Automated Device Pairing for Asymmetric Pairing
Scenarios

Nitesh Saxena and Md. Borhan Uddin

Computer and Information Science
Polytechnic Institute of New York University
Brooklyn, NY 11201, USA
nsaxena@ol y. edu,bor han@i s. pol y. edu

Abstract. “Secure Device Pairing” is the process of bootstrappingisecom-
munication between two human-operated devices over a-sirariedium-range
wireless channel (such as Bluetooth, WiFi). The devicesighs scenario can
neither be assumed to have a prior context with each othedméney share a
common trusted authority. However, the devices can gdgdyalconnected us-
ing auxiliary physical channel(s) (such as audio, visuad} tan be authenticated
by the device user(s), and thus form the basis for pairing.

Recently proposed pairing protocols are based upon btiired physical chan-
nels. However, various pairing scenarios are asymmetritatare, i.e., only a
unidirectional physical channel exists between two deviseich as between a
cell phone and an access point). In this paper, we concergrapairing devices
using a unidirectional physical channel and analyze réc@nbposed protocol
on this topic [14]. Moreover, as an improvement to [14], wegent an efficient
implementation of a unidirectional physical channel basednultiple blinking
LEDs as transmitter and a video camera as a receiver.

Key words: Distributed Protocols, Mobile/Ad-Hoc Systems, Security.

1 Introduction

Short-range wireless communication, based on technaoglieh as Bluetooth and
WiFi, is becoming increasingly popular and promises to ri@ersa in the future. With
this surge in popularity, come various security risks. \'éise communication channel
is easy to eavesdrop upon and to manipulate, and therefaredarhental security ob-
jective is to secure this communication channel. In thisepage will use the term
“pairing” to refer to the operation of bootstrapping seccwenmunication between two
devices connected with a short-range wireless channeleXémples of pairing, from
day-to-day life, include pairing of a WiFi laptop and an a&xpoint, a Bluetooth key-
board and a desktop, and so on. Pairing would be easy to aglifahere existed a
global infrastructure enabling devices to share an on- Bliref trusted third party, a
certification authority, a PKI or any pre-configured secrktmwever, such a global in-
frastructure is close to impossible to come by in practibereby making pairing an
interesting and a challenging real-world research problérme problem has been at the
forefront of various recent standardization activitiess £20].

A recent research direction to pairing is to use an auxilrysically authenticat-
able channel i.e., physical channel, also called an olaod (OOB) channel, which

is governed by humans, i.e., by the users operating the eeviexamples of OOB
channels include audio, visual channels, etc. Unlike threlags channel, on the OOB
channel, an adversary is assumed to be incapable of moglifggssages, however, it
can eavesdrop on, delay, drop and replay them. A pairingnsetsiould therefore be
secure against such an adversary.

The usability of a pairing scheme based on OOB channelsaslglef utmost im-
portance. Since the OOB channels typically have low banthyitie shorter the data
that a pairing scheme needs to transmit over these chatimelsetter the scheme be-
comes in terms of usability.

Various pairing protocols have been proposed so far. Theseqols are generally
based on théidirectional automated device-to-devicé2d) OOB channels. Sucti2d
channels require both devices to have transmitters andotfiesponding receivers. In
settings, where2d channel(s) do not exist (i.e., when at least one device dodsave
a receiver) and even otherwise, same protocols can be baseddevice-to-human
(d2h) and human-to-deviceh2d) channel(s) instead. Depending upon the protocol,
only two d2h channels might be sufficient, such as in case when the useo hpas-
form a very simple operation (such as “comparison”) of theadaceived over these
channels. Clearly, the usability @Ph and h2d channel establishment is even more
critical than that of al2d channel.

The earlier pairing protocols requires at leg®to 160 bits of data to be transmitted
over the OOB channels. The simplest protocol [1] involvegiais exchanging their
public keys over the wireless channel, and authenticatiamtby exchanging (at least
80-bits long) hashes of corresponding public keys over the @B#&hnels. The more
recent, so-called SAS- (Short Authenticated Strings) dhgsetocols, [7] and [9], re-
duce the length of data to be transmitted over the OOB chartio@nly15 bits or so.
The concept of SAS-based authentication was first intradibge/audenay in [22].

Based on the above-mentioned protocols, a number of paicimgmes with various
OOB channels have been proposed. We review these in theewtidrs In this paper,
we concentrate on pairing devices usimgdirectional OOB channels. The motivation
for this is that in various pairing scenarios, bidirectibdad channels do not exist
because only one of the devices being paired has a receiveh @s while pairing
wifi laptop and a cell phone). Since receivers are generafigmsive, it is not feasible
to add them onto commodity devices, such as access poinetobth headsets, etc.
Moreover, even in scenarios, where bidirectiod2d or the equivalent bidirectional
d2h-h2d channels do exist, it is always beneficial to use only oneafitfor efficiency
and usability reasons.

With the above motivation, we take a closer look at our presip proposed proto-
col that can be used for pairing two devices using a “shoridivectional OOB channel
in one direction and a unidirectional “single-bit” OOB clmah in the other direction
[14]. Since a “single-bit” channel is easy and fast to impdamwe ignore this bidirec-
tionality and from here on, refer to the protocol of [14] asratpcol that can pair two
devices using a unidirectional OOB channel. The protocavewed in next section.

Our Contributions. In this paper, we make twofold contributions:

— First, we analyze the protocol of [14] (as it did not come vatlsecurity proof).
We show that the protocol is insecure in a security modeldahatvs an adversary

to delay/replay information transmitted over the OOB chedsnin fact, we argue
that in such a model, it is impossible to achieve pairing wity a unidirectional
OOB channel. Next, we consider a weaker yet practical siyconodel that does
not allow an adversary to delay/replay messages over the €@Bnel and prove
that the protocol of [14] indeed remains secure in this model

— Second, as an improvement to [14], we propose a new implatiemtof a OOB
channel using LEDs as transmitter and video camera as exceinlike the results
of [14], the implementation of our channel is much more edfitiand its band-
width improves with the increase in the number of LEDs. Simgest devices have
multiple LEDs (and if not, they can be cheaply added on), mplémentation is
an efficient way to pair two devices (such as headset and eapfemne, access
point and camera phone), one of which has a video camera.n@plerinentation
has other useful applications in Bluetooth/WiFi devicecdisery, sensor network
key distribution and in general, in data transmission.

Organization. The rest of the paper is organized as follows. In Section 2review
the prior pairing schemes. In Section 3, we describe therfgonodel and summarize
relevant protocols. In Section 4, we analyze the protocl4f. Finally, in Section 5,
we discuss our implementation ofiad channel using LEDs and video camera.

2 Related Work

There exists a significant amount of prior work on the gentey@t of pairing. In their
seminal work, Stajano, et al. [19] proposed to establishaaeshsecret between two
devices using a link created through a physical contact(siscan electric cable). In
many settings, however, establishing such a physical contgght not be possible,
for example, the devices might not have common interfacaefotso or it might be
too cumbersome to carry the cables along. Balfanz, et akXfgnded this approach
through the use of infrared asd@d channel — the devices exchange their public keys
over the wireless channel followed by exchanging (at I8asiits long) hashes of their
respective public keys over infrared. The main drawbackhsf scheme is that it is
only applicable to devices equipped with infrared transmsi. Moreover, the infrared
channels can not be perceived by humans and thus are eatyda at

Another approach taken by a few research papers is to petf@rkey exchange
over the wireless channel and authenticate it by requitiegusers to manually and
visually compare the established secret on both deviceseSnanually comparing the
established secret or its hash is cumbersome for the usbemes were designed to
make this visualization simpler. These include Snowflakelmaaism [5] by Levienet et
al., Random Arts visual hash [10] by Perrig et al. etc. Thebemes, however, require
high-resolution displays and are thus only applicable tonétédd number of devices,
such as laptops.

Based on the pairing protocol of Balfanz et al. [1], McCuneletproposed the
“Seeing-is-Believing” (SiB) scheme [8]. SiB involves dgiahing two unidirectional
visuald2d channels — one device encodes the data into a two-dimehbs@rade and
the other device reads it using a photo camera. Since thengctexjuires both devices
to have cameras, it is only suitable for pairing devices sasbamera phones.

Goodrich, et al. [6], proposed a pairing scheme based on Lilddentences. This
scheme also uses the protocol of Balfanz et al. The main &léa éstablish al2h
channel by encoding the data into a MadLib sentence. Detieacodes the hash of
its public key into a MadLib sentence and transmits this @aeé2h channel (using a
speaker or a display); devide encodes the hash of the (received) public key from de-
vice A into a MadLib sentence and transmit this ovel2a channel (using a speaker or
a display); the user reads and compares the data transoveethe twod2h channels,
and vice versa. Note that, however, the scheme is not appdita pairing scenarios
where one of the devices does not have a display or a speaker.

As an improvement to SiB [8], we earlier proposed a new schiemsed on visual
OOB channel [14]. The is the scheme that we analyze and ineprpen in this paper.
We will review this scheme in the following section and shdwattit is not secure in
a security model in which the adversary has delaying/répipgapability on the OOB
channel.

Uzun et al. [21] carry out a comparative usability study ofigie pairing schemes.
They consider pairing scenarios where devices are capathigptaying4-digits of SAS
data. Some recent work has focused upon pairing deviceshvgussess constrained
interfaces. These include the BEDA scheme [17], which meguthe users to transfer
the SAS strings from one device to the other using “buttosges;” the schemes [11],
[12], which require the users to compare simple blinking eefing patterns on two
devices. Most recently, the approach of [11] was extendeddking use of an auxiliary
device, such as a smartphone [15].

In [18], authors consider the problem of pairing two deviabdéch might not share
any common wireless communication channel at the time ofrgpibut do share only
a common audio channel.

To summarize, the prior schemes are applicable to diffgraiming scenarios and
have varying degree of usability. In this paper, our focumisutomated pairing meth-
ods using unidirectional OOB channels.

3 Communication and Security Model, and Applicable Protocts

We first review the communication and adversarial model lier $AS protocols as
described in [22]. The devices being paired are conneciedmo types of channels:
(1) a short-range, high-bandwidth bidirectional wirelelsannel, and (2) auxiliary low-
bandwidth physical OOB channel(s). Based on device typesQiOB channel(s) can
be device-to-deviced@d), device-to-humandRh) and/or human-to-devicén2d). An
adversary attacking the pairing protocol is assumed to fdveontrol on the wireless
channel, namely, it can eavesdrop, drop, delay, replay asdiffnmessages. On the
OOB channel, the adversary can eavesdrop, drop, delagyrapt re-order messages,
however, it can not modify them. In other words, the OOB clehimn assumed to be
an authenticated channel. Note that if two parties run plel{iserial/parallel) sessions
with each other, then the adversary has the capability @ydedplay and re-order mes-
sages on the OOB channels among these sessions. We callrsodeba DRR-OOB”
model.

We believe that considering@RR-OOB model might be an overkill for certain
OOB channels and certain applications, and that it wouldsieéulito consider a weaker

model where two parties never run parallel instances with esher and the adversary
can eavesdrop and drop OOB messages, but it can not deltay espl re-order them
among multiple serial sessions between a pair of partiesrafée to such a model
as an hDRR-OOB” model. There might be various ways in which one can ensure
such a model in practice. The easiest approach is to disalld@vice to run more than
one parallel session with a given party at a given time andheber a new session is
executed with the same party, have the device erase fromeitsary the old session
with the same party.

The security notion for a pairing protocol is adopted frora thodel of authenti-
cated key agreement due to Canneti and Krawczyk [2]. ITXR&®-OOB model, we
will consider an(n, R, R)-adversary4 against the pairing protocol, which is allowed
to launch onlyR sessions per player, and onfyysessions between amgir of play-
ers. Note that in th®RR-OOB model, A is allowed to delay, replay and re-order
OOB messages among multiple session between two partiéds,iwthenDRR-OOB
model,.A (which is effectively a(n, R, 1)-adversary) is not allowed to do so. In both
these models, the security of the pairing protocol is madibiean interaction between
A and the challenger that operates the network playersP, ..., P,. In this game,
the challenger hasm@ivate input of bit b. This security model does not consider denial-
of-service (DoS) attacks. Note that on wireless channg[djait attempts to prevent
DoS attacks might not be useful because an adversary catydampch an attack by
jamming the wireless signal.

Using thelaunch queries, A can trigger any of the: playersP; to start a session
of the protocol with another playér;. The challenger responds by initializing the state
of the invoked session and sending backdtthe message it generates. The adversary
can also issusend queries for any previously initialized session on a messdgas
input, which triggers the challenger to deliver messagjéo that particular session and
respond by following the protocol on its behalf. Moreover,any of the launched ses-
sions, A can also issueesveal query, which gives him the key output by that particular
session, if this session computed a key, and a null valuewtbe Finally, on one of
the sessionsd can issue dest query. In response, if this session has not completed,
the adversary gets a null value. Otherwisé), i# 1 then. A gets the key output by the
“tested” session, and if = 0 then.4 gets a random BitString of the same length.

EventuallyA outputs a bib. We say that an adversary havantage e in the attack,
if the probability that = b is at mostl /2 + ¢. We say that the protocol {§, €)-secure
if for all A’s bounded by timé” the above defined advantage4is at most.

An example application of this model is during authentimafior an ATM transac-
tion, where there are only two parties, namely the ATM maeland a user, restricted
to only three authentication attempts.

To date, two three-round pairing protocols based on shdttemticated strings
(SAS) have been proposed [9], [7]. These protocols all redqidirectional OOB chan-
nels and are prove(l’,nRR2~* + ¢)-secure in theDRR-OOB security model. Of
course, these protocols are secure in the wealR&R-OOB model as well. In a com-
munication setting involving two users restricted to rumgiihree instances of the pro-
tocol, these SAS protocols need to transmit anlf= 15) bits of data over the OOB
channels. As long as the cryptographic primitives used énpttotocols are secure, an

adversary attacking these protocols can not win with a gitibasignificantly higher
than3 x 10—, which gives us security equivalent to the security proditg 5-digit
PIN-based ATM authentication [22].

4 Pairing with a Unidirectional OOB Channel

As we mentioned in the previous section, prior SAS protoaoésproven secure in the
DRR-OOB model, however they require bidirectional OOB channelghls section,
we focus upon pairing scenarios where bidirectional OOBokés do not exist.

We take a closer look at the protocol of [14], which requiresalirectional OOB
channel. We show the underlying protocol in Figure 1 (we lihsgrotocol upon the
SAS protocol of [9], although it can similarly work with oth8AS protocols as well).
The protocol works as follows Over the wireless channel, A and B follow the un-
derlying SAS protocol. Then a unidirectional OOB channelstablished by devica
transmitting the SAS data. This is followed by deviBecomparing the received data
with its own copy of the SAS data, and transmitting the résglbit b of comparison
over a OOB channel (say, displayed on its screen). Finkyuser reads the transmit-
ted bitb and accordingly indicates the result to devitdy transmitting the same it
over anh2d input channel.

4.1 Protocol of [14] in theDRR-OOB Model

The protocol of [14] did not come with a security analysis][IBherefore, the first
and a natural question is whether the protocol remains séc@DRR-OOB security

model. Unfortunately, the protocol turns out to be insedarthe DRR-OOB model.

We show our attack next. In fact, we argue that it is hard taesehpairing using only
a unidirectional OOB channel in tH2RR-OOB model.

The attack we describe next stems from the fact that only@esluit b, indicating a
“success” or a “failure”, is transmitted in the second step, over thel2h channel, and
that this bit of information can bdelayed or replayed (recall that our security model,
described in Section 3, allows an adversary to do so!). Tomrgthe attack is exploited
as follows.

1. Aninstance of the above pairing protocol is run between texaaks. The adversary
does not insert any messages (specifically, its own pubji¢skefor which it knows the
secret keys or its own secret shared key, based on the phododhe wireless channel.
However, the adversary stalls the bifwhich indicates a “success”) to be transmitted
over thed2h channel. This forces the user to abort the protocol andmetru

2. During the second instance of the protocol, the adversatyifiserts its own mes-
sages over the wireless channel and then delivers the piyistalled bith over the

d2h channel. Since the bitindicates a “success”, the user is fooled into accepting the

protocol instance instead of aborting it.) _)
A similar attack can be based upon replaying of thebpitstead of its delaying,

as follows. Over the first instance of the protocol, the aslagr does nothing except
for recording the bit. The adversary hopes that another instance of the pro®cohi

1 A similar modification was suggested to the protocol wheréads exchange their public keys
over the wireless channel and exchange th®-pits long) hash of the concatenation of the
two public keys over the OOB channel [14].

A

los]

Pick R4 € {0,1}"
(CA7 dA) — COI’T’II’T’Iit(pk’A7 RA)

rka,ca

Pick Rs € {0,1}*

rkp,Rp

da

SAS4 = Rp EBHRA(pk’B)
SASA

R4 «— open(pka,ca,da)

<« & =<'~ — b (SASa == Rp ® Hr, (pks))
Acceptpkp asB’s public key if Acceptpk 4 asA’s public key if
=1 b=1
<——> the wireless channel
=———=> the unidirectionati2d channel
< — — —: thed2h channel
< = =:theh2d channel
pka, pkg: (Diffie-Hellman) public keys of deviced and B
commit() andopen(): functions of a commitment scheme based on random oraotiein
H(): hash function drawn from an almost universal hash fundaomily

Fig. 1. The protocol of [14] based on the SAS protocol of [9]

and if so, it attacks the new instance by inserting its ownsagss over the wireless
channel, and simply replaying the previously recorded biter thed2h channel.

A general implication of the above attack on the protocollkef][is that it seems
hard, if not impossible, to achieve pairing with a unidifestl d2d channel. In other
words, it appears hard to establish mutual authenticatidtmawnidirectionab2d au-
thenticated channel. We know, from the original unidirectil message authentication
SAS protocol of Vaudenay [22], that a devigecan authenticate itself to devide
if there exists a physical channel from A to B. The questionas this SAS channel
also be used by B to authenticate to A. Suppose that B wantgheaticate a message
mp to A. B can simply sendnp to A over the wireless channel, which the adversary
might modify tom/,. Now, both B and A need to know if: g was modified during the
transmission or not, i.e., ifig = m’z or not. It is easy for B to know this: A can au-
thenticate to Bn/; using the unidirectional SAS from A to B, and B can simply fieri
if m’; = mp or not. However, there appears to be no wayAdo know if it received
the same messagep that B transmitted, except for B itself notifying A whethar o
notm’z = mg, which can be achieved by B transmitting thetbindicating the result
of match over a “single-bit” authenticated channel from BAtaHowever, this brings
us back to the attack that we described on the protocol of Eidge the bib can be
delayed or replayed by an adversary.

4.2 Protocol of [14] in thenDRR-OOB Model

As shown in the previous section, the protocol of [14] is restige in theDRR-OOB
model. Now, we analyze the protocol in th®RR-OOB security model. As pointed

outin Section 3, this is a more practical model for certaipl@gtions. Fortunately, the
protocol can indeed be proven secure intilRR-OOB model. In fact, we show that
using the modification as in the protocol of [14], any knownSSgrotocolP based on
bidirectional OOB channels, which is secure inBfRR-OOB model (e.g., the protocol
of [9]), can be converted into a pairing protoc@based on a unidirectional channel in
thenDRR-OOB model (e.g., the protocol of Figure 1).

Theorem 1 If any known SASprotocol P is(T,nR2~%+¢)-secureagainsta (n, R, 1)-
adversary in the DRR-OOB model, then the pairing protocol Q is (T + §,nR27% +
€)-secure against a (n, R, 1)-adversary in the nDRR-OOB model, where § denotes a
small polynomial amount of time.

Proof. We prove the above theorem by contrapositive. In other wavdsshow that if
there exists &n, R, 1)-adversary4 in thenDRR-OOB model that can win against the
protocol@ with a probability significantly better thamR2~* and in timeT’, then we
can construct &, R, 1)-adversany3 in the DRR-OOB model that can win against the
protocol P with a probability significantly better thamR2~* and in approximately the
same timer".

The idea of the construction of the adversArig very simple. Basicallyi3 receives
the queries fromd, submits them to its challenger and forwards the respoesesed
back toA, thereby perfectly simulating the role of the challengeBto

A starts off by issuing théaunch queries, which5 submits to its challenger and
responds back tol with the messages delivered by the challenffedoes the same
when A issues thesend queries for all the protocol messages on the wireless chan-
nel and the message transmitted over the OOB channel in oeetidh (saySAS;
from P; to P;) (since the two protocols are alike in terms of the messagesamged
over the wireless channel and message transmitted over@i& éddannel in one di-
rection). However, whei receives the message transmitted over the OOB channel in
the other direction (say AS; from P; to P;) from the challenger, theff computes
b= (SAS; == SAS;) and sends$ to A.

When A issues thaeveal queries and finally théest query, B simply submits
these queries to the challenger and replies back with tiponses it receives from the
challenger.

If A succeeds in correctly distinguishing the key output by tiestéd” session, so
doesB; since the two protocols are exactly alike in terms of thesages exchanged
over the wireless as well as the OOB channel in one directiot also both essentially
have the same winning condition, sin@ge= 1) = (SAS, = SAS;). Both A andB
win with the same probability and have only a snédiime difference that is needed by
B in computing the boolean expressiba:- (SAS;, == SAS;).

5 Automatedd2d Channel using LEDs and Video Camera

In this section, we discuss our implementation dd channel in which the transmitter
is equipped with LEDs and the receiver is equipped with awickemera. Our channel
implementation is quite efficient and its bandwidth, unlikke results of [14], improves
with the increase in the number of LEDs. The implementatian also be used on
regular displays by simulating the LEDs on them. In the pai@pplication, we use
this channel to transmits-bits of SAS data.

5.1 Encoding using LEDs

In our encoding, we need two types of LEDs: a “sync” LED for dyronization at
the beginning and end of SAS data transmission, and one o hdata” LEDs for
transmitting the SAS data. The sync LED is different in cdtom the data LEDs —
in our setup we keep a red LED as the sync LED and green LEDseadatia LEDs.
LEDs are placed horizontally and vertically on the trangenitlisplay. The sync LED
can be placed at any vertical or horizontal position. Thédmiations of the data LEDs
increases from left-to-right and top-to-bottom. So, thel&dft data LED shows the first
bit of the SAS data. There should be some gap between the tis biich needs to
be at least half of the width of the LED itself.

The sync LED is used for indicating the beginning and end ef3AS data trans-
mission in order to detect any synchronization delays, esdw&@l or otherwise, between
the two devices. The sync LED is kept in “ON” state only at tlegibning and end of
data transmission and in “OFF” state otherwise.

The data LEDs are used for SAS data transmission by indgatifierent bits
(‘0'/'1) for different states (OFF/ON) of LEDSs; in our sebywe used the ON state
of a data LED as a bit ‘1’ and the OFF state as bit ‘0. Each trgtisr needs to have
one or more data LEDs and the more in number of data LEDs asptedier the SAS
data transmission becomes. The transmitter can send thbamwhbits equal to the
number of data LEDs, i.e., one bit per LED at a time. If N is tohenber of Data LEDs,
the transmitter can display N bits of SAS data at a time. Rordmittingl5-bits SAS
data it requires’%] frames. The state of the sync and data LEDs is kept unchanged
for a certain time period so that a stable state can be eamijured from the video
stream of the receiver video camera. Each stable statereddtom the video stream is
termed as a “BitFrame”. For our setup, the time duration &faine is kept unchanged
(henceforth referred to as the “hold time”) is set to an ekxpentally determined value
of 300 ms. After every 300 ms, next N bits of the SAS data arevshin the next frame.
This process continues until all bits of SAS data are tratisthilf the last frame does
not have N number of SAS bits to show, the first few LEDs showdidu@ bits and the
remaining are kept OFF.

For discovering the LEDs’ location, color, dimension at theeiver side, we need
two extra frames — an “All-ON” frame having all LEDs in ON stand an “All-OFF”
frame having all LEDs in OFF state. Before transmitting trenfes containing the
SAS data, the All-ON and All-OFF frames are first displayele3e two frames are
displayed within the same hold time of 300 ms. In addition tb@N and All-OFF
frames, we need another frame, to detect synchronizatiagsiehaving the sync LED
in ON state and the data LEDs in OFF state. This frame is displlat the end, after the
completion of SAS data transmission. Therefore, overalheed a total of three extra
frames. Thus, the total number of frames to be transmitté¢éis + 3, which yields a
total transmission time dff 27 + 3) x 300 ms, where N is the number of data LEDs.

5.2 Decoding using a Video Camera

The two devices being paired first execute the protocol asgaré 1 over the wire-
less channel. When the receiver device is done with SAS datgutation, it turns
on its video camera, asks the user of the device to adjustitera setting, focus on
the LED-based display of the transmitting device and pré€xs™button when done.

The user does the adjustment as needed and presses the OK Bdter this, the re-
ceiver sends the “ready” signal to the transmitter and rsigube transmitter to send
the acknowledgement over the wireless channel when it i® dgth computing its
SAS value and ready to start transmitting over the unidiveed channel. The transmit-
ter acknowledges the receiver when it is ready for transrgithe SAS data and starts
transmitting over the unidirectional channel. In this isgttof unidirectional channel,
the receiver must have higher reception rate than trarersittansmission rate. So, the
video camera must have higher frame rate than frame rateafdhsmitters displayer.
If frames are not carefully captured from the video stredrard is a chance of obtain-
ing the counterfeit frames which contain the transitiotestd LEDs. Such frames may
contain some LEDs of one state and some LEDs of next state.

Resolving the Timing Issue of Frame Capturing from Video Steam. Assuming that
the transmission delay of acknowledgement from the trattenid receiver is negligi-
ble (5-6 ms) compared to the “hold time” (of 300 ms) betweem $wccessive frames at
the transmitter, the receiver captures the first frame ftoenvideo stream after a time
equal to the half of the hold time (i.e., 150 ms) after receuihe acknowledgement.
The receiver video camera also has a delay (about 30-40 mmstscommon cameras
have a rate of 30-40 frames per second) of capturing the ffeonevideo stream. So,
the first frame is captured after the half of the hold timegiadetting the acknowledge-
ment from the receiver. The timestamps of capturing resi®frames is pre-calculated
by adding the hold time (300 ms) for each frames with captutimestamp of the first
frame. The captured frames are processed after the comptdtcapturing of all trans-
mitted frames. During capturing, the captured frames aredsom the video stream
buffer location of frames to another location in main menfonjater processing. There
is some initial delay in capturing of first frame and it is astpd by capturing the frame
in the middle of hold time, however, there is no delay per f&dor capturing the rest
of the frames. Thus, the frame capturing from the video sirearks successfully in
real time. Note that our scheme does not require global cdgakhronization for the
transmitter and receiver. Figure 2 depicts the synchrainizaf transmission and re-
ception of data. In this figure each small rectangle on theivety window denotes a
video frame of video stream and brown arrow marked with “did&ream Capturing”
denotes the propagation of transmitted signal to streana@akfin video stream, which
makes sense that there is some propagation delay of an mapsttion from transmit-
ter’s side to receiver’s video stream.

Detection of LEDs and Retrieval of SAS data from Video Frames The frames
are processed after the completion of capturing of all tratted frames. The captured
frames are processed by direct access to the memory addcasish of pixels. Direct
addresses of pixels are calculated by knowing the pointenexhory address of first
pixel of the frame and calculating other pixels addressgigie stride, width and length
of frames.

Our LEDs location and dimension detection algorithm is apdinbut fast, robust
and efficient one - unlike any existing object/face detecaégorithms [13, 16, 23]. It
detects the position and dimension of LEDs determinidiicttlis able to detect any
shape/geometry of LEDs unlike [16, 23] and doesn't requing @rior training unlike

Start - 300 ms S
Transmitter
A) A
\ \ \ \
\ \ \ \
\ \ : \ \
Y ¥ Y
Receiver
130 ms
R e
Initial Waiting : Transition Frames
. Start © N .
B Time -
______ > ACK Signal Frame Grabbing
T Timestamp
Video Stream
—_—— Capturing Transmitter’'s Display
Transition Timestamp

Fig. 2. Synchronization of Transmission and Reception of Data

[13,16]. It uses the color threshold adjustment technidkes[R4] to detect the LEDs
position and dimension.

The maximal differences of RGB valuesax(dR, dG, dB) (denoted ag), of each
pixel of All-OFF and All-ON frames are measured and kept immmey, and using a
threshold value foy, BitStrings are built for each row of pixels. For examplethé
1 exceeds a certain threshold, the corresponding bit ingsbidtomes ‘1’, otherwise it
becomes ‘0.

Each BitString is matched against a regular expressiondiosecutive 1s. For each
matching, its center is calculated and its safeness andregintess as an LED center is
checked by matching against the already explored LEDs aplbing only the adja-
cent pixels of this center in the frame. If its safeness amderedness is proved, it is
taken as an LED and put in explored list of LEDs. After chegkiar each match of
regular expression for each bit strings, counts of explaeds is matched against the
original count of the LEDs. This process continues up to almenof times by adjusting
the threshold value of. and constructing the new BitStrings until the count of LEDs
matches. See Figure 3 for an example of detection of LEDs thenBitString.

After successful discovery of LEDSs, the length, width, aggr RGB values of ON
and OFF states of LED area for each LEDs are stored in memorgidi@cting the
On-Off state of LEDs in subsequent BitFrames.

From the successfully discovered LEDSs, red colored the &fi2 is detected on
the basis of its color. On the basis of the location of the D, rest of the LEDs are
clustered according to a threshold value of proximity amtiveg EDs. After successful
detection of LEDs, the data LEDs are sorted according todftetd-right and top-to-
bottom ordering of coordinates for a maximum value of talemlimit in deviation
of coordinates. Tolerance limit is set by measuring the ayemwidth and length of
discovered LEDs. Now for bit frames containing SAS datarage RGB values of the

0000000000000 115 20000000001} 000000000001111000000000001 s mﬂl m‘w ?‘ by
8000000000001 111111 11900000001 ¢111113400000000011 1100000000001

11111111 00134111111

H000000008001 111141111 1100000 111111 1 000000001 111111 1000000001
00000000000001111111111130000011111111100000001111111171000000001

000000000000011111111111700000031111111§1000000111111113000000001
D00000000000041111111111400000013111111 unnnnnu 111111114000000001
0000000131

0000000000000 11 111111 Ab0ia000d 1117t 01000000 10111111 30000000001
1l 1111¥11000000001
11111 11+11101000000001

Fig. 3. Detected LEDs from BitString Fig. 4. Second Setting: breadboard with LEDs

area of only the discovered LEDs are explored and matchedsighe ON and OFF
state of RGB values of the LEDs with a tolerance limit. If tvege RGB values of
the area matches with the ON state of the LED, the correspgrdi is detected as ‘1’
and if these match with the OFF state, it is detected as ‘Othis manner, the whole
SAS string is retrieved by exploring the discovered LEDsdach bit frames. If there
arises any ambiguity, i.e., the average RGB values matdhhwith the condition of ON
and OFF state or neither of them, tolerance limit is adjusiedi decoding is repeated
up to a threshold number of times.

The last frame is examined to determine whether the sync IsHb the ON state
and that all data LEDs are in the OFF state. If not, there isdication of a sync bit
failure due to synchronization delays.

If the extracted SAS matches with the computed SAS on thévwercand the frames
pass the synchronization test, the receiver and transraitesuccessfully paired. Oth-
erwise, they fail due to mismatch of SAS or delay in synchzation. For a successful
pairing, the LEDs are marked with a rectangle of green calourad them and for a
failed case, the LEDs are crossed with red color. Obsenhiggraphical result on
screen of the receiver, the user either accepts or abortsaitiag on the transmitter’'s
device.

5.3 Experimental Setup

We implemented and tested our channel in two differentregdtiOne showed the Bit-
Frames on the monitor of a desktop PC and the other showeditheBes on real
implementation of the scheme on breadboard using 7 LEDsr{(d agyd 6 data LEDS),
the breadboard being interfaced to a desktop PC using DBagdllel printer port. In
the first setting, bitmap images of actual ON and OFF statesabl EDs are used. The
pictures from the two settings are shown in Figures 5(a) #h).

In both the schemes receiver is the Dell Vostro 1500 (InteleCbDuo 1.6 GHz
with 2 GB RAM) Laptop having Integrated Webcam and wireldsarmel is Wireless
LAN (54 Mbps) of our university. The integrated webcam on kigtop has the ca-
pability of capturing 30 frames/second and it can take frafefixed dimension of
640X 480 pixels. We wrote the simulator in Microsoft VC# to implemehé last two
OOB message exchange as in the Figure of 1, assuming thagtieed have already
exchanged the first three messages over the wireless chamhelach has computed
its SAS value. The implementation processes the framesatgithe SAS data from
video stream and shows the result on screen. Actuation tdingiag is maintained

by Envi ronment . Ti ckCount variable of MS VC#. The webcam is interfaced on
port 1024 of the computer. Message passing is used to consatanwith the webcam.
We used “avicap32.dll” for capturing the video. The webcam be replaced with any
good IP Camera for better resolution of frames without anglifieation in the exist-
ing simulator. The camera is set in NON-STOP video captuniogle and frames are
taken setting the camera in preview mode. Camera contislitded in the simulator
to adjust the focus, tilt and pan of camera. For both the selamansmitter is Dell
Desktop (Intel Xenon Processor 1.8 GHz with 1 GB RAM). Comination with the
transmitter is done by implementing the Client-Server camitation model between
the transmitter and receiver.

The simulator is used to generate huge number of test casdgffsent numbers
and orientations of LEDs. We tested our system for diffel@ightness of frames by
setting different level of brightness of the monitor. In fivst setting, frames are pre-
stored in transmitter and are displayed when the receivttise request of transmitting
the frames. It is used to test our pairing scheme on this addaasily and rigorously.

~uy

(a) First Setting: transmitter is monitor b) Second Setting: transmitter is LEDs on
breadboard

Fig. 5. Two Settings: receiver is laptop camera for both the sedting

5.4 Experiment Results

A couple of snapshots of the results of execution of our seéhamnboth settings are
shown in Figures 6(a) and 6(b).

All Senzors Passed

Faled Sensors are Crossed)

(a) First Setting: Successful Pairing (b) Second Setting: Failed Pairing

Fig. 6. Partial Screenshots of Results of the Two Settings

From the result of the first setting, we found that our implatagon works for
different number and orientation of LEDs. LEDs need not beuiy fixed location
on the screen and they can be on any random location whiletaigiimg the left-to-
right and top-to-bottom ordering among themselves. Wetelstt of test cases for the
different number and orientation of LEDs and all of them passithout any error. We
also executed some test cases by changing SAS data on test kgdacing the valid
frames with invalid frames and replacing the sync frame witler frames. All these
test cases were successfully determined as failing cageshdhging the brightness of
the monitor, we found that our scheme works for any brigtgrafshe monitor. Our
first scheme works fine if the distance between the transnuttesceiver is less than
1.5-2 meters. If the distance is greater than 2 meter, the LEDsrbedo tiny to detect
for the camera. In this case LED count doesn’t match and thelator searches up to a
threshold number of times by adjusting the color threshalde. If it doesn’t find any
match of count of LEDs, it shows the failure message. By uaiogmera with a better
resolution (which is currently 640X480) the distance oftila@smitter and receiver can
be increased.

Our implementation in the second setting also works fine.Lligjet from illuminat-
ing LEDs scatters around the LEDs. For testing the maximght Bcattering effect we
did not separate the LEDs by any type of separator or did rex Keem inside the small
holes to negate the lighting effect among the LEDs. All thet tases (for successful
as well as failing pairing) passed without any problem. Guplementation of color
threshold adjustment strategy during discovery of LEDs alsrks fine in this setting.
This setting is also tested with varying distances betwhertransmitter and receiver.
It works fine up to 2.5 meters of distance, longer than in trst §ietting. Lights from
LEDs directly falls on camera and thus ON-OFF state detedteromes easy as there
is more change in lighting effect in this setting.

Based on the results obtained, we summarize the followilgrgaharacteristics of
our implementation in both settings.

Transmission Time.Using N data LEDs and one sync LED, the transmission requires
about([£27+3) x 300 ms for 15-bit of SAS data. Extraction of SAS data from capdure
frames requires less than 1 second. Therefore, for a tygisplay which has 2 data
LEDs and 1 sync LED, our scheme requires less than 4.15 s tpleterthe whole
process. If a device has 5 data LEDs and 1 sync LED, it will iregless than 2.8

s. Of course, since we need at least three extra frames,ahentission can not take
place quicker than 900 ms, no matter how many LEDs we haveebi@r, we require

a device to have at least two LEDs, one of which has a unique.col

Distance.Our scheme works well, if the distance between the senderexsiver is
less than 1.5-2.5 meters. Real implementation of channblthve LEDs on breadboard
in second setting shows that our channel is efficient for aBe2.5 meter distance
between the receiver and transmitter. This representsaigirgg improvement over the
existingd2d channels which can work for very little distance betweentthasmitter
and receiver.

Brightness and Intensity of Light. Our channel is robust to varying brightness and
intensity of light. It compares the states of LEDs ON and O&feson current default
settings of brightness and intensity of light on devices easted on. From first two,
All-OFF and ALL-ON frames, it learns the environment.

5.5 Other Applications of Our Implementation

Our channel implementation using LEDs and video camera andinderlying algo-
rithms for real-time capturing of the frames from video atre processing the frames
efficiently and extracting data from video frames, can baluse number of applica-
tions. We briefly discuss some applications as follows.

Device DiscoveryA device needs to, before starting to communicate with asratire-
less device, first determine its address. Currently, in Bloth and WiFi, such a device
discovery is performed over the wireless channels and lemiseémplications in terms
of efficiency as well as usability — the device senses foraevin the neighborhood
and dumps a list of devices (which could be long) and asks $ke to select the de-
vice it wants to connect to. Using od2d channel, one can discover a device over the
physical channel itself — the user goes near the device itstarconnect its device to
and presses a button on it to start transmitting its addreffsei form blinking LEDs
and reads the address using the camera. Using just two daXs, ltlis would only take
about 9 seconds to discover a 48-bit long Bluetooth devideess, and ease the burden
on the user.

Secure Key Distribution in Sensor Networks Before, deploying a sensor network, the
nodes need to be provided with keys that they can use to secormunicate among
themselves. Due to the lack of a trusted infrastructureh sukey distribution needs
to be performed on-site by the administrator of the netwbtéreover, due to lack of
hardware interfaces (such as USB interfaces) on sensosodifor usability reasons,
the key distribution must be performed wirelessly. Using #xisting, so called key
pre-distribution schemes, e.g., [4], the key distributéam be achieved, if one could
establish a secure channel or a key between each sensormbttedase station. We
are currently in the process of extending our implememntadibthe d2d channel and
the protocol of Figure 1 to simultaneously pair each sensderwith the base station.
Most existing commercial sensor nodes generally have tHEges and the base station
PC can be easily connected with an IP camera. We claim thaappnoach would be
much more efficient, scalable and user-friendly than a thcproposed scheme [3].

General Data Transmission.Our implementation can also be used in applications
other than security, for data transmission. Usi¥iglata LEDs (or an equivalent sized
display) and a hold time of 300 ms, we are able to achieve avhdtitof 3.33 NV bps.
With such a bandwidth, one could efficiently send out infatiorasuch as advertise-
ments, calendars, low-resolution images, etc.

6 Conclusion

In this paper, we focused upon pairing two devices usingitggtional OOB chan-
nels. We analyzed the protocol of [14] and proved its segiumis reasonable security
model. We also devised an efficient implementation of an O@dhoel using LEDs as
transmitter and video camera as a receiver. With a displagisting of just two LEDs,
our implementations takes less than 6.5 seconds. Withasera the number of LEDs,
the bandwidth of our channel gets better. For example, ikt .EDs, we need less
than 2.8 seconds. Our implementation has other usefulagtigihs in Bluetooth/WiFi
device discovery, sensor network key distribution and inegal for data transmission.

Acknowledgments. We would like to thank N. Asokan for his comments on an earlier
version of this paper.

References

1. D.Balfanz, D. Smetters, P. Stewart, and H. C. Wong. Tglkinstrangers: Authentication in
ad-hoc wireless networks. MDSS, 2002.
2. R. Canetti and H. Krawczyk. Analysis of key-exchange qrots and their use for building
secure channels. BUROCRYPT, 2001.
3. K. Cynthia, M. Luk, R. Negi, and A. Perrig. Message-ingitle: User-friendly and secure
key deployment for sensor nodes.AGM SenSys, 2007.
4. W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A pairwise k&ydistribution scheme for
wireless sensor networks. ACM CCS, 2003.
5. I. Goldberg. Visual Key Fingerprint Code, 1996. Avaikabht htt p://ww. cs.
ber kel ey. edu/ i ang/ vi sprint.c.
6. M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and Eud. Loud and Clear: Human-
Verifiable Authentication Based on Audio. I€@DCS, 2006.
7. S. Laur, N. Asokan, and K. Nyberg. Efficient mutual datshantication based on short
authenticated strings. IACR Cryptology ePrint Archivep@e 2005/424, 2005.
8. J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-bgtig: Using camera phones for
human-verifiable authentication. IEEE Symposium on Security and Privacy, 2005.
9. S. Pasini and S. Vaudenay. SAS-Based Authenticated Kegeftgent. IrPKC, 2006.
10. A. Perrig and D. Song. Hash visualization: a new tecteigumprove real-world security.
In CrypTEC, 1999.
11. R. Prasad and N. Saxena. Efficient device pairing usimgahucomparable synchronized
audiovisual patterns. lApplied Cryptography and Network Security (ACNS), 2008.
12. V. Roth, W. Polak, E. Rieffel, and T. Turner. Simple anfeéetive defenses against evil twin
access points. IACM Conference on Wireless Network Security (W Sec), short paper, 2008.
13. H. A. Rowley, S. Baluja, and T. Kanade. Neural networkduhface detection. IRattern
Analysis and Machine Intelligence(PAMI), 1998.
14. N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokarcut®edevice pairing based on a
visual channel. INEEE Symposium on Security and Privacy (ISP’ 06), short paper, 2006.
15. N. Saxena, M. B. Uddin, and J. Voris. Universal deviceipgiusing an auxiliary device. In
Symposium On Usable Privacy and Security (SOUPS), 2008.
16. H. Schneiderman and T. Kanade. A statistical methoddaiect detection applied to faces
and cars. IMTRINITY, 2003.
17. C. Soriente, G. Tsudik, and E. Uzun. BEDA: Button-Endlidevice Association. lhnter-
national Wbrkshop on Security for Spontaneous Interaction (IWSSl), 2007.
18. C. Soriente, G. Tsudik, and E. Uzun. Hapadep: Humaneasigire audio device pairing.
Cryptology ePrint Archive, Report 2007/093, 2007.
19. F. Stajano and R. J. Anderson. The resurrecting duckliagurity issues for ad-hoc wireless
networks. InSecurity Protocols Workshop, 1999.
20. J. Suomalainen, J. Valkonen, and N. Asokan. Securitycafons in personal networks: A
comparative analysis. I[BSAS, 2007.
21. E. Uzun, K. Karvonen, and N. Asokan. Usability analydisecure pairing methods. In
USEC, 2007.
22. S. Vaudenay. Secure communications over insecure elsabased on short authenticated
strings. INCRYPTO, 2005.
23. P.Viola and M. Jones. Rapid object detection using atbdasmscade of simple features. In
Computer Vision and Pattern Recognition, 2001.
24. J. S. Weszka. A survey of threshold selection techniq@esnputer Graphics and Image
Processing, 7:259—-265, 1978.

