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Abstract Random number generation is a fundamen-

tal security primitive. This relatively simple require-
ment is beyond the capacity of passive RFID (Radio

Frequency Identification) tags, however. A recent pro-

posal, Fingerprint Extraction and Random Number Gen-

eration in SRAM (FERNS), uses onboard RAM as a
randomness source. Unfortunately, practical considera-

tions prevent this approach from reaching its full poten-

tial. First, the amount of RAM available for utilization
as a randomness generator may be severely restricted

due to competition with other system functionalities.

Second, RAM is subject to data remanence; there is a
period after losing power during which stored data re-

mains intact in memory. Thus, after memory has been

used for entropy collection once it will require time

without power before it can be reused. This may lead
to unacceptable delays in a usable security application.

In this paper, the practical considerations that must

be taken into account when using RAM as an entropy

source are demonstrated. The implementation of a true
random number generator on Intel’s WISP (Wireless

Identification and Sensing Platform) RFID tag is also

presented, which is the first to the authors’ best knowl-

edge. By relating this to the requirements of some pop-
ular RFID authentication protocols, the practicality of
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1 Introduction

The importance of Radio Frequency Identification (RFID)

technology continues to grow as RFID tags see deploy-

ment in an ever expanding variety of applications and
settings. Consequently, RFID security and privacy con-

tinues to be carefully scrutinized by the research com-

munity. Providing security and privacy services in RFID

systems presents unique challenges due to the highly
constrained nature of RFID enabled devices. There has

been much work on the development of security and

privacy mechanisms and protocols that attempt to take
the limited capabilities of RFID tags into account. Most,

if not all, of these schemes rely on the presence of one

of the most fundamental cryptographic primitives, ran-
dom number generation.

While modern general purpose computers have many

techniques available for the generation of high quality
random numbers, even this relatively simple require-

ment is beyond the capacity of current passive RFID

tags. The Electronic Product Code (EPC) air interface
specification for the most recent (Class 1 Generation

2) variety of RFID tags includes a provision for pseu-

dorandom number generation [1]. The resulting random

values are intended to be used only as a collision preven-
tion measure, however. When combined with the eco-

nomic considerations of these ultra-low cost devices, the

values produced by these generators are unlikely to be
of high enough quality to be used as a source of cryp-

tographic randomness.
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Recently, Holcomb, Burleson, and Fu proposed an

alternative approach to entropy collection titled Fin-

gerprint Extraction and Random Number Generation
in SRAM (FERNS) [14,15]. This technique involves the

use of onboard RAM as the source of true randomness.

FERNS works by repurposing blocks of RAM into phys-
ical fingerprints which, when run through a random

number extractor (such as a hash function), produce

random output. This technique is quite promising as

any device, regardless of its constraints, will contain
some amount of onboard memory from which random-

ness can be drawn. In addition to random number gen-

eration, FERNS was also shown to be capable of creat-
ing fingerprints with which RFID tags can be uniquely

identified.

Unfortunately, practical considerations prevent the
FERNS approach to random number generation from

reaching its full theoretical potential. Since FERNS re-

lies on preexisting memory circuitry as a source of en-

tropy, it must compete with other system functionalities
for use of this shared resource. Other code running on

a RFID tag, such as the EPC protocol stack itself (that

is, the implementation of the protocol in software), will
likely be occupying the device’s memory at any given

point during execution. As such, the amount of unini-

tialized RAM available for utilization as a randomness
generator may be severely restricted.

Furthermore, RAM is subject to a phenomenon known

as data remanence. While it is still volatile in the tradi-

tional sense, due to properties of the underlying hard-
ware such memory retains its contents while receiving

power and for a duration of several seconds afterwards.

Thus, there is a time period after losing power dur-
ing which stored data remains intact in memory. This

means that after a portion of memory has been used for

entropy collection once, it will require a relatively ex-
tended period of time without power before it can again

be used in this capacity. In a usable RFID based secu-

rity application which requires multiple random num-

bers this may lead to unacceptably high delays.

1.1 Contributions

In this paper, the practical considerations that must
be taken into account when using RAM as an entropy

source are demonstrated. We discuss the implemen-

tation of a true random number generator on Intel’s

Wireless Identification and Sensing Platform (WISP),
which is a passive, programmable RFID tag [21,25].

This is the first such implementation to the authors’

best knowledge [13]. Using this as a basis, how many
bits of randomness one can expect to derive from a

RFID device’s memory at a given time is demonstrated.

The results of this indicate that at most 309 bits of ran-

domness can be derived from a tag with 512 bytes of

RAM, with this figure dropping sharply as tag memory
capacity decreases.

The implications of data remanence on RFID tags

and the rate at which random number generation can
be performed are then analyzed. By relating this pro-

cess to the requirements of some popular RFID authen-

tication protocols, the practicality of utilizing memory
based randomness techniques on resource constrained

devices is assessed. As an example, the implications

that RAM based randomness derivation would have on

the usage model of a typical RFID enabled access card
are discussed. In addition, potential attacks that could

be launched on RFID system while this method is in

use are introduced.

This is an extension of work presented at the The

Fifth Workshop on RFID Security [23].

1.2 Paper Organization

The rest of this work is organized in the following fash-

ion. Section 2 introduces the fundamentals of RFID

systems and discusses related work. In Section 3, the

performed experiments are explained in detail. Section
4 provides a discussion of the practicality of the studied

approach based on these experiments. Finally, Section

5 summarizes the results of these tests.

2 Background

2.1 RFID Overview

RFID is an increasingly popular technology for com-
puterized identification. An RFID infrastructure con-

sists of tags and readers. Tags are small transponders

that store data about their corresponding subject, such
as an ID value. Readers are used to query and identify

these tags over a wireless channel. In most cases, tags

are passive or semi-passive, meaning they derive the
power to transmit data to a reader from the electro-

magnetic field generated when a reader sends a query

to a tag. Additionally, tags typically have memory only

in the range of 32-128 bits, perhaps just enough to store
a unique identifier [17].

These ultra-low memory, computational, and power

constraints are necessitated by the fact that RFID tags
are designed to be placed ubiquitously in consumer

products, appliances, and even users themselves (in the

case of implanted payment tokens, for example). The
minimalist capabilities of these tags present unique pri-

vacy and security challenges, the issue of random num-
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ber generation being foremost among them. How can

a device with limited power, memory, computational

capabilities, and user interfaces generate high quality
random numbers?

2.2 WISP Tags

In order to investigate this question, a special type of

RFID tag designed by Intel Research known as a Wire-

less Identification and Sensing Platform, or WISP [21,
25], was utilized. WISPs are passively powered RFID

tags that are compliant with the EPC protocol. Specifi-

cally, the 4.1 version of WISP hardware was used, which
partially implements Class 1 Generation 2 of the EPC

standard. By following this standard and deriving power

only from the transmissions of a commercial RFID reader,

WISPs closely model the type of RFID tag one might
expect to find in a typical contactless access token.

Where WISPs differ from standard tags, however,

is in their inclusion of an onboard Texas Instruments

MSP430F2132 microcontroller. This 16-bit MCU fea-
tures an 8 MHz clock rate, 8 kilobytes of flash mem-

ory, and 512 bytes of RAM. WISPs are the first pro-

grammable passive RFID devices. Unlike standard RFID

tags, which are fixed function and state machine based,
the flexibility of WISP tags allowed for the implemen-

tation of a random number generator and the probing

of memory on a live, passive RFID device.

2.3 Random Number Generation Based on RAM

A recent proposal to address the difficulty of generat-
ing random numbers on a passive RFID device is called

FERNS [14,15]. Instead of treating uninitialized mem-

ory as a indeterminate blank slate, FERNS works by
considering this unused memory to be a fingerprint.

This fingerprint can be used in two complimentary ways.

The first is as a means of identifying a given RFID tag

through the underlying physical characteristics of mem-
ory. The second is as a potential source of entropy. The

focus in this paper is on the latter application.

Each unpowered RAM cell starts in an unstable

state, then moves to a stable state, representing either
a ‘0’ or a ‘1’, once supplied with power. Which of the

two bit states the cell enters upon first receiving power

is dependent on the threshold voltage mismatch as well

as the thermal and shot noise of the cell. A large thresh-
old voltage mismatch will cause a RAM cell to reliably

initialize to one bit value or the other. A small mis-

match, on the other hand, will be overshadowed by the
cell’s noise, causing it to take on a value randomly at

power up. The probability of every RAM cell showing

no random behavior is statistically insignificant. It is

the physical noise of these RAM cells that supply en-

tropy in the FERNS method.
Due to physical impurities, the random, well thresh-

old matched cells will be randomly scattered through-

out the RAM. As these bits do not occur in convenient
proximity to one another, an extractor is necessary to

pull these desirable bits from the RAM sequence. A

hash function can be used in this capacity. The PH uni-

versal hash function of [27] is recommended due to its
suitability for implementation in resource-limited hard-

ware [14,15]. This function is a variant of the NH hash

function that was designed to be efficient in software
in order to accelerate the UMAC message authentica-

tion algorithm [5]. PH is the result of a retooling of the

NH function in order to remove the need to perform
carry operations, which makes the function more suit-

able for a hardware implementation in terms of speed,

space, and power consumption. PH is defined in Equa-

tion 1. Blocks of uninitialized memory are provided to
the hash function as both key (ki) and message (mi) in-

puts; the output of the hash function can then be used

as a random bitstream.

PHk(m) =

8∑

i=1

(m2i−1 + k2i−1)(m2i + k2i) (1)

2.4 Data Remanence

Since computer memory is volatile, it is a common be-

lief that data stored in RAM is completely lost as soon
as it ceases to be supplied with power. This is not en-

tirely accurate, however. While the contents of unpow-

ered RAM will certainly degrade over time, the decay
process takes several seconds to begin and several more

to complete [24,11]. This process is due to the low-level

electrical components that comprise a RAM chip. In

SRAM, for instance, data is stored by setting the state
of a flip-flop. This state is maintained as long as the

flip-flop continues to receive power [9].

This circuit does not lose its state immediately upon
loss of power, however. The state will remain for a short

interval of time. Thus, there is a brief time period after

losing power during which stored data remains intact. If
power is again supplied before the end of this window

the decay process is halted. While the speed of data

loss varies greatly between individual chips, the rate

of RAM decay is largely a function of temperature. At
high temperatures the degradation process is acceler-

ated, while if cooled to a low enough temperature the

decay process can effectively be halted indefinitely.
The phenomenon of data remanence has serious reper-

cussions for computer security. Many times cryptographic
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data, such as keys, are stored in RAM. If an adversary

can gain physical access to a RAM chip containing sen-

sitive material, remove it, and read it on a different
device before it fully decays, he or she can potentially

recover a full image of the memory contents, includ-

ing any stored secrets. Even if the decay process has
already started to set in, statistical techniques can be

used to recover lost bits [11]. While data remanence

plays an important part in the work presented in this

paper, it does not involve the recovery of data from
memory. Instead, the implications of data remanence

on the frequency of RAM initialization are explored.

2.5 RFID Authentication

One of the most important RFID security challenges

is tag authentication. RFID tags are designed to re-
spond promiscuously to any query from a compatible

reader. This behavior makes the forging and duplication

of RFID tags a relatively straightforward process. Since
tags respond to any query, there is little preventing an

adversary with the proper equipment from obtaining

a tag’s data, then creating a new tag containing the

exact same value [17]. In many cases, traditional cryp-
tographic solutions cannot be used by RFID tags due

to their low computational and memory capabilities.

Several new solutions have been developed to ad-

dress these problems; one of the best known is the
HB+ protocol [17]. HB+ is a challenge-response scheme

based on the HB human authentication protocol [16]

that was designed with the computational and memory

constraints of RFID tags in mind, requiring only bit-
wise logic operators for computation. The only other

requisite of HB+ is for tags to be capable of generat-

ing high quality randomness, a property which today’s
RFID tags are ill equipped to meet. The HB+ proto-

col requires at least 80 rounds [10], in each of which

the RFID tag is expected to generate a 224 bit ran-
dom value, in order to attain an 80-bit security level.

If these rounds are run in parallel [18], a RFID tag will

be required to produce 17,920 random bits at once.

Since its inception, various variants of HB+ have

been proposed including HB++ [7], Trusted-HB [6],
PUF-HB [12], and HB# [10]. Protocols derived from

HB are not the only RFID security mechanisms that re-

quire randomness to operate, though. Other protocols

that are based on pseudorandom functions will also re-
quire cryptographic random numbers to be generated.

For example, the tree based privacy preserving authen-

tication protocols of Molnar and Wagner [20] use pseu-
dorandom functions that require high quality random-

ness at each tree level.

3 Experiments

In this section, the experiments used to measure the

amount of randomness that can be derived from unini-

tialized RAM, as well as the rate at which this process

can be performed, are presented based on the practical
limitations of RFID tags and their usage model.

3.1 Experimental Setup

The following configuration of equipment was utilized
for these tests. Four WISP tags of the latest hardware

version, 4.1, were employed. The WISPs are depicted in

Figure 1, with a U.S. quarter placed nearby to provide

a sense of scale. When these tags were required to in-
teract with the RFID reader they were loaded with the

6.0 revision of WISP firmware. At times when a tag’s

memory contents were of interest, tags were loaded with
a C file containing nothing but a blank main function;

this was done in order to minimize the amount of RAM

overwritten during program execution.

To program these WISP tags a Texas Instruments

MSP-FET430UIF debugging interface [4] was used, which

was interacted with through a desktop computer run-
ning the IAR Embedded Workbench IDE [2]. The de-

bugger was connected to the desktop machine with a

USB cable and to the WISP tag over a JTAG interface.
An EPC compliant Impinj UHF Generation 2 Speed-

way RFID reader [3] running firmware version 3.2.1 was

used. Commands were issued to the reader from a desk-

top machine through a custom application which com-
municated with the reader over the Low Level Reader

Protocol (LLRP). A block diagram of this hardware

configuration is shown in Figure 2.

3.2 WISP Implementation

As a first step towards assessing the viability of deriv-

ing randomness from RAM on a passive RFID device,

the random number generation portion of FERNS was
implemented on a WISP tag. While RAM based ran-

domness has been implemented on a desktop computer,

to the authors’ knowledge this is the first such imple-
mentation on a passively-powered RFID device [13].

The implementation was done in C using the IAR Em-

bedded Workbench IDE. This was a relatively straight-

forward implementation of the PH hash function (de-
scribed in Section 2.3). The main change that had to

be made was to alter the input block size of the PH

hash function from 64 bits to 16 bits, which reduced
the size of the hash function’s output from 133 bits to

37 bits. This was done in order for the hash output to
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Fig. 1 Four WISP 4.1 Tags with a U.S. Quarter Included for Scale

Fig. 2 A Block Diagram of the Experimental Setup

fit into the 64-bit long long data type of the C pro-
gramming language. Had the original 133 bit output

size been used, it would have necessitated the use of a

multiple precision arithmetic library, which would re-

quire the dedication of the tag’s scarce computational
and memory resources.

Besides this practical consideration, reducing the
block size of the PH function has theoretical advan-

tages as well. When this function’s block size is set to

64 bits, 64∗32 = 2048 bits of memory, half having been

input as message blocks and the other half having been
treated as key blocks, are consumed to produce a sin-

gle 133 bit hash. When 16 bit blocks are used instead,

only 16 ∗ 32 = 512 bits of RAM are needed to produce
a 37 bit hash. While this decreases the amount of ran-

dom bits output from one call to the hash function, the

smaller block size allows PH to be called 3 more times
on distinct blocks of the same amount of uninitialized

RAM, yielding 37 ∗ 4 = 148 bits of randomness.

Thus, reducing the block size of the hash function
allows more bits to be condensed from an equivalent

portion of memory. This would be problematic if the

larger bit amount exceeded the expected entropy of the

values being hashed. Fortunately, this is not the case.
Each bit of tag memory is capable of yielding 0.103 bits

of entropy [14,15]. This means that the 148 bits output

by multiple calls to PH with the smaller hash function
is still well within the 210 bits of entropy that 2048 bits

of raw memory would be expected to produce.

As a preliminary test of the random values gener-
ated by this “on tag” random number generator, 32

blocks of 16 bits each were read from an uninitialized

area of the WISP’s RAM. These values were hashed and

written to a different memory address. The WISP was
programmed to perform this operation once per query

from the reader. The resultant 37 bit hash value was

copied from memory into the WISP’s EPC ID, which
was then transmitted to the RFID reader in response

to its queries. Surprisingly, the transmission of identical

values was observed, indicating a clear lack of random-
ness. Since this random number generation technique

is already known to work on traditional machines [14,

15], an investigation was launched into the source of the

discrepancy found on this WISP implementation.

3.3 Measuring Data Remanence on WISPs

The WISP tag’s programming was altered to trans-

mit the contents of its memory to the reader. This
was accomplished by programming the tag to break its

RAM into blocks. These blocks were then transmitted

through the tag’s EPC ID in the same manner as was

done with the hash values. While there were occasional
changes in certain bytes, the contents of the memory

seemed largely unchanged. This was being caused by

the WISP tag’s retention of values between queries. Re-
call that passive RFID tags derive power from reader

queries. Thus, while continuously being polled for hash
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or memory values, the WISP tag was receiving a con-

tinuous supply of power, causing it to retain its RAM

state rather than reinitializing its memory after each
query.

A more thorough experiment to analyze the timing

of data retention on the WISP’s memory was arranged.

The methodology of this experiment was similar to that
employed in [11]. First, the WISP was connected to

a desktop machine using the MSP-FET430UIF debug-

ging interface. All 512 bytes of the WISP’s memory
were filled with a pseudorandom pattern generated on

a desktop machine using the Mersenne Twister [19] im-

plementation included in the random module of the
Python programming language’s standard library. This

pattern was copied to the WISP’s RAM through the

Embedded Workbench IDE. The WISP tag was then

disconnected from the debug interface, depriving it of
power for a certain interval of time.

After this, the tag was reattached to the debugger.

Rather than using the reader to supply power to the tag
and reading the memory values through the tag’s EPC

ID, which is slow and prone to occasionally missing val-

ues, the tag’s supply of power was resumed over the de-

bugger. The contents of the WISP’s memory were then
read back. In order to calculate the tag’s decay rate, the

Hamming distance between the original pseudorandom

pattern and the value read back from the RAM was
computed. Two of the 512 bytes of RAM were always

overwritten by the debugger, so these bytes were left

out of the analysis. The fact that the original pattern
was pseudorandom meant that it should contain an ap-

proximately equal amount of each bit. Therefore, RAM

was considered to be fully decayed once the Hamming

distance between the two strings was at or near 50%.

Samples were taken after removing the WISP from
power for a duration of 0 to 60 seconds at 5 second

intervals. This test was performed on a population of

4 WISP tags. The results of these tests are shown in
Figure 3. This graph shows the per-tag decay rate as

well as the average decay rate across all tags. A logistic

curve has been fit to each data set. While there were
some minor variations between samples, the decay rate

observed on each tag was generally well matched to

this curve, showing an initial 15 seconds with little (<

1%) or no decay, then 15 seconds of very rapid decay,
and concluding with the slow decay of whatever data

remained. From this data it is clear that, depending

on the particular tag, a powerless period of 25 to 30
seconds is required to allow the WISP’s 512 bytes of

memory to decay completely.

3.4 Temperature and WISP Data Remanence

As discussed in Section 2.4, one of the variables that
plays a role in determining the life span of data stored in

powerless memory is temperature. Cooling RAM tends

to elongate its data retention period, while unpowered
memory in a higher temperature environment loses its

contents more rapidly. In order to quantify the effect

heat has on data remanence in an RFID system, the ex-

periments described in Section 3.3 were repeated. This
time, however, additional steps were taken to control

and monitor the temperature of the WISP tag while

measurements were being taken.
First, a baseline room temperature test was per-

formed. Here the temperature of the tag was left unal-

tered, but it was recorded using a digital thermometer.
Next, a “cold” test was performed where heat was re-

moved from the WISP tag. This was accomplished by

filling a plastic freezer bag with ice and placing both

the WISP and thermometer probe in contact with it.
A visual depiction of this setup is provided in Figure 4.

Finally, a “hot” test was conducted by using an elec-

tric space heater. The temperature of the tag was in-
creased by placing it in front of the heater along with

the thermometer sensor, as shown in Figure 5. In the

case of both extreme temperature tests, care had to be
taken to ensure a relatively stable temperature for the

duration the experiment. For the cold test, this meant

periodically replacing the ice as it melted to ensure the

temperature did not rise too drastically. With the heat
tests, on the other hand, a distance from the heater

which sufficiently raised the tag’s temperature while

not exceeding the maximum temperature limit of the
thermometer had to be determined.

During the cold experiments, the tag temperature

varied between 2.0 ◦C and 2.8 ◦C. The WISP was con-

sistently between 30.6 ◦C and 31.0 ◦C while room tem-

perature measurements were being taken. For the heat
tests, the tag went as low as 64.2 ◦C and as high as

69 ◦C. The results of these tests are provided in Figure

6. There was little difference between the decay rate
observed at room temperature and when the tag was

cooled with ice. In both cases, little decay occurred

prior to the 10 second mark, followed by a slight in-
crease between 10 and 20 seconds. After 20 seconds

had passed, full data degradation had already set in.

Contrary to this result, other publications have estab-

lished that reducing the temperature of memory hard-
ware tends to prolong or even suspend the process of

data decay [11]. However, this effect was observed at a

much lower temperature, approximately -50 ◦C, which
was achieved using chemical coolant agents. A dramatic

increase in the rate of decay was present when the tag
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Fig. 4 WISP tag being cooled on a bag of ice while attached to MSP-FET430UIF debugging interface

was heated to approximately 65.6 ◦C, though. Rather

than take 20 seconds to achieve the complete decay of

the tag’s memory contents, this occurred in only 10 sec-

onds in the presence of this increased amount of heat.
Thus, in the presence of temperature variations the

WISP tag’s onboard RAM exhibits data remanence be-

havior that largely conforms with observations of mem-

ory in other systems.

3.5 Available Memory

Having established how long it takes for a WISP’s mem-

ory to return to an uninitialized state, the next open
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Fig. 5 WISP tag being warmed by an electric heater while attached to MSP-FET430UIF debugging interface
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question was how much uninitialized memory is avail-
able on a WISP at any given time. To determine the

amount of unused RAM on the latest version (4.1) of

WISP tags used in these experiments, the tags were first
loaded with their default firmware. Next, the largest

data structure allowed by the compiler was stored in

the tag’s RAM. It was observed that the WISP protocol

occupied 136 bytes of this tag version’s memory, leaving
376 bytes free for use as an entropy source. Note, how-

ever, that by default this firmware does not implement

all mandatory aspects of the EPC standard. Enabling

other features of the protocol in the WISP firmware,
such as the ability to use multiple readers or read multi-

ple tags simultaneously, takes up an additional 12 bytes

of RAM, leaving 364 bytes available for random number
generation.

For earlier versions (2.0 and 2.1) of WISP tags, [8]
established that at any given time 112 bytes of WISP

memory are occupied by the RFID protocol and stack.

Assuming no additional memory is used in order to pro-
gram the tag with increased functionality, this leaves a

maximum of 144 uninitialized bytes for random number
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generation. This assumes that no other RAM space is

occupied by the authentication protocol itself, which is

unlikely to be true in practice.

4 Discussion

4.1 Practicality: Effects of Data Remanence and

Available Memory

Taking the HB+ and HB# protocols as motivating

examples, how feasible is the use of RAM based ran-
dom number generation for RFID applications in need

of random numbers? To provide 80 bit security, the

HB+ protocol requires at least 80 rounds [10], in each
of which the RFID tag is expected to generate a 224

bit random value. If these rounds are run in parallel,

the WISP must be capable of generating 17,920 ran-

dom bits at a time. The randomness requirements of
the HB# protocol are more modest, requiring a single

round where a 512 bit random value is generated by

the tag, though this is at the cost of a higher memory
overhead.

In the FERNS approach, as reported in [14,15], an

entropy rate of 0.103 bits of entropy per bit of unini-
tialized memory was observed. Combining this with the

maximum of 376 bytes of unused RAM on a 4.1 WISP

tag yields an expected random number capacity of 309

bits. A 4.1 WISP tag would therefore require its avail-
able memory to be hashed 58 times in order to meet

the randomness requirements of the HB+ protocol and

2 times in order to generate enough randomness for the
HB# protocol. Since a “cool down” interval of about 30

seconds is required between memory hashes in order to

allow a WISP tag’s RAM to return to its uninitialized
state, this implies that 30 seconds of wait time would

be required for this type of tag to generate enough ran-

domness for a single HB# session and 28.5 minutes of

wait time would be necessary to create enough random
bits for one HB+ protocol instance.

Of course, these estimates only apply to the latest

iteration of WISP hardware. RFID tags with lower ca-
pabilities would require even more time. On the earlier

2.0 or 2.1 versions of WISP tags, which featured 256

bytes of RAM in total, out of which 144 bytes are avail-
able for hashing, 118 random bits could be expected to

be generated from each memory hash. This would ne-

cessitate 152 hashes for HB+ and 5 hashes for HB#,

yielding uninitialization wait times of 76 minutes and
2.5 minutes for each respective protocol. These figures

are specific to the specialized hardware found on WISP

tags, which for the purposes of allowing programming
flexibility have memory capacities well beyond those of

commercial RFID tags. A typical fixed function RFID

tag that costs 5 to 10 cents is expected to have a max-

imum of only 128 bits of RAM in total [17], making

the prospect of deriving sufficient randomness from this
source even dimmer.

The focus of the FERNS technique [14] is on True

Random Number Generation and not on Pseudoran-
dom Number Generation. It may be possible to use the

random data derived from RAM as a seed for a Pseu-

dorandom Number Generator (PRNG) that could gen-

erate a sequence of seemingly random bits that is much
longer than the seed itself. There are several poten-

tial pitfalls in this approach, however. For one, a great

deal of scrutiny is required to ensure that a PRNG al-
gorithm generates randomness of sufficient quality for

cryptographic use. Flaws in prominent PRNG imple-

mentations have gone unnoticed for months or even
years [26], compromising the security of the systems on

which they are based for that duration. Furthermore,

physical attacks on an RFID tag could enable an adver-

sary to compromise the randomness generated by such
a procedure by deriving the PRNGs state. Finally, due

to their hardware limitations, many RFID tags lack the

resources necessary to support a PRNG. Those that do
not have such hardware limitations may need to use

these precious constrained resources for other compu-

tational tasks.

4.2 Effect on Usage Model

The issue of RAM data retention is complicated by the

usage model expectations of an RFID system. For in-
stance, consider the case of contactless access card us-

age. Since cost efficient tags are passively-powered, they

power up when they come into range of a compatible
RFID reader and do not power down until they leave

the reader’s field of view. This would mean that a stan-

dard RFID enabled access card would have to be taken

outside of the range of a reader in order to allow its
memory to “cool down” and return to an uninitialized

state in order to perform random number generation.

Thus requiring multiple consecutive RAM hashes would
significantly alter the RFID usage model. Instead of a

user presenting his or her tag to a reader once, leav-

ing it present momentarily, and returning the tag to a
pocket or other storage, users would have to repeatedly

bring the access card within the range of the reader and

back out again, introducing a high user burden into the

authentication process.
Further complicating the situation is the need for

the user to determine when to remove the card from

reader’s range and for how long. It is suspected that
specialized hardware could be added to a RFID tag

to address this problem by cutting power to memory
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after a random number generation was requested. This

would add complexity and thus cost to the tag, however,

contrary to their intended economic efficiency. Further-
more, a hardware based solution would also not address

the underlying need to wait for several seconds between

two consecutive RAM reads.

4.3 Potential Attacks

The need to move a tag outside of the range of a reader
for a fresh random number generation also introduces

the potential for new attacks. If an adversary were able

to continuously supply power to a tag which made use
of its RAM for randomness purposes, he or she would

essentially force the tag to continuously reuse the same

RAM values for hashing. This would make the values

generated extremely predictable, undermining the se-
curity of any authentication scheme or cryptographic

protocol built on top of the random number generator.

As mentioned above, hardware could be added to

lock down a tag’s memory until it has time to return
to a decayed state. However, this would create the po-

tential for a denial of service (DoS) attack where an at-

tacker continuously powered a tag, preventing it from

generating any random numbers and thus from being
used at all. While DoS attacks on RFID systems are

always possible by simply jamming the radio signals in-

volved, this type of attack is worse in the sense that it
does not involve any jamming in the traditional sense.

All an attacker would need to do is repeatedly issue

queries to the tag, rather than continuously jam an en-
tire portion of the radio spectrum.

4.4 Fingerprint Extraction

In the FERNS technique, identifying a RFID tag through

its memory is accomplished by locating bits that ini-

tialize to a consistent value. Because this process is not

dependent on the availability of fresh mutable bits each
time it is executed, RAM based fingerprint derivation

is not as adversely impacted by the factors discussed

above as the generation of random numbers. Nonethe-
less, there are still practical consideration that must

be taken into account when performing memory finger-

printing on RFID tags. For one, the number of unique
fingerprints that can be generated is clearly dependant

on the size of a tag’s RAM. The less memory that is

available, the fewer possible fingerprints that may po-

tentially be generated. This might result in problematic
collisions for tags with only a few bits of memory.

Furthermore, while memory does not need to be re-

cently uninitialized in order to be used for identification

purposes, its original values still must not be overwrit-

ten prior to fingerprinting. Thus, if a segment of a tag’s

RAM has been filled, the RFID device must wait for
it to decay fully before accessing its raw fingerprint.

Alternatively, the RFID tag could work with the re-

mainder of memory that is not in use, but this would
result in a reduction of the size of the fingerprint, which

may be problematically small to begin with. In summa-

tion, fingerprint extraction is also in contention with

other RFID tag system operations for shared memory
resources.

4.5 Impact of Temperature

Like memory found in other systems, the deteriora-

tion rate of information stored in an RFID tag’s RAM

changes when subjected to extreme temperature con-
ditions. Tags that are expected to operate primarily

in such environments will therefore experience more or

less pronounced remanence effects. For example, a pas-
sive RFID sensor affixed to a heating furnace or vehicle

engine would experience less of a remanence effect and

thus a faster decay rate than one operating at room

temperature. As a consequence, FERNS random num-
ber generation and identification is better suited for use

on tags designed for such circumstances.

On the other hand, tags fashioned for use in ultra

low temperature scenarios, such as those used to moni-

tor manufacturing processes requiring coolants or frigid
outdoor areas would experience prolonged or nonexis-

tent memory data decay. FERNS is not a viable option

on such devices for this reason. Additionally, any adver-

sary with the capacity to remove a great deal of heat
from an RFID tag could exploit this behavior by pre-

venting the decay of stored data, causing the generated

randomness to be based on stale, reused memory val-
ues. This would necessitate physical access to the tag,

however.

4.6 Other Issues

In addition to data remanence, SRAM is subject to a

less well known effect called “burn-in.” If a memory cell
is used to store the same value over an extended time

interval, the value will “burn in” to that cell. That is,

the cell will always enter the state which represents the

stored value as soon as it is supplied with power. Like
data remanence, “burn-in” has serious implications for

cryptographic operations. If a key is stored in the same

memory location for a long period of time, it may be
possible to recover it even after power has been removed

from the SRAM circuitry.
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“Burn-in” is also problematic for memory based ran-

dom number generation. An SRAM cell that becomes

“burnt in” will be predictable and will not contribute
any entropy even if the cell previously exhibited unpre-

dictable behavior. On the other hand, “burnt in” cells

are useful for fingerprinting operations because they re-
liably enter the same state upon the receipt of power.

Since there is not a similar process by which predictable

SRAM cells become unpredictable, this type of memory

can be expected to lose random cells and gain determin-
istic cells over time.

We performed all of our experiments using the

WISP’s MSP430F2132 microcontroller. We therefore
cannot claim that all types of SRAM will act in the

same fashion. Some exotic forms of SRAM may be im-

mune to the sources of physical noise that cause unpre-
dictability in most SRAM cells. Clearly, any memory

circuitry that is wholly deterministic cannot be used to

generate random values but would be very applicable

for fingerprinting purposes.

5 Conclusion

To conclude, several practical shortcomings of using
general purpose memory as a source of randomness for

low cost RFID devices have been presented. Since RAM

is already in short supply on such resource constrained

devices, much of it will likely be in use and thus un-
available as a source of randomness. Due to the phe-

nomenon of data remanence, a longer than expected

wait time is required between consecutive uses of RAM
as an entropy source, making its repeated utilization

impractical in the RFID usage model.

It should not be concluded, however, that RAM
based randomness derivation should be discarded. This

innovative technique remains attractive due to its re-

purposing of existing hardware, which is important for

minimizing the costs of tag production. On its own,
however, this method seems unlikely to be able to han-

dle the randomness requirements of current RFID au-

thentication protocols such as HB+, HB#, and related
variants.

In practice, many services derive random numbers

from environmental noise. Related work includes an in-
vestigation into the viability of alternative sources of

randomness, such as onboard sensors, to collect ambi-

ent noise of different forms [22]. This approach is not

subject to the time and space constraints faced when
harvesting entropy from memory. As sensing platforms,

WISP tags are well suited to exploring this area. For

example, the current 4.1 iteration of WISP hardware
features an onboard accelerometer, temperature sen-

sor, voltage sensor, and capacitance sensor. Addition-

ally, it is possible to add new sensors by wiring them to

a WISP. Ways in which entropy sources such as these

can be aggregated to efficiently produce the amount of
randomness necessary to support various cryptographic

protocols aimed at low cost tags will be subject to fur-

ther analysis in the future.
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