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Abstract. Many mobile and wireless authentication systems are prone
to relay attacks whereby two non co-presence colluding entities can sub-
vert the authentication functionality by simply relaying the data between
a legitimate prover (P) and verifier (V). Examples include payment sys-
tems involving NFC and RFID devices, and zero-interaction token-based
authentication approaches. Utilizing the contextual information to deter-
mine P-V proximity, or lack thereof, is a recently proposed approach to
defend against relay attacks. Prior work considered WiFi, Bluetooth,
GPS and Audio as different contextual modalities for the purpose of
relay-resistant authentication.
In this paper, we explore purely ambient physical sensing capabilities to
address the problem of relay attacks in authentication systems. Specifi-
cally, we consider the use of four new sensor modalities, ambient temper-
ature, precision gas, humidity, and altitude, for P-V proximity detection.
Using an off-the-shelf ambient sensing platform, called Sensordrone, con-
nected to Android devices, we show that combining these different modal-
ities provides a robust proximity detection mechanism, yielding very low
false positives (security against relay attacks) and very low false nega-
tives (good usability). Such use of multiple ambient sensor modalities
offers unique security advantages over traditional sensors (WiFi, Blue-
tooth, GPS or Audio) because it requires the attacker to simultaneously
manipulate the multiple characteristics of the physical environment.
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1 Introduction

Many mobile and wireless systems involve authentication of one communicating
party (prover P) to the other (verifier V). Such authentication typically takes
the form of a challenge-response mechanism whereby V proves the possession of
the key K that it pre-shares with P by encrypting or authenticating a random
challenge (using K) sent by P. Example instances include payment transactions
between NFC/RFID devices and point-of-sale systems, and zero-interaction au-
thentication [4] scenarios between a token and a terminal (e.g., phone and laptop,
or car key and car). Unfortunately, the security and usability benefits provided



by these authentication systems can be relatively easily subverted by means of
different forms of relay attacks which involve two non co-present colluding at-
tackers to simply relay the protocol messages back and forth between P and
V.

One scenario for such relay attacks [9,13,15] is applicable to zero-interaction
authentication. Here, an attacker (ghost) relays the challenge from V to a col-
luding entity (leech). The leech then relays the received challenge to P, and the
response from P in the other direction. This way a ghost and leech pair can
succeed in impersonating as P. Another scenario relates to payment tokens and
point-of-sale readers. It involves a malicious reader and an unsuspecting pay-
ment token owner intending to make a transaction [6, 8]. In this scenario, the
malicious reader, serving the role of a leech and colluding with the ghost, can
fool the owner of the payment token P into approving to V a transaction which
she did not intend to make (e.g., paying for a diamond purchase made by the
adversary in a jewellery store while the owner only intends to pay for food at a
restaurant). The main difference in the two scenarios relates to user awareness –
in the first scenario, the user does not intend to authenticate at all, whereas, in
the second scenario, the user does intend to authenticate but ends up authorizing
a different transaction than the one she intends to.

A known defense to relay attacks, commonly found in research literature, is
the use of distance bounding protocols. A distance bounding protocol is a cryp-
tographic challenge-response authentication protocol which allows the verifier to
measure an upper-bound of its distance from the prover [1]. Using this protocol,
V can verify whether P is within a close proximity thereby detecting both ter-
rorist fraud and mafia fraud attacks. [8,9]. However, these protocols may not be
currently feasible on commodity devices (such as NFC phones, car keys, payment
tokens) due to their high sensitivity to time delay or need for special-purpose
hardware.

Recent research suggests a potentially more viable defense to relay attacks,
capitalizing upon the emerging sensing capabilities of modern devices (P and
V) [10, 11, 18, 29]. The idea is to use the on-board device sensors to extract
contextual information based on which P-V proximity, or lack thereof, could be
determined. Prior work demonstrated the promising feasibility of using different
types of sensors for this purpose, including WiFi [29], GPS [10], and Audio [11].

In this paper, we explore purely ambient physical sensing capabilities
present on upcoming devices to address the problem of relay attacks in au-
thentication systems. More specifically, we consider the use of four new sensor
modalities, ambient temperature, precision gas, humidity, and altitude, for P-V
proximity detection. Using an off-the-shelf ambient sensing platform, called Sen-
sordrone4, connected to Android devices, we show that combining these different
modalities provides a robust proximity detection mechanism, yielding very low
false positives (security against relay attacks) and very low false negatives (good
usability). Such use of multiple ambient sensor modalities offers unique security
advantages over traditional sensors (WiFi, GPS, Bluetooth or Audio) because it

4 http://www.sensorcon.com/sensordrone/



requires the attacker to simultaneously manipulate the multiple characteristics
of the physical environment. These ambient sensors also yield rapid response
times and very low battery consumption, whereas traditional sensors can have
noticeable scanning times and battery drainage. These ambient sensors may also
be seamlessly combined to work with traditional sensors to further improve se-
curity.

To demonstrate the feasibility of our approach, we use an additional envi-
ronmental sensing platform (Sensordrone). However, the devices participating in
the protocol themselves (P and V) may be equipped with various environmental
sensors in the future [3, 32]. Android platform already supports broad category
of environmental sensors that includes barometer, photometer and thermome-
ter [17] such that phones and other devices that come equipped with these sensors
will already have an interface to provide data to corresponding application.

Our Contributions: The main contributions of this paper are as follows:

– Environmental Sensors for Relay Attack Prevention: We present the first
exploration of the use of purely environmental sensors for relay attack pre-
vention in mobile and wireless systems. Given that these sensors are already
available on many smartphones in the form of extension devices [26], our
work shows how such sensors can be effectively leveraged for relay attack
security once they become commonplace in the near future (either in em-
bedded or extension form).

– Experiments and Multiple Modality Combinations: We design a simple data
collection application, utilizing Sensordrone, that allows us to collect the
data at different locations and demonstrate the feasibility of our approach
with four different sensor modalities and off-the-shelf classifiers. We report
on several experiments to evaluate our approach. Our results suggest that
although each individual sensor modality may not provide a sufficient level
of security and usability for the targeted applications, multiple modality
combinations result in a robust relay attack defense (low false positives) as
well as good usability (low false negatives).

2 Related Work

The main idea of zero interaction authentication is that legitimate entities, i.e.
P and V, should be in physical proximity at the authentication moment. There
are some examples of the system such as card/mobile payment system, dual
factors authentication e.g. PhoneAuth [5] or zero interaction authentication to
lock/unlock terminal e.g. BlueProximity.5

Distance bounding techniques [1] that were proposed as a solution to relay
attack have some limitations mentioned in previous works such as its difficulty
to deploy on commodity devices [11] and its dependence on low-level implemen-
tation which is vulnerable to attackers [10, 14]. An alternative solution using

5 http://sourceforge.net/projects/blueproximity/



ambient environment has been investigated recently. This is based on the as-
sumption that P and V will have similar ambient environment when they are
co-present whereas they will see significant differences in their respective ambient
environments when they are not co-present. Some prior works rely on commod-
ity devices which are equipped with various traditional sensors such as WiFi,
Bluetooth, and sound microphones.

Radio Frequency (RF) sensing (WiFi, Bluetooth etc.) is a commonly used
sensor modality for co-presence detection. For example, Varashavsky et al. [29]
proposed the use of the common radio environment (WiFi) as a basis to deriving
shared secret between co-located devices. They introduced an algorithm Amigo
that extends the Diffie-Hellman key exchange with verification of co-present
devices. Each device generates a signature based on sensed radio environment
data after performing a Diffie-Hellman key exchange and shares it with the other
device for proximity verification. Krumm et al. [16] proposed “NearMe” that uses
WiFi for proximity detection. GPS is also a radio-based sensor used for location
detection.

Halevi et al. [11] developed techniques using ambient audio and light for prox-
imity detection. They analyzed different methods such as time-based, frequency-
based and time-frequency based similarity detection using raw audio data. Their
results show that ambient sound is slightly better than ambient light. Other au-
dio based context sensing approaches include [20,24]. Nguyen et al. in [19] used
pattern based audio alignment to detect and compare ambient audio to provide
secure communication between mobile phones. Schurmann and Sigg [24] also
presented secure communication based on ambient audio.

A solution based on sensing the purely physical environment holds the promise
of being fast and energy-efficient. Narayanan et al. [18] mention the possibility
of using some physical environmental sensors but do not report any concrete
experiments or techniques.

3 Background and Overview

In this section, we review the proximity-based authentication approach that
forms the focus of this paper and the underlying threat model, followed by an
overview of our relay attack defense based on ambient multi-sensing.

3.1 Functional Model for Proximity-based Authentication

Figure 1 shows a general model of proximity-based authentication. The model
consists of a prover P who wants to authenticate itself to verifier V and convince
V that it is close to P. The authentication process between P and V is typically
run when they are in close proximity to each other. V makes use of a back-
end “comparator” function to make the authentication decision (it could reside
on the verifier device or on a remote machine such as a bank server in the
case of payment transactions). P and V have pre-shared secret keys K and
K ′, respectively, with the comparator. In an authentication session, V sends
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Fig. 1. A functional model of proximity based authentication.

a challenge to P which computes a response based on the challenge and K.
P returns the response to V which uses the comparator function to decide if
response is acceptable.

This functional model is applicable to various real-world scenarios such as
payment at a point-of-sale (POS) terminal and zero interaction authentication
(ZIA) for access control to locking/unlocking a car or a desktop computer. In the
payment scenario, the payment card plays the role of P, and the POS terminal
plays the role of V. The issuer of the payment card plays the role of the com-
parator. In ZIA the user token (key or mobile phone) acts as P and the terminal
(car or desktop computer) plays the role of V. The comparator functionality is
integrated in the terminal itself and therefore K ′ is not needed.

3.2 Threat Model

We assume a standard Dolev-Yao adversary model [7] where the adversary A
has complete control over all communication channels. However, A is not able to
compromise P, V or the comparator, i.e., none of the legitimate entities involved
in the protocol have been tampered with or compromised. The goal of A is to
carry out relay attack by convincing V that the P is nearby when in fact P is
far away. Figure 2 shows how A, in the form of a relay-attack duo (Ap,Av) can
relay messages between the legitimate P and V with Ap acting as a dishonest
verifier and Av acting as a dishonest prover.

3.3 Our Approach: Relay Attack Defense with Ambient
Multi-Sensing

Figure 1 shows our countermeasure against relay attack which is based on the
natural assumption that two entities will sense similar ambient environments
when they are co-present. When P sends an authentication trigger to V, they
both start sensing their respective contexts using ambient physical sensor modal-
ities, resulting in CP and CV , respectively, as the sensed data. This sensor data
may be acquired using an additional (uncompromised) device, connected over
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Fig. 2. Relay attack in proximity based authentication.

a secure channel, to P and V (such as Sensordrone) or via the sensors em-
bedded within P and V. We consider physical ambient sensor modalities, such
as temperature, precision gas, humidity and altitude. P will attach CP to re-
sponse. Similarly V will convey CV along with challenge in its message to the
comparator. In case multiple sensors are used (say n), CP would be the vector
CP1, CP2, ..., CPn, and similarly, CV would be the vector CV1, CV2, ..., CVn.

Using the keys K,K ′, the comparator can recover and validate CP and CV ,
and compare them (in addition checking that response matches challenge). We
recall that in scenarios where the comparator is integrated with V, K ′ is not
used.

Figure 2 illustrates the presence of the relay attack duo A =(Ap,Av). Assum-
ing that A cannot subvert the integrity of context sensing and the comparator
can reliably tell the difference between co-presence and non co-presence by ex-
amining CP and CV , our countermeasure based on context sensing will thwart
a Dolev-Yao A. In the rest of this paper, we describe our experiments to evaluate
whether a comparator can reliably distinguish co-presence and non co-presence
based on context information CP and CV sensed using physical ambient sensors.

4 Sensor Modalities

We explore the use of various ambient sensor modalities to determine whether
two devices are co-present or not. In this paper, we are focusing on ambient
temperature, precision gas, humidity and altitude, and combinations thereof,
which are readily provided by Sensordrone (see Figure 3). In this section, we
describe the functioning details of these sensors.

Ambient temperature: It is the temperature in a given localized surrounding.
Ambient temperature of different locations might be different as it changes with
sensor being indoors or outdoors, and differs from one room to another with Air
Conditioning adjusted at different levels. We recorded the current temperature,
in Celsius scale, at different locations. Sensordrone uses silicon bandgap sensor



Fig. 3. Sensordrone device with different sensors
(ambient temperature, precision gas, humidity and
altitude are utilized in this paper). Device dimen-
sions: 2.67 x 1.10 x 0.49 inch3.

to record the ambient temperature. The principle of the bandgap sensor is that
the forward voltage of a silicon diode is temperature-dependent [31].

Humidity: It is the amount of moisture in the air which is used to indicate
the likelihood of precipitation or fog. Humidity can serve as the contextual in-
formation about the location since the amount of water vapor present in the
environment may differ when moving from one location to the other. Capacitive
Polymeric Sensor is used to detect the humidity of the surrounding. It consists
of a substrate (glass, ceramic or silicon) on which a thin film of polymer or metal
oxide is deposited between two conductive electrodes. The change in the dielec-
tric constant of a capacitive humidity sensor is nearly directly proportional to
the relative humidity of the surrounding environment [22].

Precision Gas: Ambient air consists of various gases, primarily Nitrogen and
Oxygen. The gaseous content of a particular location may differ from that of
another location. The Sensordrone device comes with pre-calibrated Carbon
Monoxide (CO) sensor, which measures the CO content of the atmosphere. We
used the default calibration of the device that monitors CO to get the con-
text information of the location. The values were measured in “ppm (parts per
million)”.

Altitude and Pressure: Atmospheric Pressure of a particular location is the
pressure caused by the weight of air at that location above the measurement
point. With increase or decrease in elevation, the weight of air above the loca-
tion changes and so does the pressure at that location. Although the variation
of pressure can be obtained from the altitude, it changes drastically with the
weather. Hence, pressure at a location can serve as an indicator for that location
and time. In our experiments, the pressure was recorded in “mmHg (millimeter
of Mercury)” using Micro electromechanical (MEMS) Pressure Sensor. When
there is a change in pressure from the air on a diaphragm within the sensor, the



piezoresistive sensors senses the change with alternating piezoelectric current
which is used to determine the actual pressure.

This is also used to determine the altitude. Since the pressure value at any
given location is directly proportional to the amount of gases above the de-
vice and the amount of gases above the device is inversely proportional to the
altitude, the altitude value can be derived from the pressure sensor using the
equations 1. The units for station pressure must be converted to millibars (mb)
or hectopascals (hPa) before using following expression to convert the pressure
values into altitude [21].

haltitude = {1− (
Pstation

1013.25
)0.190284} ∗ 145366.45 (1)

The haltitude measurements are in feet, and are multiplied by 0.3048 to con-
vert them to meters.

Although Sensordrone provides both pressure and altitude readings, we only
use altitude to classify the location as altitude is derived from pressure. We
found that as the readings are taken at a more precise scale, the classifiers result
improves. In our dataset, we measured pressure in mmHg and altitude in m.
The pressure values did not vary much and were not very useful in providing
accuracy to the classifier while altitude provided a clear difference between two
locations allowing classifier to more accurately make predictions.

Excluded Sensors: Although there are other sensors available on the Sensor-
drone device, we did not use the data from those sensors for two reasons: either
they did not convey information about the ambient context or may not work
when blocked. The sensors excluded from our experiments include:

Object Temperature: This sensor uses Infrared to obtain the temperature of a
nearby object (line of sight object temperature). The application of this sen-
sor includes measuring the temperature of coffee cup or that of an oven. This
measures the information about a specific object but not about the ambient
environment.

Recently, Urien and Piramuthu [28] proposed the use of such an object tem-
perature sensor to defend against relay attacks. In their approach, surface tem-
perature of the prover measured by the prover and the verifier is used comple-
mentary to distance-based validation measured by round-trip times. This is an
interesting idea complementary to our approach, which may be used to combine
device-specific physical characteristics with environment-specific characteristics.

Illuminance (Light): Ambient light intensity might seem like a useful modality
to convey the environmental information. Given the fact that light sensors are
already present in most of the current smartphones and tablets, this is an ap-
pealing capability to obtain the environment information. In fact, this attribute
was investigated by Halevi et al. in [11], who claimed that it can provide reason-
ably robust way of proximity detection. However, its use suffers from the fact
that light intensity greatly varies depending upon the position of the source of
light and the light sensor facing towards it. Also, the devices will not provide



light measurements when their sensors are blocked, such as when the devices are
stowed inside purses or backpacks.

Proximity Capacitance and External Voltage: The proximity capacitance sensor
is basically for touch sensing or proximity detection like when used on touch
pads or capacitive touch screens. The device detects changes in capacitive flux if
there is a material within a close proximity of the sensor. The sensor is capable
of estimating distances to an object as well as detecting minute changes in water
content of the material [25]. The external voltage sensor gives the measure of
a battery voltage level. None of these sensors reflect the ambient context and,
hence, are not useful for our purpose.

5 Experiments and Results

We developed a simple prototype for Android devices to evaluate our P-V co-
presence detection approach using different ambient sensor modalities. We col-
lected data from different locations. We used two Sensordrone devices along with
two android phones (Samsung Galaxy Nexus and Samsung Galaxy S IV) to col-
lect the data. Sensordrone sends the sensor readings to phone via Bluetooth.
The phone is just a user interface (UI) for the Sensordrone device (the UI shown
in Figure 4) and does not play any role in altering the sensor values. Our app
on the phone records the Sensordrone readings to a file for further analysis.

5.1 Data Collection

The main goal here is to identify if two devices are co-present or not using
the sensor data. We collect the data from two devices and use a classifier to
determine if these devices are at the same location or at different locations. For
this, we needed to collect the sensor data when the devices are in close physical
proximity as well as when they are at different locations.

To collect the sensor data described in Section 4, we modified the original
app provided in [23] to record the data to a file for further analysis (UI is shown
in figure 5). The data from all the sensors used in our experiments (ambient
temperature, precision gas, humidity, and altitude) was recorded and labeled
according to the location and time of the place. The data was also marked how
the device was held, i.e, either in hand or in pocket (although this information
was not used in our current experiments; it can be useful when working with the
light sensor in the future). The experiment was conducted in a variety of places,
not just confined to labs and typical university offices. The locations included:
parking lots, office premises, restaurants, chemistry labs, libraries as well as halls
with live performance and driving on interstate highways. We collected a total
of 207 samples at 21 different locations. The different samples collected from the
same place are “paired” to generate co-presence data instances whereas those
from different places are paired to generate non-copresence data instances. We
ended up with 21320 instances of which 20134 instances belonging to non co-
presence class and 1186 instances belonging to co-presence class.



Fig. 4. Original Sensordrone app dis-
playing sensor values

Fig. 5. Modified Sensordrone app to
record the sensor values

5.2 Feature Calculation and Analysis Methodology

Let Li and Lj be a sensor reading captured by two devices at locations i and j.
The Hamming distance is calculated as follows:

D(i, j) = |Li − Lj | (2)

Given a sensor modality k (k is in range of (1, n) where n is the number

of sensor modalities) and L
(k)
i and L

(k)
j from two samples, we have D(k)(i, j) =

|L(k)
i − L

(k)
j |. With the data corresponding to n modalities, we obtain a feature

vector of n elements of D(k)(i, j) | 1 ≤ k ≤ n.
We consider co-presence detection as a classification task and carry out our

investigation using the Weka data mining tool [12]. All experiments have been
performed using ten-fold cross validation and Multiboost [30] as the classifier.
We choose Random Forest [2] as the weak learners in all experiments since it
performs best among different base learners we have tried with our dataset (e.g.,
Simple Logistics, J48, and Random Forest). From each experiment, we record
the 2x2 confusion matrix, containing the number of True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN). We denote co-
presence class to be the positive class, and non co-presence to be the negative
class.

We use the F -measure (Fm), false negative rate (FNR), and false positive
rate (FPR) to measure the overall classification performance (equations 3, 4, 5).



Fm = 2 ∗ precision ∗ recall
precision + recall

, (3)

precision =
TP

TP + FP
, recall =

TP

TP + FN
(4)

FNR =
FN

FN + TP
, FPR =

FP

FP + TN
(5)

Classifiers produce reliable results when the data is balanced over all classes.
Our dataset is highly biased towards the non co-presence class which is 17 times
larger than the co-presence class. Therefore, we generate balanced data for clas-
sification by randomly partitioning the non co-presence class into 17 subsets.
Each such subset together with the co-presence class constitutes a resampled set
for classification. We run experiments with 10 resampled sets, chosen randomly.

Each of the different sensors alone may not be fully effective for the purpose
of co-presence detection, and therefore, we also explore whether combinations of
different sensors improve the classification accuracy. To analyze which combina-
tion provides the best result, we would need to analyze all 15 different combina-
tions of four different sensors. However, to reduce the underlying computations,
we first analyze the accuracy provided by each individual sensor. Then we com-
bine best two modalities and view how the accuracy of the classifier changes.
We keep on adding the modalities to see the change in the accuracy until all the
modalities are fed into the classifier for co-presence detection.

5.3 Results

The results of experiments for different combinations of modalities are provided
in Table 1. They suggest that, although each individual modality on its own
does not perform sufficiently well for the purpose of co-presence detection, com-
binations of modalities, especially combining all the modalities together, is quite
effective, with very low FNR and FPR, and high overall Fm. Altitude performs
the best in classifying single modality, and also ranked the best by Chi-squared
attribute evaluation but still has unacceptable FNR and FPR (FNR = 8.57%,
FPR = 16.25%, Fm = 0.881) for our targeted applications demanding high
usability and high security. The result of the combination of all modalities is
clearly the best (FNR = 2.96%, FPR = 5.81%, Fm = 0.957. The interme-
diary combinations of different modalities used in experiments are also based
on the ranks of each modality (evaluated by Chi-squared test). The results for
the best combinations, Humidity-Altitude and Humidity-Gas-Altitude, are also
presented in Table 1.

6 Discussion

Having demonstrated the feasibility of our approach to relay attack prevention,
we now provide a discussion of several other key aspects relevant to our proposal.



Table 1. Classification results for different combinations of environmental sensors

FNR(%) FPR(%) Precision Recall Fm

Single sensor modality

Temperature (T) 23.74 32.40 0.705 0.763 0.733
Precision Gas (G) 15.26 30.36 0.739 0.847 0.790
Humidity (H) 16.25 29.81 0.740 0.838 0.786
Altitude (A) 8.57 16.25 0.851 0.914 0.881

Combination of multiple sensor modalities

HA 7.93 9.85 0.905 0.921 0.913
HGA 5.30 6.83 0.934 0.947 0.940
THGA 2.96 5.81 0.944 0.970 0.957

6.1 Response Time

The response time of our approach based on environmental sensors is negligible
as we require only one sample for each sensor which can be instantaneously
polled at the time of authentication. As such, the approach would not incur
any delay by incorporating the contextual sensor data into the authentication
process for proximity detection. This is one of the key advantages of our scheme
over the use of traditional sensors, such as WiFi, GPS, and Bluetooth, which
need considerable time to scan the context [27].

6.2 Battery Power Consumption

All the sensors we have used are low-power sensors, and are turned on all the
time in the Sensordrone device. Enabling these sensors data stream will have
minimal influence on the power consumption [25]. The Gas Sensors comes with
pre-calibrated for Carbon Monoxide (CO), which is what we used in our ex-
periments. Enabling the CO data stream will have minimal influence on power
consumption while enabling other gas sensors may use a lot of power.

6.3 Adversarial Settings

The modalities used in this paper are purely environmental (i.e., they directly
measure the natural environmental characteristics). Therefore, it might be very
difficult for an adversary to manipulate these modalities so as to bypass the
proximity detection mechanism. It may be challenging to change the outside
temperature but adversary may change the room temperature using Air Con-
ditioning or heater. To change the humidity, adversary needs to change the
moisture content of the environment. This could also be hard to achieve when
devices are outside. Although, the adversary can change the humidity of the



room, he still needs to control it such a way that both devices get the reading
within a threshold. The attack assertions might be similar for pressure, altitude
and precision gas modalities. An adversary may have to fill up the room with
heavier or lighter gases inside a room to change the pressure/altitude readings
while he can fill up room with the gas used for measurement (Carbon monoxide
in our experiment) to alter the precision gas reading.

Since we are using more than one modality in our approach (ideally all,
when available), changing only one of the modality is not going to work for an
adversary. The adversary needs to change multiple modalities simultaneously for
successful attack. This could present a significant challenge for the adversary. As
the number of modalities to be altered by an adversary is increased, the likelihood
of being noticed by the users also increases.

6.4 Privacy

In settings where a third-party comparator (such as a bank server) is used for
making approval decisions, a natural concern is about the privacy of the user,
such as location privacy. The information provided should not be specific enough
to reveal the user’s exact location while it should be precise enough to verify that
he is in close proximity with other device to which it is compared to. The other
approaches that have been studied to prevent relay attack use either artificial
(WiFi [16, 18], GPS, Bluetooth) or semi-natural (audio [11, 20, 24]) modalities.
Such modalities, when analyzed, can reveal the location of a user compromising
the privacy of the user. For example, a user when connected to the WiFi hotspot/
Bluetooth devices of clinic or a club will provide the information that he is
connected to the WiFi/Bluetooth devices of that area. Even an audio sample of
few seconds can reveal the location if a user is in a concert or in a class attending
a lecture. Audio snippets (although short) may also reveal the conversations a
user might be having at the time of authentication.

In contrast to traditional sensors, environmental modalities may not reveal
such potentially sensitive information about the users unless the user is at specific
locations with unique and fixed environmental characteristics, such as being at
the top of Mt. Everest where the altitude is 8848m. Even revealing multiple
modalities to the remote server may not reveal much information about the
user’s location or user’s conversations. Further work is needed to ascertain the
level of privacy environmental sensors can provide.

6.5 Other Sensors

We demonstrated the feasibility of using four different modalities to provide the
ambient information about the location. However, the set of modalities is not
limited to ones we explored. It is also possible to incorporate other sensor types,
such as odor sensors, to provide the environment information while not revealing
the user’s exact location. The modalities that we used in our experiment are all
environmental whilst it is also possible to use them in conjunction with artificial
modalities such as WiFi, Bluetooth, GPS, and Audio [27].



7 Conclusions

In this paper, we developed a co-presence detection approach based on infor-
mation collected from multiple different environmental sensors. This approach is
geared for preventing relay attacks, a significant threat to many proximity-based
authentication systems. While each individual sensor does not seem sufficient
for the security and usability requirements of the targeted applications, their
combinations form a robust relay attack defense. The other key advantages of
our approach include: security (manipulating multiple environmental attributes
simultaneously could be a challenging task for the attacker), efficiency (fast re-
sponse time and negligible power drainage), and privacy (user-specific sensitive
information may not be leaked or may be hard to infer).
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