Pairing Devices with Good Quality Output Interfaces

Nitesh Saxena and Jonathan Voris
Polytechnic University

nsaxenal@duke.poly.edu, jvoris@isis.poly.edu

Abstract

The operation of achieving authenticated key agreement
between two human-operated devices over a short range
wireless communication channel, such as Bluetooth or Wi-
Fi, is known as “pairing.” The devices being paired are ad
hoc in nature, i.e., they can not be assumed to have a prior
context (such as pre-shared secrets) or a common trusted
on- or off-line authority. However, the devices can gener-
ally be connected using auxiliary physical channel(s) (such
as audio or visual) that can be authenticated by the user(s)
of the devices. These authenticatable channels can be used
to form a basis for pairing.

In this paper, we present the results of a user study of a
technique used to pair two devices (such as two cell phones)
which have good quality output interfaces in the form of a
display, speaker, and/or vibration.

Keywords: Authentication, Key Agreement, Device Pairing

1 Introduction

Short range wireless communication, based on technolo-
gies such as Bluetooth and Wi-Fi, is becoming increasingly
prevalent and promises to remain so in the future. With
this surge in popularity comes an increase in security risks.
Wireless communication channels are easy to eavesdrop
upon and manipulate. Therefore, a fundamental security
objective is to secure these channels of communication. In
this paper we will use the term “pairing” to refer to the oper-
ation of bootstrapping secure communication between two
devices connected by a short-range wireless channel. Ex-
amples of pairing operations performed during the course
of daily life include connecting a Wi-Fi laptop and access
point or a Bluetooth keyboard and desktop. Pairing would
be easy to achieve if there existed a global infrastructure
that enabled all personal devices to share an on- or off-line
trusted third party, certification authority, PKI, or any pre-
configured secrets. Such a global infrastructure is nearly
impossible to come by in practice, however, thereby making
pairing an interesting and challenging real-world research
problem (the pairing problem has been at the forefront of
various recent standardization activities, see [12]).

Outof-Band Channels. A recent direction in pairing re-

search is to use an auxiliary physically authenticatable
channel, called an out-of-band (OOB) channel, which is
governed by the human users who operate the devices. Ex-
amples of OOB channels include audio and visual chan-
nels. Unlike wireless channels, an adversary is assumed
to be incapable of modifying messages transmitted on an
OOB channel. It can eavesdrop on, delay, drop and replay
them, however. A pairing scheme should therefore be se-
cure against such an adversary. The usability of a pairing
scheme based on OOB channels is clearly of the utmost im-
portance. Since OOB channels typically have low band-
width, the shorter the data that a pairing scheme needs to
transmit over these channels, the better the scheme becomes
in terms of usability.

Various pairing protocols have been proposed thus far.
These protocols are generally based on bidirectional au-
tomated device-to-device (d2d) OOB channels. Such d2d
channels require both devices to have transmitters and cor-
responding receivers. In settings where d2d channel(s) do
not exist (i.e., when at least one device does not have a re-
ceiver) equivalent protocols can be based upon device-to-
human (d2h) and human-to-device (h2d) channel(s) instead.
Depending upon the protocol, only two d2h channels may
be a sufficient replacement. This is the case when the user
has to perform a very simple operation (such as “compar-
ison”) on the data received over these channels. Clearly,
the usability of d2h and h2d channel establishment is even
more critical than that of a d2d channel.

Short Authenticated Strings. Earlier pairing protocols re-
quired at least 80 bits of data to be transmitted over the
OOB channels. The simplest protocol [1] involves the de-
vices exchanging their public keys over the wireless chan-
nel and authenticating them by exchanging (at least 80-bit
long) hashes corresponding to the public keys over the OOB
channels. The more recent, so-called Short Authenticated
Strings (SAS) based protocols [6][4] reduce the length of
data transmitted over the OOB channels to approximately
15 bits (SAS-based authentication was first introduced by
Vaudenay in [14]).

A number of pairing schemes that utilize various OOB
channels have been proposed that are based on the proto-
cols listed above. Recently, in [8] we proposed a new pair-

ing scheme that is universally applicable to any two devices,
with a focus on devices that lack good quality output inter-
faces. This scheme can be based on any existing SAS pro-
tocol and does not require devices to have good transmit-
ters or any receivers, e.g., just a pair of LEDs is sufficient.
The scheme involves users comparing very simple audio-
visual patterns, such as “beeping” (using a basic speaker)
and “blinking” (using LEDs), transmitted as simultaneous
streams which form two synchronized d2h channels.

Contributions. In this paper we focus on pairing devices,
such as cell phones, that have good quality output interfaces
in the form of a display, speaker, and vibration mechanism.
We apply the same basic pairing concept that was used in
[8]. In this paper, however, we take advantage of the higher
quality output interfaces which are often available on de-
vices of this kind. The analysis of pairing solutions that
use different methods of output is a worthwhile goal unto
itself, as many current solutions are of limited use to dis-
abled individuals. Besides this, we investigate whether or
not the usability and efficiency of the scheme presented in
[8] can be improved if the pairing devices have better, and
in some cases, multiple, output interfaces. We extend the
scheme of [8] to create three new OOB output combina-
tions: Flash-Flash, Vibrate-Vibrate, and All-All. We also
compare these to a simple scheme (referred to as Num-
Num) that requires users to compare two 4-digit numbers
displayed on devices’ screens.

The results of our user tests of these schemes indicate
that none of them are superior to the others in all respects.
However, our tests show that All-All is the safest in that it has
very low false negatives, whereas Vibrate-Vibrate turns out
to be the most user friendly.

2 Communication and Security Model

The pairing protocols used in this paper are based upon
the following communication and adversarial model [14].
The devices to be paired are connected via two types of
channels: (1) a short-range, high-bandwidth, bidirectional
wireless channel and (2) an auxiliary, low-bandwidth, phys-
ical OOB channel(s). An adversary attacking the pairing
protocol is assumed to have full control on the wireless
channel; namely, he or she can eavesdrop on, delay, drop,
replay and modify messages. On the OOB channel, the ad-
versary can eavesdrop on, delay, drop, replay, and re-order
messages. It can not modify them, however. In other words,
the OOB channel is assumed to be authenticated.

To date, two three-round pairing protocols based on short
authenticated strings (SAS) have been proposed [6][4]. In
a communication setting involving two users restricted to
running three protocol instances, these SAS protocols need
to transmit only k (= 15) bits of data over an OOB channel.
As long as the cryptographic primitives used in these pro-
tocols are secure, an adversary attacking them can not win

with a probability significantly higher than 27% (= 2719),

This provides security equivalent to that provided by 5-digit
PIN-based ATM authentication [14].

3 Pairing Using Synchronized Outputs

In this section we describe the design and implemen-
tation of our pairing schemes based on the Flash-Flash,
Vibrate-Vibrate and All-All OOB output combinations. We
also compare these combinations with the simple compari-
son scheme Num-Num.

Our Goals. Our objective was to develop pairing schemes
that leverage the decent quality output interfaces found on
most ubiquitous personal devices such as mobile phones,
headsets, and remote controls. This is unlike the motivation
for the schemes of [8], which focused on devices that lack
such methods of output. Note that while these devices typ-
ically feature multiple methods of output, their input inter-
faces vary and may be limited. Thus it is difficult to design
d2d channels to pair this class of devices in a general way.
To keep our pairing technique applicable to as many devices
as possible, we do not discuss the use of d2d channels. For
more on pairing with d2d channels see [1], [5], and [9].
The output channels that we utilize in this paper’s
schemes are a “flashing” screen, “vibration,” and “beep-
ing” using a speaker. What we call Flash-Flash is im-
plemented via the flashing of backlit LCD screen, while
Vibrate-Vibrate uses vibration functionality commonly as-
sociated with cell phones. We wanted to determine how
to make use of the various output interfaces available on
these devices in a way that improved the pairing procedure.
We looked to enhance the pairing experience by making the
process as short and simple as possible, thus placing a min-
imal burden on device users. In particular, since devices of
this kind usually feature more than one method of output,
we desired to test whether the use of multiple simultane-
ous output channels made the pairing process any easier for
users. New types of OOB channels also improve the pairing
experience by making pairing suitable for a greater range
of users. Devices restricted to a visual output interface for
pairing are not usable by the visually impaired, for instance.

The Design. To achieve these goals, we implemented All-
All using the aforementioned flashing display and vibra-
tion functionality as well as a beep in the form of a brief
alert noise or “ringtone.” Since the results of [8] indi-
cated that human users generally do not prefer “asymme-
try” in OOB output, such as when two devices use dif-
ferent output interfaces, we decided not to proceed with
combinations that used a different output channel on each
device, such as Flash-Vibrate, etc. Moreover, since the
pairing combination involving two similar audio-based out-
put channels from [8], Beep-Beep, was error-prone, no
further experimentation was conducted with that combina-

tion. We did perform user testing with an additional pairing
scheme, Num-Num, however. Unlike the other schemes,
Num-Num does not make use of any synchronized patterns
of OOB data. Instead, it requires users to visually com-
pare the two 15-bit SAS messages after they have been en-
coded as two 4-digit numbers and displayed on the screen
of each of the pairing devices. Since Num-Num appears
to be the most basic and simple pairing technique possible,
we wanted to see how it compared with the three new OOB
output combinations, Flash-Flash, Vibrate-Vibrate, and
All-All.

A pairing scheme, in its entirety, consists of three phases:
(1) the device discovery phase, wherein the devices ex-
change their identifiers over the wireless channel prior to
communicating, (2) the pairing protocol execution phase,
wherein the devices execute the desired pairing protocol
over the wireless channel, and (3) the authentication phase,
where the devices authenticate the messages exchanged dur-
ing the previous phase using OOB channels. For the sake
of our experimentation, we skipped the first two phases and
concentrated on the third phase. We did this because our
main goal was to test the feasibility of the way we intended
to implement the OOB channels,

Let us assume that we want to pair two devices, A and
B. Assuming that A and B have already performed the de-
vice discovery and protocol execution phases over the wire-
less channel, the pairing task is then reduced to A and B
encoding their respective 15 bits of SAS data, SAS4 and
SASp, into vibrating, beeping, flashing, or some combi-
nation of these outputs and then transmitting this encoded
data in a synchronized fashion for the user to compare (ex-
cept for the Num-Num combination, which clearly does
not require any synchronization). This encoding should en-
able the user to easily identify both “good” cases, i.e., when
SASy = SASp, and “bad” cases where SAS 4 # SASp.

In [8], synchronization was achieved by having one de-
vice send a synchronization signal S to the other device over
the wireless channel. However, this synchronization signal
can get or be delayed, resulting in users being fooled into
accepting non-matching SAS data (for example, the strings
“010010” and “100100” will appear to be equal to the user
if the synchronization signal is delayed by one bit). In [8]
this issue was dealt with by using an END marker to indi-
cate the completion of each SAS. For the pairing schemes in
this paper we opted to use a different synchronization tech-
nique. Since these schemes are targeted at devices that are
hand-held and/or easy to manipulate, we assumed that users
would be able to simultaneously press a button to activate
the pairing process on two devices. This is a reasonable as-
sumption for a wide range of cell phone-like devices. This
approach prevents potential synchronization delays by plac-
ing the timing of the encoded SAS exchange in the hands
of the user while also avoiding the added complexity intro-

duced by the use of S and an END marker.

Encoding Method. For all of our OOB output combina-
tions, a ‘1’ bit in the SAS data is signaled by activating an
output interface for a given “signal interval,” while a ‘0’
bit is represented by disabling an output for the same inter-
val. Every bit signal is followed by a brief “sleep interval”
of no output. As an example, on a ‘1’ bit the pairing de-
vices would vibrate for 210 ms and then stay still for 490
ms, while on a ’0’ bit the device would remain stationary
for the entire 700 ms. This is included to facilitate “human-
comparison” by allowing users to differentiate two separate,
consecutive bit signals. The time required to compare two
SAS strings is inversely proportional to the duration of the
signal and sleep intervals. The optimal value for these inter-
vals needs to be determined through experimentation. The
best interval duration is a careful balance between grant-
ing users enough time to comfortably compare the encoded
SAS data and making the comparison process as brief as
possible.

The output interface(s) used for the encoding depends
on the OOB combination in use. For Flash-Flash, a dis-
play backlight is brightened and darkened to encode the
SAS data. Vibrate-Vibrate utilized the vibration function
commonly used for feedback in cell phones, headsets, and
video game controllers. The All-All scheme was designed to
test whether users find multiple simultaneous forms of OOB
output helpful or distracting. As such, this method makes
use of the aforementioned “flashing” and “vibrating” out-
puts as well as an audio, or beeping,” output. This type of
encoding is “all-or-nothing” in the sense that a device either
outputs all three types of feedback or none at all.

Implementation. We used two Nokia 6030b mobile phones
to conduct our experiments. This phone model was selected
for testing because they are affordable entry-level models
that have been commercially available for a few years. As
such, their features are representative of those one would
expect to find on today’s average personal mobile device.
These phones have several good quality output interfaces,
specifically a vibration feature, a speaker, and a 16-bit color,
128 by 128 pixel display. The Nokia 6030b runs the Nokia
operating system and supports version 2.0 of the Mobile
Information Device Profile (MIDP) specification and ver-
sion 1.1 of the Connected Limited Device Configuration
(CLDC) framework, which are both part of the Java Plat-
form, Micro Edition, or J2ME. To utilize these APIs we
wrote our test programs in the Java programming language
using the Java Wireless Toolkit version 2.5.2 for CLDC. Be-
cause we were only working with the authentication phase
of the pairing scheme and not the device discovery or pair-
ing protocol execution phase and did not make use of a wire-
less channel for synchronization, no actual wireless connec-
tion between the two mobile devices was necessary for our
tests.

4 Usability Testing

Next, we present an experimental study of the usability
of our new pairing setups. These schemes were tested with
a total of 40 subjects. All of our testers were college stu-
dents who were familiar with mobile phones but not particu-
larly proficient with the technology. Each tester was given a
short verbal summary of our secure device pairing schemes
and their potential applications. We explained to the vol-
unteers the experimental setup of the two devices and what
they were expected to do while working with the four output
combinations.

The primary objective of our user tests was to determine
which of the output combinations enabled them to most eas-
ily identify SAS signal matches and mismatches. Put differ-
ently, we wanted to determine which encoding caused users
to commit the least amount of safe errors (a false positive,
that is, identifying a match as a mismatch) and fatal errors
(a false negative, that is, identifying a mismatch as a match)
[13]. The secondary goal of our tests was to establish an op-
timal timing interval for the type of output that users were
most comfortable with.

4.1 Test Setup

The experiments for the four output combinations were
conducted in a graduate research lab of our university. The
test cases presented to the volunteers were designed to test
for SAS matches and mismatches. The strings utilized in
these test cases were randomly generated, but fixed from
subject to subject to prevent some volunteers from receiving
strings that were easier to identify than others (most users
would not have a problem differentiating between the en-
coding of ‘0000,” and ‘1111, while the more subtle differ-
ence between the strings ‘1010’ and ‘0101 might be harder
to notice). These strings were presented to the test subjects
in a random order. This was done to minimize the effects of
learning and fatigue on the test results. In other words, we
wanted to prevent users from anticipating future test cases
based on previous ones or losing motivation to pay proper
attention during the pairing procedure.

During our preliminary tests we observed that users had
an easier time noticing mismatches that occur towards the
front of a SAS if the string was prepended with a few non-
data “padding” bits. This observation is corroborated by the
results of [8]. These initial bits give users an opportunity to
focus their attention on the upcoming SAS bits. We used
3 bits of padding, which combined with the 15 bits of SAS
data to produce 18-bit long test case strings. Prior to each
test case, the test administrator would configure the test pa-
rameters on both phones, such as which SAS and what tim-
ing interval to use. Volunteer users then initiated the test
process by pressing a button on each phone simultaneously.
After a very brief (100 ms) delay both devices started sig-
naling their particular SAS test string via vibrating, flashing,

or vibrating, flashing and beeping in accordance with the
OOB combination in use for that particular test case. For the
Num-Num output combination, users were not required to
activate the test on both devices simultaneously. They were
instead asked to press a button on each device that would
cause a 4 digit decimal encoding of the SAS value to ap-
pear on the phone’s display. Test subjects were then asked
to compare the values displayed on the two devices.

4.2 Vibrate-Vibrate Tests

Since vibration was a novel output interface that had not
yet been tested in previous research, we decided to test the
viability of Vibrate-Vibrate before comparing it to other
types of output. We set out to find the best timing interval
for this pairing scheme with respect to user comfortability
and the overall runtime of the pairing procedure. We ex-
perimented with a number of timing intervals ranging be-
tween 300 and 800 ms. Each overall interval consisted of
approximately 30% signal interval and 70% sleep interval.
For example, an overall timing interval of 300 ms corre-
sponded to 80 ms of signal interval and 220 ms of sleep
interval. Each of the 20 volunteers for these tests performed
20 Vibrate-Vibrate pairing test cases for a total of 400 test
runs (4 users also participated in 35 preliminary test cases,
mentioned above, for a grand total of 435 tests). The out-
come of our tests of Vibrate-Vibrate with different inter-
vals are depicted in Table 1.

Our test results indicate that users commit errors when
Vibrate-Vibrate is used with an interval of 300 to 650 ms.
The fatal error rates for this scheme at these speeds range
from 2% for a 500 ms interval to approximately 19% for
a 550 ms interval. It is worth noting, however, that these
error rates are comparable to those encountered when us-
ing the output combinations presented in [8]. The most
promising results occur at the 700 to 800 ms interval range
that follows, where the entire comparison process takes be-
tween 13 and 15 seconds to complete. At this level no errors
were committed at all. Thus, at this interval range users can
easily and comfortably detect all SAS errors. This shows
that as the sleep interval duration rises, users feel increas-
ingly comfortable performing comparisons using Vibrate-
Vibrate.

4.3 Comparison Tests

Having confirmed the usability of Vibrate-Vibrate, we
desired to see how the scheme stood up to other methods
of output. Furthermore, since we were working with de-
vices with more than one output interface, we also wanted to
compare single output combinations like Vibrate-Vibrate
and Flash-Flash to a multiple output combination, All-All.
This comparison was designed to analyze whether multiple
simultaneous output channels made the pairing process eas-
ier or more difficult for users.

Interval | Safe Error Rate | Fatal Error Rate
(ms) (%) (%)
300 16.667 5.556
400 6.122 4.082
500 10.000 2.000
550 6.250 18.750
600 4.167 8.333
650 4.348 8.696
700 0.000 0.000
750 0.000 0.000
800 0.000 0.000

Table 1. Outcome of the Vibrate-Vibrate tests
with 20 users

Based on our initial tests, we found the optimal time in-
terval values for Flash-Flash and All-All to be 1000 ms
and 700 ms, respectively. We then performed user tests to
compare Vibrate-Vibrate (with a 700 ms interval), Flash-
Flash (with a 1000 ms interval), All-All (with a 700 ms
interval), and Num-Num (which, as a non-synchronized
scheme, intervals do not apply to). The 20 subjects who
volunteered for this round of testing performed a total of 60
test cases for each of the four combinations. The results of
these comparison tests are depicted in Tables 2 and 3. The
timing data is averaged over all test runs and takes user re-
action time into account.

Unlike our Vibrate-Vibrate specific tests, this time users
did commit some errors when using each combination at
these interval levels. Out of the four schemes we tested,
users committed the least amount of safe errors — in fact
none — when using the Num-Num combination. Num-
Num also turned out be the fastest since it involved di-
rect visual comparison instead of synchronized device out-
put. Fatal errors were the lowest, about 1.67%, with All-
All. Users committed a number of both safe and fatal er-
rors with Vibrate-Vibrate and Flash-Flash, with Vibrate-
Vibrate having less of both. Upon test completion users
were asked to give a qualitative ranking of the output com-
binations in terms of ease of use. About 54% of the test
subjects found Vibrate-Vibrate to be the best, while about
36% picked Num-Num and only about 9% selected All-All.
None of the subjects rated Flash-Flash as the best.

4.4 Interpretation

These test results and user comments indicate that none
of the schemes can be considered the overall best. All-All
and Num-Num turned out to be more or less complemen-
tary to each other in that All-All has the lowest fatal error
rate while Num-Num has the lowest safe error rate. This
means that providing users with three simultaneous out-
puts as done with All-All does make users more alert to the
presence of non-matching instances. Unfortunately, it can
also confuse users, causing them to mistake a matching in-

stance for a mismatch. Analogously, Num-Num made it
quite easy for users to detect matching instances. It also
made them too inattentive at times, however, which cased
test subjects to miss some non-matching instances. Flash-
Flash and Vibrate-Vibrate showed intermediary amounts
of error rates, with users missing a few matching as well as
a few non-matching instances. While there were some ex-
ceptions, users generally stated that they found the visual-
only output of Flash-Flash difficult to focus on and the
multiple outputs of All-All to be distracting. On the other
hand, users found that the straightforward tactile feedback
of Vibrate-Vibrate demanded less attention and was easier
to keep track of than the other combinations.

Combination Average Timing | Safe Error | Fatal Error
Rate Rate
(seconds) (%) (%)
Vibrate-Vibrate 14.3 3.333 5.000
Flash-Flash 18.0 8.333 10.000
All-All 15.2 10.000 1.667
Num-Num 2.1 0.000 9.091

Table 2. Outcome of the four output combina-
tion tests with 20 users

Combination Ranked | Ranked | Ranked | Ranked
#1 #2 #3 #4
(%) (%) (%) (%)
Vibrate-Vibrate 54.55 9.09 36.36 0.00
Flash-Flash 0.00 45.45 18.18 36.36
All-All 9.09 27.27 18.18 45.45
Num-Num 36.36 18.18 27.27 18.18

Table 3. Responses of 20 users when asked
to compare the four output combinations

5 Related Work

There exists a significant amount of prior work on the
general topic of pairing. Due to space constraints we only
summarize it here. For more detailed descriptions, refer to
the related work section of [8].

In their seminal work, Stajano, et al. [11] proposed the
establishment of a shared secret between two devices using
a link created through a physical contact (such as an electric
cable). Balfanz, et al. [1] extended this approach through
the use of infrared as a d2d channel; the devices exchange
their public keys over the wireless channel, then exchange
(at least 80-bit long) hashes of their respective public keys
over the infrared channel.

The Snowflake mechanism by Levienet et al. [2] and the
Random Arts visual hash by Perrig et al. [7], can be used
for pairing devices based on comparison of random images.

McCune et al. proposed the “Seeing-is-Believing” (SiB)
scheme [5]. SiB involves establishing two unidirectional

visual d2d channels; one device encodes the data into a two-
dimensional barcode and the other device reads it using a
still camera.

Goodrich, et al. [3] proposed a pairing scheme based on
“Mad Lib” sentences that is also built upon the protocol of
Balfanz et al. The main idea of their procedure is to estab-
lish a d2h channel by encoding the pairing data into English
sentences, which users can then easily compare.

As an improvement to SiB, Saxena et al. [9] proposed a
new scheme based on a visual OOB channel. The scheme
uses one of the SAS protocols [4] and is aimed at pairing
two devices of which only one has a relevant receiver.

A very recent proposal, [10], focuses on pairing two de-
vices with the help of “button presses” by the user. This
scheme is based upon a protocol that first performs an unau-
thenticated Diffie-Hellman key agreement, then authenti-
cates the established key using a short password. Such a
short password can be agreed upon between the two devices
via three protocol variants that make use of button presses.

Uzun et al. [13] carry out a comparative usability study
of simple pairing schemes. They consider pairing scenar-
ios where devices are capable of displaying 4 digits of SAS
data.

6 Conclusion

Based on the results presented in section 4, we can draw
the following conclusions regarding the applicability of
the Vibrate-Vibrate, Flash-Flash, All-All and Num-Num
OOB output combinations to pairing two devices which
have decent quality output interfaces. Clearly, no single
scheme can be said to be the best in all regards. In prac-
tice, both safe as well as fatal errors will most likely be
encountered while using any of these combinations. Since
Flash-Flash suffered from both types of errors and no users
preferred it, we believe that the Flash-Flash combination
is not a good pairing option. This leaves Vibrate-Vibrate,
All-All, and Num-Num remaining. We noticed that All-All
and Num-Num are complementary to each other in terms
of errors. All-All had the lowest occurrence of fatal errors
while Num-Num had the least safe errors (none). This
means that All-All is the safest of the combinations we tested
as it is the one that makes it the easiest for users to detect
non-matching instances (potentially arising due to attacks).
Conversely, Num-Num makes it easier for users to detect
matching instances. However, it also tends to make users
too inobservant which causes them to accept some non-
matching instances as well. Based on our tests of the 4-digit
Num-Num method, we feel that it would be risky to use as
is. Perhaps comparison of longer numbers would help re-
duce the amount of fatal errors with respect to Num-Num
[13], as these may force users to be more attentive.

Although it showed slightly higher safe error rates than
Num-Num and sightly higher fatal error rates than All-

All, Vibrate-Vibrate was the combination that most users
preferred. Our results undoubtedly indicate that Vibrate-
Vibrate is the most usable. We feel that since users liked
this scheme so much it has the most potential for improved
security and may yield much lower error rates in practice.
Of course, Vibrate-Vibrate is only applicable to pairing
two devices with vibration capabilities

In closing, the importance of making different OOB
channels available for the disabled must be noted. The
Vibrate-Vibrate combination is an excellent pairing choice
for bootstrapping communication between devices deigned
for the visually impaired, as visual techniques are not ap-
plicable to such devices. Audio methods are also of limited
use in this scenario due to their obtrusiveness in terms of
noise and the difficulty users have in determining the actual
source of a sound. This was demonstrated by Beep-Beep
in [8], which was shown to be highly error-prone for this
reason. In general, devices with a greater range of pairing
output options will be accessible to a wider range of people.

References

[1] D.Balfanz, D. Smetters, P. Stewart, and H. C. Wong. Talking
to strangers: Authentication in ad-hoc wireless networks. In
NDSS, 2002.

[2] I. Goldberg. Visual Key Fingerprint Code, 1996. Available

at http://www.cs.berkeley.edu/iang/visprint.c.

[3] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and
E. Uzun. Loud and Clear: Human-Verifiable Authentication
Based on Audio. In ICDCS, 2006.

[4] S. Laur, N. Asokan, and K. Nyberg. Efficient mutual data
authentication based on short authenticated strings. IACR

Cryptology ePrint Archive: Report 2005/424, 2005.
[5]1 J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-

believing: Using camera phones for human-verifiable authen-

tication. In /IEEE Symposium on Security and Privacy, 2005.
[6] S. Pasini and S. Vaudenay. SAS-Based Authenticated Key

Agreement. In PKC, 2006.
[7] A. Perrig and D. Song. Hash visualization: a new technique

to improve real-world security. In CrypTEC, 1999.
[8] R. Prasad and N. Saxena. Efficient device pairing using

“human-comparable” synchronized audiovisual patterns. In

ACNS, to appear June 2008.
[9] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Se-

cure device pairing based on a visual channel. In IEEE Sym-

posium on Security and Privacy (ISP’06), short paper, 2006.
[10] C. Soriente, G. Tsudik, and E. Uzun. BEDA: Button-Enabled

Device Association. In /WSSI, 2007.
[11] F. Stajano and R. J. Anderson. The resurrecting duckling:

Security issues for ad-hoc wireless networks. In Security Pro-

tocols Workshop, 1999.
[12] J. Suomalainen, J. Valkonen, and N. Asokan. Security as-

sociations in personal networks: A comparative analysis. In
ESAS, 2007.

[13] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of
secure pairing methods. In USEC, 2007.

[14] S. Vaudenay. Secure communications over insecure channels
based on short authenticated strings. In CRYPTO, 2005.

