
Computer Networks 51 (2007) 3632–3649

www.elsevier.com/locate/comnet
Threshold cryptography in P2P and MANETs:
The case of access control q

Nitesh Saxena a, Gene Tsudik b, Jeong Hyun Yi c,*,1

a Computer and Information Science, Polytechnic University, United States
b Computer Science Department, University of California, Irvine, United States

c Communication and Networking Lab, Samsung Advanced Institute of Technology, Republic of Korea

Received 4 September 2006; received in revised form 29 January 2007; accepted 9 March 2007
Available online 23 March 2007

Responsible Editor: L. Salgarelli
Abstract

Ad hoc groups, such as peer-to-peer (P2P) systems and mobile ad hoc networks (MANETs) represent recent techno-
logical advancements. They support low-cost, scalable and fault-tolerant computing and communication. Since such
groups do not require any pre-deployed infrastructure or any trusted centralized authority they have many valuable appli-
cations in military and commercial as well as in emergency and rescue operations. However, due to lack of centralized con-
trol, ad hoc groups are inherently insecure and vulnerable to attacks from both within and outside the group.

Decentralized access control is the fundamental security service for ad hoc groups. It is needed not only to prevent unau-
thorized nodes from becoming members but also to bootstrap other security services such as key management and secure
routing. In this paper, we construct several distributed access control mechanisms for ad hoc groups. We investigate, in
particular, the applicability and the utility of threshold cryptography (more specifically, various flavors of existing thresh-
old signatures) towards this goal.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Mobile ad hoc networks; Key management; Access control; Threshold cryptography; Membership management
1. Introduction

Ad hoc groups, such as peer-to-peer (P2P) sys-
tems and mobile ad hoc networks (MANETs), are
1389-1286/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2007.03.001

q Portions of this paper appeared in [26,37,38].
* Corresponding author. Tel.: +82 10 2481 0826; fax: +82 31

280 9555.
E-mail addresses: nsaxena@duke.poly.edu (N. Saxena),

gts@ics.uci.edu (G. Tsudik), jeong.yi@samsung.com (J.H. Yi).
1 This work has been done while at UC Irvine.
very popular in today’s computing, especially in
the research community. They lack infrastructure
and do not need any trusted authority. Moreover,
they are inherently scalable and fault tolerant. Such
characteristics find many interesting applications in
military and commercial settings as well as in emer-
gency and rescue operations. However, their open
nature and lack of centralized control result in some
security challenges.

The security research community recognized the
need for specialized security services in ad hoc
.

mailto:nsaxena@duke.poly.edu
mailto:gts@ics.uci.edu
mailto:jeong.yi@samsung.com

2 This number is determined by the group admission policy;
common examples are a certain fraction of current members or a
fixed threshold. See [19] for a detailed discussion of admission
policies.

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3633
groups. Access Control is particularly important
since most other traditional security are based upon
it. In this context, an access control mechanism
must prevent unauthorized nodes from becoming
a part of the group and to establish trust among
members in the absence of a trusted authority.
Access control is also essential to bootstrap other
security services, such as secure group communica-
tion [44,43] and secure routing (in MANETs), such
as Ariadne [17], SPINS [33], etc.

The concept of threshold cryptography involves
distributing cryptographic primitives (such as
decryption and digital signatures) in order to secure
them against a corruption of a certain number of
parties, i.e., a threshold. For example, a (t � 1,n)
threshold signature scheme [6] allows, in a group
of a total of n parties, to share the ability to digitally
sign messages in such a way that any t parties can do
so jointly, whereas no coalition of up to t � 1 par-
ties can.

1.1. Related work

Zhou and Haas [45] first suggested using thresh-
old cryptography [45] to secure mobile ad hoc net-
works. Their intuition was to distribute trust
among the nodes of the network such that no less
than a certain threshold of nodes are trusted. They
proposed a distributed certification authority (CA)
[16] which issues certificates (using some threshold
signature [6] protocol) to the nodes joining the net-
work. Certificates enable the nodes to communicate
with each other in a secure and authenticated man-
ner. This work also led to the development of
COCA [46], an online certification authority for
wired networks. Although attractive, this idea is
not applicable to ad hoc groups. Their approach is
hierarchical: only select nodes can serve as part of
the certification authority and thus take part in
admission decisions. Moreover, contacting the dis-
tributed CA nodes in a MANET setting is difficult
since such nodes might be many hops away.

Luo et al. considered the same problem in [23]
and Kong et al. in [21,20] as well as [24,22]. This
body of work proposed a set of protocols for ubiq-
uitous and robust access control in MANETs. They
amended the model of Zhou and Haas to allow
every member to participate in access control deci-
sions, thus maintaining the true ‘‘peer’’ nature of
ad hoc groups and providing increased availability.
Unfortunately, this otherwise elegant scheme has
been shown to be insecure [26,18].
Recently, Kim et al. [19] developed a group
access control framework based on a menu of cryp-
tographic techniques. This framework classifies
group admission policy according to the entity (or
entities) making admission decisions. The classifica-
tion included simple access control policies, such as
static ACL (Access Control List)- or attribute-based
admission, as well as admission based on the deci-
sion of a fixed entity: external (e.g., a CA or a
TTP) or internal (e.g., a group founder). Such sim-
ple policies are relatively easy to support and do not
present much of a technical challenge. However,
they are inflexible and ultimately unsuitable for
dynamic ad hoc networks. Static ACLs enumerate
all possible members and hence cannot support
truly dynamic membership (although they work
well for closed networks). Admission decisions
made by a TTP or a group founder violate the peer
nature of the underlying ad hoc group.

In our prior work [37], we constructed access
control mechanisms based on plain RSA signatures
and accountable subgroup multisignatures [28].
However, we realize that such mechanisms have
lineage problem. This problem occurs when a mem-
bership certificate is issued to a new member: each
member (sponsor) who takes part in the admission
process needs to confirm (by signing) its agreement
to admit this new member. Essentially, a member-
ship certificate has to be signed by some number
of membership sponsors.2 However, each sponsor
needs to attach its own certificate to its signature
on a new member’s certificate in order to make
group certificates universally verifiable. However, a
sponsor’s own certificate also has to be counter-
signed by its erstwhile sponsors, and so on, and so
forth. This is clearly unworkable since a member’s
certificate would have to be accompanied by a num-
ber of certificate chains that affirm its lineage.
1.2. Our contributions

In this paper, we explore the utility of threshold
cryptography (more specifically various existing
threshold signatures) in constructing decentralized
access control mechanisms for ad hoc groups. We
first point out the inapplicability of known thresh-
old RSA signatures towards this goal, and carry

Table 1
Notation

Pi Group member i

idi Identity for Pi

t Admission threshold
n Total number of group members

3634 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
on to build access control mechanisms based on var-
ious flavors of discrete logarithm based threshold
signatures, namely, threshold DSA [11], threshold
Schnorr [12], and threshold BLS [2]. We compare
and evaluate these mechanisms, via theoretical and
experimental analysis in a real MANET setting.3
G Cyclic group in finite fields
g Generator of group G

G1;G2 Cyclic GDH groups of order q
P Generator of group G1

ê Bilinear map s.t. ê : G1 �G1 ! G2

H Hash function such as SHA-1 or MD5
H1 Special hash function s.t. H 1 : f0; 1g� ! G�1
xi Secret share of Pi

xð jÞi Partial share for Pi by Pj

GMCi Group membership certificate for Pi

SLi List of sponsors for Pi

Si(m) Pi’s signature on message m

Kij Pairwise key between Pi and Pj

EKij Encryption with Kij

/(N) Euler’s Totient for RSA modulus N
1.3. Scope

Group access control is a broad topic which
includes access control mechanisms and the more
general issue of group security policy. This work is
concerned only with access control and does not
address the specification and negotiation of group
security policy. In the following, we assume the exis-
tence of such a policy. Furthermore, in an effort to
keep our discussion general, we do not consider the
impact of the underlying physical-layer characteris-
tics of the ad hoc group. Moreover, although we
recognize that proactivity [30,15,14] is an important
issue to cope up with stronger mobile adversaries,
we do not consider it here. However, the threshold
signature schemes that we employ have proactive
support and the software implementation of the
same is left as an avenue for future work.

Our work uses group membership certificates to
assert group membership. Certificates, as usual,
prompt the revocation headache. However, certifi-
cate revocation issues are beyond the scope of this
work.
1.4. Organization

The rest of the paper is organized as follows: Sec-
tion 2 summarizes notations. Section 3 provides the
high-level description of the access control protocol.
Next, Section 4 discusses inapplicability of known
threshold RSA schemes and points out the robust-
ness problem with a recently proposed threshold
RSA signature scheme [21]. Sections 5–7 present
the proposed access control protocols based on dif-
ferent threshold signature schemes. Then, experi-
mental results are presented and analyzed in
Section 8. (Appendix A recalls some cryptographic
primitives and Appendix B summarizes the thresh-
old RSA scheme of [21]).
3 Although in this paper we report only on the experimental
evaluation performed in a MANET setting, our access control
mechanisms are also generally applicable in various P2P systems.
2. Notation

Notation used in this paper is summarized in
Table 1. In the rest of the paper, we use the terms
member/node/player and group/network/system
interchangeably.
3. Group access control

A threshold signature scheme enables any sub-
group of t members in a group to collaboratively
sign messages on behalf of that group. This is
achieved by secret-sharing the signature key among
the group members, and allowing them to compute
a signature on some message via a distributed proto-
col in which the members use the shares of the sig-
nature key instead of the key itself. Threshold
signature schemes can tolerate up to t � 1 corrup-
tions in the whole lifetime of the system.

The idea of threshold signatures applies directly
to build access control mechanisms by making col-
laborative decisions. Next, we overview a generic
access control protocol. Similar to the security
model of underlying threshold signature schemes,
in our access control mechanisms we consider an
adversary who is capable of corrupting at most
t � 1 members and tries to come up with an existen-
tial forgery under the adaptively chosen message
attack model.

The access control mechanism is initiated by a
prospective member or an ‘‘applicant’’. At the

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3635
end, given that enough honest members (Pt)
approve admission, the applicant becomes a mem-
ber of the group and possesses its share of the group
secret (called ‘‘secret share’’) and its group member-
ship certificate (GMC).

1. Bootstrapping: The group is initialized by either a
trusted dealer or a set of founding members. The
dealer or founding members initialize the group
by choosing a group secret key, and computing
and publishing the corresponding public parame-
ters in the group certificate. The group secret is
shared among the founding member(s) using
either Shamir’s threshold secret sharing (TSS)
or joint secret sharing (JSS) techniques pre-
sented in Appendix A.1 or Appendix A.2, respec-
tively.

2. Member admission: A prospective member Pn+1

who wishes to join the group must be issued its
secret share and membership certificate by cur-
rent members. Fig. 1 gives a high-level view of
group admission protocol.
• Pn+1 initiates the admission protocol by send-

ing a JOIN_REQ message to the group.
• A member, that receives this JOIN_REQ mes-

sage and approves the admission of Pn+1,
replies, over a secure channel, with a partial
secret share and a partial signature derived
from its secret share for Pn+1.

• Once Pn+1 receives partial shares and signa-
tures from at least t different members, it uses
them to compute its secret share and member-
ship certificate.

• Finally, Pn+1 verifies the validity of its recon-
structed secret share and group membership
certificate before using them. Also, when
Pn+1 detects that its secret share or member-
ship certificate is invalid, it must be able to
identify the bogus partial share(s) and/or par-
Pn+1

quorum of
t peers

JOIN_REQ
P

...
P

P

PM

P
JOIN_RLY

P

Fig. 1. Group admissio
tial signature(s), and thus trace the malicious
group member(s).
Note that, this step may involve multiple
rounds and/or co-ordination among the mem-
bers who commit to the requesting member,
depending on the underlying cryptographic
techniques.
3. Membership authentication: To ensure only genu-
ine members are involved in communication,
every member must be able to prove membership
to other members.

4. Threshold RSA schemes

Various flavors of threshold signatures exist in lit-
erature: RSA based, DSA based, Schnorr based and
more recently, BLS [4] based. However, known
provably secure threshold RSA signatures do not
yield access control mechanisms for ad hoc groups.
In this section, we begin by carefully considering var-
ious threshold RSA schemes, explain why they are
not applicable for access control in ad hoc groups,
and point out the robustness problem with a recently
proposed threshold RSA scheme [21,20,24,22].

4.1. Analysis of known schemes

Several threshold RSA signatures are proposed
in literature [9,10,35,42,21,20,24,22] that might be
used to construct the group access control protocol.
Unfortunately, none of these schemes are directly
applicable.

1. Schemes by Frankel et al. and Rabin. The cur-
rently known provably secure threshold RSA sig-
nature schemes, two schemes by Frankel et al.
[9,10] and a scheme by Rabin [35], are not
applicable for access control in ad hoc groups.
P

M

(honest) PeerP

Malicious AdversaryM

n protocol.

3636 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
In particular, the RSA signature scheme of [9] is
practical only for small groups, while in the other
two provably secure threshold RSA schemes
known today [10,35] (which employ additive
secret sharing as opposed to polynomial secret
sharing of [41]) the members participating in
the threshold signature protocol need to recon-
struct the secret shares of the group members
that are currently inaccessible to them. In this
way both protocols essentially equate a tempo-
rarily inaccessible group member with a corrupt
one, whose secrets might just as well be fabri-
cated. This is an undesirable feature for asyn-
chronous ad hoc groups where members are
often inaccessible to one another. In such settings
we need to enable isolated but large enough sub-
groups of members to operate without recon-
structing everyone else’s secrets.

2. Scheme by Shoup. Another well known and more
recent provably secure threshold RSA scheme
was proposed by Shoup [42]. This scheme is more
elegant than the above ones because the signature
generation and verification is fully non-interac-
tive and it also avoids the inaccessibility problem
by employing the polynomial (t,n) secret sharing
of Shamir [41]. However, since the secret sharing
is performed over secret modulo /(N) (unlike
over publicly known integers in the schemes dis-
cussed above), it is not possible for the group
members to provide a new member with its secret
share. Moreover, Shoup’s scheme requires a
trusted dealer to generate the RSA keys, which
is an undesirable feature in ad hoc groups. Boneh
and Franklin [3] developed a method to generate
an RSA modulus in a distributed fashion. Alas, it
might not be possible to use this method, since
Shoup’s scheme requires that the common RSA
modulus N be a product of two safe primes.4

Furthermore, we believe that using any method
to generate RSA keys in a distributed manner
involves prohibitively high communication and/
or computation overhead which severely impacts
the practicality of such techniques in many group
setting such as MANETs.

3. Scheme by Kong et al. In an effort to mitigate the
above problem of the known threshold RSA sig-
natures, Kong et al. [21] proposed a new thresh-
old RSA scheme, geared toward providing
4 Informally, a large prime p is safe if p = 2q + 1 where q is
itself a large prime.
security services in MANETs. Unfortunately,
this scheme, contrary to what its authors claimed,
is neither robust (i.e., it cannot tolerate malicious
group members) nor secure. We first pointed out
the robustness problem in [26]. This problem is
presented in detail in the following section. We
also presented an attack on the scheme in which
an admissible threshold of malicious group mem-
bers can completely recover the RSA secret key
in the course of the lifetime of this scheme [18].
4.2. Robustness problem with URSA RSA signature

scheme

Recently, Kong et al. in a series of papers
[21,20,24,22] proposed a set of protocols for provid-
ing ubiquitous and robust access control, so-called
URSA, in MANETs without relying on a central-
ized authority. In this section we argue that this
scheme is not robust against malicious adversaries
[26], i.e., it fails to provide the verifiability of partial
secret shares ðxðjÞnþ1 � sÞ as well as combined secret
share (xn+1) and the partial signatures (sj � s). As
a result, malicious or compromised members can
send fake shares and fake signatures to new mem-
bers without being detected and in turn disrupt
the admission service. The reason is as follows:

1. Verifiability of partial secret shares and combined

secret share.

Since xðjÞnþ1s and xn+1 are computed modulo N and

not /(N), it is impossible to verify the correctness

using publicly known witnesses. The value of /(N)

is known only to the dealer during group initializa-

tion and destroyed thereafter. Obviously, group
members must not know the value of /(N).

Therefore, we cannot apply verifiability mecha-
nisms VPSS and VSS (over modulus N) described
in Appendixes A.7 and A.4 to determine the cor-
rectness of the partial secret shares and the secret
share respectively. In other words,

gxðjÞ
nþ1 6¼

Yt�1

k¼0

ðW kÞid
k
nþ1

" #kjðidnþ1Þ

ðmod NÞ ð1Þ

and

gxnþ1 6¼
Yt�1

k¼0

ðW iÞid
k
nþ1 ðmod NÞ: ð2Þ

Example. We now provide a trivial example
to illustrate the problem. Let us assume that

5 Since threshold schemes must tolerate up to t � 1 corruptions,
it is assumed that there are at most (t � 1) malicious or faulty
members. Hence, the minimum number of founding members is
3t � 2; i.e., (2t � 1) non-faulty members (as required in threshold
DSA [11]) and (t � 1) faulty members.

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3637
the secret polynomial is f(z) = 77 + 2z + 5z2

(mod 119), where N = 119 the product of two
primes: 7 and 17, and g = 3. (Note that the
degree of the polynomial is 2, hence, the thresh-
old t = 3). The witnesses of f(z), which are pub-

licly known, are as follows: W0 = 377 = 12,
W1 = 32 = 9, and W2 = 35 = 5 (mod 119). Sup-
pose a new member P7 receives the following par-
tial shares from t existing members P2, P3, and
P5: xð2Þ7 ¼ 71, xð3Þ7 ¼ 74, and xð5Þ7 ¼ 72 ðmod 119Þ.
P7 computes its share x7 ¼ xð2Þ7 þ xð3Þ7 þ xð5Þ7 ¼
98 ðmod 119Þ. To check verifiability of the secret
share, he computes gx7 ¼ 398 ¼ 9 ðmod 119Þ:
Also, using the witness values, P7 can get the
right hand side of Eq. (2) as follows:

ðW 0ÞðW 1Þ7ðW 2Þ7
2

¼ 1 ðmod 119Þ:
Therefore, even though x7 is correctly computed,
gx7 6¼

Q2
i¼0ðW iÞ7

i

ðmod 119Þ:
2. Verifiability of partial signatures. In case the sig-

nature reconstruction fails, Pn+1 must verify the
correctness of each partial signature sj and trace
the faulty signer(s) in the process. This involves
a zero knowledge proof of knowledge (ZKPK)
protocol [40] fZKPKðdj : sj ¼mdj ðmod NÞ^W j ¼
gdj ðmod NÞÞg between Pn+1 and the signer Pj.
However, due to the reasons explained above, it
is impossible to compute Wj using the public wit-
ness values. Explicitly,

W j 6¼
Yt�1

k¼0

ðW kÞid
k
j

" #kjð0Þ

ðmod NÞ ð3Þ

and therefore, performing the above ZKPK pro-
tocol is meaningless. Thus, it is impossible for the
prospective member to trace the faulty signer(s).

5. Threshold DSA based access control

In this section, we describe the access control
mechanism (referred to as TS-DSA) [26,37] based
on the threshold DSA scheme [11] of Gennaro et al.

5.1. DSA

The DSA [27] is a signature scheme based on the
El Gamal signature scheme [7]. In our description of
the TS-DSA protocol we follow the notation intro-
duced in [11], which differs from the original presen-
tation by switching k and k�1. This change allows a
clearer presentation.
1. Key Generation. DSA uses the system-wide
parameters (p,q,g) where q is a 160-bit prime
number, p is a large prime number such that q

divides (p � 1), and g is an element of order q
in Z�p. Each user selects a random integer x 2 Zq

as a private key and computes a public key y such
that y = gx (mod p).

2. Signing. To generate a signature on the message
m, the signer picks a random number k 2 Zq

and calculates r ¼ ðgk�1 ðmod pÞÞ mod q and
s = k(m + xr) (mod q). The signature for m is
the pair (r, s).

3. Verification. To verify a DSA signature, the ver-
ifier computes r0 ¼ ðgms�1

yrs�1 ðmod pÞÞ mod q
and checks if r 0 = r.
5.2. Bootstrapping

TS-DSA can be initialized by either: (1) a trusted
dealer or (2) a group of 3t � 2 or more founding
members.5

1. Centralized Initialization. The trusted dealer TD

does the following:
(a) The TD generates the system parameters

(p,q,g), selects a random polynomial
f(z) = a0 + a1z + � � � + at�1zt�1 over Zq of
degree (t � 1) such that f(0) = a0 = x where
ais, for i 2 [0, t � 1], are the coefficients of
the polynomial and x is a group secret. In
order to enable VSS (refer to Appendix
A.4) the TD computes and publishes the wit-
nesses W k ¼ gak for k 2 [0, t � 1]. Note that
the witness value W0 = gx, also denoted by
y, is actually the group public key.

(b) For each Pi (i 2 [1, 3t � 2]), the TD computes
the secret share xi such that xi = f(idi)
(mod q) and issues the group membership
certificate GMCi. Note that the TD is not
required hereafter.
2. Decentralized Initialization. A set of founding
members Pi (i 2 [1,3t � 2]) do the following:
(a) Each Pi selects an individual polynomial fi(z)

over Zq of degree (t � 1) as in JSS protocol
(refer to Appendix A.2).

6

pro
aga
ou

7

ter
CA
and
of
sec
inv

8

9

imp
wit
Diffi

3638 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
(b) Then, each Pi computes its own secret share
xi such that xi ¼

P3t�2
j¼1 fjðidiÞ mod q. Note

that during this process the VSS protocol is
applied to check the validity of xi.

(c) Now, in order to provide each member with a
membership certificate, any set of (2t � 1)
founding members must collaborate.
5.3. Member admission

Let n (P3t � 2) be the number of current group
members. The prospective member Pn+1 invokes the
admission process described in Section 3. The
detailed steps of the protocol are described below.
Fig. 2 shows the message flow of the TS-DSA proto-
col required to obtain GMCn+1.

1. A prospective member Pn+1 broadcasts signed
JOIN_REQ6 message m containing its identity
certificate PKCn+1 which contains its public key
PKn+1 and identity idn+1 in order to prove the
knowledge of the corresponding private key.7

2. After verifying the signed JOIN_REQ, group
members8 who wish to participate in the admis-
sion of Pn+1 reply with a signed message9 con-
taining their respective membership certificates
GMCis which include idi where i 2 [1, t 0] and
2t � 1 6 t 0 6 n.

3. Pn+1 picks at random (2t � 1) out of t 0 (P2t � 1)
sponsors, Pjs, collects their idjs from their respec-
tive GMCjs to form a sponsor list SLn+1 and
replies with a signed acknowledgment message
to each of them.
We note that it is necessary to include timestamps, nonces and
tocol message identifiers in order to secure the protocol
inst replay attacks [25]. However, we omit these values to keep

r description simple.
We assume that there exists an offline CA that issues long-

m certificates to each node. In practice, the existence of such a
can be avoided – a secret channel between the joining node
other nodes can be established by making use of physical out

band channels, as in [36,13]. Of course, this way of establishing
ret channels would require more overhead and some user
olvement.
We note that multiple sponsors may reply in parallel.
Note that how to provide authenticity of protocol messages is
lementation-dependent. Here, the signature can be replaced

h a message authentication code (MAC) [25], provided that
e-Hellman key exchange is available.
4. Each Pj randomly chooses polynomials kj(z) and
bj(z) in Zq of degree (t � 1). Pj computes kj(idi)
and bj(idi) for all co-signers Pi (i 2 [1,2t � 1]) in
SLn+1, and then distributes kj(idi) and bj(idi) to
them using JSS protocol. Also, the witness values
for these polynomials are broadcast by each Pj in
order to enable VSS. After receiving the partial
shares from other co-signers, Pj computes its
shares: kj ¼ kðidjÞ ¼

P2t�1
l¼1 klðidjÞ ðmod qÞ and

bj ¼ bðidjÞ ¼
P2t�1

l¼1 blðidjÞ ðmod qÞ. Then, Pj

computes uj = kjbj and vj ¼ gbj , and sends them
back to Pn+1.

5. Pn+1 now computes: u ¼
P2t�1

j¼1 ujkjð0Þ ðmod qÞ
and v ¼

Q2t�1
j¼1 ðvjÞkjð0Þ ðmod pÞ which finally

equals to kb and gb, respectively. Next, Pn+1 com-
putes the inverse u�1 (mod q) and finally com-
putes r such that r ¼ ðvu�1

mod pÞ mod q which
equals ðgk�1

mod pÞ mod q. Then, Pn+1 sends r

to Pj. Note that in order to compute r without
revealing any information about k or k�1, each
Pj must choose two polynomials [11].

6. Pj computes a partial signature sj = kj(m + xjr)
(mod q) and sends it to Pn+1. Pj also sends to
Pn+1 its shuffled partial secret share ~xðjÞnþ1 for
Pn+1 using the PSRS protocol (refer to Appendix
A.6): ~xðjÞnþ1 ¼ xjkjðidnþ1Þ þ Rjkjð0Þ ðmod qÞ, where
kjðxÞ ¼

Qt
l¼1;l6¼j

x�idl
idj�idl

ðmod qÞ and Rj is a random

share of the shared secret zero. Note that the
computation of kj(x) only requires t members.
Then, Pj computes a pairwise key Kjn+1 using
the technique in [5], and sends the encrypted sj

and ~xðjÞnþ1 to Pn+1.
7. Pn+1 computes the threshold signature s ¼P2t�1

j¼1 sjkjð0Þ ðmod qÞ which equals k(m + xr)
(mod q). Also, Pn+1 computes its own share
xn+1 by summing up ~xðjÞnþ1 for j 2 [1, t]. Pn+1 veri-
fies the reconstructed signature (r, s) and the
reconstructed share xn+1, using the standard
DSA verification and the VSS protocol, respec-
tively. If these verifications succeed, Pn+1 creates
its membership certificate GMCn+1 which con-
tains m = {idn+1,PKn+1, etc.} and its signature
(r, s). Otherwise, the technique for tracing mali-
cious members must be employed as follows:

(a) Partial share tracing. Correctness of the
partial secret share ~xðjÞnþ1 can be checked using
the VPSS technique discussed in Appendix
A.7.

(b) Partial signature tracing. Correctness of each
individual partial signature sj is verified by

gms�1
j � yrs�1

j
j ¼ gk�1

j , where yj ¼ gxj using the

Fig. 2. TS-DSA admission protocol.

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3639
witnesses for VSS as in [5] and gk�1
j is com-

puted as v
u�1

j
j from the steps (2) and (5) in

Fig. 2.
If either of the above tracing functions fail, Pn+1

concludes that Pj is cheating.
5.4. Membership authentication

Every legitimate member is able to prove its
membership using its own membership certificate.
This involves a verifier sending a challenge to the
group member, and the group member responding
back with a signed challenge along with its member-
ship certificate. The verifier first verifies the DSA
signature on the certificate (using the public key of
the group) and then the signature on the challenge
(using the group member’s public key extracted
from its membership certificate).

6. Threshold Schnorr based access control

In this section, we describe the access control
mechanism (referred to as TS-Sch) based on the
threshold Schnorr scheme [12].

3640 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
6.1. Schnorr signature scheme

The Schnorr signature scheme [39] is a variant of
the El Gamal scheme and its security is based on the
DL assumptions [34].

1. Key generation. The method to generate keys is
the same as DSA key generation, except that
there are no constraints on the sizes of p and q.

2. Signing. To generate a signature, the signer
selects a random secret integer k 2 Zq, computes
r = gk mod p, e = H(mkr), and s = k � ex mod
q. The pair (e, s) is the signature of the message
m.

3. Verification. To verify a signature, the verifier
computes r 0 = gsye mod p and e 0 = H(mkr 0) and
accepts the signature if and only if e 0 = e.

6.2. Bootstrapping

TS-Sch can be initialized in the same way as TS-
DSA, except the minimum number of founding
members required for decentralized initialization is
(2t � 1).
Fig. 3. TS-Sch admi
6.3. Member admission

Let n (P2t � 1) be the number of current group
members. The protocol steps are described below
and in Fig. 3.

1. Same as the step (1) in Section 5.3.
2. Each Pi (i 2 [1, t 0]) where t 6 t 0 6 n, who partici-

pates in the admission of Pn+1 randomly chooses
ki in Zq, computes ri such that ri ¼ gki ðmod pÞ,
and then replies with a signed message containing
ri and GMCi.

3. Pn+1 picks at random t out of t 0 (Pt) sponsors,
Pjs and collects idjs from the respective GMCjs
to form a sponsor list SLn+1. Also, Pn+1 com-
putes r ¼

Qt
j¼1rj ðmod pÞ and e = H(mkr). Then,

Pn+1 replies with a signed acknowledgment mes-
sage containing e, SLn+1 to each of the t

members.
4. Each Pj then computes the partial signature sj

and the shuffled partial secret share ~xðjÞnþ1 such
that sj = kj + exj (mod q) and ~xðjÞnþ1 ¼ xjkjðidnþ1Þþ
Rjkjð0Þ ðmod qÞ. Then Pj sends sj and ~xðjÞnþ1 to
Pn+1 over secure channel with Kjn+1 as in the step
(6) in Section 5.3.
ssion protocol.

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3641
5. Pn+1 first computes the signature s and its share
xn+1 such that s ¼

Pt
j¼1sj � kjð0Þ ðmod qÞ and

xnþ1 ¼
Pt

j¼1~x
ðjÞ
nþ1 ðmod qÞ. Pn+1 verifies the signa-

ture (e, s) and xn+1 using normal Schnorr verifica-
tion and VSS, respectively. If it succeeds, Pn+1

creates its membership certificate GMCn+1 which
contains m = {idn+1,PKn+1,etc.} and (e, s). if ver-
ification fails, Pn+1 traces sj and ~xðjÞnþ1 using tech-
niques presented in the following:
(a) Partial Share Tracing. Correctness of partial

secret share ~xðjÞnþ1 can be checked using VPSS.
(b) Partial Signature Tracing. Correctness of

individual partial signature sj is verified by:
gsj ¼ rjye

j ðmod pÞ, where yj ¼ gxj is calcu-
lated using the witnesses for VSS as in [5].
6.4. Membership authentication

Same as described in Section 5.4, except that the
signature on the certificate is verified using Schnorr
signature verification.

7. Threshold BLS based access control

We now describe the access control mechanism
(referred to as TS-BLS10) based on the threshold
BLS [4] scheme of [2].

7.1. BLS signature scheme

Boneh et al. [4] proposed a short signature
scheme (referred to as BLS). BLS uses the system-
wide parameters ðp; Fp; a; b; P ; qÞ based on Elliptic
Curves (EC). The curve is represented by a equa-
tion: y2 = x3 + ax + b. G1 is set to be a group of
order q generated by P, G2 is a subgroup of F�p2 of
order q, and ê : G1 �G1 ! G2 is defined to be
a public bilinear mapping, satisfying êðaP ; bQÞ ¼
êðP ;QÞab and non-degeneracy, êðP ; P Þ 6¼> 1 for all
a; b 2 Z�q and P ;Q 2 G1. Also, H 1 : f0; 1g� ! G1 is
the hash function that maps binary strings to non-
zero points in G1. All of this information is pub-
lished. In brief, the BLS signature scheme operates
as follows:

1. Key generation. Pick random x 2 Z�q and compute
Q = xP. x is the private key and Q is the corre-
sponding public key.
10 The identity-based version of this scheme appeared in [38].
2. Signing. To sign a message m, compute s =
xH1(m), where H1 is a special hash function that
maps binary strings onto points in G1. s is the sig-
nature on m.

3. Verification. Given (P,Q,m, s), check if êðQ;
H 1ðmÞÞ ¼ êðP ; sÞ.
7.2. Bootstrapping

Similar to TS-DSA and TS-Sch, TS-BLS can be
initialized by either: (1) a trusted dealer or (2) a
group of (2t � 1) or more founding members. The
bootstrapping procedure is exactly the same as in
TS-DSA. Only difference is that the VSS operations
are performed in the elliptic curve domain and
threshold BLS signing is used to issue certificates.
7.3. Member admission

Let n (P2t � 1) be the number of current group
members. The protocol steps are described below
and Fig. 4 shows the protocol message flow.

1. Same as the step (1) in Section 5.3.
2. Group members who participate in admission

reply with their respective GMCis to Pn+1 along
with its signature.

3. Pn+1 picks t out of t 0 (Pt) sponsors, forms a list
SLn+1 which contains the ids of t sponsors, signs
it, and sends it to each Pj.

4. Each sponsoring member computes the partial
signature sj and the shuffled partial share of the
secret ~xðjÞnþ1 such that sj = xjH1(m) and ~xðjÞnþ1 ¼
xjkjðidnþ1Þ þ Rjkjð0Þ ðmod qÞ. Note that, unlike
TS-DSA and TS-Sch, sj is computed without
Lagrange coefficient kj(0) which means that TS-
BLS signing does not require any interaction
among t sponsoring members.

5. Pn+1 first computes the signature s and its share
xn+1 such that s ¼

Pt
j¼1sjkjð0Þ ¼

Pt
j¼1ðxjkjð0ÞÞ

H 1ðmÞ ¼ xH 1ðmÞ and xnþ1 ¼
Pt

j¼1~x
ðjÞ
nþ1 ðmod qÞ.

Pn+1 verifies the signature s using normal BLS
verification. Also, Pn+1 verifies xn+1 using the fol-
lowing ECC-version of VSS protocol such that
xnþ1P ¼

Pt�1
i¼0ðidnþ1ÞiW i. If it succeeds, Pn+1 cre-

ates its membership certificate GMCn+1 which
contains m = {idn+1,PKn+1, etc.} and s. If verifi-
cation fails, Pn+1 traces sj and ~xðjÞnþ1 using tech-
niques presented in the following:
(a) Partial share tracing. Correctness of partial

secret share ~xðjÞnþ1 can be checked using

Fig. 4. TS-BLS admission protocol.

3642 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
the following ECC-version of the VPSS
technique: ~xðjÞnþ1P ¼ kjðidnþ1Þ

Pt�1
i¼0ðidjÞiW iþ

kjð0ÞRjP .
(b) Partial signature tracing. Correctness of each

partial signature sj can be verified by
êðsj; PÞ ¼ êðH 1ðmÞ; kjð0Þ

Pt�1
i¼0idi

jW iÞ.
11 The costs required for protecting each protocol message are
not taken into account since these costs vary with the specific
signature scheme.
7.4. Membership authentication

Same as described in Section 5.4, except that the
signature on the certificate is verified using BLS sig-
nature verification.

8. Performance evaluation

In this section, we compares the three access con-
trol mechanisms, TS-DSA, TS-Sch, and TS-BLS, in
terms of their respective key features and their
performance.

8.1. Complexity comparison

Table 2 summarizes the key features of each
mechanism. In TS-DSA, (2t � 1) signers are required
to tolerate (t � 1) faults, while t partial shares are
needed to reconstruct the secret share for joining.
Both TS-Sch and TS-BLS schemes require t partial
signatures as well as t partial shares. Thus, to com-
plete admission protocol, the group population
should be at least (2t � 1) in TS-Sch and TS-BLS
protocols, and (3t � 2) in TS-DSA. Both TS-DSA
and TS-Sch require, by construction, the generation
of a random value (and in turn interaction) among
sponsors, while TS-BLS has a fully non-interactive

signature generation.
Table 3 compares computation and communica-

tion costs of the three protocols11. As with compu-
tation costs, for admission, TS-DSA and TS-Sch
require O(t2) exponentiations. TS-BLS requires
O(t2) M operations (which are computationally
equivalent to modula exponentiations in finite
fields) and 2 P operations. For traceability, TS-
DSA and TS-Sch schemes require O(t2) exponentia-
tions, while TS-BLS requires O(t2) M and 2t P
operations. This means that TS-DSA and TS-Sch
should perform better than TS-BLS as far as

Table 2
Feature comparison

Key features TS-DSA TS-Sch TS-BLS

Security (for
admission)

DL DL EC-DL

Minimum group size 3t � 2 2t � 1 2t � 1
DoS resistance Yes Yes Yes
Interaction among

sponsors required
Yes Yes No

PSRS required Yes Yes Yes

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3643
traceability is concerned. For membership authenti-
cation, both TS-DSA and TS-Sch requires 2 expon-
entiations. On the other hand, TS-BLS requires 2 P
operations.

In terms of overall communication costs, all pro-
tocols require at least O(t2) unicasts and consume
O(t2 logq + t logp) bits. However, we observe that
TS-DSA requires significantly more rounds and
higher bandwidth.
8.2. Experimental setups

We now describe the experimental testbeds for
measuring the performance of our proposed proto-
cols. We ran experiments in a real wireless MANET
environment and also measured energy costs for
each scheme with power measuring system below.
8.2.1. Wireless mobile ad hoc networks
We used five laptop computers for our wireless

experimental set-up: four laptop computers with
Pentium-3 800 MHz CPU and 256 MB memory
and one laptop computer with Mobile Pentium
Table 3
Computation and communication complexities

Category

Computation Admission E

M

P

Traceability E

M

P

Membership Authentication E

M

P

Communication Round Broadc
Unicas

Bandwidth logq-bi
logp-bi

E: modular exponentiation, M: scalar-point-multiplication in ECC, P:
1.8 GHz CPU and 512 MB memory. Each machine
is configured with 802.11b in ad hoc mode and runs
the Optimized Link State Routing Protocol (OLSR)
[29]. Each machine runs Linux kernel 2.4. To simu-
late more than five nodes using just five laptops, we
ran more than one client process on each laptop.
8.2.1.1. Effect of mobility. Node mobility certainly
affects the performance of our access control mech-
anisms. Clearly, if nodes move around (and become
unreachable to each other and to the joining node)
while the protocol is in execution, the protocol
might not terminate successfully. On the other
hand, mobility can help the joining node to move
to a new, more dense location, where it has enough
neighbors to sponsor its admission.

In our experimental evaluation to follow, we did
not include the affect of mobility due to the follow-
ing reason: our evaluation measures the protocol
(computation, communication, power) overhead
under the assumption that the protocol successfully
terminates, i.e., under the assumption that the join-
ing node has enough online neighbors available for
the duration the protocol is executed. In other
words, we assume that the nodes who sponsor
admission do not move around (and become
unreachable to each other and to the joining node)
during the execution of the protocol.
8.2.2. Power measurement systems

To measure consumption of battery power, we
configured the following equipment, as shown in
Fig. 5. The test machine was an iPAQ (model
H5555) running Linux (Familiar-0.7.2). The CPU
TS-DSA TS-Sch TS-BLS

5t2 + 6t t2 + 2t + 3 N/A
N/A N/A 2t2 + t + 1
N/A N/A 2
3t2 + 9t � 3 2t2 + 5t N/A
N/A N/A 2t2 + 3t

N/A N/A 2t

2 2 N/A
N/A N/A 3
N/A N/A 2

ast 1 1 1
t 4t2 t2 + 2t t2 + 2t

t 5t2 + 4t � 3 2t2 + 3t 2t2 + 2t

t 14t � 7 6t 3t

Tate pairing operation in ECC.

Fig. 5. Power measurement testbed.

3644 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
on the iPAQ is a 400 MHz Intel XScale with 48MB
of flash memory and 128MB of SDRAM. In
order to obtain accurate power measurements, we
removed the battery from the iPAQ during the
experiment and placed a resistor in series with
power supply. We used a National Instruments
PCI DAQ (Data AcQuisition) board to sample the
voltage drops across the resistor to calculate the cur-
rent at 1000 samples per second.

8.3. Test methodology

1. Parameter selection. To perform fair compari-
sons, the size of the parameter q was set to be
160-bit and p to be 1024-bit except for TS-BLS.
For TS-BLS experiments, we used the elliptic
curve E defined by the equation: y2 = x3 + 1 over
Fp with p > 3 a prime satisfying p = 2 (mod) 3
and q being a prime factor12 of p + 1. The param-
eter p is a 512-bit prime in order to make sure
that the security of pairing ê is equivalent to
the security as in finite field of 1024 bits.13 The
measurements were performed with different
12 By Euler’s theorem, q must divide #EðFpÞ. For the curve
y2 = x3 + 1, #EðFpÞ ¼ p þ 1.
13 The G1 is a subgroup of points generated by P such that

P 2 EðFpÞ. The G2 is a subgroup of F�p2 of order q. The bilinear
map ê : G1 �G1 ! G2 is the well-known Tate pairing. Comput-
ing discrete log in Fp2 is sufficient for computing discrete log in
G1. Therefore, for proper security of discrete log in Fp2 the prime
p should be at least 512-bits long (so that the group size is at least
1024-bits long).
threshold values t from 1 to 9. We used 1024-
bit RSA signature with the fixed public exponent
65537 (= 216 + 1) for protocol message authenti-
cation. All experiments were repeated 1000 times
for each measurement in order to get fairly accu-
rate average results.14

2. Test cases. We measured the respective costs of
admission, energy consumption (of admission),
traceability, and membership authentication.
8.4. Basic operations

We first present the costs of the primitive opera-
tions in Table 4. For measuring the costs of basic
operations, we used a machine with Mobile Pentium
1.8 GHz CPU and 512 MB memory.

8.5. Experimental results

We now present and discuss the performance
measurement results for the proposed TS-DSA,
TS-Sch and TS-BLS schemes.

8.5.1. Admission results

Fig. 6a shows the admission cost with varying
threshold for TS-DSA, TS-Sch and TS-BLS schemes.
The admission costs also include the verification of
the membership certificate and the secret share.

As shown in Fig. 6a, TS-BLS exhibits appreciably
better performance that TS-DSA. The results imply
that the amount of communication in TS-DSA
14 The source code is publicly available at [32].

Table 4
Costs of primitive operations (Mobile Pentium 1.8 GHz)

Function Modulus
(bits)

Exponent
(bits)

Average time
(ms)

Signing DSA 1024 160 2.58
Schnorr 1024 160 2.20
BLS 512 160 4.81

Verification DSA 1024 160 4.17
Schnorr 1024 160 4.20
BLS 512 160 27.05

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3645
contributes significantly to the overall cost of admis-
sion, although computation-wise it is still quite effi-
cient (see Table 3).

8.5.2. Energy consumption results
This experiment is quite tricky to measure fairly.

The energy consumption is directly proportional to
the processing time and thus it is meaningless to
measure energy consumption with all the test cases
0

5

 10

 15

 20

 25

987654321

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(in

 s
ec

on
ds

)

Admision Threshold (t)

TS-DSA
TS-Sch
TS-BLS

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

 1.8

2

987654321

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(in

 s
ec

on
ds

)

Admision Threshold (t)

TS-DSA
TS-Sch
TS-BLS

Fig. 6. Cost comparison: (a) member admission, (b) energy consu
above. However, it is well known that, in many
small devices such as low-end MANET nodes or
sensors, sending a single bit is roughly equivalent
to performing 1000 32-bit computations in terms
of batter power consumption [1]. Therefore, we
measured power consumption in terms of communi-
cation bandwidth required by each admission pro-
tocol. For more details, we sent some bulk data
(e.g., 100 Mbytes) from a single iPAQ PDA (refer
to Fig. 5), measured power consumed while sending
out this data, and then computed the average power
consumption per bit. After that, we calculated
power consumption of each admission protocol by
multiplying this measurement result by the bit
length of the transmitted data.

Energy consumption results are plotted in
Fig. 6b. These results clearly illustrate that TS-
BLS is the most energy-efficient, since they require
the smallest amount of bandwidth amongst the
respective admission protocols.
0

 50

 100

 150

 200

 250

 300

 350

 400

987654321

C
on

su
m

ed
 E

ne
rg

y
(in

 μ
J)

Admision Threshold (t)

TS-DSA
TS-Sch
TS-BLS

1

 10

 100

 1000

987654321

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(in

 m
ill

is
ec

on
ds

)

Admision Threshold (t)

(lo
ga

rit
hm

ic
 s

ca
le

)

TS-DSA
TS-Sch
TS-BLS

mption, (c) traceability and (d) membership authentication.

3646 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
8.5.3. Traceability results

Traceability costs are presented in Fig. 6c. Due to
the costly computation of Tate pairings, TS-BLS
performs poorly, as compared to TS-DSA and TS-
Sch. However, since the misbehavior in the admis-
sion protocol leads ultimately to the eviction of
the corresponding group member, we argue that
traceability is a rare exceptional measure; thus we
consider its costs to be relatively unimportant.

8.5.4. Membership authentication results

The costs of membership authentication are
shown in Fig. 6d. The results show that costs for
TS-DSA and TS-Sch are very close to each other
and relatively constant while TS-BLS cost is very
high due to expensive pairing operation.

9. Conclusion

In this paper, we explored the utility of various
existing threshold signature schemes in building dis-
tributed access control mechanisms for ad hoc
groups. We first showed that none of the threshold
(or proactive) RSA signature schemes in the litera-
ture are applicable for our purpose. Next, we imple-
mented three access control mechanisms based
on discrete-logarithm based threshold signatures,
threshold DSA (TS-DSA), threshold Schnorr
(TS-Sch) and threshold BLS (TS-BLS), and evalu-
ated them in a real MANET setting. Based on our
evaluation, we conclude that overall TS-Sch is the
most efficient mechanism, followed by TS-BLS and
TS-DSA.

Appendix A. Cryptographic primitives

A.1. Threshold secret sharing (TSS)

In this section, we present Shamir’s secret sharing
scheme [41] which is based on polynomial interpola-
tion. We will refer to it as TSS. To distribute shares
of a secret x among n entities, a trusted dealer TD

chooses a polynomial f(z) over Zq of degree
ðt � 1Þ : f ðzÞ ¼

Pt�1
i¼0aizi ðmod qÞ, where the con-

stant term a0 is set to the group secret x;
f(0) = a0 = x. TD computes each entity’s share xi

such that xi = f(idi), where idi is an identifier of
entity Pi, and securely transfers xi to Pi. Note that
after distributing at least t secret shares, the dealer
is no longer required.

Then, any group of t entities who have their
shares can recover the secret using the Lagrange
interpolation formula: f ðzÞ ¼
Pt

i¼1xikiðzÞ ðmod qÞ,
where kiðzÞ ¼

Qt
j¼1;j 6¼i

z�idj

idi�idj
ðmod qÞ. Since f(0) =

x, the shared secret may be expressed as:
x ¼ f ð0Þ ¼

Pt
i¼1xi kið0Þ ðmod qÞ. Thus, the secret

x can be recovered only if at least t shares are com-
bined. In other words, no coalition of less than t
entities yields any information about x.

A.2. Joint secret sharing (JSS)

This scheme (due to Pederson [31]), denoted by
JSS, extends Shamir’s secret sharing by removing
the need for a centralized dealer to choose a polyno-
mial and distribute shares. In this scheme, the enti-
ties collectively choose shares corresponding to
Shamir’s secret sharing of a random value without
the dealer. The main idea here is that the polyno-
mial itself is shared such that f(z) = f1(z) + � � � +
fn(z), where fi(z) is the polynomial of each entity
Pi over Zq.

Suppose there are n entities in a system
(P1, . . . ,Pn). It will be assumed that all entities of
the group have previously agreed on the prime q.
Each Pi chooses at random a polynomial fiðzÞ 2
Zq of degree (t � 1) such that fi(0) = ri where ri is
a random secret that Pi selects. Let fi(z) = ai0 +
ai1z + � � � + ai,t�1zt�1 (mod q), where ai0 = ri. Pi

computes Pj’s share x̂ðiÞj ¼ fiðidjÞ for Pj (j 2 [1, n]),
and securely sends it to Pj (in particular Pi keeps
x̂ðiÞi). Note that the share values should be transmit-
ted over the secure channel. Pj computes its share xj

of the secret x as the sum of all shares received:
xj ¼

Pn
i¼1x̂ðiÞj .

Let f(z) denote the combined polynomial over Zq.
It is given by: f(z) = f1(z) + � � � + fn(z) (mod q). By
construction xj = f(idj) for j 2 [1,n], and therefore
xj is a share of x such that xj ¼ f ðidjÞ ¼Pn

i¼1fiðidjÞ ¼
Pn

i¼1x̂ðiÞj and x ¼ f ð0Þ ¼
Pn

i¼1fið0Þ ¼Pn
i¼1ai0 ¼

Pn
i¼1ri ðmod qÞ. Once every entity has

its own share, any coalition of t entities can jointly
recover the secret x using Lagrange interpolation
as in TSS in Appendix A.1.

A.3. Joint zero secret sharing (JZSS)

This scheme, which first appeared in [15], is a var-
iant of joint secret sharing where the shared secret is
zero. In other words, this scheme is the same as
JSS except that in first step, each entity picks a
random (t � 1)-degree polynomial fiðzÞ 2 Zq such
that fi(0) = 0. We refer to it as a Joint Zero Secret
Sharing, denoted by JZSS. It is used in proactive

N. Saxena et al. / Computer Networks 51 (2007) 3632–3649 3647
secret sharing and partial share random shuffling for
re-randomizing a secret share.

A.4. Verifiable secret sharing (VSS)

If we suppose that some entities can become mali-
cious or compromised by an adversary, they may
attempt to ‘‘cheat’’ by using incorrect secret shares
in order to deny/disrupt the service. To remedy the
situation, a more advanced technique, Verifiable

Secret Sharing [8], denoted by VSS, can be used. It
basically provides a means to detect incorrect secret
shares. To be more specific, VSS setup involves two
large primes p and q, and an element g 2 Z�p chosen
in a way that q divides p � 1 and g is an element of
Z�p which has order q. The procedure for the TD to
distribute the shares is the same as in Appendix
A.1. VSS is achieved by the following procedure:

1. Witness generation. The TD randomly selects a
polynomial f ðzÞ ¼

Pt�1
i¼0aizi, computes secret

shares xi, and transfers them to each entity
securely. Also, TD chooses an element g 2 Z�p
of order q, and computes Wi, for i 2 [0, t � 1],
called witness, such that W i ¼ gai : Then, TD pub-
lishes these Wis in some public domain (e.g., a
directory server).15

2. Share verification. When each entity Pi receives
its share xi, it verifies xi by checking: gxi ¼Qt�1

j¼0½W j�ðidiÞj ðmod pÞ.
A.5. Partial secret sharing (PSS)

As a result of secret sharing, each honest entity Pi

obtains a secret share xi. Then, the share xn+1 for a
prospective entity Pn+1 can be computed through
collaboration of t existing entities in the group when
the TD is no longer available. We call this a Partial

Secret Share, referring it to as PSS. Pn+1 receives t

partial shares xðjÞnþ1s from a set of t entities called
sponsors. It will be assumed that the t number of
indices, j (= 1, . . . , t), are given to each Pj by Pn+1.
The details are as follows: each Pj computes a

partial secret share for Pn+1 as: xðjÞnþ1 ¼ xj�
kjðidnþ1Þ ðmod pÞ, where xj is Pj’s own secret share.

Then, Pj securely sends xðjÞnþ1 to Pn+1. Given t partial
shares and an identity of Pn+1, the secret share
15 In case of JSS, where the group polynomial is jointly selected
by the entities, this step is carried out by each of the entities
individually.
xn+1 can be computed: xnþ1 ¼
Pt

j¼1xðjÞnþ1 ¼
Pt

j¼1xj�
h

kjðidnþ1Þ
i
ðmod qÞ. Recall that f ðzÞ ¼

Pt
i¼1xikiðzÞ

and xn+1 = f(idn+1).

A.6. Partial share random shuffling (PSRS)

In PSS the above, Pn+1 needs to be provided (in a
distributed manner) with its share xn+1 of the group
secret x. However, in case that each sponsor Pj issues
Pn+1 a partial secret share xðjÞnþ1 such that xðjÞnþ1 ¼
xjkðidnþ1Þ, Pn+1 (or an adversary who corrupts
Pn+1) can easily recover each xj and in turn the group
secret x, since Lagrange coefficients kj(idn+1) are pub-

licly known, Pn+1 can obtain xj by dividing xðjÞnþ1 by
kj(idn+1). To remedy this, Pjs must randomize the
issued partial shares. We call this procedure as Partial

Share Random Shuffling, denoted by PSRS.
The detailed procedure is as follows. All of the t

sponsors perform the JZSS, as in Appendix A.3, by
setting the constant term of their respective polyno-
mials to zero. Also, the witness values of the polyno-
mials are broadcast to enable VSS. At the end of
JZSS, every Pj possesses a random share Rj of the
shared secret zero. Now, Pj provides the shuffled par-
tial secret share ~xðjÞnþ1 for P nþ1 : ~xðjÞnþ1 ¼ xðjÞnþ1 þ Rjkjð0Þ ¼
xjkjðidnþ1Þ þ Rjkjð0Þ ðmod qÞ. Since

Pt
j¼1Rjkjð0Þ¼

0, Pn+1’s secret share xn+1 is given by xnþ1¼
Pt�1

j¼0~x
ðjÞ
nþ1.

A.7. Verifiable partial secret sharing (VPSS)

The idea of VSS can be easily extended to verify
correctness of partial shares that Pn+1 receives from
sponsors. We call this a Verifiable Partial Secret Shar-

ing, referred to as VPSS. Since ~xðjÞnþ1 ¼ xjkjðidnþ1Þþ
Rjkjð0Þ where Rj is the random number for the PSRS
technique as explained above, to check if ~xðjÞnþ1 is cor-
rectly computed and trace which of the Pjs sent back
false values, if any, following equation is verified:

g~xðjÞ
nþ1 ¼

Qt�1
k¼0ðW kÞid

k
j

h ikjðidnþ1Þ
gRjkjð0Þ ðmod pÞ, where

gRj is computed using the broadcast witness values
of the shared polynomial among the sponsors.

Appendix B. Threshold RSA scheme of
[23,21,20,24,22]

A TD is involved in a one-time setup to bootstrap
the system. TD generates the standard RSA private/
public key pair, i.e., it picks two random primes p

and q, sets N = pq, sets (e,N) as a public key where
gcd(e,N) = 1, and as a private key it sets a number
d < N s.t. ed = 1 mod /(N). Once the standard

Fig. 7. TS-RSA admission protocol.

3648 N. Saxena et al. / Computer Networks 51 (2007) 3632–3649
RSA key pair is chosen, TD secret-shares the RSA
secret key d using a slight modification of TSS.
Namely, TD selects a random polynomial f(z) =
a0 + a1z + � � � + atz

t over ZN of degree t, such that
the group secret is f(0) = d (mod N). Next, TD gives
to each member Pi, for i = 1, . . . ,n, a secret share
xi = f(idi) (mod N). Notice that the secret d is shared
over a public composite modulus N as opposed to a
prime modulus as in the original scheme of Shamir
and a secret modulus /(N) in Shoup’s scheme. Since
there may be compromised members who can gen-
erate false shares and false signatures thereafter,
the dealer provides a witness of f(z) which is repre-
sented by fga0 ; ga1 ; . . . ; gat�1gðmod NÞ for a certain
g 2 Z�N , and publishes it for VSS [8].

Fig. 7 shows the message flows for the admission
protocol. Each member Pj, for idj 2 SLn+1, outputs
its partial signature sj on m as sj ¼ mdj ðmod NÞ,
where dj = xjkj(0) (mod N). In addition, Pj also pro-
vides Pn+1 with its partial secret share ~xðjÞnþ1 (com-
puted over modulus N) after shuffling using PSRS.
Pn+1 reconstructs the RSA signature using the t-

bounded offsetting algorithm (refer to [21] for
details) and its secret share xn+1 such that xnþ1 ¼P

idj2SLnþ1
~xðjÞnþ1 ðmod NÞ.

References

[1] K. Barr, K. Asanovic, Energy aware lossless data compres-
sion, in: International Conference on Mobile Systems,
Applications, and Services (MobiSys), May 2003.

[2] A. Boldyreva, Efficient threshold signatures, multisignatures
and blind signatures based on the Gap-Diffie-Hellman-group
signature scheme, in: Proceedings of International Work-
shop on Practice and Theory in Public Key Cryptography,
LNCS, vol. 2567, 2003, pp. 31–46.

[3] D. Boneh, M. Franklin, Efficient generation of shared RSA
key, in: CRYPTO’97, LNCS, vol. 1294, 1997, pp. 425–439.

[4] D. Boneh, B. Lynn, H. Shacham, Short signatures from the
Weil pairing, in: C. Boyd (Ed.), ASIACRYPT’01, LNCS,
vol. 2248, 2001, IACR, pp. 514–532.

[5] C. Castelluccia, N. Saxena, J.H. Yi, Self-configurable key
pre-distribution in mobile ad hoc networks, in: IFIP
Networking Conference, May 2005.

[6] Y. Desmedt, Y. Frankel, Threshold Cryptosystems, in:
CRYPTO’89, LNCS, vol. 435, 1990, pp. 307–315.

[7] T. El Gamal, A public key cryptosystem and a signature
scheme based on discrete logarithms, in: IEEE Transactions
on Information Theory, vol. 31 (July), 1985, pp. 469–472.
[8] P. Feldman, A practical scheme for non-interactive verifiable
secret sharing, in: 28th Symposium on Foundations of
Computer Science (FOCS), 1987, pp. 427–437.

[9] Y. Frankel, P. Gemmell, P.D. MacKenzie, M. Yung,
Proactive RSA, in: CRYPTO’97, LNCS, vol. 1294 (August),
1997, pp. 440–454.

[10] Y. Frankel, P.D. MacKenzie, M. Yung. Adaptive security
for the additive-sharing based proactive RSA, in: Public Key
Cryptography 2001, LNCS, vol. 1992, 2001, pp. 240–263.

[11] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, Robust
threshold DSS signatures, in: EURO-CRYPT’96, LNCS,
vol. 1070, 1996, pp. 354–371.

[12] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Secure
applications of Pedersen’s distributed key generation protocol,
in: RSA Conference – The Cryptographers’ Track, April 2003.

[13] M.T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, E. Uzun,
Loud and Clear: Human-verifiable authentication based on
audio, in: International Conference on Distributed Comput-
ing Systems (ICDCS), July 2006. Available from: <http://
www.ics.uci.edu/ccsp/lac>.

[14] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M.
Yung, Proactive public key and signature systems, in: ACM
Conference on Computers and Communication Security,
1997.

[15] A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung, Proactive
secret sharing, or how to cope with perpetual leakage, in:
CRYPTO’95, LNCS, vol. 963, 1995, pp. 339–352.

[16] R. Housley, W. Polk, W. Ford, D. Solo, Internet X.509
public key infrastructure certificate and certificate revocation
list (CRL) profile, RFC 3280, IETF, April 2002.

[17] Y.-C. Hu, A. Perrig, D. B. Johnson, Ariadne: a secure on-
demand routing protocol for ad hoc networks, in: Proceed-
ings of the Eighth ACM International Conference on Mobile
Computing and Networking (Mobicom 2002), September
2002.

[18] S. Jarecki, N. Saxena, J.H. Yi, An attack on the proactive
RSA signature scheme in the URSA ad hoc network access
control protocol, in: ACM Workshop on Security of Ad Hoc
and Sensor Networks (SASN), October 2004, pp. 1–9.

[19] Y. Kim, D. Mazzocchi, G. Tsudik, Admission control in
peer groups, in: IEEE International Symposium on Network
Computing and Applications (NCA), April 2003.

[20] J. Kong, H. Luo, K. Xu, D.L. Gu, M. Gerla, S. Lu, Adaptive
security for multi-level ad-hoc networks, Journal of Wireless
Communications and Mobile Computing (WCMC) 2 (2002)
533–547.

[21] J. Kong, P. Zerfos, H. Luo, S. Lu, L. Zhang, Providing
robust and ubiquitous security support for MANET, in:
IEEE 9th International Conference on Network Protocols
(ICNP), 2001, pp. 251–260.

[22] H. Luo, J. Kong, P. Zerfos, S. Lu, L. Zhang, URSA:
ubiquitous and robust access control for mobile ad hoc
networks, in: IEEE/ACM Transactions on Networking
(ToN), December 2004.

[23] H. Luo, S. Lu, Ubiquitous and robust authentication
services for ad hoc wireless networks, Technical Report
TR-200030, Department of Computer Science, UCLA, 2000.
Available online at <http://citeseer.ist.psu.edu/luo00ubiqui-
tous.html>.

[24] H. Luo, P. Zerfos, J. Kong, S. Lu, L. Zhang, Self-securing ad
hoc wireless networks, in: Seventh IEEE Symposium on
Computers and Communications (ISCC’02), 2002.

http://www.ics.uci.edu/ccsp/lac
http://www.ics.uci.edu/ccsp/lac
http://citeseer.ist.psu.edu/luo00ubiquitous.html
http://citeseer.ist.psu.edu/luo00ubiquitous.html

N. Saxena et al. / Computer Netw
[25] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook
of applied cryptography, CRC Press series on discrete
mathematics and its applications, 1997, ISBN 0-8493-8523-7.

[26] M. Narasimha, G. Tsudik, J.H. Yi, On the utility of
distributed cryptography in P2P and MANETs: the case of
membership control, in: IEEE International Conference on
Network Protocol (ICNP), November 2003, pp. 336–345.

[27] NIST, Digital Signature Standard. Technical Report 169,
August 1991.

[28] K. Ohta, S. Micali, L. Reyzin, Accountable subgroup
multisignatures, in: ACM Conference on Computer and
Communications Security, November 2001, pp. 245–254.

[29] OLSR Protocol, <http://menetou.inria.fr/olsr>.
[30] R. Ostrovsky, M. Yung, How to withstand mobile virus

attacks, in: 10th ACM Symp. on the Princ. of Distr. Comp.,
1991, pp. 51–61.

[31] T.P. Pedersen, A threshold cryptosystem without a trusted
party, in: D. Davies (Ed.), EURO-CRYPT’91, LNCS, vol.
547, 1991, IACR, pp. 552–526.

[32] Peer Group Admission Control Project. <http://sconce.ic-
s.uci.edu/gac>.

[33] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar,
Spins: security protocols for sensor networks, in: Mobile
Computing and Networking, 2001.

[34] D. Pointcheval, J. Stern, Security proofs for signature
schemes, in: EUROCRYPT’96, LNCS, vol. 1070, May
1996, pp. 387–398.

[35] T. Rabin, A simplified approach to threshold and proactive
RSA, in: CRYPTO’98, LNCS, vol. 1462, 1998, pp. 89–
104.

[36] N. Saxena, J.-E. Ekberg, K. Kostiainen, N. Asokan, Secure
device pairing based on a visual channel (short paper), in:
IEEE Symposium on Security and Privacy (ISP’06), May
2006.

[37] N. Saxena, G. Tsudik, J.H. Yi, Admission control in peer-to-
peer: design and performance evaluation, in: ACM Work-
shop on Security of Ad Hoc and Sensor Networks (SASN),
October 2003, pp. 104–114.

[38] N. Saxena, G. Tsudik, J.H. Yi, Identity-based access control
for ad-hoc groups, in: International Conference on Infor-
mation Security and Cryptology (ICISC), December 2004.

[39] C.P. Schnorr, Efficient signature generation by smart cards,
Journal of Cryptology 4 (3) (1991) 161–174.

[40] B. Schoenmakers, A simple publicly verifiable secret sharing
scheme and its application to electronic voting, in: M.
Wiener (Ed.), CRYPTO’99, LNCS, 1666, 1999, IACR, pp.
148–164.

[41] A. Shamir, How to share a secret, Communications of the
ACM 22 (11) (1979) 612–613.

[42] V. Shoup, Practical Threshold Signatures. In EURO-
CRYPT’00, LNCS, vol. 1807, 2000, pp. 207–220.

[43] M. Steiner, G. Tsudik, M. Waidner, Cliques: a new approach
to group key agreement, IEEE Transactions on Parallel and
Distributed Systems (August) (2000).

[44] M. Steiner, G. Tsudik, M. Waidner, Key agreement in
dynamic peer groups, IEEE Transactions on Parallel and
Distributed Systems (July) (2000).

[45] L. Zhou, Z.J. Haas, Securing ad hoc networks, IEEE
Network Magazine 13 (6) (1999) 24–30.

[46] L. Zhou, F. Schneider, R. van Renesse, COCA: a secure
distributed on-line certification authority, ACM Transac-
tions on Computer Systems 20 (4) (2002) 329–368.
Nitesh Saxena is an Assistant Professor
in the department of Computer and

Information Science at Polytechnic
University, starting Fall 2006. He
obtained his Ph.D. in Information and
Computer Science from University of
California, Irvine, in summer 2006. He
holds an M.S. degree in Computer Sci-
ence from UC Santa Barbara, and a
Bachelor’s degree in Mathematics and
Computing from Indian Institute of

Technology, Kharagpur, India. His research spans all areas of
information security with core emphasis on network and dis-

orks 51 (2007) 3632–3649 3649
tributed system security and applied cryptography. His Ph.D.
dissertation entitled Decentralized Security Services’’ has been
nominated for the ACM Dissertation Award for the year 2006.

Gene Tsudik is a Professor of Computer
Science at the University of California,
Irvine. He has been conducting research
active in internetworking, network secu-
rity and applied cryptography since
1987. He obtained a Ph.D. in Computer
Science from USC in 1991; his disserta-
tion focused on access control in inter-
networks. Before coming to UC Irvine in
2000, he was a Project Leader at IBM
Research, Zurich Laboratory (1991–

1996) and USC Information Science Institute (1996–2000). Over
the years, his research interests included: routing, firewalls,

authentication, mobile/wireless network security, secure e-com-
merce, anonymity, secure group communication, digital signa-
tures, key management, ad hoc network routing, and, more
recently, database privacy and secure storage. Some of Professor
Tsudiki s notable research contributions include: Inter-Domain
Policy Routing (IDPR), IBM Network Security Program
(KryptoKnight), IBM Internet Keyed Payment (iKP) protocols,
Peer Group Key Management (CLIQUES) and Mediated
Cryptographic Services (SUCSES). He has over 100 refereed
publications and 7 patents. Since 2002 he has been serving as
Associate Dean of Research and Graduate Studies in the Donald
Bren School of Information and Computer Sciences at UCI. He
is a member of the IEEE.
Jeong Hyun Yi is a principal researcher
at Samsung Advanced Institute of
Technology (SAIT). He received his
Ph.D. in Information and Computer
Science with his advisor, Dr. Gene Tsu-
dik, from University of California, Irvine
in 2005. He received his M.S. and B.S. in
Computer Science at Soongsil Univer-
sity, Korea in 1995 and 1993, respec-
tively. He was a senior researcher at
Electronics and Telecommunication

Research Institute (ETRI), Korea from 1995 to 2001 and a guest
researcher at National Institute of Standards and Technology

(NIST), MD, USA From 2000 to 2001. His research interests are
in network security, applied cryptography, ubiquitous comput-
ing, RFID and wireless sensor networks.

http://menetou.inria.fr/olsr
http://sconce.ics.uci.edu/gac
http://sconce.ics.uci.edu/gac

	Threshold cryptography in P2P and MANETs: The case of access control
	Introduction
	Related work
	Our contributions
	Scope
	Organization

	Notation
	Group access control
	Threshold RSA schemes
	Analysis of known schemes
	Robustness problem with URSA RSA signature scheme

	Threshold DSA based access control
	DSA
	Bootstrapping
	Member admission
	Membership authentication

	Threshold Schnorr based access control
	Schnorr signature scheme
	Bootstrapping
	Member admission
	Membership authentication

	Threshold BLS based access control
	BLS signature scheme
	Bootstrapping
	Member admission
	Membership authentication

	Performance evaluation
	Complexity comparison
	Experimental setups
	Wireless mobile ad hoc networks
	Effect of mobility

	Power measurement systems

	Test methodology
	Basic operations
	Experimental results
	Admission results
	Energy consumption results
	Traceability results
	Membership authentication results

	Conclusion
	Cryptographic primitives
	Threshold secret sharing (TSS)
	Joint secret sharing (JSS)
	Joint zero secret sharing (JZSS)
	Verifiable secret sharing (VSS)
	Partial secret sharing (PSS)
	Partial share random shuffling (PSRS)
	Verifiable partial secret sharing (VPSS)

	Threshold RSA scheme of [23,21,20,24,22]
	References

