will be defeated unless it is extremely close to the watch/bracelet.
This is because, unlike smartphones, the microphones available on
current smartwatches (or specialized bracelets) are not high quality
recorders, probably due to their constrained form factor and low-cost.
However, they are designed to work well to receive voice/speech
commands from the user when placed close to the speech source.
Due to this quality of a wearable microphone, it can only capture
sounds from a close vicinity.

Unlike traditional TFA, Listening-Watch does not require the
users to perform any actions while attempting to login to the sys-
tem except entering their credentials. Interaction may be needed
only in occasional cases where terminal cannot play back audio and
require a fall back authentication process (discussed in Section 3).

1In the military terminology, “listening watch” is a surveillance watch established
for the reception of traffic of interest to a unit maintaining the watch. In this work,
“listening watch” is a second factor device that listens onto the audio challenge code
transmitted by the browser for login purposes.

Although there is the presence of active sounds in the authentica-
tion process, Listening-Watch does not require the user to interact
with the second authentication factor. So Listening-Watch is effec-
tively a minimal-interaction approach that significantly reduces the
interaction between the user and the authenticating token.
Our Contributions: We believe that our work makes the following
scientific contributions to the field of web authentication:
(1) New TFA Notion based on Wearable Devices, Active Sounds

and Speech Recognition: We introduce the idea of strong and
low-effort TFA schemes based on wearable devices and actively
generated (speech) sounds, giving rise to a concrete instantiation,
the Listening-Watch system. Wearable devices are well-suited
for Listening-Watch because they usually are designed with low
sensitivity microphone to receive nearby speech sounds.

(2) Design and Implementation of Listening-Watch: We design
and implement Listening-Watch for an Android smartwatch and
the Chrome browser. Just like prior sound-based TFA scheme
[20], our design works without the need for any browser plugins
or changes to the browser. Our concrete design is based on
human speech as the active sound, and uses speech transcription
technology to decode the audio containing the verification code
and audio correlation analysis to detect the proximity between
the watch and the browser.

(3) Evaluation in Benign and Adversarial Settings: We evaluate
Listening-Watch for authentication errors in both benign and
adversarial settings. Our results show that Listening-Watch can
result in minimal errors (Equal Error Rate at most 0.05) in
both settings based on appropriate thresholdization and speaker
volume levels. That is, the legitimate user can succeed in logging
in without any errors, while the attacker is blocked unless the
attacker comes in almost direct/physical contact of the victim.

Why Wearables? Wearable devices, especially today’s smart-
watches, provide several interesting features such as Internet search
with voice commands, fitness tracking, navigation with GPS, and
many more, in addition to support for phone calls and text messag-
ing. Due to the presence of such impressive and novel features on
wearable devices, they are gaining a huge popularity in the user
space. Gartner Inc. had forecasted that in 2017, there will be 16.7%
increase from 2016 in the sales of wearable devices [17]. Smart-
watches are leading the wearable industry and is likely to continue
leading for the foreseeable future, according to IDC and Gartner
[14, 39]. According to Gartner Inc., the sales of smartwatches will
increase by 38.50% in 2018 and by 132.64% in 2021, since 2016.
This indicates that similar to the smartphones in the present days,
smartwatches will soon become ubiquitous in the near future. Fur-
ther and perhaps more importantly, the use of a wearable device as
a second factor provides a unique advantage over traditional TFA
that uses phone as a second factor. Unlike traditional phone-based
TFA, wearable TFA supports logins from the phone, which is a very
common use case scenario. In traditional phone-based TFA, since
there is no separation between the authentication terminal and the
second factor device (i.e., the login terminal is the same as the second
factor device), the security of system effectively reduces down to
only a single factor. If the terminal (i.e., the phone in this particular
setting) is compromised, password input will be leaked and TFA
PIN security will also be lost.



Given these characteristics, we believe that smartwatches are a
compelling platform to implement TFA in general. These devices
also have innate features (e.g., microphones capable of picking only
nearby sounds) that may offer improved TFA security (as utilized
in Listening-Watch). We do not anticipate the quality of the mi-
crophones on smartwatches to significantly improve in the near
future since these are commodity devices and cost is an important
factor in their deployment. A specialized bracelet with low sensitiv-
ity microphone, instead of a smartwatch, can also be employed in
Listening-Watch. Once the bracelet is worn, the user may become
habituated to it and will forget that they are even wearing it. So, we
believe that wearing a simple bracelet will not be much of a burden
to the user. The use of such specialized bracelet for security purposes
is receiving widespread attention, e.g, the Nymi band [26], and the
bracelet as used in the ZEBRA deauthentication system [23].

2 BACKGROUND AND RELATED WORK
2.1 System and Threat Model
We consider browser-based web authentication to a remote server.
Here, the user directs the browser to the server’s login page. The
server implements a TFA system that requires the user to install a
software token/app on the wearable device (smartwatch/bracelet),
working in conjunction with a companion device, the smartphone.
The smartphone and the wearable device (a smartwatch in our im-
plementation) are pre-paired with each other and all the wireless
(Bluetooth in our case) communication between them is fully se-
cured with cryptographic mechanisms. Further, we assume that all
communication between the browser and the server is secured (for
example, based on TLS). The user provides his credentials to au-
thenticate to the server. The server verifies the validity of the user’s
credentials, and provides the challenge to the user to prove the pos-
session of the software token installed on the smartwatch as the
second authentication factor. In Listening-Watch, this challenge is a
short random code that is transmitted from the browser in the form of
an audio signal (speech sounds specifically), that can be captured by
the smartwatch only if it is in close physical proximity of the browser.
While we assume the presence of the smartphone as a companion
device, as is a common setting in which most current smartwatches
work, the model is easily extensible to standalone watches.

As in [20], our threat model assumes a remote adversary who has
acquired the victim user’s credentials (username and password), and
attempts to authenticate to the server on behalf of the victim. The
users’ credentials can be leaked through phishing attacks, leakage of
password databases or other mechanisms. Specifically, we assume an
adversary who visits the server’s webpage (from a remote machine)
and tries to access the victim’s account using the knowledge of vic-
tim’s credentials. The attack is successful if the adversary can prove
the possession of the second factor device, the wearable device. We
assume that this remote adversary can guess the audio environment
in which the user (wearable) resides and can himself be in, or create,
a very similar environment. Such an adversary is sufficient to break
the security of [20]. However, we show that Listening-Watch can
effectively defeat this adversary by the use of random verification
codes embedded in active speech sounds generated by the browser.

Unlike Sound-Proof [20], we consider the targeted attacks where
the adversary is co-located with the victim. Typically, TFA mecha-
nisms that do not require the user to interact with his device cannot
protect against targeted, co-located attacks. For example, if TFA
uses unauthenticated short-range communication [7], a co-located
attacker can connect to the victim’s phone and prove the possession
of the second authentication factor to the server. Similarly in [20],
a co-located attacker can succeed in logging in on behalf of the
user since ambient audio around the attacker and the second factor
would be very similar (demonstrated in Section 5.4). However, we
argue that such targeted attacks can be detected and prevented in
Listening-Watch through the use of microphone sensor available on
the wearable device as the second factor, unless and until the attacker
comes almost in direct physical contact of the user/wearable.

Like other TFA schemes, we assume that the adversary cannot
compromise the second factor device, i.e., the wearable device (and
the smartphone) where the software apps of our system are installed.
If the adversary gains control of the device where software apps of
TFA are installed, then the security of any TFA scheme reduces to
the security of password-only authentication. Also, we assume that
the adversary cannot compromise the victim’s authentication termi-
nal (browser). If the adversary is able to compromise the victim’s
terminal, then he will be able to launch a man-in-the-middle attack
and hijack the victim’s session with the server thereby defeating any
TFA mechanisms.‘

2.2 Related Prior Work
There are several TFA schemes that have been proposed in the litera-
ture. Most common and traditional form of TFA employs hardware
tokens such as RSA SecurID [29] and Yubico [1]. These hardware
tokens are specialized devices used solely for the purpose of authen-
tication. Such schemes require the user to carry and interact with
the token. These schemes may be expensive to deploy because the
service provider must provide one such token per customer.

Many software tokens TFA schemes are also available, includ-
ing Google 2-Step Verification [18], Duo Push [16], and Celestix’s
HOTPin [5]. These schemes are both scalable and flexible as single
personal device can be used with multiple services. These schemes
are also cost effective, since deploying software tokens are logis-
tically much simpler. These schemes prompt the user with a push
message on his phone with information on the current login attempt
and the user interacts with his phone to authorize the login.

PhoneAuth [7] is an academic software token TFA scheme that
leverages Bluetooth communication between the browser and the
phone to eliminate user-phone interaction. The Bluetooth channel
enables the server (through the browser) and the phone to run a
challenge-response protocol which provides second authentication
factor. This scheme requires browser to have Bluetooth communi-
cation capability which is currently not available on any browser.
Authy [2] is another approach that allows seamless TFA using Blue-
tooth communication between the computer and the phone. However,
Authy requires extra software to be installed on the computer.

SlickLogin [22], which has recently been acquired by Google,
aims to minimize the user phone interaction during two-factor au-
thentication. Soon after Google acquired SlickLogin, original web-
site of SlickLogin has been shut down and details on how exactly it



works have become a mystery. The only thing known about Slick-
Login is that it employs near-ultrasounds to transfer the verification
code from the computer to the phone. Further, SlickLogin may not
be secure against co-located attackers since the user’s phone could
pick up the code generated by the attacker’s terminal in proximity to
the phone. In contrast to SlickLogin, our work uses audible sounds
to encode the verification code, uses a watch as the second factor
device and incorporates correlation analysis to defeat co-located
attacks. Ultra-sonic sounds used in SlickLogin may have an impact
on children and some pets. In contrast, we show that human speech
sounds are an effective way to embed the verification codes, are
easily picked up by commodity smartwatches and offer a viable
level of user experience.

Besides authentication, audio-channel has been used in several
device pairing schemes such as HAPADEP [33] and Loud-and-Clear
system [12]. In HAPADEP, both the devices, first encode their public
keys using fast codec that has a fast transmission rate and exchange
the encoded cryptographic keys over the audio-channel. Both the
devices then encode the hash of the exchanged cryptographic keys
using slow codec and play the generated audio-sequence. The user
then verifies if both audio sequences are similar and the pairing suc-
ceeds. In the Loud-and-Clear system, the two devices first exchange
the public keys over Wifi or Bluetooth, then they transmit the hashes
of public keys (encoded as MadLib sentences) through the audio-
channel, which can be verified by the user. If both devices possess the
speakers, the user has to verify the equality in the audio-sequences
generated by these two devices. While for speaker-display setting,
where one device has speaker while other has display, user needs to
verify if the audio-sequence generated on one device matches the
text displayed on the screen of another device. If they match, pairing
is considered to be successful. The problem domain of these works,
i.e., device pairing, is different from ours, which is minimal-effort
two-factor authentication. Also, none of these schemes use speech
recognition.

Traditionally, the TFA schemes increase resistance to online
guessing attacks. However, they are prone to offline dictionary at-
tacks once the server storing a one-way hash of the passwords is
compromised. The work of [31] presented several TFA schemes that
strengthen security against both online guessing and offline dictio-
nary attacks. The main idea underlying all their 2FA protocols is for
the server to store a randomized hash of the password h = H (p, s),
and for the device to store the corresponding random secret s. The
authentication protocol checks whether the user types the correct
password p and also that it can access the device that stores s. Our
Listening-Watch system can be integrated with one-time code based
protocol in [31] and therefore provide resistance to both online and
offline attacks.

3 SYSTEM ARCHITECTURE AND DETAILS
We implemented Listening-Watch using a smartwatch as the wear-
able device. Our architecture is in line with that of [20]. The concrete
steps followed in the Listening-Watch authentication process are
outlined below. Figure 1 provides a visualization.
Step 1: The user provides his username and password to login web
page, which is then passed to the server.
Step 2 & 3: The server verifies the validity of username and pass-
word and then generates a random verification code.

4(a). send verification code and audio trigger 

1. username + password

6(a). encrypted audio

8(b). login accepted or rejected

Web-ServerBrowser

2. verify username + password

3. generate verification code

5(a). play verification code encoded audio

5(b). record audio

4(c). ‘start recording’ message trigger

6(c). encrypted audio

Smartwatch

5(c). record audio

4(b). ‘start recording’ push message

6(b). encrypted audio and verification code

8(a). login accepted or rejected

7. extract code and correlate audio

Figure 1: Architecture of Listening-Watch, a wearable TFA scheme.
Figure shows an implementation of Listening-Watch using a smart-
watch. A specialized bracelet with low sensitivity microphone can be
used instead of the smartwatch. The phone is not serving the role of the
second factor, it is only used as a companion device.

Step 4: The server sends the verification code to the browser, and
triggers the browser to play back the audio snippet encoding this
code for a short period of time (approximately 3 seconds). In the
mean time, it also triggers the audio recording on the browser and
on the watch. As the server cannot communicate directly with the
user’s watch, the server first contacts the user’s smartphone, which
in turn sends the audio recording trigger to the watch.
Step 5: The computer and the watch now start recording audio.
Specifically, they attempt to capture the verification code (embedded
in the audio) created by the server. As soon as the browser finishes
playing the audio challenge, browser stops recording and sends the
stop recording trigger to the phone, thereby the watch.
Step 6: The audio signals recorded by both the computer and the
watch are encrypted with the phone’s public key and are transmitted
to the phone.
Step 7: The phone decrypts and extracts the verification code from
both the encrypted audio samples. If the codes extracted from the two
recordings match, the phone correlates the audio pair captured by the
computer and the watch to establish a measure of proximity between
the computer and the watch. Instead of the computer recorded audio,
the originally played back audio may also be used for determining
the proximity, but it will not provide a proximity estimate as robust as
the one provided with the recorded audio. Hence, computer recorded
audio is used rather than the originally played back audio along with
the watch recorded audio to estimate the proximity.
Step 8: Based on the matching of the extracted code and the corre-
lation analysis between the computer and watch audio recordings,
the phone decides whether to accept the login attempt or not, and
relays this decision to the server, which then accepts/rejects the
authentication attempt accordingly.

We note that Listening-Watch uploads only encrypted (not plain-
text) audio samples, from the browser to the web-server, in order
to transmit it to the phone due to privacy reasons. Also, all the
communications between the browser and the watch goes through
the web-server and the companion phone. Further, Listening-Watch
avoids the short-range communication (e.g., Bluetooth) between the



browser and the watch as such communication requires changes to
browsers or a plugin installation.

Fall-back Scenarios: Speech recognition technology has become ro-
bust against noise due to the advancement in its various components
– speech signal pre-processing techniques [21, 38, 40], selection of
robust acoustic features [33, 36], model adaptation [8], uncertainty
decoding [9], etc. However, there may exist some scenarios (rarely
to occur) involving a high noise environment where Listening-Watch
may not be able to extract verification code from the audio samples
recorded by the browser and the watch. There may also be some
scenarios where it may not be feasible for the browser to create
the sound, for example, in a silent zone such as a library, hospital
or meeting. In such scenarios, the user can always fall-back to the
traditional TFA implemented using the watch, i.e., input the code
received on, or generated by, the watch to the authentication terminal
to proof the possession of watch as a second authenticating factor.
Precisely how often the users may have to resort to such fall-back in
practice should be subject to further investigation.

Unmuting the Speaker/Unplugging the Headset: Occasionally,
the user may mute the terminal’s speaker, set the volume level too
low that the speech sounds cannot be captured by the watch’s mi-
crophone, or may also plug in a headset that disables the browser
to produce the speech sounds. In such scenarios, Listening-Watch
requires the user to manually unmute the speaker, unplug the headset,
or set the volume level to the level such that the watch microphone
can capture the audio signal (either full volume or average volume
level). This manual interaction is occasional. We note that the task to
unmute/unplug and increase the volume level cannot be performed
programmatically because all the current operating system settings
do not allow changing any user system setting programmatically,
especially in the case of speaker mute/unmute and volume setting.
In such scenarios, where the speaker is muted and the headset is
plugged-in, an intermediary fall-back that requires the user to ver-
bally speak the verification code shown on the browser can be em-
ployed (provided normal or no-noise environment). This approach
of fall-back requires comparatively minimal effort compared to the
fall back to traditional TFA.

Extending to Standalone Watches: Most of the currently deployed
smartwatches require a companion device, i.e., a smartphone, for
watch to perform much of its functionality. This is because current
smartwatches are constraint devices in terms of resources – low
computational power and battery life. So, most of the smartwatch
computations are outsourced to the companion device and generally
only the results are displayed on the watch’s screen. There are some
smartwatches that can operate fully, independent of a smartphone,
such as Omate TrueSmart [27] and Samsung Gear S [30] standalone
smartwatches. These standalone watches already feature voice com-
mands and are computationally powerful enough to process the
calls, text, fitness data, and even navigation, without the need of the
companion phone. Given such computational power of standalone
watches, Listening-Watch can be effectively implemented on such
watches where there will not be any role of the phone unlike our
current implementation of Listening-Watch. Further, there are also
watches with built-in speakers. In such cases, current authentication
protocol can be tweaked to make it more simpler but providing the
same level of security. Here, instead of browser playing an audio,

the watch could play the random audio embedded with verification
code; the browser and watch capture the recordings, and are decoded
and compared later for authentication purposes. Future research is
needed to realize such implementations of Listening-Watch.

4 SYSTEM DESIGN AND IMPLEMENTATION
For our prototype design and implementation (and later testing) of
Listening-Watch, we use MacBook Pro (Intel Core i5 2.5 GHz) and
Thinkpad (Intel Core i7 2.6 GHz) as the login terminal, LG Nexus
5 as the smartphone, and LG G watch R and Sony Smartwatch 3
as the smartwatch. Both the smartphone and the smartwatches run
Android version 6.0.1. Listening-Watch has five core components,
which are implemented as described below:

(1) Browser and Web–Server: Browser and Web–Server components
of Listening-Watch are implemented using HTML, Javascript, CSS,
and PHP. Browser application has a simple button to control the
audio recordings on the browser and on the watch. When the button
is pressed, to start the recordings, the browser sends “start recording”
push message to the Android phone, which then triggers the audio
recording on the connected and chosen Android watch. Listening-
Watch uses GCM (Google Cloud Messaging) to send push message
from the browser application to the designated Android phone. The
browser application then embeds the verification code into audio and
plays it back. It also starts recording the audio simultaneously while
it is playing the verification code encoded audio. The purpose of
recording at browser side is to bind the distance between the watch
and the browser during login attempt through audio similarity. In or-
der to record audio through browser, Listening-Watch uses HTML5
WebRTC API [37]. The recordings from the browser are uploaded
to the web server for the purpose of offline analysis in our cur-
rent implementation. We note that, in a real-world implementation,
Listening-Watch would upload encrypted audio recordings from the
browser to the web-server, which then forwards it to the phone. Only
the designated phone can decrypt and process the encrypted audio
samples for further analysis.

(2) Phone and Watch Applications: Listening-Watch implements
two Android apps, one for the phone and another for the watch. Both
the apps stay idle in the background. A “start recording” GCM signal
activates the phone app, which in turn activates the watch app over
the Bluetooth channel. Similarly, a “stop recording” GCM signal
stops both the phone and the watch app. Once activated, the watch
app starts recording and stops on “stop recording” signal from the
same companion phone. As soon as the recordings are completed on
both the computer (browser) and the watch, the browser uploads the
recording to the web-server while the watch transmits the recording
to the phone where they are stored for the purpose of offline anal-
ysis. In the real-world implementation, Listening-Watch transmits
encrypted audio recording from the watch to the designated phone
for further analysis.

(3) Correlation Engine: The purpose of correlation engine is to com-
pute the similarity/correlation score of audio pairs from the watch
and the phone. Correlation engine utilizes the correlation technique
proposed in [13] to compute the similarity/correlation score of audio
pairs from the watch and the phone. In this technique, to compute the
similarity between two time-based signals, first signals are normal-
ized according to their energy, and then the correlation between the



signal pair at different lags are computed and maximum correlation
value is used as the similarity score.

(4) Speech Engine: The task of speech engine is to translate numeric
code into speech and extract the numeric code from the audio sam-
ples. We employ Cloud Speech API [19] developed by Google to
design our speech engine that enables it to translate the 5-digit nu-
meric code (used in Listening-Watch) into speech and to extract the
numeric code from the audio samples recorded from the browser and
the watch. Cloud Speech API features a powerful speech recognition
that enables the conversion of speech to text by applying a powerful
and most advanced deep learning neural network algorithms. Further,
it can also handle noisy audio from a variety of environments.

5 AUDIO ANALYSIS & RESULTS
In this section, we evaluate our Listening-Watch system.

5.1 Data Collection
In our evaluation, we investigate two important factors that have a
significant effect on the authentication decisions of Listening-Watch
system: the distance of the watch from the terminal, and the volume
level at which the speech sounds are played back by the terminal.

Distance: In our study, we collected the audio recordings by posi-
tioning the watch at the following three distances from the terminal:

• Benign Distance: While interacting with the terminal/browser,
user typically positions both of his hands, or at least one hand on
the keyboard. In Listening-Watch, user wears a smartwatch while
interacting with the terminal and the distance between the watch
and the terminal in such benign case is within less than half a foot,
and considered to be the benign distance.

• Intimate Distance: Most trusted people and loved ones in the
social circles, such as partners and siblings, may typically remain
50 cm (less than 2 feet) or farther from a user [34]. In Listening-
Watch, we assume that even such an intimate person may turn into
an adversary and intend to login on behalf of the user. While such
intimate adversary interacts with the terminal, we assume that the
watch worn by the victim remains at a distance of 50 cm from the
adversary’s own terminal. We term such a distance as the intimate
distance.

• Personal Distance: Other known people, such as friends and co-
workers, may typically remain at a distance ranging from 50 cm to
1.5 m (2-5 feet) [34]. This represents an easy and relaxed space for
talking, shaking hands and gesturing. Such known persons may
also turn into adversaries, and may attempt to login on behalf of
the user. In our study, we considered 1 m as the distance between
the terminal owned by such attacker and the watch worn by the
legitimate user, and termed it as the personal distance.

The benign distance represents the benign scenario while intimate
and personal distance depict the attack scenario.

Volume Level: As each user may have their personal preference
towards the volume level of the terminal they use, we consider three
different levels of volume in our evaluation: (a) Full Volume, the
highest possible volume (100%, 79 dBA) of the terminal (b) Average
Volume, 75% (74 dBA) of the highest possible volume, and (c) Low
Volume, 50% (67 dBA) of the highest possible volume. We used
Digital Sound Level Meter to measure the loudness of terminal at

each of these volume settings. We note that most users typically set
the audio volume between (75–105)dBA [28].

For the sake of our evaluation, we collected a total of 1350 sam-
ples of audio recordings with three different combination of termi-
nals, smartphones, and smartwatches – (i) MacBook Pro, Nexus 5
and LG G watch R (MAC–LGW), (ii) Thinkpad, Samsung Galaxy
S5, and LG watch R (Thinkpad–LGW), and (iii) Thinkpad, LG G3,
and Sony Smartwatch 3 (Thinkpad–S3W). That is, we collected 450
samples of audio recordings for each combination of terminal and
smartwatch using our implementation of Listening-Watch (Section
4). Each sample consists of recording from the browser, the phone
and the watch. All the data samples were collected in lab/office
environment. For our analysis, we chose five 5-digit numeric code
which is translated into speech using Google Speech API [19]. For
each numeric code, 10 sample recordings were collected for each
combination of distance setting and volume level, thereby making
50 samples of recordings for each setting.

5.2 Results
5.2.1 Correlation Analysis. Through our initial experiments,

we noted that a sufficient number of digits of the numeric code can
be extracted from the watch when placed at an intimate distance
with full volume setting, which can enable a co-located attack. This
indicates that the attacker capable of being in the intimate distance
zone can gain access to the victim’s account given the attacker sets
the full volume level of terminal he is using to login on behalf of the
victim user. To thwart such an attack, we noticed that it is essential
to perform the correlation analysis between the browser recording
and the watch recordings.

Table 1: Average (standard deviation) correlation score between
browser recording and watch recording for MAC-LGW setup in differ-
ent settings with volume level and distance of watch from the terminal.

Volume
Level

Benign
Distance

Intimate
Distance

Personal
Distance

Full 0.27 (0.08) 0.10 (0.03) 0.08 (0.04)
Average 0.14 (0.03) 0.04 (0.01) 0.05 (0.01)
Low 0.07 (0.02) 0.03 (0.01) 0.02 (0.00)

As expected, we found that the correlation of audio pairs from the
browser and the watch attenuates with the increase in the distance
between two devices as well as the decrease in the volume level.
Table 1 shows these correlation scores for different volume and dis-
tance settings with MAC–LGW setup. Similar results were obtained
for other combination of the terminals and the smartwatches.

Based on this analysis, we set forth the analysis of the collected
samples to determine the system’s parameters, in particular, the
correlation threshold for each volume level that leads to the optimal
results in terms of False Rejection Rate (FRR) and False Acceptance
Rate (FAR). A false rejection occurs when the system rejects a
legitimate login while a false acceptance occurs when the system
accepts a fraudulent login attempt. When an attacker sitting next to
the victim attempts to login on behalf of the victim, browser creates
a speech challenge which is also recorded by the watch worn by the
victim. The fraudulent login is accepted if the browser recording of
the terminal used by the attacker and the one recorded by the watch
have similarity score greater than the threshold.

To compute FAR, we employed following strategy. For each of
the terminal-watch setting, we used only the recordings which are
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Figure 2: Correlation Analysis. False Acceptance Rate (FAR) and False
Rejection Rate (FRR) as a function of threshold in full and average
(avg) volume settings for MAC-LGW setup.

Table 2: False Rejection Rate (FRR) and False Acceptance Rate (FAR)
of Listening-Watch’s code extraction for different terminal-watch setup
at different volume settings.

Volume
Level

Mac-LGW Thinkpad-LGW Thinkpad-S3W
FRR FAR FRR FAR FRR FAR

Full 0.00 0.31 0.04 0.00 0.02 0.09
Average 0.00 0.01 0.00 0.00 0.02 0.01
Low 0.96 0.00 0.34 0.00 0.28 0.00

collected in the settings where watch was placed at intimate distance
(50 cm) and personal distance (1m) from the terminal, and when
volume level was set to full and average volume. We chose these
recordings because Listening-Watch can extract numeric code from
the recordings at these attack settings (described in Section 5.2.2).

With MAC-LGW setup, we achieved the Equal Error Rate (EER,
defined as the equilibrium point of FRR and FAR) of 0.11 when
the similarity score is 0.13 (Figure 2) for full volume setting. Simi-
larly, for average volume setting, we achieved the EER of 0.00 when
the correlation score is 0.08 (Figure 2). These correlation scores,
where we achieved the EER, are defined as correlation thresholds
for the corresponding volume settings. We also computed EER
and corresponding correlation threshold for other combination of
terminal-smartwatch, and for different volume settings separately as
presented in Table 3 (third column). It shows that Thinkpad–LGW
and Thinkpad–S3W combinations have the higher error rate as com-
pared to the MAC–LGW combination. We attribute this higher error
rate to the quality of speaker of the terminal and that of microphone
of smartwatch.

5.2.2 Speech Analysis. Since the verification code is encoded
into speech in our Listening-Watch system, it is essential for the
watch to be able to extract this code through speech analysis and
decoding. We evaluated the accuracy of speech decoding at different
distance and volume levels for different terminal-watch setups as
described below (results shown in Table 2):

• Benign Distance Analysis: At the benign distance, when the vol-
ume level of the terminal was set to its fullest, Listening-Watch
was able to extract at least 4 digits of the numeric code (i.e., cor-
rectly accept the login attempt) from all the watch recordings
in MAC–LGW setup. In case of Thinkpad–LGW and Thinkpad–
S3W settings, Listening-Watch was able to extract at least 4 digit
code from 96% and 98% of the watch recordings, respectively.

When the volume level of the terminal was set to average vol-
ume level, the percentage of recordings from which Listening-
Watch was able to extract at least 4 digit code was 100% for
both MAC–LGW and Thinkpad–LGW settings while it was 98%
for Thinkpad–S3W setting. However, when the volume level of
the terminal was set to low, Listening-Watch extracted at least
4–digits only from 4%, 66%, and 72% of watch recordings with
MAC–LGW, Thinkpad–LGW, and Thinkpad–S3W settings, re-
spectively. This shows that at low volume level, Listening-Watch
cannot perform well while at medium and high volume level, it
performs pretty well at decoding the speech sounds.

• Intimate Distance Analysis: In this setting, when the volume level
of the terminal was set to full volume, Listening-Watch was able
to extract at least 4 digits code (i.e., incorrectly accepting the login
attempt) from 62% of the recordings in the MAC–LGW setting
while it was only 4% with the Thinkpad–S3W setting. Listening-
Watch was able to detect at least 4 digits code from only 2% of
the recordings with MAC–LGW setting when the volume level of
the terminal was set to average volume level. For the rest of the
terminal–smartwatch settings and volume levels, Listening-Watch
was unable to detect any of the digits of numeric code.

• Personal Distance Analysis: In this setting, when the volume level
of the terminal was set to its fullest, Listening-Watch was able
to detect at least 4 digits of code from 6% of the recordings with
Thinkpad–S3W setting while it was not able to extract the numeric
code with length of at least 4 digits in any of terminal-watch and
volume level settings.

Summary of Speech Analysis: Listening-Watch accepts the watch
recordings if at least 4 digits of the 5 digit verification code can be
extracted correctly in a sequence from the recordings. So, for MAC–
LGW setting, numeric code extraction of Listening-Watch accepts
31% of the recordings collected at intimate distance and personal
distance in full volume setting because at least 4 correct digits were
successfully extracted from those recordings. This results in an FAR
of 0.31 for the full volume setting. Further, numeric code extraction
of Listening-Watch accepts all of the recordings at benign distance
and full volume as at least 4-digit numeric code was extracted suc-
cessfully. Thus, FRR of numeric code extraction at full volume
settings is 0.00. Similarly, FAR of numeric code extraction when
volume level is set to average volume is 0.01 while FRR for the same
setting is 0.00 because numeric code extraction of Listening-Watch
yielded at least 4 correct digits from 1% of recordings collected in
intimate distance and personal distance setting, while it yielded at
least 4 correct digits from all the benign recordings. Similarly, for
Thinkpad–LGW setup, FRR and FAR of numeric code extraction
at full volume setting are 0.04 and 0.00, respectively, while that at
average volume setting are both 0.00. For Thinkpad–S3W setup,
FRR and FAR at full volume setting are 0.02 and 0.09, respectively,
while they are 0.02 and 0.01, respectively, at average volume setting.
When the volume level is set to low volume, in each of the terminal-
watch setups, the code extraction does not perform well even in the
benign setting and hence Listening-Watch volume level can not be
at the low level.

5.2.3 Combining Correlation and Speech Analysis. In or-
der to compute the overall FAR and FRR of Listening-Watch, we
use FAR and FRR values of two main processes of Listening-Watch,



Table 3: Equal Error Rate (EER) and corresponding correlation thresh-
old (Tc ) for different terminal-watch and volume settings when correla-
tion score is used alone and when correlation score is combined with
numerical code extraction of Listening-Watch.

Volume Level Correlation only
EER(Tc )

Correlation with
code extraction

EER(Tc )

MAC-LGW Full 0.11 (0.13) 0.02 (0.13)
Average 0.00 (0.08) 0.00 (0.08)

Thinkpad-LGW Full 0.24 (0.16) 0.04 (0.12)
Average 0.16 (0.14) 0.00 (0.11)

Thinkpad-S3W Full 0.34 (0.24) 0.05 (0.08)
Average 0.30 (0.29) 0.02 (0.18)

i.e., extracting numeric code, and correlating audio pairs from the
browser and the watch. In Listening-Watch, a login attempt will be
accepted if and only if the recordings pass both of the two processes.
Thus, the overall FAR and FRR are computed as follows:

FARoverall = FARdec ∗ FARcor (1)

FRRoverall = 1 − [(1 − FRRdec ) ∗ (1 − FRRcor )] (2)

where, FARdec is FAR of decoding process, FRRdec is FRR of
decoding process, FARcor is FAR of correlation process, and FRRcor
is FRR of correlation process.

Using equations 1 and 2, we calculated the combined FAR/FRR
for different threshold values for each of the terminal-watch setup.
From these FAR/FRR, we achieved EERs as depicted in Table 3. For
MAC–LGW setup at full volume setting, we achieved the combined
EER of 0.02 when the similarity score is 0.13. Similarly, for average
volume setting, we achieved the combined EER of 0.00 when the
correlation score is 0.08. For Thinkpad–LGW setup, the combined
EER (corresponding correlation score, Tc ) that we achieved was
0.04 (0.12) at full volume setting while it was 0.00 (0.11) at aver-
age volume setting. Similarly, for Thinkpad–S3W setup, combined
EERs were 0.05 (0.08) and 0.02 (0.18) at full and average volume
setting respectively. This analysis suggests that Listening-Watch can
effectively defeat co-located attacks when speech sounds are played
back at full or average volume levels. Moreover, and perhaps more
importantly, due to the use of random verification code, Listening-
Watch can also defeat the remote attackers. Further, Listening-Watch
can support 6-digits and even longer PINs. When 6-digit codes (re-
quiring 5-digits) are employed, it increases the security level with a
little increase in the latency.

5.3 Why watch can not be replaced with phone in
Listening-Watch

As mentioned in Section 5.1, we also collected phone recordings
in addition to the browser and the watch recordings. We used these
phone recordings (instead of watch recordings) with the browser
recordings and followed the similar approach as before to see the
feasibility of the use of phone (instead of watch) in Listening-Watch.

We computed FRR and FAR analysis in the similar fashion as
we performed earlier while using the watch recordings. Considering
S3-LGW setup, we achieved an EER (at similarity score) of 0.24
(0.23) at full volume setting, while it was 0.18 (0.26) at average
volume setting (Appendix Figure 4). For the code extraction process,
we achieved the FAR of 0.97 and FRR of 0.02 at full volume setting
while the FAR was 0.91 and FRR was 0.00 at average volume setting.
The high FARs show that phone microphone is able to pick up the

audio signal even at intimate and personal distances (attack setting)
and extract the code correctly with high success rate. We believe that
the high quality microphone of the phones is the reason behind the
phone’s ability to pick up the code embedded in the speech. When
correlation analysis is combined with the code extraction process,
unlike watch scenario, we still achieved the similar EER values at
both full and average volume settings to the EERs when they were
not combined. So, even combining the correlation analysis with
code extraction process does not improve the performance of the
Listening-Watch system when used with the phone. Similar results
were obtained for other combination of the terminal and the phone.
This analysis serves to show that it is not possible to replace the
watch in Listening-Watch with the phone.

5.4 Why Sound-Proof is vulnerable to remote and
proximity attacks

5.4.1 Sound-Proof against Remote Attackers. The main
goal of the Sound-Proof is to defeat a remote attacker, who has some-
how learned users’ credential and is attempting to login to the user’s
account. In order to login, a remote attackers against Sound-Proof
has to predict the ambient environment around the user’s phone or
be in similar environment as that of the user. This may be a difficult
endeavor in practice as reported in [20]. If a remote attacker cannot
predict the user’s environment or is in different environment than the
user, then the browser’s recording and the phone’s recording would
not correlate and prevent the attacker from logging in [20]. In com-
prehensive security evaluation reported in [20], Sound-Proof was
shown to be highly secure against such remote attackers. However,
contrary to Sound-Proof’s security evaluation, Shrestha et al. [32]
have built a successful remote attack, Sound-Danger, against Sound-
Proof. As reported in [32], “a remote attacker against Sound-Proof
does not have to predict the ambient sounds near the phone, but
rather can make the phone create predictable or previously known
sounds, or wait for the phone to produce such sounds (e.g., ringer,
notification, or alarm sounds)”. Sound-Danger involves remotely
buzzing the victim’s phone or waiting for the phone to buzz on its
own and supplying corresponding sounds at the browser to login on
behalf of the user.

5.4.2 Sound-Proof against Proximity Attackers: We eval-
uate Sound-Proof framework against the proximity attackers who
remain in close physical proximity with the user as considered in
our Listening-Watch threat model. For this purpose, we collected
some sample of recordings using our implementation of Listening-
Watch without any active-sounds to simulate the working scenario
of Sound-Proof. We used Thinkkpad–LGW combination to collect
the samples. As no active sound was generated by the browser, we
did not consider the volume level of the speaker. We collected 20
samples of recordings at each distance setting, thereby making 60
samples of recordings in total.

Similar to Sound-Proof, we implemented Sound-Proof’s correla-
tion engine, in particular one-third octave band filtering and cross-
correlation, that computes a similarity score of an audio pair. Each
audio is divided into 20 one-third octave bands ranging from 50Hz
to 4kHz following the approach similar to Sound-Proof. To split the
audio samples into these bands, we used twentieth order Butterworth
bandpass filter [24] in MATLAB. Each of the audio bands were
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Figure 3: Usability and Security analysis of three web-authentication
schemes: Google 2SV, Listening-Watch, and Sound-Proof.

normalized and cross-correlation score was computed (with time lag
bound to 150ms) between each band. Finally, similarity score was
computed by taking average of correlation scores for each band.

To show the performance of Sound-Proof against proximity at-
tackers, we compute FRR, FAR, and EER. To compute FRR, we
consider the recordings collected at benign distance setting while
the recordings collected at intimate and personal distance settings
are considered to compute FAR. We obtained EER of nearly 0.4 at
threshold of 0.22 (Appendix Figure 5). It shows that Sound-Proof
framework has high error rate in detecting the proximity attacker,
indicating that, unlike Listening-Watch, Sound-Proof is not secure
against the proximity attackers.

6 LISTENING-WATCH VS. OTHER SCHEMES
In this section, we use the framework of Bonneau et al. [3] to analyt-
ically compare Listening-Watch with other browser-based authen-
tication schemes – Google 2-Step Verification (Google 2SV) and
Sound-Proof. The framework of Bonneau et al. considers 25 evalua-
tion parameters, termed as “benefits”, derived from the perspective
of usability, deployability, and security that an authentication scheme
should ideally provide. Table 4 summarizes the overall comparison
using the framework of Bonneau et al.

Usability: As all the schemes require a password as the first authenti-
cation factor, none of the schemes are scalable nor are effortless. All
the schemes are “Quasi Nothing-to-Carry” because Sound-Proof and
Google 2SV employ user’s phone while Listening-Watch employs
user’s watch. Listening-Watch and Sound-Proof are more efficient
than Google 2SV because they do not require user to interact with
his phone/watch. All the schemes are subjected to some errors if user
enters wrong password. If user loses his second authenticating de-
vice (i.e., phone or watch), all the schemes require similar recovery
procedures.

Deployability: The score in the property “Accessible” is higher for
Listening-Watch and Sound-Proof than that for Google 2SV because
the former schemes require the user to supply only the password.
Listening-Watch is relatively a bit expensive than rest of the two
schemes as it requires the user to possess smartwatch in addition to
a (companion) phone. However, smartwatch are becoming common-
place as a smartphone so, similar to the smartphone, the smartwatch
can also be considered to have “Neglible-Cost”. All the schemes
are browser-compatible while none of them are server-compatible.
Google 2SV is more mature, and all of them are non-proprietary.

Security: Listening-Watch offers the same level of security as the
one provided by Google 2SV. Both Listening-Watch and Google 2SV
are somewhat secure against targeted impersonation attack. However,
we believe that Listening-Watch is better than Sound-Proof in terms
of resilience to targeted impersonation attack. Shrestha et al. [32],
have shown that a targeted remote attack can be launched against
Sound-Proof. In contrast, such attacks cannot be launched against
Listening-Watch or Google 2SV due to the use of random PIN codes.

Summary: Based on the above analysis, we believe that the usability
of Listening-Watch lies in between that of Google 2SV and Sound-
Proof (closer to Sound-Proof), while its security lies at the same level
as that of Google 2SV (Figure 3) (much higher than Sound-Proof).

7 FURTHER DISCUSSION & FUTURE WORK
Defeating Loud Attackers: A determined proximity attacker may
use a powerful speaker attached to the terminal from which it at-
tempts to login. Since the verification code will now be transmitted
in loud sounds, the victim’s watch may be able to pick up the sounds
and extract the code even when the attacker is located a bit far from
the victim. However, Listening-Watch can effectively thwart this
attack by measuring the power level of the audio recording and re-
jecting the login attempt if the power level exceeds a set threshold.
This sound intensity check performed by Listening-Watch would not
prevent a legitimate user from logging in since it is unlikely that loud
volume levels will be used in practice. This approach is in line with
that implemented in [20] to reject “silent” ambient environment.
Usability Study: The use of active sounds in the authentication
process of our Listening-Watch system may have an impact on
human user’s perception and distractability. In order to assess these
effects, a user study of the login process in presence of active sounds,
particularly the login with Listening-Watch, is needed, which we
plan to conduct in near future. Further, apart from speech sound used
in our current implementation, different types of active sounds such
as codec [33] encoding a 5-digit numeric code, or fixed and pleasant
static sounds without any code can also be used in Listening-Watch
that may have better usability compared to the speech sounds. In the
future, we plan to design and evaluate Listening-Watch with such
active sounds. We will also conduct the user study to assess their
effects on human perception and distractability to better inform the
choice of active sounds for Listening-Watch.
Future Smartwatch Microphones: In the future, the smartwatches’
microphone may become better and powerful that may be capable of
capturing far-off sounds. This may lower the security of Listening-
Watch against proximity attacks (although still offer the same level
of security against remote attacks) as the watch microphone might be
able to capture the far-off speech sounds. However, we believe that
significant improvements to the smartwatch microphone hardware
may not be likely in practice since the main purpose of microphones
on the wearable devices in general, and smartwatches in particular,
would still be to receive speech commands through close proximity
rather than to do typical audio recording or make/receive calls like
in the case of smartphones, which necessitate high-quality micro-
phones. Near-field applications such as voice commands, generally
use low-sensitivity microphones with smaller diaphragm/size (suit-
able for wearables) when compared to far-field applications such
as conference phones and security cameras [15, 25] Even if one



Table 4: Comparing Listening-Watch against Sound-Proof and Google 2-Step Verification (Google 2SV) using the framework of Bonneau et al. [3]. ‘∗’
represents that the scheme “offers” the benefit and ‘+’ represents that the scheme “somewhat offer” the benefit. The evaluation of Google 2SV and
Sound-Proof matches with the one reported in [3, 20].
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assumes that watch microphones get significantly upgraded in the
near future, our scheme will still be secure against remote attackers,
which is a significant improvements over systems like Sound-Proof,
which have been shown vulnerable against remote attackers [20]
(the most prominent form of an attack in the wild). Also, a special-
ized device, like a bracelet with low-sensitivity microphone (e.g.,
Microsoft Band2), can also be used in our scheme. A company or a
bank can enforce its employees or customers to use the specialized
bracelets for authenticating to their online resources such as online
accounts, virtual private network (VPN). The use of such special-
ized bracelet for security purposes is receiving widespread attention,
e.g, the Nymi band [26], and the bracelet as used in the ZEBRA
deauthentication system [23].

Extending to Support Internal Speakers: Onboard or system
speaker is a basic speaker on a motherboard used to create a beeping
sound, precisely a series of musical notes, and is not meant for play-
ing songs, music or other complex sounds. However, it can play an
audio file with a sequence of basic musical notes [4]. For instance, it
can play MIDI (Musical Instrument Digital Interface) [11] encoded
audio file that contains a series of note-on and note-off messages.
The design of Listening-Watch may be extended to support such
onboard speaker so that it can work with a PC that does not have an
external speaker. Specifically, in this variation of Listening-Watch,
the PIN encoded audio will be played through the onboard speaker,
and originally played back audio (instead of the audio recording from
the terminal) will be compared and correlated against the recording
from the watch. The verification PIN can be encoded using musical
notes or melodies, similar to Solfa Cipher [35], instead of speech,
and played through internal onboard speaker. The implementation of
such an approach would require further research and investigation.

Alternative Approaches and their Limitations: GPS or location
based approaches may have potential to defeat the proximity and the
remote attackers. However, since the measurement errors of such
GPS lies above 5 meters [41], use of location to estimate the close
physical proximity between the terminal and the watch would not
be effective, and cannot defeat the threat of proximity attackers who
remain within an intimate or a personal distance.

Distance bounding protocols implemented over Bluetooth, RFID,
NFC, or other short range communication may also have potential to
defeat proximity and remote attackers. However, they require either
browser plugins, or additional hardware devices (tag and reader for
RFID/NFC) that may be expensive to deploy. Though there has
begun an initiation on adding support for Bluetooth in web browser
[6, 10], they are neither stable nor standard and are not supported by
many of the browsers. Listening-Watch, on the other hand, neither
requires browser plugins nor any additional hardware installation.

Use of ultrasound, i.e., the sound above human hearing range
(20Hz–20kHz) instead of audible sound in Listening-Watch may
also be a potential approach that may significantly improve the us-
ability of the Listening-Watch. To record and process ultrasound,
recorders should be able to record at a maximum sampling rate
greater than 40kHz (Nyquist principle). However, many of smart-
watches such as LG G Watch R and Sony Smartwatch 3, have maxi-
mum sampling frequency of 22.05kHz, and therefore cannot process
ultrasound, thereby making the use of ultrasound in Listening-Watch
infeasible. In near future, smartwatch’s microphone may be able to
process ultrasound that may be use to transfer the code and process
it transparently, thereby improving the system’s usability.

8 CONCLUSION
In this paper, we presented Listening-Watch, a low-effort two-factor
authentication system based on a wearable device (watch) and active
sounds (programmatically generated human speech) that is resistant
to co-located and remote attacks. To motivate our work, we first
argued that simply using passive ambient sound to verify the posses-
sion of (or proximity to) the second authentication factor (phone or
watch) is susceptible to co-located attacks as well as remote attacks.
At its core, Listening-Watch uses speech transcription and audio cor-
relation analysis to extract the verification code and determine the
proximity between the watch and the terminal. Although Listening-
Watch creates an active sound that may be distractive to the user in
contrast to traditional password-only authentication, it significantly
enhances the security of the authentication system (to a level equiv-
alent to that of traditional TFA schemes) without imposing much
burden on the user.
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A APPENDIX
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Figure 4: False Acceptance Rate (FAR) and False Rejection Rate (FRR)
as a function of threshold in full and average volume settings for S3-
LGW setup (using phone) after combining correlation with speech de-
coding process.
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Figure 5: False Acceptance Rate and False Rejection Rate as a function
of threshold using Sound-Proof’s correlation engine.
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