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Abstract of the Dissertation

Decentralized Security Services

by

Nitesh Saxena

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2006

Professor Gene Tsudik and Professor Stanislaw Jarecki, Co-Chairs

Many security services, such as authentication and key management, rely on

trusted third parties (TTPs) which provide a common root of trust, thereby enabling secure

communication among all users. However, in many applications it is impractical to assume

universally trusted TTPs. A broad class of such applications involves ad hoc groups, which

include peer-to-peer systems (P2P), and mobile ad hoc networks (MANETs). Another

class of applications which can benefit from avoidance of a single centrally trusted TTP

are critical online services, such as certification, revocation and time-stamping. Centralized

operation of such security services is undesirable because it leads to a single point of failure.

The security needs of both ad hoc groups and the critical online services motivate

research on decentralized security services. This thesis investigates three decentralized

security services: (1) Establishment of secure communication between two human-operated

devices, without relying upon a TTP, (2) Distributed digital signature schemes that enable

any set of t + 1 group members to sign messages on behalf of the group, even in the

presence of at most t faulty members, and (3) Secure membership management and secure

communication in ad hoc groups.

The main research contributions of this thesis can be summarized as follows:
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We show how to establish secure communication two devices over a short-range

wireless communication channel, using messages that are visually authenticated by the

users of these devices. Our work builds and improves upon a prior proposal called Seeing-

is-Believing [MPR05]. We show how secure communication can be established based on a

visual channel even on devices that have very limited displaying capabilities, in the most

limiting case, on a device whose display consists of a cheap single light-source, such as

an LED. Our proposal enables secure channel establishment between devices such as a

Bluetooth cell phone and a headset, a WiFi cell phone and an access point, etc.

We also present a novel provably secure cryptographic protocol for establishing

security between devices connected with a low-bandwidth (e.g. 20-bits) authenticated chan-

nel, e.g., the visually authenticated channel in the above application. Unlike the previous

Diffie-Hellman-based protocols for this task [Vau05][LAN05][PVar], our protocol can be

based on RSA encryption, and is hence suitable for settings where two devices have ”asym-

metric” computational capabilities (e.g., a PC and a cell phone, a cell phone and a headset).

Moreover our protocol requires transmission of (log2(n)) fewer bits on the authenticated

channel than the previous protocols, where n is total number of devices using the protocol.

Next, we focus upon distributed RSA signature schemes. We present a practical

key-recover attack on a recently proposed distributed (proactive) RSA signature scheme

[LL00]. In our attack, an admissible threshold of malicious players can completely recover

the RSA secret signing key in the course of the lifetime of this scheme. Moreover, based on

a corrected use of the above scheme, we propose a new efficient provably secure proactive

RSA signature scheme. The new scheme offers a simpler alternative to the best previously

known proactive RSA scheme [Rab98], and is applicable to build efficient decentralized

online certification, revocation and time-stamping services.

Finally, we turn our attention to secure membership management and secure com-

munication in ad hoc groups. Firstly, we propose an efficient protocol to securely extend an

ad hoc group in a distributed manner. Compared to prior proposals [KZL+01, KLX+02,

LZK+02, NTY03], our protocol has minimal communication requirements, namely a sin-

gle round of asynchronous communication Secondly, we present a scheme to speed-up se-

cure communication in ad hoc groups. Compared to prior proposals [KZL+01, KLX+02,

LZK+02, NTY03], our scheme incurs lower communication and computation overhead in-

volved in public-key based operations. Our scheme can also be viewed as a threshold-tolerant

identity-based cryptosystem under standard (discrete logarithm based) assumptions.
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Chapter 1

Introduction

In this chapter, we motivate the need for providing robust and secure decentralized

services. We consider decentralized security services in “two-party” and “multi-

party” settings. These services include, in the two-party case, establishment of se-

cure communication between two human-operated devices; in the “multi-party” case,

distributed signatures, and secure membership management and secure communica-

tion in decentralized groups. We summarize the contributions of the thesis towards

providing these services.

1.1 Motivation

A security service has one or more of the following fundamental goals: access con-

trol, authentication, confidentiality, data integrity, availability, and non-repudiation. These

goals can be achieved by various means. For example, confidentiality can be achieved by

encryption, non-repudiation by digital signatures, etc. Traditionally, security services are

supported by a fixed centralized infrastructure or a trusted third party (TTP) (and thus, we

call them centralized security services). For example, in a public-key infrastructure (PKI),

such services are provided with the help of certification authorities (CAs). The CAs issue

signed certificates to users binding the identity of each user with its public key. Once the

users have certified public keys (and corresponding private keys), they can securely commu-

nicate with each other using encryption, digital signing and key establishment mechanisms.

Note that the CAs need to be mutually trusted by the communicating users. Other exam-
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ples of centralized security services, based on symmetric-key cryptography, include Kerberos

[MNSS87], RADIUS [RRSW97], S/Key [Hal95] and so on. Undoubtedly, centralized secu-

rity services are easily managed and are ideal for certain applications.

In contrast, in certain scenarios, a trusted centralized infrastructure or a trusted

third party might be unavailable or impractical. We broadly classify such application sce-

narios in following two categories.

1. Applications that lack a trusted centralized authority

There are various applications wherein it is undesirable to assume the existence of a

trusted authority or a pre-existing infrastructure. Various peer-to-peer (P2P) systems

and mobile ad hoc networks (MANETs) fall into this category. These applications

allow an “ad hoc” group of nodes to be able to communicate with each other. However,

the nodes might not necessarily have any prior-context (or shared secrets) with each

other or a common CA(s) among them. (Imagine, for example, an ad hoc network

consisting of two nodes, Alice’s (Nokia) cell phone and Bob’s (Compaq) PDA, or a

(file-sharing) P2P system, where a user in the US wants to share its files with a user in

Iraq.) Moreover, in these applications, requiring constant presence of a central fixed

entity is not realistic. First, such an entity is a single point of failure. Second, it

represents an attractive and high-payoff target for attacks. Third, topology changes

due to mobility and node outages (especially in MANETs) may cause the central

entity to be unreachable and thus unable to perform its duties in the parts of the

network not connected to it.

In the rest of the thesis, we collectively call such applications as ad hoc groups. Ad

hoc groups have numerous proposed applications, not only in personal/commercial

and defense-oriented settings, but also in rescue and disaster-recovery operations.

2. Applications that can not afford centralized operation

Centralized operation in certain applications is undesirable because it is a security lia-

bility and it leads to a single point of failure. This is typically true for various internet

security services such as online certification, revocation (e.g. OCSP [MAM+99]), dig-

ital time-stamping, etc.

The security needs of aforementioned applications, i.e., both ad hoc groups and the

critical online security services, motivate research on decentralized security services. Note
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that the ad hoc group applications are “naturally” decentralized while the critical online

security services need to be “forced” to become decentralized.

1.2 Decentralized Security Services

In this section, we describe the decentralized security services that we consider in

this thesis. The first security service is applicable in a two-party setting, while the rest in

a group setting. In the rest of this chapter and throughout in the thesis, we use the terms

group/network/system and member/node/player/user interchangeably.

1.2.1 Establishment of Secure Communication Between Two Human-

Operated Devices

The popularity of short-range wireless technologies such as Bluetooth and Wireless

Local Area Networking (WLAN) based on the IEEE 802.11 family of protocols is experi-

encing enormous growth. Newer technologies such as Wireless Universal Serial Bus1 are

around the corner and promise to be as popular. This rise in popularity of personal area

networks (PANs) implies that an increasing proportion of the users of devices supporting

short-range wireless communication are not technically savvy. Such users need very simple

and intuitive methods for setting up their devices. Since wireless communication is easier

to eavesdrop on and easier to manipulate, a common set up task is to bootstrap secure

communication between the devices. In this thesis, we will use the term device pairing

to refer to the operation of establishing secure communication between two devices over

short-range wireless communication channels.2

Both security researchers and practitioners have been looking for intuitive tech-

niques for ordinary users to be able to establish secure communication between their devices.

Although the primary impetus comes from the need to secure short-range wireless commu-

nication, the issue of intuitive secure channel establishment is more generally applicable

whenever ordinary users need to set up secure communication without the help of expert

administrators or trusted third parties.

More concretely speaking, the problem of secure channel establishment is to enable

1http://www.usb.org/developer/wusb
2The term pairing was introduced in the context of Bluetooth devices. Other roughly synonymous terms

include “bonding,” and “imprinting”.
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two devices, which share no prior context or a TTP with each other, to agree upon a key that

they can use to protect their subsequent communication. The association must be resistant

to a man-in-the-middle adversary who tries to impersonate one or both of these devices

in the process. The adversary is assumed to be capable of eavesdropping or modifying

messages on the communication channel between the devices.

One approach to security establishment is to use an additional physically authen-

ticatable channel, called an out-of-band (OOB) channel which is governed by humans, i.e.,

by the users operating these devices. The adversary is assumed to be incapable of modifying

messages on the OOB channel, although it can eavesdrop on them. Examples of such OOB

channels include, in device pairing applications, audio, visual, infra-red channels. In other

applications (such as SSH or PGP), security association can be achieved, for example, using

a postcard, fax, telephone call or voice message.

1.2.2 Distributed Signatures

Critical online services, such as certification, revocation and time-stamping, all

require a centralized server (or a TTP) to sign certain documents as per the clients’ requests.

However, as mentioned before, assigning the signing operation to a single server is a security

liability to server compromise and is a single point of failure. Therefore, we distribute

the signing operation among a number of servers by a security service called “distributed

signatures”.

The idea of distributing a cryptosystem so as to secure it against corruption of some

threshold of participating players is known as threshold cryptography. It was introduced in

the proposals of Desmedt [Des87], Boyd [Boy89], Croft and Harris [CH89], and Desmedt and

Frankel [DF90], which were based on Shamir’s polynomial secret-sharing technique [Sha79].

A (t + 1, n) threshold signature scheme [DF90] enables any subgroup of t + 1

members in a group consisting of n > t members, to collaboratively sign a message on

behalf of that group. This is achieved by secret-sharing the signature key, e.g. the RSA

secret key, among the group members, and allowing them to compute a signature on some

message via a distributed protocol where the members use the shares of the signature

key instead of the key itself. The scheme is said to be t-secure if any coalition of at most t

corrupt members is unable to forge a valid threshold signature on any message which honest

members would not sign, and t-robust if honest group members can efficiently produce a
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valid signature even in the presence of at most t malicious members. To achieve t-security,

a threshold signature scheme must in particular protect the secrecy of the signature key as

long as no more than t of the group members are corrupt.

A proactive signature scheme [HJJ+97a], based on techniques of proactive secret

sharing [OY91, HJKY95], is a threshold signature scheme which remains secure and robust

even if in every time period, called “share update interval”, a possibly different set of

t group members is corrupted. This is achieved by the members periodically updating

their shares of the secret signature key via a distributed share update protocol. Such an

update protocol should destroy the correlation between secret shares learned by corrupted

members in different time periods, so that the scheme can tolerate any number of corruptions

throughout its lifetime as long as in any single time period the number of simultaneously

corrupted members does not exceed t. A proactive signature scheme offers stronger security

guarantee then a threshold scheme, especially in an application which might come under

repeated attacks, such as a certification authority or a time-stamping service. Efficiency of a

proactive signature scheme is very important in some applications, e.g., in a time-stamping

service, or in the decentralized control of peer-to-peer groups, ad-hoc groups, or sensor

networks [KZL+01, STY03]. An efficient proactive scheme for RSA signatures is especially

important because RSA signatures are widely used in practice, and because verification of

RSA signatures is several orders of magnitude faster than verification of other signatures.

1.2.3 Secure Membership Management and Secure Communication in

Ad Hoc Groups

We consider dynamic ad hoc groups consisting of more than two nodes. As al-

ready pointed out previously, such groups have many well-known applications in military,

commercial and personal settings as well as in emergency and rescue operations. However,

lack of infrastructure and lack of centralized control make ad hoc groups inherently inse-

cure, and therefore specialized security services are needed for their deployment. There are

essentially three security-related problems in ad hoc groups:

• Problem 1: how to securely form the group,

• Problem 2: how to securely extend the group, and

• Problem 3: how to enable secure communication among the players.
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In this thesis, our main focus is only on Problem 2 and 3 above. However, in our

solutions, we also consider Problem 1, i.e., how to form the group in a distributed manner.

Next, we describe Problem 2 and 3 in detail. In short, Problem 2 requires a

player to be securely added to the group whereby providing it with a credential; Problem

3 requires the players to be able to securely communicate with each other using their

respective credentials.

Problem 2. We call Problem 2 admission control. Admission control is a fundamental

security service in ad hoc groups; it is required to ascertain membership eligibility and to

bootstrap other important security services, such as secure routing (e.g., [HPJ02, HJP02])

and secure group communication (e.g., [STW00b, STW00a]).

Due to the lack of a trusted authority in ad hoc groups, admission control must be

performed in a decentralized manner, by the existing players. To achieve this, the natural

technology to consider is threshold cryptography, as was first suggested by Zhou and Haas

in their seminal proposal [ZH99]. The idea is to distribute the trust among the players of

the group using threshold cryptography. This allows any set of t+ 1 players to admit a new

player via a distributed admission control protocol.

Two features of ad hoc groups make admission control a very challenging problem.

First, the devices in such groups often have very weak computational facilities and battery

power. Second, the nodes usually function in an asynchronous (on/off) manner, often

becoming temporarily unavailable. Therefore, an ideal admission control protocol must be

efficient in terms of both computation and communication3. It must also involve minimal

(ideally, none at all) interaction among the players of the group.

Problem 3. Once players join the group via their respective admission control protocols

as described above, they need to securely communicate with each other. Based on the

type of ad hoc group application, such secure communication might require confidentiality,

authentication, non-repudiation, etc. Similarly, other advanced security functionalities,

such as secure group communication [STW00b, STW00a], privacy-preserving authentication

or secret handshakes [BDS+03, CJT04], multi-signatures [OMR01], aggregate signatures

[BGLS03], and so on, might also be needed. The main challenge in providing such secure

communication is to reduce the computation and communication overhead on the players.

3Communication is directly related to the consumption of battery power in mobile devices [BA03].
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1.3 Design Goals and Challenges

In this section, we discuss the main design goals and challenges towards providing

robust and secure decentralized services.

Decentralization. In the traditional client-server model, information is concentrated in

centrally located servers and distributed through networks to clients that act primar-

ily as user interface devices. Such centralized systems are ideal for some applications

and tasks. For example, access rights and security are more easily managed in cen-

tralized systems. However, the topology of the centralized systems inevitably yields

inefficiencies, bottlenecks, wasted resources, and single points of failure. A distributed

signature application or a dynamic ad hoc group is a fully decentralized system where

every entity is an equal participant. Clearly, the implementation of such applications

is difficult because there is no centralized server with a global view of all the players

in the group.

Usability. In security applications that involve human-intervention, usability is an impor-

tant element. Mechanisms that are not friendly for the users to perform, are unlikely

to be adopted in practice. Usability is certainly a primary design goal in device pairing

applications, wherein ordinary users are involved.

Self-Configurability. Self-Configurability is a desirable feature in ad hoc groups, because

they exhibit a lack of fixed infrastructure and possess no a-priori knowledge. That is,

the group must be configured spontaneously by the players themselves.

Robustness/Fault-Tolerance. Fault-tolerant functioning of ad hoc groups is essential.

They are faced with failures commonly associated with systems spanning multiple

hosts and networks: disconnections, unreachability, partitions, and node failures. Such

failures may be more pronounced in wireless than wired networks. Therefore, it would

be desirable to continue operation among the still-connected players in the presence

of failures. Similarly, a distributed signature application needs to be robust to both

natural and malicious faults.

Scalability. P2P systems and MANETs may consist of a large number of nodes/players.

Group size may continue to change as players leave and new players join. Thus, the

security mechanisms have to scale with the group size.
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Non-Interactivity. Because of the dynamic nature of most ad hoc group applications,

nodes operate in an asynchronous (on/off) manner, often becoming temporarily un-

available. Since we cannot assume synchronous communication (which requires a com-

mon global clock), the security mechanisms must involve minimal interaction among

the nodes. Interaction may be direct among nodes, or, indirect, through a third party,

e.g. a new node wanting to join the group. The ideal mechanism must minimize both

direct and indirect interaction.

1.4 Summary of the Contributions

The contributions of this thesis are summarized as follows.

• Secure Device Pairing Using a Visual Channel

[This work appeared in [SEKA06]]

We focus upon how to implement device pairing using a manually authenticated OOB

channel. In particular, we focus upon a visual OOB channel. Our work builds upon a

prior proposal by McCune et al. [MPR05], a system called Seeing-is-Believing (SiB).

The SiB visual channel consists of one device displaying the hash of its public key in

the form of a two-dimensional barcode, and the other device reading this information

using a photo camera. Strong mutual authentication in SiB requires running two

separate unilateral authentication steps.

In this thesis, we show how strong mutual authentication can be achieved even with a

unidirectional visual channel, where SiB could provide only a weaker property referred

to as presence. This could help reduce the SiB execution time and improve usability.

By adopting recently proposed improved pairing protocols (see below for one such

protocol that we propose in this thesis), we propose how visual channel authentication

can be used even on devices that have very limited displaying capabilities, in the most

limiting case, on a device whose display consists of a cheap single light-source, such as

an LED. We also describe a new video codec that may be used to improve execution

time of pairing in limited display devices, and can be used for other applications

besides pairing.

• Authenticated Key Agreement Using Short Authenticated Strings
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[This work is under submission [JS06]]

Recently, Vaudenay introduced a class of authentication protocols based on Short

Authenticated Strings (SAS) [Vau05]. Such protocols allow authenticating messages

of arbitrary length sent on insecure channels, between devices which can additionally

send a very short, e.g. 20 bit long, authenticated message to each other. In general,

these protocols can be used for authenticating arbitrary long messages. However, their

primary application is to enable SAS-based authenticated key agreement (SAS-AKA)

between any two devices with no reliance on key pre-distribution or a public-key

infrastructure. The protocol applies to device pairing (as we discussed above), SSH,

PGP, etc. The two subsequent proposals [LAN05, PVar] reduced the round complexity

from four to three rounds in the SAS-based “message cross-authentication” (SAS-

MCA) protocol proposed in [Vau05], where authentication is achieved for messages

flowing bi-directionally between the two devices. Either of these 3-round SAS-MCA

protocols implies a three-round Diffie-Hellman-based SAS-AKA [PVar].

We propose a three-round encryption-based SAS-AKA protocol (which is also a SAS-

MCA protocol). The cost of our protocol, in the random oracle model, is a single

public key encryption for one party and a decryption operation for the other, and

therefore our encryption-based SAS-AKA protocol is a useful alternative to the Diffie-

Hellman-based protocols especially in settings where the two devices have different

computational powers, e.g. a PC and a cell-phone, a cell-phone and a headset, etc.

Additionally, by proving security of our SAS-AKA protocol directly (instead of the

modular approach used by [PVar]), we also show a better exact security guarantee for

the encryption-based SAS-AKA compared to what was shown for the Diffie-Hellman

SAS-AKA’s. This improvement implies same security guarantees on a SAS channel

with a bandwidth reduced by log2(n) bits, where n is the total number of devices

using the protocol.

• Distributed Signatures

[This work appeared separately in [JSY04] and [JS05]]

In this thesis, we focus upon RSA-based distributed (threshold/proactive) signatures.

Recently, Luo, et al. [LL00] proposed a new proactive RSA scheme (called URSA)

applied to access control in mobile ad hoc networks. The URSA proactive RSA is
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assumed secure in the presence of an adversary who simultaneously corrupts at most

a threshold of players in the lifetime of the scheme.

In this thesis, we first show an attack on this URSA proactive RSA scheme, wherein

an admissible threshold of malicious players can completely recover the RSA secret

signing key in the course of the lifetime of this scheme. Our attack stems from the fact

that the threshold signature protocol which is a part of this proactive RSA scheme

leaks some seemingly innocuous information about the secret key.

We then carry on to construct a new (provably secure) proactive RSA scheme based

on the URSA proactive RSA. The new scheme offers a simpler alternative to the best

previously known proactive RSA scheme given by Rabin [Rab98], itself a simplification

over the previous schemes given by Frankel et al. The new scheme is conceptually

simple because all the sharing and proactive re-sharing of the RSA secret key is

done modulo a prime, while the reconstruction of the RSA signature is done using an

equation over integers. Efficiency-wise the new scheme gives a factor of 2 improvement

in speed and share size in the general case, and almost a factor of 4 improvement

for the common RSA public exponents 3, 17, or 65537, over the scheme of Rabin.

[Rab98]. The new proactive RSA is applicable to build online certification, revocation

and time-stamping services.

• Secure Membership Management and Secure Communication in Ad Hoc

Groups

A straight-forward approach to solve the Problem 1 and Problem 2, as described in

section 1.2.3, is by employing threshold cryptography to distribute the role of the

certification authority among the players of the group. Each player is issued a signed

certificate and a secret value (which we call a secret share of the group secret) by this

distributed certification authority. The certificates are used by the players to securely

communicate with each other, as is done traditionally. The secret share is used by

a player to admit new players in the future. Starting with the seminal proposal by

Zhou and Haas [ZH99], this approach was adopted by various subsequent proposals

[KZL+01, KLX+02, LZK+02, NTY03, STY03, STY04]. However, this approach has

two main drawbacks. First, the distributed protocols to provide certificates and secret

shares to new players, are prohibitively expensive (especially for highly dynamic envi-

ronments), both in terms of computation and (especially) communication, since they
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require a set of existing players to be fully connected with each other at all times.

Recall that in many ad hoc groups, connectivity can be unstable and the devices

are weak or resource-limited. Second, traditional solutions for secure communication

(e.g., Diffie-Hellman key exchange) using certificates are also not feasible for many ad

hoc groups as they incur high communication overhead.

In this thesis, we make following contributions.

– Decentralized Admission Protocol

[This collaborative work first appeared in [STY05], and is also included in the

dissertation by Jeong Hyun Yi [Yi05]]

We first show that there is no need for node-specific certificates in ad hoc groups;

in other words, only secret shares are sufficient. This implies that during the ad-

mission protocol, the need for certificate issuance (and thus distributed signing)

is obviated. Second, we present a secure, efficient and a fully non-interactive

admission control protocol to provide new secret shares. Our protocol requires

only a single round of asynchronous communication and is developed using secret

sharing techniques based on bi-variate polynomials.

– Efficient Secure Communication

[This work appeared in [Sax06]]

We show how to perform necessary public key operations without node-specific

certificates in ad hoc groups. These operations include pair-wise key establish-

ment, signing, and encryption. We achieve this by using Feldman’s verifiable

polynomial secret sharing (VSS) as a key distribution scheme and treating the

secret shares as the private keys. Unlike the standard public key cryptography,

where entities have independent private/public key pairs, in the proposed scheme

the private keys are related (they are points on a polynomial of degree t) and

each public key can be computed from the public VSS information and node

identifier. We show that such related keys can still be securely used for standard

signature and encryption operations (using resp. Schnorr signatures and ElGa-

mal encryption) and for pairwise key establishment, as long as there are no more

that t collusions/corruptions in the system.

The proposed usage of shares as private keys can also be viewed as a threshold-

tolerant identity-based cryptosystem under standard (discrete logarithm based)
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assumptions.

1.5 Relevant Applications

We believe that this thesis can be useful in various application domains, some that

exist today and many more that are emerging. We discuss some of the applications in the

following.

• Personal Communication. Short-range, such as Bluetooth and WiFi communica-

tion of personal devices is becoming increasingly popular and ubiquitous. Examples

include communication between a bluetooth cell phone and a headset, a WiFi laptop

and an access point, etc. Such communication is routinely performed not only in

homes and offices, but also in commercial settings. The secure device pairing problem

that we propose to solve in this thesis is essential to secure such personal communi-

cation. In addition, our SAS-AKA protocol is more generally applicable to securely

initialize any two personal devices. For example, it can be used for public-key au-

thentication in SSH or PGP sessions, by using a postcard, fax, telephone call or voice

message.

• Critical On-line Security Services. On-line security services, such as a certifica-

tion, revocation and digital time-stamping, have been considered by both researchers

and practitioners. In this thesis, we propose building such fault-resilient and robust

security services using distributed RSA signing. Note that RSA is a trusted standard

for digital signing, widely used in practice today and also has efficient verification.

• Military Mobile Ad Hoc Networks. Since its introduction as a communication

medium, wireless technology found broad application in the military environments.

Because of dramatic advances in wireless technology and the capabilities associated

with small computing devices, the demand for advanced mechanisms to employ wire-

less technology in the battlefield continues to grow. Secure communication is critical in

the battlefield where the network infrastructure is vulnerable to various attacks and

compromises. Conventional centralized solutions break down when security servers

are destroyed. Thus, distributed security solutions that we propose are needed for

securely distinguishing trusted from untrusted computers.
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• Private P2P File Sharing. One fairly obvious application that we envision is in

the domain of private P2P groups formed atop wide-open (essentially public) P2P

systems, such as Kazaa, Morpheus, and Gnutella. In fact, a recent article in the

Time Magazine [Ham03] examines the popular trend of creating so-called “Darknets”

[BEPW02] – secure private groups within Kazaa and Morpheus – in order to escape

the intensified crackdown on music and other content sharing.

• Wireless Sensor Networks. A wireless sensor network (WSN) is a mesh network

of small sensor nodes communicating among themselves using RF communication,

and deployed in large scale (from tens to thousands) to sense the physical world.

Sensor nodes can be imagined as small computers, extremely basic in terms of their

interfaces, with weak memory, and computation and battery power. Generally, the

information sensed by the sensor nodes is routed to a central computer, called a base

station (BS), which is governed by the user (or the administrator). Because of the

nature of various proposed applications of WSNs, the sensor nodes must be able to

securely communicate with each other and the administrator must be able to securely

and easily manage the nodes. Some solutions that we propose in this thesis incur low

computation, power and memory overhead, can be used to provide critical security

services in WSNs.4

• Self-organizing Transportation Management. Another example of a somewhat

futuristic (yet viable and emerging) application is in the form of a distributed and

self-organizing transportation management and control system, wherein a number

of GPS-equipped vehicles form an ad hoc group and communicate among themselves

regarding traffic conditions in order to obtain advance notice of traffic jams and choices

of optimal routes [Theml]. In such a system, secure decentralized services that we

consider are certainly essential.

• Distributed File/Storage Systems: Storage systems have evolved into storage

area networks (SANs) where hosts and disks are interconnected using IP. WAN cus-

tomers often entrust security services such as data integrity and confidentiality to

4Although our solutions are based on public-key cryptography, they can be employed in sensor networks

– it has been shown that most sensor nodes are sufficiently capable of performing public-key operations

[GKS04].
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third-party service providers. A secure group communication system can provide

security as well as reliable message delivery on SANs independent of third-parties.

• Collaborative Workspaces: Collaborative and distributed workspaces require se-

cure and reliable group communication. For example, Collabnet [Col] implements

web-based work spaces that support collaborative programming, revision control, is-

sue tracking and mailing list management. Since collaborators are often distributed,

security is clearly a major concern.

1.6 Thesis Organization

We divide the thesis into two parts: Part I and Part II. Part I describes security

services for a two-party setting and consists of Chapters 3 and 4. Part II describes security

services for multi-party setting and consists of Chapters 6, 7 and 8.

The chapters are organized as follows.

• First, in Chapter 2, we introduce the cryptographic preliminaries that we utilize in

our various constructions in the rest of the thesis.

• In Chapter 3, we show how to implement secure device pairing between two devices

based on a visual channel. McCune, et al. [MPR05] proposed that one device dis-

plays the hash of its public key in the form of a barcode, and the other device reads it

using a camera. Mutual authentication requires switching the roles of the devices and

repeating the above process in the reverse direction. We show how strong mutual au-

thentication can be achieved even with a unidirectional visual channel, without having

to switch device roles. By adopting recently proposed improved pairing protocols, we

propose how visual channel authentication can be used even on devices that have very

limited displaying capabilities, such as a single blinking LED.

• In Chapter 4, we present a new efficient encryption-based protocol for securely associ-

ating two devices. The protocol is based on short (e.g., 20-bit long) manually authen-

ticated channels. Our protocol is a useful alternative to the prior Diffie-Hellman-based

protocols, especially in settings where the two devices have different computational

powers, e.g. a PC and a cell-phone, a cell-phone and a headset, etc.
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• In Chapter 5, we provide a detailed background of threshold cryptography. The tech-

niques that we describe in this chapter are used in our constructions in the following

chapters.

• In Chapter 6, we focus upon RSA-based distributed (threshold/proactive) signatures.

We first present an efficient attack on a recently proposed proactive RSA scheme

[LKZ+04], in which an admissible threshold of malicious group members can com-

pletely recover the group RSA secret key in the course of the lifetime of this scheme.

We then carry on to construct a new (provably secure) proactive RSA scheme based

on a corrected use of the scheme of [LKZ+04]. The new scheme offers a simpler

alternative to the best previously known proactive RSA scheme given by Tal Rabin.

• In Chapter 7, we present a secure, efficient and a fully non-interactive admission

control protocol for ad hoc groups. Our work is focused on novel applications of

non-interactive secret sharing techniques based on bi-variate polynomials

• In Chapter 8, we show how to perform necessary public key operations without node-

specific certificates in ad hoc groups. These operations include pair-wise key estab-

lishment, signing, and encryption.
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Chapter 2

Cryptographic Preliminaries

This chapter describes some cryptographic preliminaries. Some of the preliminaries

are used in our various constructions in the rest of the thesis; some others are used

in the constructions of schemes that our proposals compare to.

2.1 Cryptographic Background

Cryptography is the study of mathematical techniques used to achieve various

goals in information security, such as confidentiality, data integrity, entity authentication,

data origin authentication, non-repudiation, etc.

Among these, confidentiality can be achieved by symmetric key encryption or

asymmetric (public) key encryption. Consider an encryption scheme consisting of the sets

of encryption and decryption transformations {Ey : y ∈ K} and {Dx : x ∈ K}, respectively,

where K is the key space. An encryption scheme is said to be symmetric-key if for

each associated encryption/decryption key pair (y, x), it is computationally easy (and hard

otherwise) to determine x knowing only y, and to determine y from x. An encryption scheme

is said to be public-key if, for each associated encryption/decryption key pair (y, x), one

key y (the public key) is made publicly available, while the other x (the private key) is kept

secret. For the scheme to be secure, it must be computationally infeasible to compute x

from y.

Definition 2.1 (Public-Key Encryption Scheme). A public-key encryption scheme
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E is a triple of algorithms (KeyGen, Enc, Dec), where the following conditions hold:

1. KeyGen is the (randomized) key generation algorithm: on input of a random string,

it outputs a pair (pk, sk), such that pk is the public key and sk is the private key of

the encryption scheme.

2. Enc is the (randomized) encryption algorithm: on input a plaintext message m and

the public key pk, it outputs ciphertext c, an encryption of a message m under the

public key pk, i.e., c=Encpkm.

3. Dec is the (deterministic) decryption algorithm: on input a ciphertext c, the pri-

vate key sk, it outputs the corresponding plaintext m=Decskc, where c=Encpkm. A

ciphertext whose decryption does not belong to the message space, is said to be invalid.

For an encryption scheme to remain secure even in the critical context where the

messages are taken from a small set of plaintexts, the notion of indistinguishability [GM89]

is used.

Definition 2.2 (IND-CPA Security). Indistinguishability under chosen-plaintext attack,

IND-CPA, is defined via the following game between an adversary and a challenger: A

random key-pair (pk, sk) is output by KeyGen on some security parameter. Adversary A
on input pk sends to the challenger C two messages m0 and m1 of his choice. C picks

b ∈ {0, 1} and sends back the ciphertext c = Encpk(mb). A responds with b̂ and we say

that A “wins” if b̂ = b. The adversary is free to perform encryptions on any number of

adaptively chosen messages. An encryption scheme (for a given security parameter) is said

to be (T, ε)-IND-CPA if no adversary A running in time T can win in this game with a

probability greater than 1/2 + ε.

Definition 2.3 (IND-CCA Security). Indistinguishability under chosen-ciphertext at-

tack, IND-CCA, is defined via the following game between an adversary and a challenger: A

random key-pair (pk, sk) is output by KeyGen on some security parameter. Adversary A on

input pk sends to the challenger C two messages m0 and m1 of his choice. C picks b ∈ {0, 1}
and sends back the ciphertext c = Encpk(mb). A responds with b̂ and we say that A “wins”

if b̂ = b. A is also given access to a decryption oracle, which returns Dec(sk, ci) for any

adaptively chosen ciphertexts ci chosen by A, as long as for all i, ci 6= c. An encryption

scheme (for a given security parameter) is said to be (T, ε)-IND-CCA if no adversary A
running in time T can win in this game with a probability greater than 1/2 + ε.
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Note that IND-CCA is a stronger security notion than IND-CPA. In other words, an

IND-CCA-secure scheme is also IND-CPA-secure. IND-CPA-security is also called semantic

security.

Other than confidentiality, public key cryptography can be used to provide authen-

tication and non-repudiation using digital signatures. The purpose of a digital signature

is to provide a means for a signer to bind its identity to a piece of information. A signa-

ture scheme consists of three components: a key generation algorithm, a signing algorithm,

and a verification algorithm. Each entity should create a public/private key pair. With a

private key, it can sign a message using a signing algorithm. The resulting signature sig

can subsequently be verified using a public verification algorithm and the entity’s public

key y. Given a pair (sig, y), the verification algorithm returns an answer “true” or “false”

depending on whether the signature is authentic. Here is a formal definition of a signature

scheme.

Definition 2.4 (Signature Scheme). A signature scheme S is a triple of algorithms

(KeyGen, Sig, Ver), where the following conditions hold:

1. KeyGen is the key generation (randomized) algorithm: on input of a random string,

it outputs a pair (pk, sk), such that pk is the public key and sk is the private key of

the signature scheme.

2. Sig is the signing (randomized) algorithm: on input a message m and the private

key sk, it outputs sig, a signature of a message m under the key x, i.e., sig=Sigskm.

3. Ver is the verification (deterministic) algorithm: on input a message m, the public

key pk, and a string sig, it checks whether sig is a proper signature of m, i.e.,

Verpk(m, sig) =











true if sig = Sigskm

false if sig 6= Sigskm.

The standard notion for the security of a signature scheme is security against

existential forgery on adaptively chosen message attack (CMA) [GMR84].

Definition 2.5 (Existential Forgery under Chosen Message Attack). Existential

forgery under chosen message attack, CMA, is defined as the following game between an

adversary and a challenger. The challenger produces the public key, private key pair (pk, sk)
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using KeyGen. The adversary adaptively chooses messages mi and sends it to the challenger,

who signs mi with sk, i.e., computes sigi = Sigskmi, and returns sigi to the adversary.

Finally, the adversary outputs a pair (m, sig) and wins if sig is a valid signature on m

under sk, and m is not equal to any of mi.

Symmetric-key and public-key cryptography have a number of complementary

advantages. Current cryptographic systems exploit the strengths of each. An example will

serve to illustrate.

Public-key encryption techniques may be used to establish a key for a symmetric-

key system being used by communicating entities A and B. In this scenario A and B

can take advantage of the long term nature of the public/private keys of the public-key

scheme and the performance efficiency of the symmetric-key scheme. Since data encryption

is frequently the most time-consuming part of the encryption process, the public-key scheme

used for key establishment is a small fraction of the total encryption process between A and

B. To date, the computational performance of public-key encryption is inferior to that of

symmetric-key encryption. Consequently, the important points in practice are:

• public-key cryptography facilitates efficient digital signatures and key management

• symmetric-key cryptography is efficient for bulk data encryption and data integrity.

As long as there is a strong binding between the signer and the signer’s public-key,

the identity of the signer of a given message can be traced.

A Public Key Infrastructure (PKI) provides the means to bind public keys to

their owners and helps in the distribution of public-keys in large heterogeneous networks.

Public-keys are bound to their owners by public key certificates (PKCs). These certifi-

cates contain information such as the owner’s name and the associated public key and are

issued by a reliable Certification Authority (CA).

We define the components of a PKI below:

• Public Key Certificate - An electronic record that binds a public key to the owner

of the public key and is signed by a trusted entity.

• Certificate Revocation List (CRL) - A list of certificates that have been revoked.

The list is usually signed by the same entity that issued the certificates. Certificates
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can be revoked for several reasons, for example, if the owner’s private-key has been

lost.

• Certification Authority - A trusted entity that issues and revokes public key cer-

tificates.

2.2 Cryptographic Assumptions

Some solutions that we propose in this thesis work in the standard discrete loga-

rithm setting: p, q are large primes s.t. q divides p−1 and g denotes a generator of subgroup

Gq of order q in Z
∗
p. For definitional convenience we’ll denote by DL-INST (k) any set of in-

stances of this discrete-log setting, i.e. of triples (p, q, g) which satisfy the above constraints,

but where q is a k-bit prime and p is poly(k)-bit prime, long enough to fend off known

attacks on the discrete logarithm.

We call function f negligible if for every polynomial P (.), f(k) ≤ 1/P (k) for all

sufficiently large k. We say that some event occurs with a negligible probability if the

probability of this event is a negligible function of the security parameter k.

Assumption 1 (Discrete Logarithm (DL) Assumption) For every probabilistic poly-

nomial time algorithm I, for every (p, q, g) in DL-INST (k), probability Pr[x← Zq; I(p, q, g, gx) =

x] is negligible.

Assumption 2 (Computational Diffie-Hellman (CDH) Assumption) For every

probabilistic polynomial time algorithm I, for every (p, q, g) in

DL-INST (k), probability Pr[x← Zq; y ← Zq; I(p, q, g, gx, gy) = gxy] is negligible.

Assumption 3 (Square Computational Diffie-Hellman (SCDH) Assumption) For

every probabilistic polynomial time algorithm I, for every (p, q, g) in DL-INST (k), proba-

bility Pr[x← Zq; I(p, q, g, gx) = gx2
] is negligible.

Some of our solutions are based on the RSA assumption and the Strong RSA

assumption. RSA is a public key cryptosystem, where the public key of a user is a pair

(N, e) and private key is (p, q, d), such that p and q are two large primes, N = pq, and

ed = 1 mod [(p− 1)(q − 1)]. Informally, RSA problem is to find eth roots modulo N, while

Strong RSA problem is to find rth roots modulo N, where r > 1.

Assumption 4 (RSA Assumption) For every probabilistic polynomial time algorithm
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I, probability Pr[c ← Z
∗
N ; I(N, e, c) = c1/e mod N ] is negligible, where (N, e) denotes the

RSA public key.

Assumption 4 (Strong RSA Assumption) For every probabilistic polynomial time

algorithm I, probability Pr[c ← Z
∗
N , r > 1; I(N, c) = (r, c1/r mod N)] is negligible, where

N denotes the RSA modulus.

2.3 Random Oracle Model (ROM)

Some of our proofs of security are in the so-called Random Oracle Model [BR93],

i.e. we model hash functions like MD5 or SHA1 as ideal random oracles. Doing security

analysis in the ROM model effectively means that our proofs will consider only such attacks

on the cryptographic schemes we propose whose success does not change if the fixed hash

function like MD5 or SHA in these schemes are replaced with truly random functions.

Of course, since functions like MD5 or SHA are not truly random functions, the security

analysis in the ROM model provides only a heuristic argument for the security of the actual

scheme. However, such heuristic seems the best we can currently hope for. Indeed, the

ROM heuristic arguments are currently the only security arguments for most practical

cryptographic schemes including OAEP RSA encryption [BR93] and full-domain hash RSA

signatures [BR96], as well as the two fundamental discrete-log-based cryptosystems, the

hashed ElGamal encryption [ElG99] and Schnorr signature scheme [Sch91, PS96].

2.4 ElGamal Encryption Scheme

In one of our constructions in this thesis, we will use a variant of ElGamal Encryp-

tion scheme, called Hashed ElGamal [ElG99], which is IND-CPA-secure under the CDH as-

sumption in ROM. For a private key, public key pair (x, y = gx), the encryptor chooses a ran-

dom r ∈ Zq and computes the ciphertext (c1, c2) where c1 = gr (mod p) a c2 = m⊕H(yi
r)

(⊕ denotes the bit-wise XOR operator). The plaintext can be obtained by computing

c2 ⊕H(cxi

1 ) from the ciphertext (c1, c2).
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2.5 Schnorr Signature Scheme

The Schnorr signature scheme [Sch91] works as follows. The private key is x,

chosen at random in Zq. The public key is y = gx (mod p). A signature [Sch91] on message

m is computed as follows. The signer picks a one-time secret k at random in Zq, and

computes the signature on m as a pair (c, s) where s = k + cx (mod q), c = H(m, r), and

r = gk (mod p). Signature (c, s) can be publicly verified by computing r = gsy−c (mod p)

and then checking if c = H(m, r). The Schnorr signature scheme is proven secure under

the DL assumption in ROM against existential forgery under chosen message attack.

2.6 Commitment Schemes

In this thesis, we consider a tagged commitment scheme, where a portion of the

committed value acts as a tag and can be published in the clear. The commitment scheme

consists of following three functions.

• gen generates a public parameter Kp on input of a security parameter.

• commitKp(m, R), on input (m, R), outputs a pair of a “commitment” c and “decom-

mitment” d.

• openKp
(m, c, d), on input a tag m and the (c, d) pair, either outputs some value R or

rejects.

This triple of algorithms must meet a completeness property, namely that for

any Kp generated by gen and for any m and R, if (c, d) is output by commitKp(m, R)

then openKp
(m, c, d) outputs R. For simplicity of notation, for our application we will

assume a common reference string (CRS) model, where a trusted third party generates

the commitment key Kp and this key is then embedded in every instance of the protocol.

Therefore we’ll use a simplified notation, and write commit(m, R) and open(m, c, d) without

mentioning the public parameter Kp explicitly.

A commitment scheme is said to be (T, ε)-binding, if no adversary A running in

time T , can win the game shown in Figure 2.1 with a probability greater than 2−k + ε. We

call a commitment scheme perfectly binding if it is (T, 0)-binding for any T .

A commitment scheme is said to be (T, ε)-hiding (in the sense of one-wayness), if

no adversary A running in time T , can win the game shown in Figure 2.2 with a challenger

22



A C
Pick a tag m and commitment c

m,c
//

R
oo Pick R ∈ {0, 1}k

d
//

A wins if R← open(m, c, d)

Figure 2.1: Binding Game for a Commitment Scheme

C, with a probability greater than 2−k + ε. A commitment scheme is said to be perfectly

hiding if it is (T, 0)-hiding for any T .

A C
Pick a tag m

m
//

c
oo Pick R ∈ {0, 1}k, (c, d)← commit(m, R)

R̂
//

A wins if R̂ = R

Figure 2.2: Hiding Game for a Commitment Scheme

2.7 Pedersen Commitment Scheme

A tag-less commitment scheme was proposed by Pedersen in [Ped91a]. This scheme

is used in various protocols in threshold cryptography.

gen picks two prime numbers p and q such that q divides p− 1. Let Gq the unique

subgroup of order q of Z
∗
p and let g be a generator of Gq. In addition, gen picks a random

h ∈ Gq. The public parameters are (p, q, g, y); logg(h) is not known to anyone.

commitKp(x) algorithm on inputing x ∈ Zq starts by picking a random x′ ∈ Gq

and then computes c = gxhx′
. The decommit value d = (x, x′).

openKp
(c, d) simply parses d to obtain x, x′ and verifies if c = gxhx′

.

This scheme is perfectly hiding since hx′
is a random value and thus c reveals no

information about x. On the other hand, the scheme is computationally binding. Note that

if gxhx′
= gyhy′

, then logg(h) = (x− y)/(x′− y′). In other words, an adversary winning the

binding game can be used to compute the discrete logarithm.

23



2.8 Elliptic Curve Cryptography

2.8.1 Elliptic Curves

For a prime p > 3, an elliptic curve E(Fp) over the field Fp
1 consists of a set

of points (x, y) with x, y ∈ Fp which satisfy the equation y2 = x3 + ax + b where the

discriminant 4a3 + 27b2 6= 0. E(Fp) constitutes an Abelian group under the point-addition

[Kob95] operation with the point infinity as the identity of the group. The order of this group

is denoted by #E(Fp). The ECC domain parameters are represented by (p, Fp, a, b, P, q)

where P ∈ E(Fp) has prime order q such that q divides #E(Fp).

Now we briefly describe DL-related problems over EC. Let G be a cyclic group G

which is a subgroup of the points generated by P ∈ E(Fp) of order q.

Definition 2.6 (EC Discrete Logarithm (EC-DL) Problem). Given a pair of G

elements (P, aP ) for a ∈ Z
∗
q, find a. If this problem is hard, we say the EC-DL assumption

holds in G.

Definition 2.7 (EC Computational Diffie-Hellman (EC-CDH) Problem). Given a

triple (P, aP, bP ) for a, b ∈ Z
∗
q, compute abP . If this problem is hard, we say the EC-CDH

assumption holds in G.

Definition 2.8 (EC Decisional Diffie-Hellman (EC-DDH) Problem). Given a quadru-

ple (P, aP, bP, cP ) for a, b, c ∈ Z
∗
q, decide whether c = ab. If this problem is hard, we say

the EC-DDH assumption holds in G.

Definition 2.9 (EC Gap Diffie-Hellman (EC-GDH) Problem). Given a triple (P, aP, bP )

for a, b ∈ Z
∗
q, find abP with the help of a EC-DDH oracle (which answers whether a given

quadruple is a EC-DDH quadruple or not). If this problem is hard, we say the EC-GDH

assumption holds in G.

2.8.2 Bilinear Maps

Bilinear maps play an important role in the pairing-based protocols. Let G1 be

a cyclic additive group of order q with a generator P and G2 a cyclic group of the same

order q. A bilinear map is a function ê : G1 × G1 → G2 satisfying ê(aP, bQ)) = ê(P, Q)ab

1Some elliptic curves are defined over extension fields F2m and F3m , where m is a positive exponent.
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and non-degeneracy, ê(P, P ) 6= 1 for all a, b ∈ Z
∗
q and P, Q ∈ G1. Modified Weil [BF01] and

Tate [FMR99] pairings on supersingular elliptic curves are examples of such bilinear maps.

Definition 2.10 (Bilinear Diffie-Hellman (BDH) Problem). Given (P, aP, bP, cP )

for some a, b, c ∈ Z
∗
p, compute v ∈ G2 such that v = ê(P, P )abc. If this problem is hard, we

say the BDH assumption holds.

2.8.3 BLS Signature Scheme

Boneh, et al. [BLS01] proposed a short signature scheme that works in a GDH

group G of order q and a generator A. In brief, the scheme operates as follows:

• KeyGen. Pick random x ∈ Z
∗
q and compute B = xA. x is the private key and B is the

corresponding public key.

• Sig. To sign a message m ∈ {0, 1}∗, compute σ = xH1(m), where H1 is a hash

function that maps binary strings onto points in G
∗. Output σ as the signature on

m.

• Ver. Given B, m, σ, verify whether (A, B, H1(m), σ) is a valid Diffie-Hellman tuple

using the bilinear map operations.

2.9 Identity-based Cryptography

The idea of identity-based (or ID-based) cryptography was first introduced by

Shamir [Sha84]. ID-based cryptography allows two parties to securely communicate with

each other just by the knowledge of each other’ identities. This is in contrast to a standard

PKI-based solutions, where the communicating parties need to obtain each other’s certificate

prior to communication. The first concrete ID-based cryptosystem was proposed by Boneh

and Franklin [BF01].

An ID-based cryptosystem is managed by a trusted authority called a private key

generator (PKG). Let x be PKG’s private key and B be the corresponding public key, such

that B = xA. Also denote H as a cryptographic hash function s.t. H : G2 → {0, 1}n for

some n.

Setup. A user with identity id obtains from PKG a signed secret value T , which is the

BLS signature on id with PKG’s private key x, i.e., T = xH1(id).
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ID-based Encryption (IBE). This was proposed in [BF01]. We present a basic version

of the scheme. The extended version is proven secure against chosen-ciphertext and ID

attack in ROM.

• Enc. To encrypt a message m under the public key id, compute Qid = H1(id), choose

a random r ∈ Z
∗
q and output the ciphertext c = (U, V ) = (rA, m⊕H(e(Qid, B)r)).

• Dec. To decrypt the ciphertext c using the secret T , compute

m = H(e(T, U))⊕ V and output m as the plaintext.

ID-based Signatures. This signature scheme was proposed in [CC03] and is proven

secure against existential forgery on adaptively chosen message and ID attack in ROM.

• Sig. To sign a message m under secret key T , generate a random k ∈ Zq, calculate

U = kH1(id) and Y = (k + H(m, U))T , and output (id, m, U, Y ).

• Ver. To verify the signature (id, m, U, Y ) using the public keys id, B, check if ê(Y, A) =

ê(U + H(m, U)H1(id), B).
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Part I

Two-Party Setting
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Chapter 3

Secure Device Pairing Using a

Visual Channel

In this chapter, we show how to implement secure device pairing between two devices

based on a visual channel. McCune, et al. [MPR05] proposed that one device dis-

plays the hash of its public key in the form of a barcode, and the other device reads

it using a camera. Mutual authentication requires switching the roles of the devices

and repeating the above process in the reverse direction. We show how strong mu-

tual authentication can be achieved even with a unidirectional visual channel, without

having to switch device roles. By adopting recently proposed improved pairing proto-

cols, we propose how visual channel authentication can be used even on devices that

have very limited displaying capabilities, such as a single blinking LED.

3.1 Introduction

The popularity of short-range wireless technologies like Bluetooth and Wireless Lo-

cal Area Networking (WLAN) based on the IEEE 802.11 family of protocols is experiencing

enormous growth. Newer technologies like Wireless Universal Serial Bus1 are around the

corner and promise to be as popular. This rise in popularity implies that an ever increasing

proportion of the users of devices supporting short-range wireless communication are not

1http://www.usb.org/developer/wusb
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technically savvy. Such users need very simple and intuitive methods for setting up their

devices. Since wireless communication is easier to eavesdrop on and easier to manipulate, a

common set up task is to initialize secure communication. In this chapter, we will use the

term pairing to refer to this operation.2

Consequently, both security researchers and practitioners have been looking for

intuitive techniques for ordinary users to be able to securely pair their devices. Although

the primary impetus comes from the need to secure short-range wireless communication,

the issue of intuitive security initialization is more generally applicable whenever ordinary

users need to set up secure communication without the help of expert administrators or

trusted third parties.

The pairing problem is to enable two devices, which share no prior context with

each other, to agree upon a security association that they can use to protect their subsequent

communication. Secure pairing must be resistant to a man-in-the-middle adversary who

tries to impersonate one or both of these devices in the process. The adversary is assumed to

be capable of listening to or modifying messages on the communication channel between the

devices. One approach to secure pairing is to use an additional physically authenticatable

channel, called an out-of-band (OOB) channel which is governed by humans, i.e., by the

users operating these devices. The adversary is assumed to be incapable of modifying

messages on the OOB channel, although it can listen to them.

There has been a significant amount of prior work on building secure pairing

protocols using OOB channels [SA99, BSSW02, G+02, Han02]. They consider different

types of OOB channels including physical connections, infrared, etc. Recently, McCune,

et al. proposed a scheme called “Seeing-is-Believing” (SiB), where the OOB channel is

implemented as a visual channel. The SiB visual channel consists of a two-dimensional

barcode of [RG04], displayed by (or affixed to) a device A, that represents security-relevant

information unique to A. A user can point another camera-equipped device B at the barcode

so that B can read the barcode visually, and use this information to set up an authenticated

channel to A. If both devices are camera-equipped, they can mutually authenticate each

other. “Authentication” in this case is based on demonstrative identification [BSSW02]

rather than with respect to a claimed name.

2The term pairing was introduced in the context of Bluetooth devices. Other roughly synonymous terms

include “bonding,” and “imprinting”.
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Our Contributions: In this chapter of the thesis, we propose several improvements and

extensions to the SiB system. Our contributions are as follows:

1. We show how strong mutual authentication can be achieved using just a unidirectional

visual channel. This results in two improvements:

(a) strong authentication becomes possible in situations where SiB could only achieve

a weaker property termed as “presence”.

(b) execution time for mutual authentication decreases significantly and usability

improves.

2. By adopting a recently proposed improved pairing protocol [LAN05], we show how

visual channel authentication can be used even on devices that have very limited

displaying capabilities, all the way down to a device whose display consists of a cheap

single flashing light-source, such as a single light-emitting diode (LED).

3. We also propose a video-based codec which may help improve the speed of secure

pairing in devices with constrained displays, as well as may lead to applications other

than secure device pairing.

Organization. The rest of the chapter is organized as follows. First, we start with a

brief description of SiB in Section 3.2. In Section 3.3 we describe an alternative protocol

that improves the presence guarantee provided by SiB to full-fledged mutual authentication.

Then, in Section 3.4, we show how visual channel authentication can be done even in highly

constrained environments. We discuss the applicability and relevance of our improvements

and extensions in Section 3.5.

3.2 Seeing-is-Believing

Several researchers have proposed the idea of encoding service or device discovery

information in the form of barcodes so that they can be read using camera phones [RG04,

CiM05, Woo05, MSSU04]. The idea of encoding cryptographic secret material into barcodes

was first proposed by Hanna [Han02] as well as Gehrmann, et al. [G+02], both of which also

mention the use of asymmetric key cryptography in this context. The SiB paper [MPR05]
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by McCune et al. was the first research paper to propose that the information encoded in

the barcode could be a commitment to a public key.

In SiB, a device A can authenticate to a device B, if B is equipped with a cam-

era. A’s commitment to its public key (such as a hash) is encoded in the form of a two-

dimensional barcode of [RG04]. A typical barcode has dimensions approximately 2.5x2.5

cm2 to allow recognition from a reasonable distance, and consists of a total of 83-bits of

information (68-bits of data and 15-bits for forward error correction). If A has a display,

the public key can be ephemeral, and the barcode is shown on the display. Otherwise, A’s

public key needs to be permanent and the barcode is put on a printed label affixed to the

housing of A. Authentication is done by the user pointing B’s camera at A’s barcode. The

basic unidirectional authentication process is depicted in Figure 3.1.

1. A calculates hA as h(KA)

A −→ B (visual channel): hA

2. A −→ B (insecure channel): KA

B calculates h′ as h(KA) using the KA received. If h′ does not match

the hA received in Step 1, B aborts.

Figure 3.1: SiB unidirectional authentication protocol (B authenticates A)

KA is A’s public key. h() is a cryptographic hash function, which is resistant to

second pre-image finding. KA can be long-lived, in which case the output of h() must be

sufficiently large, e.g., at least 80-bits. If KA is ephemeral, the output of h() can be smaller,

e.g. 48 bits [GMN04]. SiB could accommodate 68 bits of hash into a single two-dimensional

barcode, but requires a good quality display due to the typical size of the barcode3. Mutual

authentication requires the protocol of Figure 3.1 being run in each direction. This has two

implications for SiB.

• First, mutual authentication is possible only if both devices are equipped with cam-

eras. McCune, et al. state (Section 7 of [MPR05])

A display-only device . . . is unable to strongly authenticate other devices
using SiB . . . [because it] cannot “see” them.

3SiB can encode the data into several barcodes displayed in sequence.
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If a device A is not equipped with a camera, it can only achieve a weaker property

known as “presence,” by including a secret key K in the barcode. The camera-

equipped device B that reads the barcode can use K to compute message authen-

tication code (MAC) over the message it sends to A. If the MAC is correct, A can

conclude that it was sent by some device that was able to “see” its barcode, and thus

was “present”. Presence is a weaker security notion than authentication because A

has no means of knowing if B is really the device that the user of A intended to

communicate with.

We summarize the types of authentication achievable using SiB for given combinations

of device types in Table 3.1.

• Second, in order to run the protocol in each direction, the roles of the devices have to

be switched so that first A’s camera can scan B’s display and then B’s camera can

scan A’s display. Such switching of devices by users not only increases the execution

time of the SiB process but also decreases usability. McCune, et al. report that

the average SiB execution time in their user trials was 8 seconds, even though time

required to recognize a barcode is just about one second [RG04].

Y has → Camera Camera only Display only None
and display

X has ↓
Camera and X ↔ Y X ↔ Ys

a X ← Y X ← Ys

Display X
p→ Y

Camera only Xs ↔ Y Xs ↔ Ys X ← Y X ← Ys

X
p→ Y

Display only X → Y X → Y none none

X
p← Y X

p← Y

None Xs → Y Xs → Y none none

Notation:
aPs: “Device P needs a static barcode label affixed to it.”
aP → Q: “Device P can strongly authenticate to device Q.”
aP

p→ Q: “Device P can demonstrate its presence to device Q.”

Table 3.1: Types of authentication achievable using SiB for given device type combinations

These implications limit the applicability of SiB in various practical settings. Many
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devices cannot have either cameras or high quality displays for different reasons. Commodi-

tized devices like WLAN access points are extremely cost-sensitive and the likelihood of

adding new hardware for the purpose of authentication is very small. Devices like Bluetooth

headsets are typically too small to have displays or even to affix static barcode stickers.

To summarize, we identify the following drawbacks with the basic SiB scheme:

1. Mutual authentication is not possible unless both devices are equipped with cameras.

2. The overall execution time for mutual authentication is high, which impacts usability.

3. Applicability of SiB is limited in situations where one device has limited capabilities

(e.g., small size, no camera, limited or no display at all).

In the rest of this chapter, we describe how we can address each of these drawbacks.

3.3 Seeing Better: Upgrading Presence to Authentication

In this section, we address the issue of mutual authentication. Recall that we

identified two shortcomings of SiB in this respect. First, SiB can provide mutual authen-

tication only if both devices are camera-equipped. Second, the processing time for mutual

authentication is high.

We observe that both of these drawbacks stem from the fact that mutual authen-

tication is done as two separate unidirectional authentication steps. Therefore, we propose

to solve both problems by performing mutual authentication in a single step by having each

of A and B compute a common checksum on public data, and compare their results via a

unidirectional transfer using the visual channel. Let us call this protocol VIC, for “Visual

authentication based on Integrity Checking.” (See Figure 3.2.)

The security of the authentication of A to B in VIC depends on the attacker not

being able to find two numbers X1 and X2 such that h(KA, X1) = h(X2, KB). This implies

that if the attacker can learn KB ahead of time, h() needs to be collision-resistant. If KB is

transient (or a nonce picked by B is appended to KB in message 2 and in the calculation of

hA and hB), it is sufficient for h() to be resistant against second pre-image finding, since the

attacker can no longer use any pre-computed collisions. The security of the authentication of

B to A depends, in addition, on the user correctly reporting the comparison result reported
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1. A −→ B (insecure channel): KA

2. A←− B (insecure channel): KB

A calculates hA as h(KA|KB) and B calculates hB as h(KA|KB)

3. A −→ B (visual channel): hA

B compares hA and hB . If they match, B accepts and continues. Oth-

erwise B rejects and aborts. In either case, B indicates accept/reject to

the user.

4. A prompts user as to whether B accepted or rejected. A continues if the

user answers affirmatively. Otherwise A rejects.

Figure 3.2: VIC mutual authentication protocol

by B back to A. (Note that the entities taking part in the protocol are always assumed to

be honest.)

Because VIC needs only a unidirectional visual channel, it is now possible to

achieve mutual authentication in the cases where SiB could only achieve presence. In

addition, the execution time for mutual authentication and the user effort will be less since

no device role switching is required anymore. Thus, VIC addresses the first two drawbacks

of SiB identified in Section 3.2.

In Table 3.2, we summarize the types of authentication achievable using VIC for

given combinations of device types. Notice that since the checksum is different for each

instance of VIC, at least one device must have a display and that the static barcode labels

cannot be used with VIC.

3.4 Seeing With Less: Visual Channel in Constrained De-

vices

Now we turn our attention to the third drawback of SiB. In this section, we show

how to enable visual channel authentication on devices with very limited (or tiny) displays

and in the minimal case, with extremely constrained displays consisting of only single light

source (or LED). These extensions are made possible by using key agreement protocols that
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Y has → Camera Camera only Display only None
and display

X has ↓
Camera and X ↔ Y X ↔ Y X ↔ Y none
Display

Camera only X ↔ Y none X ↔ Y none

Display only X ↔ Y X ↔ Y none none

None none none none none

Notation:

P ↔ Q: “Devices P and Q can strongly authenticate each other.”

Table 3.2: Types of authentication achievable using VIC for given device type combinations.

use short authenticated strings or short authenticated integrity checksums. (We will build

one such protocol in the next chapter)

We begin by recalling such protocols.

3.4.1 Authentication Using Short Integrity Checksums

The reason why SiB needs good displays is the high visual channel bandwidth

required for the SiB protocol. Assuming that the attackers have access to today’s state-

of-the-art computing resources, the bandwidth needed is at least 48 bits in the case of

ephemeral keys [GMN04], rising to 80 bits in the case of long-lived keys. These numbers

can only increase over time.

Fortunately, there is a family of authentication protocols that has very low band-

width requirements. The first protocols in this family, proposed by Gehrmann et al.

in [G+02, GMN04], were aimed at using the human user as the authentication channel;

hence the name “Manual authentication (MANA)”. Several subsequent variations on the

same theme have been reported [Hoe04, Vau05, LAN05]. We apply the variation4 called

“MA-3” [LAN05] to get VICsh (VIC with short checksum) as shown in Figure 3.3.

KA, KB are as in the case of SiB. h() represents a commitment scheme and hs() is

a mixing function with a short n-bit output (e.g., n = 15 . . . 20) such that a change in any

input bit will, with high probability, result in a change in the output. In practice, hs() can

4Although in the current prototype, we implemented the protocol by [LAN05], it could be replaced with

our encryption-based authenticated key agreement protocol that we will describe in the chapter.
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1. A chooses a long random bit string RA and calculates hA as h(RA).

A −→ B (insecure channel): hA,KA

2. B chooses its own long random bit string RB

A←− B (insecure channel): RB ,KB

3. A −→ B (insecure channel): RA

B now computes h′

A as h(RA) and compares it with the hA received in

message 1. If they do not match, B aborts. Otherwise B continues.

4. A calculates hsA as hs(RA, RB ,KA,KB) and B calculates hsB as

hs(RA, RB ,KA,KB)

A −→ B (visual channel): hsA

B compares hsA and hsB . If they match, B accepts and continues.

Otherwise B rejects and aborts. In either case, B indicates accept/reject

to the user.

5. A prompts user as to whether B accepted or rejected. A continues if the

user answers affirmatively. Otherwise A rejects.

Figure 3.3: VICsh mutual authentication protocol based on short integrity checksum
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be the output of a cryptographic hash function truncated to n bits. Refer to [LAN05] for

formal description of the requirements on h() and hs(), and their instantiations, as well as

for the proofs of security of the protocol. Informally, the security of the protocol depends

on the following:

• neither party reveals the value of its random bit string (RA or RB respectively) until

the other party commits to its own random bit string, and

• each party knows that the public data (KA and KB) used in the computation of the

check-value (hsA or hsB) is known to it before it reveals its random bit string.

Suppose the man-in-the-middle attacker has a public key KM . To fool device A into ac-

cepting KM as B’s public key, the attacker needs to ensure that hsA = hs(RA, X, KA, KM )

and hsB = hs(Y, RB, Z, KB) are equal. The attacker can choose KM , X, Y and Z, but

he must make his choices before knowing RA or RB. Therefore, whatever his strategy for

choosing the values, the chance of success is x = 2−n. Similarly, the probability of the

attacker fooling device B into accepting KM as A’s public key is also x. More importantly,

this probability does not depend on the computational capabilities of the attacker, as long

as h() is secure.

3.4.2 Trimming Down the Display

Armed with the variation of VIC described above, we are now ready to investi-

gate visual channel authentication on devices with very limited displays. Recall that our

motivation is to support visual channel authentication on various commercial devices, such

as wireless access points, Bluetooth headsets, etc. These devices typically have only the

most limited form of a display consisting of a single bi-state light source, such as a single

light-emitting diode (LED). In this section, we describe each aspect of the realization of

single LED based visual channel authentication.

Transmission. We use frequency modulation to encode the data being transmitted (see

Figure 3.4). The sender turns the light-source on and off repeatedly. The data is encoded

in the time interval between each successive “on” or “off” event: a long gap represents a ’1’

and a short gap represents a ’0’. Since the channel is unidirectional, the transmitter cannot

know when the receiver starts reception. Therefore, the transmitter keeps repeating the

sequence until either the user approves the key agreement, or a timeout occurs.
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The camera phones of today are limited to a frame rate of about 10 video frames/second,

and as we are receiving the bits with frequency modulation without synchronization, we are

bound by the Nyquist-Shannon sampling theorem (sampling rate = 2 × bandwidth for no

loss of information) [Nyq28]. This limits the transfer speed with this algorithm to around

5 bits/second.

Reception. The receiver processing is analogous: simplified, each received video frame is

compressed into one value per frame (the sum of all the pixel values)5, and the first-order

difference between consecutive values (i.e., the derivative) is compared against a relative

threshold based on maximum observed variation in the pixel sum. If the derivative is steep

enough and in the right direction (alternating between positive and negative) a transition

in lighting is registered. The time between two consecutive changes indicates the transfer

of either a ’1’ or a ’0’ bit as depicted in Figure 3.4.

Figure 3.4: Data transmission via a single light-source visual channel

Trading Efficiency with Security. We designed two mechanisms that allow the possi-

bility of a parameterizable trade-off between execution time and the level of security.

5 The fact that the video frame is collapsed into one value per frame also shows the feasibility of using

a sensitive light sensor combined with an analog-to-digital converter as a cheaper form of receiving device

– with no change to the algorithms described here. We have left the implementation of such a receiver as

future work.
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First, the data being transmitted via the visual channel, i.e., the integrity check-

sum, is known to the receiver in advance. We use this simple observation to reduce execution

time. Recall that the sender repeats the n-bit string a number of times. The receiver pro-

ceeds in the following way: reception may start at any bit position, and the receiver records

until the n-bit tail of the received bit-string matches against any of the rotated versions of

the expected n-bit string. Therefore, the receiver accepts at most n possible matches for

the transmitted value. For example, if the transmitted string is ’1011’, the receiver accepts

if it receives any of the strings ’1011’, ’0111’, ’1110’, ’1101’.

Second, rather than doing error correction, we tolerate (or simply accept) a certain

number of errors in the n-bit transmission. With k accepted errors, the number of possible

matches, based on a binomial distribution of errors, is
∑

i=0...k

(

n
i

)

.

Using these mechanisms the probability that the receiver will accept a random

string as valid will increase from the original value of p = 1
2n . Accounting for both modifi-

cations we can estimate an upper bound to

p = n

∑k
i=0

(

n
i

)

2n

The given bound allows us to get an idea of the degree of loss of security. If e.g.

k = 3 bits are allowed to be wrong in an n = 24 bit sequence, p is 0.0064, whereas if only 1

bit error is allowed, p is 0.00004.6

For personal use, e.g., when a user wants to pair his workstation with his own

wireless access point, an attack success probability of 0.00004 is acceptable. In other situa-

tions where, say, every day thousands of pairings are done with a device located in a public

space, the attack success probability needs to be lower.

There are several ways to trade off security and execution time. The attack success

probability p can be decreased by:

• increasing the length of the checksum n,

• reducing the number of acceptable errors k,

6In the pairing protocol case, the attack scenario is limited by the fact the the visual channel is au-

thenticated, and the attacker is assumed to only operate in-band. In a more general case, where somebody

might be feeding random visual data, the receiver also needs to check the signal history if the match is done

later than after the first n received bits (with k errors). The history should give an indication that there is

a repetition of the intended sequence (with possible errors) – if this is not the case the receiver is subject to

a “visual attack” and accidentally found a match in a big sample of random input.
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• reducing the number of possible rotations that are acceptable as matches (say only

every fourth)

• adding an external end marker to the protocol (e.g., the light-source staying “on” for

0.5 seconds) to indicate when it starts to repeat the checksum string, bringing the

attack success probability down to
Pk

i=0 (n
i)

2n .

Applying one or several of these measures will result in changed lower and upper

“bounds” for the execution time.

Implementation and Timings. We have developed a proof-of-concept implementation

where a single blinking LED (connected to the parallel port of a PC) sends a signal that

is received by a camera phone. Figures 3.5(a) and 3.5(b) illustrate our two demonstrator

implementations. In 3.5(a), a Bluetooth pairing is established between a Symbian 8.0

camera phone and a Linux laptop with an LED (illustrating, e.g., a wireless access point).

In 3.5(b), two phones are paired using the display of one phone as the bi-state light.

(a) Pairing phone and laptop (b) Pairing two phones

Figure 3.5: Scenarios for the proof-of-concept implementation

Our algorithm makes bit reception quite tolerant. The data can be received at

a distance of several tens of centimeters, the implementation is agnostic to camera focus

problems and tolerates a fair bit of camera shaking, turning, etc. The real-time progress of

the matching is indicated at runtime on the handset screen by displaying two parameters:

percentage of the string successfully received so far and a related confidence level.
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Figure 3.6 gives a more detailed description of the user interface of our Symbian

implementation during pairing with the laptop. In Figure 3.6(a), the user starts the pairing

from a menu.7 In Figure 3.6(b), the phone scans the Bluetooth neighborhood and finds the

laptop. In Figures 3.6(c) and 3.6(d), the phone starts recording with its camera and the

user positions the phone so that the blinking of the LED is shown in the viewfinder. The

recording status is updated in the viewfinder in real-time. In 3.6(e), the pairing is complete

for the phone once the correct checksum has been received and accepted. The success is

reported to the user, who is instructed to accept the pairing at the access point to achieve

mutual authentication.

(a) Start pairing (b) Connecting

(c) Recording

data

(d) Recording

data

(e) Pairing ready

Figure 3.6: Screen-shots from the Symbian implementation

With our setup, a 24-bit checksum signaled (1 error accepted) with the laptop is

received and matched by the camera phone. The execution times for a positive indication

7The pairing must be initiated also from the laptop side. The rationale for this is explained in Section

3.5.2.
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(match) is typically in the range of 5 to 8 seconds. The increased execution time is the

price we pay for achieving visual channel authentication with devices that can not afford a

full display. As mentioned, we consider these parameters acceptable for ordinary home use.

A more secure version (32-bit checksum with 1 error) ranges from 8 to about 15 seconds.

3.4.3 Extending the Bandwidth on Better Displays

As we saw in Section 3.4.2, using VICsh with a single light source, and limiting

the attack success probability to 2−20, the execution time cannot be smaller than about 5

seconds.

A natural question is whether any speedup in the execution time is possible if there

were multiple light sources or in other words, a better display. In this section, we describe

the design and analysis of a new video codec that can be used to set up a visual channel

between a device with a small display and a device with a video camera. Our motivation was

to investigate two different questions: whether the video codec can significantly improve

the transfer time of a short checksum (15-20 bits), so that it can be used to reduce the

execution time of secure pairing, and whether the video codec can enable applications other

than secure pairing. In the remaining section, we discuss that even with straight-forward

and naive techniques, such a video codec can be designed and that it performs reasonably

efficiently.

Encoding Process. The idea of the encoding process is to represent the bits of data to be

transmitted after encoding it for error correction into slots (rectangles) of black and white

colors (say, ’black’ to encode bit ’0’ and ’white’ to encode bit ’1’) displayed in the form of

animated frames at a certain rate. The number of slots that can be displayed in one frame

depends upon the size of the display on the device and the video capturing ability of the

decoding device, and the number of such frames depends upon the amount of data to be

transmitted (e.g., 20 bits plus some error correcting bits in case of the pairing application)

and the display rate. Following are the three main constituents of the encoding procedure:

1. Beacon Slot: To allow the decoding device to be able to capture all the frames, the

display rate Rd at the encoder should always be smaller than the capture rate Rc at the

decoding device. However, since Rc > Rd, the decoding device captures more frames than

displayed by the encoding device, some of which get repeated a number of times. In order

for the decoder to be able to identify and discard these repeated frames, we devote one
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slot in each frame (say, at the top left corner) for a beacon frame, which always blinks, i.e,

its color always changes from black to white, white to black, and so on. If the decoding

device detects that the color of the beacon slot in the current frame is the same as the

color of the beacon slot in the previous frame, it can safely discard the current frame. We

observe through experiments that Rd = 10 frames/second is a reasonable display rate for

most camera phones for which Rc = 15 frames/second.

2. Blinking Corners: Moreover, to facilitate the decoding device in detecting the screen

of the encoding device in the captured frames, we use a small number of always-blinking

pixels at the corners of the displayed frames at the encoding device. This simple technique

allows the decoder to efficiently identify the exact location of the screen, as we illustrate in

the decoding process part below.

3. Marker Frames: In Section 3.4.2, we exploited the fact that in the case of secure device

pairing, the receiving device knows what string to expect via the visual channel. But since

we want this video codec to be potentially usable in other applications, we cannot make this

assumption. Therefore, since the decoding device may start recording at any bit position

in the data string, we need to transmit the data frames at least twice, separated by a small

number of marker frames.

Decoding Process. The decoding process involves capturing the video frames displayed

by the transmitter, and using these frames to first detect the location of the screen, and

then to read the data bits. We describe each of these procedures separately as follows:

1. Locating the Screen: We use the blinking corners (as described previously) in the display

to locate the screen. The algorithm is very simple: on input of a certain number t of

consecutive frames, denoted by F1, · · · , Ft, compute a “Sum-of-Differences” frame SD, such

that SD =
∑n

i=2 |Fi − Fi−1|, and scale SD to pixel values 0 to 255, to obtain an image F .

Note that the |Fi−Fi−1| denotes the image corresponding to the absolute difference between

the pixel values of Fi and Fi−1, and adding two images means adding their corresponding

pixel values. Notice that the image F brightens the always changing or blinking pixels

values (such as the ones corresponding to the corner pixels and the beacon slot) and at

the same time darkens the ones which hardly change. See Figure 3.7(b) for an example

F image. Now, to further brighten the smaller regions corresponding to the corner pixels

and to darken the other bigger bright regions (such as the one corresponding to the beacon

slot), we use a standard tool in image processing called convolution product.
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(a) A Few Captured Frames (b) Sum-of-

Differences

Image

(c) Final Convo-

luted Image

Figure 3.7: An example of various images in the decoding process (with 4 slots per frame)

Figure 3.7(c) shows the convoluted image that has only the corner pixels bright.

Once the convoluted image is obtained, it is easy to retrieve the corner pixels by using

thresholding technique (e.g., in Figure 3.7(c), all pixels with values greater than 210 corre-

spond to the corner pixels) and thus to locate the screen of the encoding device. Through

experiments, we notice that the above algorithm performs quite robustly to detect the screen

location if t = 10, i.e., if it is given 10 frames as input. The algorithm is also robust to

rotation of the screen.

2. Reading the Data: Whenever two corresponding data slots in two consecutive frames have

the same color, i.e., both black or both white, we obtain a black or white slots, respectively.

However, when they have different colors, we obtain grey slots. The decoder first determines

the color of each slot by looking at the distribution of pixel values in the slot and using

simple thresholding technique. For example, if maximum number of pixels have values in

range (0, 85), the color is black, if they have values in range (190, 255), the color is white,

otherwise the color is grey.

Now, if the color of the beacon slot Bi in current frame is the same as the color

of the beacon slot Bi−1 in the previous frame, the current frame can be safely discarded.

If the color of (non-beacon) slot Si is black, output data bit as 0; if it is white, output 1;

otherwise if the color is grey, output the complement of the output of Si−1.
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Error Correction. Since we aim for applications besides pairing, we also need to use

a robust error correction scheme for the video channel. Currently we use Reed-Solomon

(RS) forward error correcting codes [RS60]. Reed-Solomon is one of the strongest error

correcting codes known today, and applies very neatly in our scenario. Firstly, we have

observed through experiments that we get errors in bursts (for example, errors in all the

slots of one whole frame). Since, the RS codes operate on and corrects errors in symbols

of a certain number of bits, they are well-suited to our codec. Secondly, RS codes are

capable of correcting errors both in cases of erasures (such errors occur when it is known

which symbols are corrupted) and non-erasures. In our codec, we get errors of both types.

Erasures occur when it is very difficult to determine the exact color of a particular slot

using the method of thresholding as described in the previously (for example, when the

maximum number of pixel values are distributed around the boundaries of the thresholds

for black and grey or grey and white). Non-erasures occur when we get errors, but we can’t

predict their locations.

With the (k, n) RS error correction with m-bit symbols, where n = 2m − 1, if

there are e erasures and s non-erasure symbols in the received data, the RS code is capable

of correcting them as long as e+2s ≤ n−k. For example, to send out 20-bits of data in the

pairing application, we can use (8, 4) RS codes (which is shortened from RS code (31, 27)),

which corrects e erasures and s non-erasures in 5-bit symbols if e + 2s ≤ 4.

Implementation and Timings. We have implemented our preliminary video codec pro-

totype using Python Imaging Library8 on Linux. In the current implementation, our de-

coding algorithm is given as input the video frames captured from a camera phone. Here,

we report on some timing results based on the initial testing that we have done with this

Python codec.

To send out 20-bits of original data (or 40-bits of encoded data) with (8, 4) Reed-

Solomon codes, as described in before, with 10 frames/second display rate, it takes around

3 seconds, when the display size is capable of displaying only 4 slots a frame, and almost

1 second when the display consists of 8 slots per frame. The screen location detection

algorithm takes 2− 3 seconds with 10 frames on input, and the decoding and correcting of

the data takes almost a second. Overall, it takes approximately 5− 7 seconds for the whole

process.

8http://www.pythonware.com/products/pil/
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These timing results are only preliminary. We anticipate the performance to im-

prove when the python implementation is ported to a native C++ implementation on the

Symbian platform. Yet, it is not clear if the execution time for transferring a short integrity

checksum can be significantly reduced.

3.5 Discussion

In this section we discuss the applicability of our results, examine practical use

cases, discuss related issues like performance, device discovery, and usability and briefly

mention other related work.

3.5.1 Comparison of Different Protocols

Table 3.3 summarizes our recommendations on how mutual authentication can

be achieved with different device type combinations. If both devices have camera and

display, mutual authentication can be achieved either using SiB or VIC. SiB can be used

with camera-only devices which can have static barcodes affixed to them. The case of two

display-only devices is out of scope for this paper, and the basic MANA techniques which

require the user to visually compare two short strings [G+02, GMN04] can be used. In all

the other cases, VIC could be the best choice since it provides mutual authentication and

potentially better usability.

Y has → Camera Camera only Display only
and display

X has ↓
Camera SiB/VIC VIC VIC
and Display

Camera only VIC SiBa VIC

Display only VIC VIC MANA

aBoth devices need static barcode labels affixed to them.

Table 3.3: Recommended protocol to achieve mutual authentication for given device type
combinations

Table 3.4 summarizes when to use the two different flavours of VIC: If either one

of the devices has a full display, then plain VIC as described in Section 3.3 can be used.
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Otherwise VIC combined with MA-3 (which we called VICsh) can be used. Table 3.4 also

summarizes the execution time measurements for the two cases. The execution times for

the constrained display case or for the limited display is substantially longer than in full

display case. Despite this, we stress that this case is extremely relevant, since not all devices

have full displays to support the display of barcodes. Commodity devices like access points

are very cost sensitive and it is highly unlikely that full displays are added to such devices.

In addition, devices like headsets are so small that adding full displays is not possible. Also,

note that the timings for constrained display case are geared for home usage scenarios.

Display type Recorder type Protocol Execution time

Full display Still camera VIC 1 seconda

Limited display Video camera VICsh 5-7 secondsb

Constrained display Video camerac VICsh 5-8 secondsd

aSymbian OS implementation on Nokia 6600 [MPR05]
bPython implementation on PC
cCan also be a light sensor
dSymbian OS implementation on Nokia 6630

Table 3.4: Applicability of different flavors of VIC

Since the bandwidth requirement for VICsh protocol is low, this protocol could

be used in scenarios where it is not possible to reach the bandwidth required by the VIC

protocol. One example of such a scenario is a WLAN access point that is mounted high

up on the wall or ceiling. It is not possible to read the barcode affixed to such an access

point with the current camera phones, but it might be possible to read the “blinking” of

the access point if the light source is powerful enough.

The preliminary timing results for transferring short strings using the video codec

described in Section 3.4.3 are more or less comparable to the timing results for the sin-

gle light-source approach described in Section 3.4.2. The former approach is more robust

because of the forward error correction. The latter approach is somewhat cheaper. For

ordinary uses of secure pairing, the single light-source approach may be more suitable even

when the available display is slightly better than a single light-source. However, the video

codec is a useful service for device discovery applications (as we discuss next) where sev-

eral hundred bits of information need to be transferred via the visual channel, and there

is no other communication channel between the two devices. For example, a small section
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of the television display may be used to transmit the address of a web page relating to

the television program in progress. Note that using a sequence of barcodes to encode this

information is not a viable option since it would require the user to capture the barcode,

notice when the barcode changes and ensure that each barcode is recorded.

3.5.2 Device Discovery Strategies

Previous proposals on security initialization using out-of-band methods [SA99,

BSSW02] have argued that one of the main benefits of using an out-of-band channel for

security initialization is the fact that device discovery is part of the OOB message exchange.

For example in the approach proposed by Balfanz et al. [BSSW02] the devices exchange

complete addresses over infrared, and thus no in-band device discovery is needed. In SiB

approach, the device discovery is done manually (because current phones can not display

big enough bar codes to contain both the address and the hash of a public key), but the

authors state that the optimal solution would be to encode both the address and the public

key hash to the bar code.

We argue that in many scenarios an in-band device discovery is actually needed

before the OOB message exchange. The increasing number of different OOB channels (such

as infrared, camera and full display, camera and single LED etc.) results in situations where

the user might not always know which OOB to use with the two particular devices at hand.

For example a user wanting to pair a camera phone (camera, display, no infrared) with a

laptop (infared, display, no camera) might be confused about the different OOB possibilities.

It should not be the user’s burden to figure out which OOB to use (and how), but instead an

in-band device discovery should take place and the best mutually supported OOB channel

should be negotiated in-band and the user should be guided to use this OOB. Negotiations

must be protected against bidding-down attacks in the usual manner, by having the parties

exchange authenticated confirmations of the negotiation messages once key establishment

is completed (as is done with the “Finished” message in TLS[DA99]). As long as the chosen

authentication mechanism can not be broken in real-time, attempts to bid-down will be

detected by this check.

In order to conveniently discover the desired device in-band, the user must put one

of the devices into a temporary special discoverable mode so that the user does not have to

select the correct device from a long list of (probably meaningless) device names. We call
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this action user conditioning. From the user’s point of view this action can be performed,

e.g., by pressing a button on the device or by selecting a menu option.

Not all bearers support in-band discovery without manual device selection. Like-

wise, pure out-of-band discovery is not always feasible with constrained OOB channels.

In these cases, the constrained OOB can be used to improve the usability of the in-band

discovery process. A device can, e.g., send the last 10 bits of its address over OOB. At

the same time the other device can scan and automatically discard devices whose address

does not match these 10 bits. With high probability the correct device can be selected

automatically and the user does not have to be presented a list of device names.

3.5.3 Usability Considerations

The security of VIC and VICsh relies on the user answering affirmatively in the

last step (in Figures 3.2 and 3.3). If device B rejects the key agreement and indicates failure

to the user, but the user inadvertently answers affirmatively in the last step, device A would

conclude that the key agreement was authenticated even though B does not. One way to

mitigate the impact of this failure is as follows. A picks a secret k and sends it via the

visual channel, along with the checksum. If B accepts the key agreement, it can use the

resulting secure channel to prove knowledge of k. A will accept the key agreement only if

the user accepts in the last step, as well as a proof of knowledge k is received via the secure

channel. On the downside, the additional check increases the amount of data transferred

over the visual channel, thereby increasing the execution time. Moreover, the additional

check is effective only if the attacker can not snoop on the visual channel.

Another way to reduce the likelihood of accidental (or out of habit) confirmation

is to use a specific confirmation button only for the purpose of secure device pairing. The

downside is the cost of adding such a button.

Whether this accidental confirmation is a real concern can only be determined by

extensive usability testing. To date, none of the research papers dealing with the problem

of secure device pairing have reported substantial comparative usability testing. The only

exception is [BDG+04], which presents some usability analysis of their approach of using

infrared as an OOB channel. Given the level of recent interest in this area which has resulted

in several pairing approaches, a comprehensive comparative usability testing will be a very

valuable research contribution. We are addressing this in our current work.
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3.5.4 Denial-of-Service

Another concern is the possibility of a denial-of-service attack. An attacker can

disrupt a pairing attempt between two devices by simultaneously initiating pairing with

one or both of the same devices. Accidental simultaneous pairing is likely to be very rare

because of the user conditioning described in Section 3.5.2. Thus, if a device detects multiple

pairing attempts, the best strategy may be to ask the user to try again later, rather than

ask the user to choose the correct device. Moreover, sending part of the device identifier via

the visual channel, as described in Section 3.5.2, will help in picking the correct device in

case of multiple parallel device pairing attempts. Note that in wireless networks, elaborate

attempts to protect the pairing protocol against malicious attempts of denial-of-service

are not cost effective because an attacker can always mount denial-of-service by simply

disrupting the radio channel.

3.5.5 Other Related Work

Recently Goodrich, et al. [GSS+06], proposed a pairing mechanism making use

of audio as the OOB channel. Their idea is to encode the public key hash value into an

auditorially-robust, grammatically-correct sentence, which is displayed on one device and

read out on the other using a voice synthesizer. The user then manually compares the

two versions of the sentence in order to authenticate the public key. However, this scheme

also suffers from the same problems as does SiB: namely, mutual authentication is either

not possible (i.e, when one of the devices does not have an audio output and a display),

or could be quite inefficient and taxing on the users. Fortunately, they can also use the

MANA family of authentication protocols similar to our proposal in Section 3.4.1.
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Chapter 4

Authenticated Key Agreement

Using Short Authenticated Strings

In this chapter, we present a new efficient encryption-based protocol for authenticated

key agreement between two devices. The protocol is based on short (e.g., 20-bit

long) manually authenticated channels between the devices. Our protocol is a useful

alternative to the prior Diffie-Hellman-based protocols, especially in settings where

the two devices have different computational powers, e.g. a PC and a cell-phone, a

cell-phone and a headset, etc.

4.1 Introduction

Last year Vaudenay introduced a notion of a message authentication protocol

based on short authenticated strings (SAS) [Vau05]. Such protocol allows authenticating

messages of arbitrary sizes (over an insecure channel) making use of an auxiliary or an OOB

channel (as we called it in the previous chapter) which can authenticate short, e.g. 20-bit

long, messages. It is assumed that an adversary has complete control over the insecure

channel, i.e. it can eavesdrop, delay, drop, replay, inject and/or modifying messages. The

only restriction on the special SAS channel is that the adversary cannot modify or inject

messages on it, but it can eavesdrop on them, or drop, delay, or replay them.

A SAS-MCA protocol allows cross authentication of messages of arbitrary length
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between two devices with an access to this auxiliary SAS channel. The primary application

of SAS-MCA protocols is to enable SAS-based authenticated key agreement (SAS-AKA)

between devices with no reliance on key pre-distribution or a public-key infrastructure. Such

SAS-AKA protocols can be used in practice, for example in secure device pairing, i.e., to

create a secure connection between two devices connected with a short-range communication

medium, such as Bluetooth or WiFi, for which one can implement a SAS channel assuming

some manual supervision from the device’s user.

Prior Work on SAS-MCA and SAS-AKA Protocols. The shorter the message that

needs to be authenticated on this auxiliary or OOB channel, the more user friendly and

error-resilient the application becomes. This motivates cryptographic research whose goal

is to provide provable security guarantees for SAS-MCA and SAS-AKA protocols assuming

as little bandwidth on the SAS channel as possible. A straight-forward solution for a

SAS-MCA protocol (as we already saw in chapter 3) was suggested by Balfanz, et al.

[BSSW02]: Devices A and B exchange the messages mA, mB over the insecure channel, and

the corresponding hashes H(mA) and H(mB) over the auxiliary authenticated channel.

Although non-interactive, the protocol requires the hash function to be strongly collision-

resistant and therefore the bandwidth needed on the authenticated channel is quite high,

at least 160-bits.1 The protocols in Gehrmann et al. [GMN04] were aimed at using the

human user as the authentication channel (and hence the name “manual authentication

(MANA)”), and reduce the bandwidth requirement on the authentication channel to 16−20-

bits. However, these protocols required a stronger assumption on the SAS channel, i.e., the

adversary is assumed to be incapable of delaying or replaying the SAS messages.

In [Vau05], Vaudenay presented the first message authentication scheme secure

assuming the SAS channel, with an upper bound on the attack probability of 2−k for

a k-bit SAS channel. We include the unidirectional (Pi → Pj) message authentication

protocol, V-MA, presented in [Vau05], in Figure 4.1. By running two copies of this protocol,

in Pi → Pj and Pj → Pi directions, and piggybacking the common flows, a SAS-MCA

protocol is obtained. This protocol is based on any commitment scheme with certain non-

malleability properties (see Section 4.2), and requires 4 communication rounds over the

insecure channel.

1Pasini and Vaudenay [PV06] proposed a different non-interactive protocol that requires only a weakly

collision resistant hash function, and reduces the bandwidth requirement to 80-bits.
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Pi(mi) Pj

Pick Ri ∈ {0, 1}k

(ci, di)← commit(mi, Ri)
mi,ci

// Pick Rj ∈ {0, 1}k
Rj

oo

di
//

Rj ← open(mj , cj , dj)

SASi = Ri ⊕Rj
SASi

+3 Ri ← open(mi, ci, di)
Output (Pi, mi) if
SASi = Ri ⊕Rj

Figure 4.1: V-MA : unidirectional authentication (Pi to Pj) based on generic commitments
[Vau05]

In the follow-up work, Laur, Asokan, and Nyberg [LAN05] and Pasini and Vaude-

nay [PVar] independently gave three-round SAS-MCA protocols, using commitments with

non-malleability-like properties and universal hash functions.2 The two protocols have sub-

tle differences, but both make just a few hash operations if the commitment scheme is

implemented assuming the Random Oracle Model for the hash function.

Pasini and Vaudenay [PVar] argue that one can construct a 3-round SAS-based key

agreement protocol SAS-AKA, from any 3-round SAS-based message cross-authentication

protocol, SAS-MCA, and any 2-round key agreement scheme (KA) secure over authenti-

cated links, e.g. a Diffie-Hellman or encryption-based KA scheme. The idea is to run the KA

protocol over an insecure channel and authenticate all protocol messages using SAS-MCA as

a sub-protocol. This is a standard “protocol compilation” methodology, similar for example

to the Canetti-Krawczyk method for transforming KA protocols secure assuming authenti-

cated links to AKA protocols secure over standard links using any message authentication

scheme as a sub-protocol [CK01]. Such “protocol compilation” results in secure SAS-AKA

protocols when applied to both standard Diffie-Hellman or Encryption-based KA protocols.

However, the security proof of this compilation given in [PVar] works only when applied

to KA protocols which do not share state between sessions. This excludes common key-

agreement protocols which sacrifice perfect forward-secrecy by re-using the same secret key

2Recall that we employed the former protocol to efficiently implement a visual OOB channel in Chapter

3.
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material across sessions, e.g. the same secret exponent in the Diffie-Hellman case, or the

same private/public key pair in the case of the encryption-based key agreement. This is

especially important for an encryption-based key agreement using RSA, where picking a

fresh public/private key pair per session would be costly. We remark that extending the

general composition theorem of [PVar] to key-agreement schemes that share state between

sessions appears difficult, esp. while avoiding completing a 3-round MCA sub-protocol per

each communication round in the KA protocol. (See Appendix B for further explanations.)

Our Contributions. We present a direct construction of a 3-round encryption-based

SAS-AKA protocol. The protocol uses a CCA-secure encryption scheme, and a generic

commitment scheme with the same non-malleability properties required also in the previous

SAS-MCA protocols [Vau05, LAN05, PVar]. Our encryption-based SAS-AKA protocol

is also a 3-round message SAS-MCA protocol, but since it uses public-key encryption,

it is less efficient than the 3-round SAS-MCA protocols mentioned above. The protocol

is very similar to the original 3-round uni-directional SAS-based message authentication

protocol V-MA, see Figure 4.1, but it imposes on it a protocol flow of an encryption-based

Key Agreement protocol: The initiator’s first message mi includes her public key, and the

responder sends his random challenge Rj encrypted, together with his message mj , under

the initiator’s public key.

In the Random Oracle Model, where the commitment scheme can be implemented

with a single hash, the resulting SAS-AKA protocol without perfect forward secrecy involves

a single public key encryption for the responder and a decryption for the initiator. If the

user cares about perfect forward secrecy, the initiator has to also generate, although off-

line, a public/private key pair. In other words, the costs of our protocol are essentially the

same as the costs of the (unauthenticated) encryption-based key agreement protocol. As

we mentioned above, the results of [PVar] also imply 3-round SAS-AKA protocols (both

encryption-based and Diffie-Hellman based), but only perfect forward-secure ones. Their

costs are also determined by the costs of the (unauthenticated) key agreement protocols they

start with. We stress that a fast encryption-based key agreement protocol secure under

public key re-use (although without perfect forward secrecy) is an attractive alternative

to Diffie-Hellman SAS-AKA protocols, especially in the case of devices with asymmetric

computational powers, e.g. a PC and a cell phone, a cell phone and an earset speaker, etc.

Interestingly, our construction of a SAS-AKA protocol does not build in a modular
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way on a SAS-MCA protocol, because if we strip-away the encryption layer the remaining

protocol is not a SAS-MCA. This forced us to make a direct security argument for it, instead

of following a general “protocol compilation” approach as in [PVar]. This choice, and some

other subtle differences in the modeling of the SAS-AKA security (e.g. we treat sessions

id’s explicitly), resulted in a tighter security bound we were able to show for this SAS-

AKA protocol, compared to what results of [PVar] imply for the (perfect forward secure)

3-round SAS-AKA protocols. Our better exact security bound means that we can show the

same level of security for our SAS-AKA protocol for SAS channels which have log2(n) fewer

bandwidth, where n is the total number of entities executing the protocol.

Organization. We describe our communication and adversarial model in Section 4.2. We

present our SAS-MCA and SAS-AKA protocols in Sections 4.4 and 4.5, and we discuss the

implications of our result for SAS channel bandwidth requirements in Section 4.6.

4.2 Communication and Adversarial Model

4.2.1 Network/Communication Setting

We consider a network consisting of n players P1, · · · , Pn. Each ordered pair of

players (Pi, Pj) is connected by two unidirectional point-to-point communication channels:

(1) an insecure channel, e.g. a Bluetooth or a WiFi channel, over which an adversary

has complete control by eavesdropping, delaying, dropping, replaying, and/or modifying

messages, and (2) a low-bandwidth out-of-band authenticated (but not secret) channel,

referred to as a SAS channel from here on, which preserves the integrity of messages and

also provides source and target authentication. In other words, on the insecure channel,

an adversary can behave arbitrarily, but it is not allowed to modify (or inject) messages

sent on the SAS channel (which we’ll call SAS messages for short), although it can still

read them, as well as delay, drop, or re-order them. Refer to Section 4.1 for examples of

implementations which provide such SAS channels

To differentiate among messages corresponding to different sessions, as in any stan-

dard security protocols, we include session identifiers in each message sent on the insecure

channel.3 The session identifiers must satisfy a constraint that a single player never re-uses

3 These session identifiers can be exchanged by the communicating parties in a “prologue”, prior to

starting the protocol. Such a prologue is needed (as in various protocols such as SSL, ssh, IKE, etc.) for the
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the same session identifier twice. This is easy to enforce in practice: In an instance of a

protocol between users Pi and Pj , the players can first exchange random long-enough values

si and sj and set s = (si, sj). With high probability, the si and sj values are locally unique

and hence so is s.

4.2.2 SAS-MCA and its Security

A SAS-MCA protocol is a “cross-party” message authentication protocol, executed

between two players Pi and Pj on a joint session id s, whose goal is for Pi and Pj to send

authenticated messages to one another. The inputs of Pi are a tuple (ROLEi, Pj , s, mi)

where ROLEi designates Pi as either the initiator (“init”) or a responder (“resp”) in

this protocol, Pj identifies the communication partner for this protocol instances, which

essentially identifies for Pi a pair of SAS channels (Pi → Pj) and (Pi ← Pj) with an

entity with whom the application wants to communicate, s is a session id, and mi is the

message to be sent to Pj . The other player, Pj , is presumably concurrently started on

inputs (ROLEj , Pi, s, mj) on a matching s and on ROLEj 6= ROLEi. The outputs of Pi

can be either a tuple (Pj , m̂j , s) or a rejection. Similarly Pj can either output (Pi, m̂i, s)

or reject. The protocol should satisfy the trivial completeness condition which says that if

the two players are started on matching sessions (i.e. the identities Pi and Pj , the session

ids, and the roles in their inputs all match), and if the adversary delivers all their messages

without modifying them, then both players output the messages actually sent by the other

player, i.e. m̂j = mj and m̂i = mi.

We model the security of a SAS-MCA protocol via a following game between the

network and the adversary A. With queries of the form launch(Pi, ROLEi
(s), Pj , s, mi

(s)),

A can trigger any of the n players Pi to start the SAS-MCA protocol on the given inputs

(ROLEi
(s), Pj , s, mi

(s)), subject to the only constraint that the same player Pi is never

started on same s twice. We say that A succeeds in attacking the SAS-MCA protocol if any

Pi outputs (Pj , m̂j , s) but the player Pj was never started on inputs (ROLEj , Pi, m̂j , s),

for some ROLEj . In other words, the adversary wins if it never issues the command

launch(Pj , ROLEj
(s), Pi, s, m̂

(s)
j ), but Pi nevertheless outputs (Pj , m̂j , s). (Note that in

particular the adversary must also issue some command of the form launch(Pi, ?, Pj , s, ?).)

parties to mutually agree upon a set of algorithms to use during the execution of the protocol. Note that in

a SAS-based protocol, parties also need to agree upon the SAS channel (audio, visual, infra-red, etc.).
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In the above SAS-MCA game, the adversary can launch multiple concurrent ses-

sions among every pair of players. To make our security results concrete, we will consider

an (n, R, R̄)-attacker A against the SAS-MCA protocol, which plays the above game with n

players in the network subject to the constraint that A is allowed to launch only R sessions

per player, and only R̄ sessions between any pair of players.

4.2.3 SAS-AKA and its Security

A SAS-AKA protocol is an authenticated key exchange protocol executed by a

pair of players Pi, Pj on a common session id s. The inputs to the protocol for both parties

are as in the SAS-MCA above, except that now there are no messages mi, mj . Player Pi

outputs either a rejection or a tuple (Pj , s, K), where K is a fresh, authenticated, and secret

key which Pi presumably shares with Pj , and which both players can use now for securing

any subsequent communication between them. Similarly player Pj either outputs (Pi, s, K)

for some K or rejects. We call each instance of the SAS-AKA protocol running by a player

a separate session, and we call two sessions, (Pi, ROLEi, Pj , s) and (P ′
i , ROLE′

i, P
′
j , s

′)

matching if P ′
i = Pj , ROLE′

i 6= ROLEi, P ′
j = Pi, and s′ = s. In other words, only two

sessions of the type (Pi, init, Pj , s) and (Pj , resp, Pi, s) are matching. The completeness

property for a SAS-AKA protocol is that if two matching sessions execute and all their

messages are delivered properly then both players accept and output the same key K.

We model security of the SAS-AKA protocol in a similar way as Canneti and

Krawczyk model security of an authenticated key exchange (AKA) protocol running over a

standard network [CK01], except that we will limit ourselves only to security, and leave out

the explicit authentication requirement.4 As in the case of the SAS-MCA security model

above, we consider an (n, R, R̄)-attackerA, which plays the following game with a network of

n players P1, ..., Pn. The adversary issues commands of the form launch(Pi, ROLEi
(s), Pj , s),

which triggers player Pi to start the SAS-AKA protocol instance on these inputs. On any

of the launched sessions, A can also issue a query of the form reveal(Pi, Pj , s), which gives

him Pi’s output in the previously launched session matching this tuple (if such exists). The

response to this query is either a rejection symbol, if Pi either has not completed this session

or rejected on it, or, if Pi completed this session successfully and outputted some (Pj , s, K)

4However, since our SAS-AKA protocol is also a message authentication protocol, i.e. SAS-MCA proto-

col, the output key actually is explicitly authenticated in our protocol.
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tuple, the corresponding session key K. Finally, on one of the tuples (Pi, Pj , s) for which no

reveal() query was issued, A issues a Test(Pi, Pj , s) query, and, if the session is successful,

bit b is chosen at random without adversary’s knowledge, and if b = 0 then A gets the key

K output by Pi on that session, or, if b = 1, A gets a random value of the same length. The

adversary can then keep issuing the launch and reveal commands, except it cannot reveal

the tested session or a session that matches it. Eventually A outputs a bit b̂, and we say

that A wins if b̂ = b. We say that an adversary has advantage ε in the SAS-AKA attack if

the probability that b̂ = b is at most 1/2 + ε.

4.2.4 Comparison with Other Security Notions for SAS-MCA and SAS-

AKA

The security notion that we have described above is slightly different than the one

considered in the previous proposals by Vaudenay et al [Vau05, PVar]. In both of these

works the (multi-session) attack against a SAS-MCA protocol is defined as follows. An

adversary launches multiple instances of the protocols for various players, w.l.o.g. including

many instances involving the same pair of players (Pi, Pj). The adversary is then said to

succeed if it can make one of these players, say Pi, output a message m̂j which was not an

input on any of the launched instances of Pj with Pi. This is a natural definition in their

context, because they do not include session id’s as inputs to the SAS-MCA protocol, and

therefore if there are many instances of Pi, each of which is trying to communicate with Pj ,

and similarly many instances of Pj communicating with Pi, there’s no notion of an a-priori

matching between these instances. In contrast, we use session id’s as explicit inputs to each

SAS-MCA instance, and under our security notion, an attacker succeeds if an instance of

Pi running on session s outputs message m̂j which was an input to the instance of Pj which

was launched on the same session id s.

Of course, session id’s can be handled on an intermediary level between the SAS-

MCA protocol and the applications which instantiate it and use its outputs. This level

can attach the session id’s to the messages sent on the underlying “session-less” SAS-MCA

protocol like the protocol of Vaudenay et al, and then retrieve the session id’s from the

received messages and direct them to the application which a matching session id. In this

way the security guarantees given by Vaudenay et al can be used to achieve the same security

notion we define here. However, the fact that we handle session id’s explicitly simplifies the
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security arguments in the multi-session setting (for both SAS-MCA and SAS-AKA), which

contributes to a better exact security analysis, and therefore to stronger exact security

claims for the same parameters, and consequently to lower bandwidth requirements on SAS

channels required for the same security level.

4.3 Preliminaries

Our SAS-MCA and SAS-AKA protocols utilize both a public-key encryption scheme

and a commitment scheme (we defined these primitives in Chapters 2). The security notions

for these schemes that our protocols rely upon, are described below.

4.3.1 OW-R-CCA-secure Public Key Encryption

In our protocols, we rely on a slightly weaker security property of partial one-

wayness of encryption (under the CCA attack), denoted OW-R-CCA, which we define via

the following game between the adversary and the challenger: The keys (pk, sk) are chosen

by KeyGen as above, the adversary A on pk selects message m and sends it to C. C picks

R ∈ {0, 1}k, and sends back the ciphertext c = Encpk(m, R). A responds with R̂ and we

say that A “wins” if R̂ = R. As in the above game, A is also given an adaptive access to

a decryption oracle. An encryption scheme is said to be (T, ε)-OW-R-CCA if no adversary

running in time T can win this game with a probability greater than 2−k+ε. It is easy to

see that if an encryption scheme is (T, ε)-IND-CCA, i.e., indistinguishable under CCA (refer

to Chapter 2 for this definition) then it is also (T, ε)-OW-R-CCA.

4.3.2 OW-ExA-secure Commitment Scheme

We call a perfectly binding scheme (T, ε)-OW-ExA, which stands for hiding (in

the sense of one-wayness) under the adaptive extraction attack, if a T -bounded adversary

A cannot win the hiding game with probability better than 2−k + ε, even if the game is

modified so that A additionally has access to an extraction oracle extract, which A can

query on adaptively chosen inputs (m′, c′), as long as m′ is different from tag m used in

the commitment challenge. The extraction oracle outputs R′ if and only if there exists d′

such that open(m′, c′, d′) = R′. Otherwise it outputs a special symbol ⊥. (Note that if the

commitment scheme is perfectly binding, this extraction oracle is well-defined.)
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OW-ExA-Commitment from CCA-secure Encryption. (T, ε)-OW-ExA commitment

scheme can be created from any (T, ε)-OW-R-CCA encryption scheme (KeyGen, Enc, Dec)

(and hence in particular also from any CCA-secure encryption scheme). The KP is a pub-

lic key PK of the encryption scheme. commitPK(m, R) picks a random string s and outputs

c = Enc(s)(PK, (m, R)) and d = (R, s), where Enc(s)(·) denotes running the (randomized)

encryption procedure using randomness specified in string s. Procedure openPK(m, c, (R, s))

outputs r if c = Enc(s)(PK, (m, R)). Note that this commitment scheme is perfectly bind-

ing. This reduction of the OW-ExA attack to the OW-R-CCA attack is easy, because the

decryption oracle in the OW-R-CCA game outputs (m′, R′) on any c′ = Enc(PK, (m′, R′))

s.t. c′ 6= c, and so it can be used to simulate the extraction oracle for the OW-ExA at-

tacker, which needs both c′ and m′ to output just the R′ part of the cleartext. Note that

if m′ 6= m but c′ = c in the commitment extraction query (m′, c′) then the reduction can

output ⊥ without consulting the OW-R-CCA decryption oracle, because ciphertext c en-

crypts a unique message (m, R), so m′ 6= m is an incorrect tag for commitment c. The

final challenge the OW-ExA adversary must solve is exactly the same as the challenge of the

OW-R-CCA adversary.

OW-ExA-Commitment in ROM. As observed in [Vau05], one can create a very fast

and simple commitment scheme with a hash function H : {0, 1}∗ → {0, 1}lc modeled as a

random oracle, provided a long enough lc. commit(m, R) picks e ∈ {0, 1}le and returns (c, d)

such that d = (R, e) and c = H(m, d). open(m, c, (R, e)) returns R if c = H(m, (R, e)),

and rejects otherwise. To handle this construction in a perfectly formal way we would

need to extend the notion of OW-ExA-security stated above, because this simple ROM-

based commitment scheme is actually not perfectly binding. However, for any adversary A
running in time T one can implement an extraction oracle which returns R for any (m, c) s.t.

the probability that A ever opens any of these c’s to some other string R′ 6= R, is bounded

by T 22−lc , which is the probability of a collision in T queries to the hash function. Given

such extraction oracle, a T -limited adversary has only 2−k +T2−k+le probability of winning

the hiding game. The proofs we present in this write-up all assume a perfectly binding (and

OW-ExA-secure) commitment scheme, but they can be extended to imply security also for

this ROM-based scheme which has the T 22−lc “binding error”: This binding error needs to

be added to the error term in each of the theorems, but it’s not a problem because lc can

be adjusted to make this error quantity arbitrarily small for any T .
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4.3.3 B-EqA-Secure Commitment Scheme

A commitment scheme is perfectly hiding if it is (T, 0)-hiding for any T . We call a

perfectly hiding commitment scheme (T, ε)-B-EqA, which stands for binding under the equiv-

ocation attack, if a T -bounded adversary A cannot win the binding game with probability

better than 2−k + ε even if the game is modified so that A has access to oracles simcommit

and equivocate: Oracle simcommit, on any query input m′, outputs a fake commitment c′,

whose distribution is identical, for any R, to the distribution of real commitment c output

by commit(m, R). The adversary is restricted from queries m′ = m to the simcommit oracle

where m is a part of the binding challenge (m, c) which A sends to C in this game. Oracle

equivocate, on input (c, m′, R′), where c was previously output by simcommit on m′, returns

a decommitment value d′ such that open(m′, c′, d′) = R′.

B-EqA-secure commitment schemes can be constructed from simulation-sound

trapdoor commitments (see [Vau05]), and therefore, combined with the results of [MY04],

they follow from any signature scheme, e.g. the Cramer-Shoup signature scheme [CS99]

based on the strong RSA assumption.

Remark: In this thesis, we show security of the resulting SAS-MCA and SAS-AKA protocols

under the assumptions that the commitment scheme is OW-ExA-secure and the encryption

scheme is OW-R-CCA-secure. Because our protocol is based on the unidirectional MCA

protocol V-MA proposed by Vaudenay, the security of our protocols can be alternatively

based on OW-R-CCA-secure encryption and a commitment scheme which is binding even in

the presence of an equivocation oracle, i.e. “B-EqA-secure”. However, we omit any proofs

and formal claims about security for our protocols based on this assumption from the current

write-up.

4.4 Encryption-based SAS Message Authentication Protocol

SAS-MCA

We present a 3-round encryption-based SAS-MCA protocol. To simplify its presen-

tation and its security analysis, we will first present the SAS-MCA protocol called Enc-MCA

for the case of only two parties running a single session, and prove its security against the

(2, 1, 1)-attacker. (This simplified form of an attacker is called one-shot adversary by Vau-

denay [Vau05].) We then proceed to the full multi-player and multi-session version of the
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same protocol, denoted Enc-mMCA.

4.4.1 Two-Party/ Single-Session Setting

Pi(SKi, PKi, mi) Pj(mj)

Pick Ri ∈ {0, 1}k

(ci, di)← commit((mi, PKi), Ri)
mi,PKi,ci

// Pick Rj ∈ {0, 1}k

(mj , Rj)← DecSKi
(ej)

ej
oo ej = EncPKi

(mj , Rj)
di

// Ri ← open((mi, PKi), ci, di)

SASi = Ri ⊕Rj
SASi

+3

SASj
ks SASj = Ri ⊕Rj

Output (Pi, mi) if Output (Pj , mj) if
SASj = Ri ⊕Rj SASi = Ri ⊕Rj

Figure 4.2: Enc-MCA: Encryption-based SAS-MCA (two-party, single-session setting)

The Enc-MCA protocol is depicted in Figure 4.2. It runs between the “initiator”

Pi, who intends to authenticate a message mi, and the “responder” Pj , who intends to

authenticate a message mj . (SKi, PKi) denotes the (possibly permanent) private and

public key pair for Pi. The protocol is based on the unidirectional message-authentication

V-MA protocol of Vaudenay [Vau05], Figure 4.1. The only difference is that Pi includes

its public key PKi with its message mi, and the responder Pj sends its randomness Rj

encrypted under this key, together with its message mj . In other words, the protocol begins

by Pi sending mi along with PKi and commitment ci to (mi, PKi) using a random value

Ri ∈ {0, 1}k. Pj encrypts its message mj and a random value Rj ∈ {0, 1}k, and sends

the encrypted value ej back to Pi. Next, Pi decommits to the values committed in the

first message by sending over the decommitment di. Pi and Pj then exchange over the SAS

channel values SASi = Ri⊕Rj , where Pi obtains Rj by decrypting ej , and SASj = Ri⊕Rj ,

where Pj obtains Ri by opening mi, PKi, di. The players accept if the SAS values match,

and reject otherwise.
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Theorem 1 (Security of Encryption-based SAS-MCA (two-party, single-session

setting)). If a (2, 1, 1)-attacker against the Enc-MCA protocol bounded by a time T wins the

SAS-MCA game with a probability p and if the commitment scheme is (TC , εC)-OW-ExA

and the encryption scheme is (TE , εE)- OW-R-CCA, then p ≤ 2−k+1 + max(2εC , 2εE) or

T ≥ min(TC , TE)− µ, for a small constant µ.5

Proof. We prove the above claim by contradiction, i.e, we show that if there exists an

adversary A which can attack the proposed protocol in time T < min(TC , TE) − µ with

probability p better than 2−k+1+max(2εC , 2εE), then there exists either a T -time adversary

BC which wins the hiding-on-extraction-attack game OW-ExA with a probability better than

2−k + εC , or there exists a T -time adversary BE which wins the OW-R-CCA game for the

encryption scheme with probability better than 2−k + εE .

Adversary A succeeds if he instantiates the two parties Pi, Pj on some messages,

mi, mj , respectively, and if either Pi accepts and outputs some message m̂j 6= mj or Pj

accepts and outputs some message m̂i 6= mi. Since A must get either party to complete the

protocol to succeed, he must get both of them to trigger their SAS messages, and so any

successful attack that A executes has the following form:

Pi A Pj

1
mi,PKi,ci

// 5
m̂i, ˆPKi,ĉi

//

2
êj

oo 6
ej

oo

3
di

// 7
d̂i

//

4
SASi

+3 8
SASj

ks

Figure 4.3: Adversarial Behavior in the Enc-MCA protocol

Moreover, the only way A can get either Pi or Pj to accept is if SASi = Ri ⊕ R̂j

is equal to SASj = R̂i ⊕Rj . In other words, the values Ri, Rj , R̂i, R̂j defined in the above

interaction between A and (Pi, Pj) must satisfy constraint Ri ⊕Rj ⊕ R̂i ⊕ R̂j = 0.

5The security bound in this Theorem is not optimal as it wastes one bit of the SAS bandwidth. However,

by using a more involved security argument we can improve on theorem 1 and show that the probability of

attack against the Enc-MCA protocol can be bounded by a value arbitrarily close to 2−k, under the same

assumptions. We omit this improved analysis from this write-up, but we give an intuition for it in Appendix

C.
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Note, however, that A can control the sequence in which the above messages are

interleaved, and he has a choice of the following three possible sequences:

Message interleaving pattern I : (1 ≺ 5 ≺ 6 ≺ 2 ≺ 3 ≺ 4 ≺ 7 ≺ 8)

Message interleaving pattern II : (1 ≺ 5 ≺ 6 ≺ 7 ≺ 8 ≺ 2 ≺ 3 ≺ 4)

Message interleaving pattern III : (1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8)

For each of these three message interleaving patterns we’ll have to consider two

sub-cases, depending on whether the pair (m̂i, ˆPKi) that the adversary delivers to Pj in

message #5 (see Figure 4.3) is equal to (mi, PKi) that player Pi sends in message #1.

Let’s denote the event that adversary succeeds in an attack as AdvSc, the event

that (m̂i, ˆPKi) = (mi, PKi) and that the attack succeeds as SM, the event that (m̂i, ˆPKi) 6=
(mi, PKi) and that the attack succeeds as NSM, and we’ll use Int[1], Int[2], Int[3] to denote

events when the adversary follows, respectively, the 1st, 2nd, or 3rd message interleaving

pattern. We divide the six possible patterns which the successful attack must follow into

the following two cases:

Case1 = (NSM ∨ (SM ∧ Int[2])) and Case2 = (SM ∧ Int[1]) ∨ (SM ∧ Int[3]))

We show that if adversary succeeds in any of the above cases with probability p,

then this implies an attack against one of the above security assumptions. We construct

two reduction algorithms, BC and BE , which attack respectively the commitment and the

encryption scheme used in the Enc-MCA protocol. More specifically, BC attacks the OW-ExA

property of the commitment scheme, and BE attacks the OW-R-CCA property of encryption.

Both algorithms BC and BE will use the Enc-MCA attacker A. The reductions BC and BE

are successful depending on which of the above cases A takes. Namely, in event Case1

reduction BC wins the OW-ExA commitment game, and in event Case2 reduction BE wins

the OW-R-CCA encryption game.6

Note that AdvSc = Case1 ∨ Case2, and therefore, if Pr[AdvSc] = p then either

Pr[Case1] ≥ p/2 or Pr[Case2] ≥ p/2. Note that by assumption on p, we have that p/2 >

2−k + εC and p/2 > 2−k + εE , and hence either BC wins the OW-ExA commitment game

with probability greater than 2−k + εC or BE wins the OW-ExA commitment game with

6This is a sketch: In one case the correspondence between event Case1 for A and the winning of reduction

BC is more complex, but still the probability that BC wins is the probability that Case1 happens.
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probability greater than 2−k+εE . Moreover, both BC and BE make only a few cryptographic

operations in addition to running A, so their running time will be T +µ for a small constant

µ, and hence, by assumption on T , their running times are below both TC and TE . Since this

contradicts either the (TC , εC) OW-ExA-security of the commitment scheme or the (TE , εE)

OW-R-CCA-security of the encryption, the theorem will follow.

It remains for us to construct algorithms BC and BE with the properties claimed

above. Algorithm BC , depending on the behavior of A, executes one of the following sub-

algorithms:

If (m̂i, ˆPKi) 6= (mi, PKi) and A chooses interleaving pattern I, II, or III, then BC

executes sub-algorithms, respectively, BC [1], BC [2], and BC [3].

If (m̂i, ˆPKi) = (mi, PKi) and A chooses interleaving pattern II, BC executes BC [4].

Otherwise, i.e. if A sends (m̂i, ˆPKi) = (mi, PKi) and A follows patterns I or III, BC

fails.

Similarly, based on the behavior ofA, algorithm BE proceeds in one of the following

ways:

If (m̂i, ˆPKi) = (mi, PKi) and A chooses interleaving pattern I, BE executes BE [1].

If (m̂i, ˆPKi) = (mi, PKi) and A chooses interleaving pattern III, BE executes BE [2].

Otherwise, i.e. if A sends (m̂i, ˆPKi) 6= (mi, PKi) or A follows interleaving pattern II,

BE fails.

We show algorithms BC [1],BC [2], BC [3] and BC [4] in Figures E.1, E.2, E.3, and E.4,

respectively. Note that if (m̂i, ˆPKi)6=(mi, PKi) then A essentially attacks the V-MA proto-

col of Vaudenay, because pair (mi, PKi) in the Enc-MCA protocol plays a role of the message

in the V-MA protocol, so this event in the Enc-MCA protocol is equivalent to Pj accepting

the wrong message in the V-MA protocol. Therefore, the three reduction (sub)algorithms

BC [1], BC [2], and BC [3], essentially perform the same attacks on the OW-ExA game of the

commitment scheme as the corresponding three reductions given by Vaudenay for the V-

MA protocol. The only difference is that our reductions put a layer of encryption on the

messages sent by Pj , as is done in our protocol Enc-MCA. As in Vaudenay’s reductions,
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we extend the OW-ExA game so that the challenger, at the end of the game sends to the

attacker the decommitment d corresponding to the challenge commitment c. Since this hap-

pens after the attacker sends its R, the difficulty of the OW-ExA game remains the same.

However, if the BC reduction gets the decommitment d from the OW-ExA challenger, the

reduction can complete the view of the protocol to A, which makes it easier (esp. in case

of BC [4]) to compare the probability of A’s success with the probability of success of BC .

For completeness, we show these three sub-cases of the reduction to an OW-ExA

attack in Appendix E. The fourth case BC [4] is also shown in Appendix E, Figure E.4.

However, the procedure BC [4] actually follows exactly the same protocol as procedure BC [2],

which means that in the case of the interleaving pattern II, reduction BC proceeds in the

same way regardless whether A modifies message (mi, PKi) or not. By inspection of the

figures, note that each of these sub-cases of the BC reduction at first follows the same

protocol with the OW-ExA challenger, and that BC can decide which path to follow, namely

whether to switch to sub-algorithm BC [1,2,4] or BC [3], based on the first message it receives

from A. In this case, BC switches to BC [3] if A first sends message êj , and otherwise BC

follows BC [1,2,4]. Similarly, in the latter case, BC switches to either BC [1] or BC [2,4] based

on A’s next response. Therefore the four pictures represent not different algorithms BC [1-4]

but just four sub-cases of a single algorithm BC .

By inspection of Figure E.1, note that BC [1] wins in the OW-ExA game in the case

of event NSM∧ Int[1]. Note that an extraction of ĉi is allowed because (m̂i, ˆPKi) is different

from tag (mi, PKi) used in commitment ci. Similarly, by inspection of Figures E.2 and

E.4, note that BC [2] and BC [4] win the OW-ExA game in the case of events NSM ∧ Int[2]

and SM ∧ Int[2], respectively. Consequently, BC wins in any of these cases as well. The

case of BC [3] is slightly different: Here the probability that A wins is actually at most 2−k

unconditionally, as long the commitment scheme is perfectly binding. Note that BC [3] has

the same 2−k probability of winning in this case because it just returns a randomly chosen R

to the challenger. Since event Case1 implies one of these four cases, and we have that BC wins

in cases (NSM∧ Int[1])∨ Int[2], while in the remaining case Int[3]∧ ((m̂i, ˆPKi) 6= (mi, PKi))

the probability that BC is greater or equal to the probability that A wins (given that

this case happens), it follows that the probability that BC wins is at least the probability

Pr[Case1], as required.

The construction of BE [1] is depicted in Figure 4.4 (BE [2] follows similarly). The

construction works as follows. Receive the public key PK of the challenger. Then, on
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receiving mi, mj from A, pick Ri ∈ {0, 1}k, compute (ci, di) ← commit((mi, PK), Ri) and

forward (mi, PK, ci) to A. Send mj to the challenger and forward the received ciphertext

ej = EncPK(mj , Rj) (where Rj is a random k-bit string picked by the challenger) to A.

When A sends êj = EncPK(m̂j , R̂j), query it to the decryption oracle to obtain the plaintext

(m̂j , R̂j). Note that since m̂j differs from mj , êj must also differ from ej , and therefore the

query to the decryption oracle is allowed. If A wins, then Rj must equal R̂j ⊕ R̂i ⊕ Ri,

which BE sends to the challenger to win the challenger game. The same holds in the case

of the BE [2] reduction.

A BE [1] OW-R-CCA

Challenger

PKi
oo Pick (SKi, PKi)

mi,mj
// Pick Ri

mi,PKi,ci
oo (ci, di)←

commit((mi, K), Ri)
mi,PKi,ĉi

//
mj

//

ej
oo

ej=EncPK(mj ,Rj)
oo pick Rj

êj=EncPK(m̂j ,R̂j)
//

êj
// (m̂j , R̂j)←

DecSK(êj)

di , SASi=Ri⊕R̂j
oo

m̂j ,R̂j
oo

d̂i
// R̂i ←

Rj=R̂j⊕R̂i⊕Ri
//

open((mi, PK), ĉi, d̂i)

Figure 4.4: Construction of BE [1] ((mi, PKi) = (m̂i, ˆPKi), interleaving case I)

4.4.2 Multi-party/ Multi-Session Setting

The basic two-party message authentication protocol Enc-MCA can be extended

to the multi-party/multi-session setting which is the real setting in which such protocols

should operate. The Enc-mMCA protocol is depicted in Figure 4.5. The multi-party/multi-

session protocol is the same as the two-party, single-session protocol of Figure 4.2, but the

parties run the Enc-MCA protocol on pairs (m, s), where m is the original message to be
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authenticated and s is the session identifier. Moreover, all protocol messages (except the

ones on the SAS channels) should include s in the cleartext. Recall that a session identifier

between parties Pi and Pj can be agreed upon by exchanging random long-enough values

si and sj , respectively, and setting s = (si, sj), which guarantees, except of negligible

probability, that s is locally unique to both Pi and Pj .

We do not want to include the session identifiers in the SAS messages because

we want to keep the bandwidth on the SAS channel as low as possible. However, this

means that there is no way for the two parties Pi, Pj to differentiate among several SAS

messages sent on different sessions between Pi and Pj . Therefore, if many instances of the

protocol are run concurrently by the same pair Pi, Pj , then Pi will keep a set SASji of

all the SAS messages sent by Pj to Pi within some time window, and Pi will accept in

session s of the Enc-mMCA protocol if value Ri
(s) ⊕ Rj

(s) that it computes at the end of

this protocol instance matches some value in SASji. Similarly, Pj accepts in session s if the

value Ri
(s) ⊕ Rj

(s) it computes at the end of this protocol instance matches some value in

SASij .

Pi(SKi, PKi, m
(s)
i , s) Pj(m

(s)
j , s)

Run Enc-MCA of Figure 4.2 as initiator Run Enc-MCA of Figure 4.2 as responder

on input (SKi, PKi, (s, m
(s)
i )) on input ((s, m

(s)
j ))

Figure 4.5: Enc-mMCA: Encryption-based SAS-MCA (multi-party, multi-session setting)

Theorem 2 (Security of Encryption-based SAS-MCA (multi-player, multi-session

setting)). If a (n, R, R̄)-attacker against the protocol bounded by a time T wins with

a probability p and if the commitment scheme is (TC , εC)-OW-ExA and the encryption

scheme is (TE , εE)-OW-R-CCA, then p ≤ nRR̄2−k+1 + max(2nRR̄εC , 2nRR̄εE) or T ≥
min(TC , TE)− µ, for a small constant µ.

We show the proof in Appendix D.

68



4.5 Encryption-based SAS Authenticated Key Agreement Pro-

tocol SAS-AKA

We show the protocol in Figure 4.6 and call it Enc-AKA. The protocol is based

on the SAS-MCA protocol of Figure 4.5. It runs on input of the session identifier, and on

successful termination outputs the same key on both sides. SASji and SASij denote the

set of all SAS messages transmitted from Pj to Pi and from Pi to Pj , respectively.

Pi(SKi, PKi, s) Pj(s)

Run Enc-mMCA as initiator on input Pick K(s) ∈ {0, 1}l
(SKi, PKi,⊥, s) Run Enc-mMCA as responder on input

(K(s), s)

Figure 4.6: Enc-AKA: Encryption-based SAS-AKA

Theorem 3 (Security of Encryption-based SAS-AKA). If a (n, R, R̄)-attacker bounded

by time T has advantage ε in a game against the SAS-AKA protocol, and if the commit-

ment scheme is (TC , εC)-OW-ExA and the encryption scheme is (TE , εE)-OW-R-CCA, then

ε ≤ nRR̄2−k+1 + max(2nRR̄εC , 2nRR̄εE) or T ≥ min(TC , TE)−µ, for a small constant µ.

Proof. (Sketch) We show that if there exists a (n, R, R̄)-adversary A which can attack

the proposed protocol in time T ≥ min(TC , TE) − µ with probability p better than 1/2 +

nRR̄2−k+1 + max(2nRR̄εC , 2nRR̄εE), then there exists an adversary BC which can win

the hiding game in case of OW-ExA commitments with a probability better than 2−k + εC

or there exists an adversary BE which can win the OW-R-CCA challenger game of the

encryption scheme with a probability significantly better than 2−k + εE .

A succeeds if it can find a pair of players Pi (initiator) and Pj (responder) both

running sessions with same id s, and can distinguish the session key computed by either of

them, from random. We’ll consider the case where A tests the initiator and the case when

A tests the responder separately below.

Both reduction algorithms, BC and BE start by guessing some session initialized

as (Pi, init, Pj , s) (there are at most nR/2 of these). We’ll call this a (Pi, s) session, but

this choice determines Pj . Both reductions also pick one session at random among all
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sessions of the form (Pj , resp, Pi, s
′), for the above Pi, Pj pair (that’s additional R̄ guesses).

Additionally, each reduction guesses whether it’s (Pi, s) or (Pj , s
′) that will be tested. If

A tests some other session than the one guessed by BC or BE , either reduction outputs

a random bit. Therefore, as in the reduction of MCA protocol security, Theorem 2, the

success probability of this reduction deteriorates by a factor of nRR̄. In either case (initiator

or responder) considered below, the reduction considers two sub-cases, and if it guesses

which sub-case it is prepared to handle, this results in additional factor of 2 in the security

degradation, thus leading to the p ≤ 1/2 + 2nRR̄ ∗ [2−k + max(εC , εE)] bound on p.

1. We first argue that A cannot make the initiator Pi accept a key K̂(s) different from

K(s) picked by Pj on the session s. This is because the success of A in doing so is

clearly equivalent to an attack against Pj to Pi direction of the Enc-mMCA protocol

shown in Figure 4.5 and follows directly from the reductions BC [1], BC [2], BC [3], BC [4],

BE [1] and BE [2] shown in the proof Theorem 2. Note that these reductions will also

need to simulate the responses to the “reveal” queries issued by A. In the first four

reductions, our algorithm is able to perfectly simulate them by responding with the

session keys that it simply picks itself or it obtains by following the protocol. While

in the last two reductions, to answer the reveal queries corresponding to sessions of

the initiator Pi, the reduction makes use of the CCA decryption oracle; for any other

session, where Pi is not an initiator, “revelation” of keys is done by following the

protocol.

From the above argument, it follows that Pi must output the same key K(s) which was

picked by Pj on session s. If A now succeeds in distinguishing this key from random,

we reduce it to an attacker CE against the IND-CCA game of the encryption scheme,

as shown in Figure 4.7. The simulation and “revelation” of keys of the sessions other

than the “tested” one, other than the ones corresponding to Pi and the ones where Pi

is not an initiator, are done by following the protocol. While to simulate and answer

the “reveal” queries corresponding to sessions of the initiator Pi, the reduction makes

use of the CCA decryption oracle.

2. Consider the case when A attacks the responder Pj by succeeding in sending a public

key ˆPKi different from PKi. In this case, we reduce A to an attack BC which executes

sub-algorithms BC [1], BC [2] and BC [3], based on the message interleaving patterns.

This follows directly from the constructions BC [1], BC [2] and BC [3], of the proof of the
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Theorem 2. Note that on any session except the tested session, the reduction simply

follows the protocol and is therefore able to respond to the “reveal” queries by A with

the session keys that it outputs.

Now, consider the case when A attacks the responder Pi, but sets PKi = ˆPKi. In

this case, we reduce A to a CCA attacker similarly as shown in Figure 4.7 and as we

argued above for the case of A attacking the initiator.

A CE IND-CCA
Challenger

PK
oo Pick

(SK, PK)
(Pi,init,Pj ,s),(Pj ,resp,Pi,s)

//

s,PK,c
(s)
i

oo Pick R
(s)
i

(c
(s)
i , d

(s)
i )←

commit((s, m
(s)
i , PKi),

R
(s)
i )

s,PK,ĉi
(s)

// Pick R
(s)
j

Pick K0, K1 ∈ {0, 1}l
(s,K0,R

(s)
j ),(s,K1,R

(s)
j )

//

s,ej
oo

ej=EncPK(s,Kb,R
(s)
j )

oo Pick
b ∈ {0, 1}

s,êj=EncPK(s,Kb,R̂j
(s)

)
//

s,d
(s)
i

oo

s′,d̂i
(s′)

//

Test(Pi,s,Pj)
//

K0,K1
oo

b
//

b
//

Figure 4.7: Construction of CE from A for interleaving case I
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4.6 Implications on the Bandwidth of the SAS Channel

From our security analysis of the SAS-MCA and SAS-AKA protocols it follows

that the bandwidth k needed on the SAS channel should be log2(2nRR̄/p), where p is the

desired upper bound on the attack probability. Since R̄ ≤ R, we have k ≥ log2(2nR2/p).

In contrast, based on the analysis presented in [Vau05] (Lemma 6), k ≥ log2(n2R2/4p).

Therefore, for n ≥ 8, we require log2(n) − 3 bits fewer on the SAS channel than that

in prior proposals. Using the same numbers for the parameters as in [Vau05], i.e., n =

220, R = 210, p = 2−10, we need only 51-bits on the SAS channel, while [Vau05] needs

68-bits. Similarly, if we consider an attack against a target verifier node, i.e., when the

attacked player is fixed, k ≥ log2(2RR̄/p) ≥ log2(2R2/p) for us, while k ≥ log2(nR2/p)

from the analysis in [Vau05].
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Part II

Multi-Party Setting
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Chapter 5

Background on Threshold

Cryptography

5.1 Introduction

In many scenarios, there exists a group authority that can be trusted to manage

the group security. Typical responsibilities include access control, logging of traffic and

usage, and key management. However, basing the security of the entire group on a single

entity makes the system more vulnerable. Thus, it is beneficial, in general, to distribute

the security tasks as much as possible.

The idea of distributing a cryptosystem so as to secure it against corruption of some

threshold, e.g. a minority, of participating players is known as threshold cryptography. It was

introduced in the proposals of Desmedt [Des87], Boyd [Boy89], Croft and Harris [CH89],

and Desmedt and Frankel [DF90]. Threshold cryptography offers better fault tolerance

than a centrally managed system : even if some entities are unavailable or compromised,

others can still perform the task (see Figure 5.1). Threshold cryptography also offers better

security since no single entity is trusted to perform a critical task in its entirety.

Definition 5.1 (Threshold Secret Sharing). Let t, n be positive integers where t < n.

A (t + 1, n)-threshold secret sharing is a method for sharing a secret value x among a

set of n entities, in such a way that any t + 1 entities can reconstruct the value of x, but no

group of t or fewer entities can do so.

Digital Signatures is a common cryptographic operation that can be distributed
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Figure 5.1: Concept of Threshold Cryptography

using threshold cryptography.

Definition 5.2 (Threshold Signature Scheme). Let S=(KeyGen, Sig, Ver) be a sig-

nature scheme. A (t + 1, n)-threshold signature scheme T S for S is a set of protocols

TS-KeyGen, TS-Sig,TS-Ver for the set of n entities, where the followings are satisfied:

1. TS-KeyGen is the threshold key generation algorithm such that public/private key pairs

(y, x) are generated as if they were produced by the KeyGen algorithm of the regular

signature scheme S, but the private key x is shared using a (t + 1, n)-threshold secret

sharing scheme.

2. TS-Sig is the distributed signing algorithm that allows any t + 1 entities to collectively

generate a valid signature as if it was produced by KeyGen algorithm for S, but prevents

(t) or fewer entities can to do so. The verification algorithm is, therefore, the same

as in the regular signature scheme S.

The security of a threshold scheme is defined as follows.

Definition 5.3 (t-security and t-robustness). A (t + 1, n)-threshold schemes (i.e., both

threshold secret sharing and threshold signature) are said to be t-secure if any coalition

of at most t corrupt entities is unable to reconstruct the secret (or forge a valid signature)

and t-robust if honest entities can efficiently reconstruct the secret (or produce a signature)

even in the presence of at most t malicious/corrupted entities.

In threshold schemes, an adversary needs to compromise t + 1 entities in order to

expose the secret. Gradual break-ins into t + 1 entities over a long period of time might be
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possible since the secret shares that have been distributed remain unchanged. Therefore,

traditional threshold secret sharing is not sufficient for long-lived secrets. This prompts

the need to refresh individual secret shares, periodically, without changing the existing

group secret. To this end, proactive threshold secret sharing schemes [OY91, HJKY95] are

necessary to update individual secret shares under such constraints.

In the proactive cryptographic schemes, time is divided into time periods, called

update rounds, which are determined by the common global clock (e.g., a day, a week, etc.).

During an update round, the adversary can corrupt at most t entities. We now introduce

some definitions [HJKY95] related to proactive threshold schemes.

Definition 5.4. A static adversary is an active adversary that corrupts at most t entities

in the entire lifetime of the system. A mobile adversary is an active adversary that

corrupts a potentially new set of up to t entities in each update round.

Definition 5.5. A proactive (t+1, n)-threshold signature scheme, based on techniques

of proactive secret sharing, is a (t+1, n)-threshold signature scheme which remains t-secure

and t-robust even in the presence of mobile adversaries.

A proactive threshold signature scheme is achieved by the entities periodically

updating their sharing of the secret signature key via a distributed share update protocol.

Such an update protocol destroys the correlation between secret shares learned by corrupted

entities in different time periods, so that the scheme can tolerate any number of corruptions

throughout its lifetime as long as the number of simultaneously corrupted entities in any

single time period does not exceed t.

5.2 Threshold Secret Sharing

In this section, we present Shamir’s secret sharing scheme [Sha79] which is based

on polynomial interpolation and is information theoretically secure. We will refer to it as

TSS. To distribute shares of a secret x among n entities, a trusted dealer TD chooses a

polynomial f(z) over Zq of degree (t):

f(z) =
t
∑

i=0

aiz
i (mod q) (5.1)
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where the constant term a0 is set to the group secret x; f(0) = a0 = x. TD computes each

entity’s share xi such that xi = f(idi), where idi is an identifier of entity Pi, and securely

transfers xi to Pi.

Then, any group1 of t + 1 entities who have their shares can recover the secret

using the Lagrange interpolation formula:

f(z) =
t+1
∑

i=1

xi λi(z) (mod q),

where λi(z) =

t+1
∏

j=1,j 6=i

z − idj

idi − idj
(mod q)

(5.2)

Since f(0) = x, the shared secret may be expressed as:

x = f(0) =

t+1
∑

i=1

xi λi(0) (mod q) (5.3)

Thus, the secret x can be recovered only if at least t + 1 shares are combined. In

other words, no coalition of less than t + 1 entities yields any information about x.

5.3 Verifiable Secret Sharing

Feldman’s Verifiable Secret Sharing (VSS). If we suppose that some entities can

become malicious or compromised by an adversary, they may attempt to “cheat” by using

incorrect secret shares in order to deny/disrupt the service. To remedy the situation, a more

advanced technique, Verifiable Secret Sharing due to Feldman [Fel87], denoted by VSS, can

be used. It basically provides a means to detect incorrect secret shares.

To be more specific, VSS setup involves two large primes p and q, and an element

g ∈ Z
∗
p chosen in a way that q divides p − 1 and g is an element of Z

∗
p which has order q.

The procedure for the TD to distribute the shares is the same as in Section 5.2. VSS is

achieved by the following procedure:

1. Secret Sharing and Witness generation. The TD randomly selects a polynomial f(z) =
∑t

i=0 aiz
i (secret being shared is a0), computes secret shares xi = f(idi), and transfers

them to each entity securely. Also, TD chooses an element g ∈ Z
∗
p of order q, and

1W.l.o.g. and for the ease of description, we consider a group consisting of first t + 1 players.
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computes Wi, for i ∈ [0, t], called witness, such that Wi = gai . Then, TD publishes

these Wi-s in some public domain (e.g., a directory server) 2.

2. Share verification. When each entity Pi receives its share xi, it verifies xi by checking:

gxi
?
=

t
∏

j=0

[Wj ]
(idi)

j

(mod p). (5.4)

Feldman’s VSS is secure under the discrete logarithm assumption; an adversary

who statically corrupts at most t entities and learns the secret key in the protocol, can be

converted to compute a discrete logarithm.

Pedersen’s Verifiable Secret Sharing (Pedersen-VSS). An information theoretically

secure version of VSS was proposed by Pedersen based on Pedersen commitment scheme

[Ped91a] (we described this commitment scheme in Section 2.7). We denote this scheme by

Pedersen-VSS.

The scheme uses parameters p, q, and g as in VSS and an additional element h

in the subgroup of Z
∗
p generated by g. It is assumed that the adversary cannot compute

logg(h). Pedersen-VSS has the following procedures:

1. Secret Sharing and Witness generation. The TD randomly selects two polynomials

f(z) =
∑t

i=0 aiz
i and f ′(z) =

∑t
i=0 biz

i (secret being shared is a0). TD computes

secret shares xi = f(idi), x′
i = f ′(idi), and transfers them to each entity securely.

Also, TD broadcasts/publishes the witnesses Wi = gaihbi , for i = 0, 1, · · · , t.

2. Share verification. When each entity Pi receives its shares xi, x
′
i, it verifies them by

checking:

gxihx′
i

?
=

t
∏

j=0

[Wj ]
(idi)

j

(mod p). (5.5)

5.4 Distributed Key Generation

In certain decentralized applications, a TD can not be assumed, not even at the

time of initialization and secret sharing. In such applications, the entities in the system

2In case of Pedersen-DKG, where the group polynomial is jointly selected by the entities, this step is

carried out by each of the entities individually

78



themselves need to initialize the cryptosystem and generate its private and public keys.

This distributed initialization is referred to as distributed key generation.

A simple approach, due to Pederson [Ped91b] and denoted by Pedersen-DKG, is to

run n parallel instances of VSS such that in each instance, each party Pi behaves as dealer

to distribute shares of its secret ai0. The private key x is set to be the sum of ai0 values,

and the corresponding public key y = gx becomes the product of gai0 values broadcast by

entities during VSS. Note that the private key x is not known to any entity taking part in

the protocol.

However, Pedersen-DKG is shown to be insecure [GJKR99b] – it does not guaran-

tee that in the presence of an adversary private key x remains uniformly distributed. In

other words, an adversary can manipulate the protocol execution in such a manner that x

does not turn out to be uniformly distributed. Refer to [GJKR99b] for details regarding

this insecurity of Pedersen-DKG. Note that in certain protocols that use distributed key

generation, e.g., threshold DSS signatures [GJKR96b], the distribution of the output key x

needs to be uniform.3

Next we present the distributed key generation protocol of [GJKR99b] that guar-

antees a uniform distribution for the output key and is secure under the discrete logarithm

assumption. We call it GJKR-DKG. The protocol consists of following steps.

1. Each Pi runs an instance of Pedersen-VSS to share its secret ai0. That is, Pi chooses

at random two polynomials fi(z), f ′
i(z) ∈ Zq of degree t such that fi(0) = ai0, where

ai0 is a random secret that Pi selects. Let fi(z) = ai0 +ai1z + · · ·+ai,tz
t (mod q) and

f ′
i(z) = bi0 + bi1z + · · ·+ bi,tz

t (mod q).

Pi broadcasts witnesses Wik = gai0hbi0 (mod p), computes each Pj ’s shares xij =

fi(idj) and x′
ij = f ′

i(idj) (j ∈ [1, n], j 6= i), and securely sends it to Pj .

2. Each Pj verifies each share that it received from other parties using the following

equation:

gxijhx′
ij

?
=

t
∏

k=0

[Wik](idj)
k

(mod p)

If the above verification fails, Pj broadcasts a complaint against Pj .

3On the other hand, some protocols can still be proven secure irrespective of the fact that the output

distribution is not uniform. As an example, refer to [GJKR03] for a variant of threshold Schnorr signature

scheme that remains secure when initialized with Pedersen-DKG.
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3. Each party Pi who received a complaint from party Pj , broadcasts the values xij and

x′
ij .

4. Each party marks as disqualified a party that either received at least t + 1 complaints

or answered a complaint with false values.

5. Each party builds a set Q consisting of all the players which were not disqualified

above. Each Pi sets its secret shares as xi =
∑

j∈Q xij and x′
i =

∑

j∈Q x′
ij . The

cryptosystem secret becomes x =
∑

i∈Q ai0, but it is not known to anyone.

6. Each qualified party Pi now broadcasts W ′
ik = gaik , for k = 0, 1, · · · , t.

7. Each party Pj verifies the values broadcast by other qualified party Pi as follows:

gxij
?
=

t
∏

k=0

[

W ′
ik

](idj)
k

(mod p)

If the verification fails, Pj launches a complaint against Pi and broadcasts value xij .

8. For each party Pi against whom at least one complaint was valid, any set of t + 1

parties reconstruct its corresponding secret ai0 and compute yi = gai0 (mod p); for

all others, yi = Wi0. Finally, each party computes the public key of the cryptosystem

y such that y =
∑

i∈Q yi. Note that y = gx (mod p).

5.5 Joint Zero Secret Sharing

This scheme, which appeared in [HJKY95], is a variant of distributed key genera-

tion where the generated key is zero. In other words, this scheme is the same as Pedersen-

DKG except that in first step, each entity picks a random t-degree polynomial fi(z) ∈ Zq

such that fi(0) = 0. We refer to it as a Joint Zero Secret Sharing, denoted by JZSS.

It is used in proactive secret sharing, as we describe next.

5.6 Proactive Share Update

In order to protect threshold sharing schemes against mobile adversaries, it is

required that the secret share holders run a proactive share update protocol [HJKY95],

80



denoted by PSU, in which the secret shares get re-randomized but the cryptosystem secret

remains the same. The basic technique for re-randomization is the JZSS described above.

As shown in [HJJ+97a], an appropriate proactive update protocol can be integrated

with a threshold signature scheme resulting in a proactive signature scheme.

The proactive update protocol proceeds as follows:

1. Every Pi chooses a random partial update polynomial δi(z) over Zq of degree t with

the constant term being zero as in the JZSS protocol. The sum of these partial update

polynomials defines the update polynomial:

δ(z) =
n
∑

i=1

δi(z) (mod q) (5.6)

Note that δ(0) = 0.

2. For each pair of entities (Pi, Pj), Pi gives a share δi(idj) of its partial update polyno-

mial to Pj . Each Pi computes then its new secret share s̃i as

x̃i = xi +
n
∑

j=1

δj(idi) = xi + δ(idi) (mod q) (5.7)

where xi is Pi’s existing share.

Note that all the information pertaining to this protocol except of the new share x̃i

is then erased.

3. Since xi = f(idi) for all Pi, the new secret-sharing polynomial f̃(z) such that f̃(idi) =

x̃i for all Pi is defined as

f̃(z) = f(z) + δ(z) (mod q) (5.8)

and therefore it is a random t-degree polynomial such that f̃(0) = f(0) = x.

The scheme can be made robust against active adversaries using Feldman’s VSS.

5.7 Distributed Share Generation

In certain applications, such as in dynamic ad hoc groups, one needs to add (in a

distributed manner) new entities to the group over a period of time. This can be achieved
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if the existing entities Pi (possessing secret share xi) in the group can generate the secret

share xn+1 for the new entity Pn+1 in a distributed manner. We call this Distributed Share

Generation, referring it to as DSG.

A naive solution to distributed share generation is that any set of t + 1 entities

simply provide their secret shares to Pn+1. Using these secret shares, Pn+1 can interpolate

the polynomial f(z) and thus compute its secret share xn+1 = f(idn+1). Clearly, this

solution is insecure as Pn+1 is exposed to not only the secret shares of other entities but

also the secret sharing polynomial and thus the cryptosystem secret.

We now present a secure protocol for distributed share generation. Its variant

appeared in [HJKY95]. This protocol is executed between the new entity Pn+1 and existing

entities Pi, for i = 1, 2, · · · , n. The protocol starts by Pn+1 sending a “join-request” to

the group. A set of m (t + 1 ≤ m ≤ n) entities respond with a message containing their

identifiers. Pn+1 chooses a set of t + 1 out of m entities that responded, forms a “sponsors

list” SL consisting of corresponding identifiers, and sends it to each one of them. For

simplicity and w.l.o.g., let us assume that SL = 0, 1, · · · , t. Rest of the protocol involves

following steps.4

1. All of the t + 1 sponsors perform the JZSS, as in Section 5.5, by setting the con-

stant term of their respective polynomials to zero. Also, the witness values of the

polynomials are broadcast to enable VSS.

2. At the end of JZSS, every Pj ∈ SL possesses a random share Rj of the shared secret

zero.

3. Now, Pj provides the shuffled partial secret share (over a secure channel) x̃
(j)
n+1 for

Pn+1:

x̃
(j)
n+1 = xjλj(idn+1) + Rjλj(0) (mod q) (5.9)

4. Pn+1 adds up the partial secret shares x̃
(j)
n+1 to obtain its secret share xn+1. Note that

∑t
j=0 xjλj(idn+1) = f(idn+1),

∑t
j=1 Rjλj(0) = 0, and thus xn+1 =

∑t
j=0 x̃

(j)
n+1.

The idea of VSS can be easily extended to verify correctness of partial shares that

Pn+1 receives from sponsors. Since x̃
(j)
n+1 = xjλj(idn+1) + Rjλj(0), as described above, to

4The messages in Steps 1 and 2 can be routed via the new node Pn+1, as was proposed in [LL00]. This

avoids any direct communication among the t + 1 sponsors, however, at the cost of Pn+1 becoming the

bottleneck.
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check if x̃
(j)
n+1 is correctly computed and trace which of the Pj-s sent back false values, if

any, following equation is verified:

gx̃
(j)
n+1

?
=

[

t
∏

k=0

(Wk)idj
k

]λj(idn+1)

gRjλj(0) (mod p) (5.10)

Here, gRj is computed using the broadcast witness values of the shared polynomial

among the sponsors.

As outlined in [HJKY95], the above DSG protocol remains secure under the discrete

logarithm assumption; an adversary (acting on behalf of the new entity Pn+1) who corrupts

at most t entities in the group and learns the secret key from the execution of the protocol,

can be converted to solve the discrete logarithm problem.
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Chapter 6

Distributed Signatures

In this chapter, we focus upon RSA-based distributed (threshold/proactive) signa-

tures. We first present an efficient attack on a recently proposed proactive RSA

scheme [LKZ+04], in which an admissible threshold of malicious group members

can completely recover the group RSA secret key in the course of the lifetime of

this scheme. We then carry on to construct a new (provably secure) proactive RSA

scheme based on a corrected use of the scheme of [LKZ+04]. The new scheme offers

a simpler alternative to the best previously known proactive RSA scheme given by Tal

Rabin, and is applicable to build online certification, revocation and timestamping

services.

6.1 Introduction: Background and Motivation

Threshold Cryptography, Threshold and Proactive Signature Schemes. Recall

that the idea of distributing a cryptosystem so as to secure it against corruption of some

threshold, e.g. a minority, of participating players is known as threshold cryptography. It was

introduced in the proposals of Desmedt [Des87], Boyd [Boy89], Croft and Harris [CH89],

and Desmedt and Frankel [DF90], which were based on Shamir’s polynomial secret-sharing

technique [Sha79].

A (t + 1, n) threshold signature scheme [DF90] enables any subgroup of t + 1

members in a group consisting of n > t members, to collaboratively sign a message on
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behalf of that group. This is achieved by secret-sharing the signature key, e.g. the RSA

secret key, among the group members, and allowing them to compute a signature on some

message via a distributed protocol in which the members use the shares of the signature

key instead of the key itself. The scheme is said to be t-secure if any coalition of at most t

corrupt members is unable to forge a valid threshold signature on any message which honest

members would not sign, and t-robust if honest group members can efficiently produce a

valid signature even in the presence of at most t malicious members. To achieve t-security,

a threshold signature scheme must in particular protect the secrecy of the signature key as

long as no more than t of the group members are corrupt.

A proactive signature scheme [HJJ+97a], based on techniques of proactive secret

sharing [OY91, HJKY95], is a threshold signature scheme which remains secure and robust

even if in every time period, called “share update interval”, a possibly different set of

t group members is corrupted. This is achieved by the members periodically updating

their shares of the secret signature key via a distributed share update protocol. Such an

update protocol should destroy the correlation between secret shares learned by corrupted

members in different time periods, so that the scheme can tolerate any number of corruptions

throughout its lifetime as long as in any single time period the number of simultaneously

corrupted members does not exceed t. A proactive signature scheme offers stronger security

guarantee then a threshold scheme, especially in an application which might come under

repeated attacks, like a certification authority or a timestamping service. Moreover, a

proactive scheme offers more secure management of a system whose size and make-up need

to change throughout its lifetime. Efficiency of the distributed signature protocol involved in

a proactive signature scheme is very important in some applications, like in a timestamping

service, or in the decentralized control of peer-to-peer groups, ad-hoc groups, or sensor

networks [KZL+01, STY03]. An efficient proactive scheme for RSA signatures is especially

important because RSA signatures are widely used in practice, and because verification of

RSA signatures is several orders of magnitude faster than verification of other signatures.

Prior Work on Threshold and Proactive RSA. While the work of Herzberg et al.

[HJKY95, HJJ+97b] and Gennaro et al. [GJKR96b, GJKR99b] quickly yielded efficient

secure proactive signature schemes for discrete-log based schemes like Schnorr [Sch91] or

DSS [NIS91] signatures, the work on secure proactive RSA schemes progressed more slowly,

and the initial threshold RSA scheme of Desmedt and Frankel [DF90] was robust only

85



against crashes and not malicious faults, and had only heuristic security. The difficulty

in adopting Shamir’s polynomial secret-sharing technique to threshold RSA was caused by

the fact that the RSA private key d is an element of a group Zφ(N), where φ(N) needs

to remain hidden from all players because it allows immediate computation of the private

key d from the RSA public exponent e. This difficulty was overcome by the schemes of

Frankel et al. [FD92, DDFY94] which provided a proof of security but used secret shares

which were elements of a polynomial extension field of Zn, which increased the cost of

the signature operation by a factor of at least t. These schemes were then extended to

provide robustness against malicious faults by [FGY96, GJKR96a]. Subsequently, Victor

Shoup [Sho00] presented a threshold RSA signature scheme which was robust and provably

secure with optimal adversarial threshold t < n/2, and which did away with the extension

field representation of the shares, thus making the cost of the signature operation for each

participating player comparable to the standard RSA signature generation.

Proactive RSA scheme is a harder problem because it requires the players to re-

share the private key d in each update round even if no single player is allowed to know the

secret modulus φ(N). The first proactive RSA scheme of Frankel et al. [FGMY97b] solved

this problem using additive secret sharing over integers in conjunction with combinatorial

techniques which divide the group of n players into two levels of families and sub-families.

However, the resulting proactive protocol did not achieve optimal adversarial threshold

t < n/2 and did not scale well with the group size n. These shortcomings were later

overcome by the same authors [FGMY97a], who showed that the RSA private key d can

be shared over integers using polynomials with specially chosen large integer coefficients

that simultaneously allowed interpolation without knowing φ(N) and unpredictability of

the value d given any t polynomial shares. In this solution, even though the underlying

secret sharing was polynomial, the players need to create a one-time additive sharing for

every group of players participating in threshold signature generation. A simpler and more

efficient proactive RSA scheme was then given by Tal Rabin [Rab98]. Her solution also

used sharing of the private key over integers, and employed shares of size about twice the

length of the private key. The new idea was that the secret d was shared additively among

the players, every share was backed-up by a secondary level of polynomial secret sharing,

and the proactive update consisted of shuffling and re-sharing of the additive shares.

Limitations and Open Problems in Proactive RSA. The proactive RSA schemes of
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[FGMY97b, FGMY97a, Rab98] leave at least two important problems unaddressed. While

the new proactive RSA scheme we present in this chapter does not solve these problems

either, the techniques we present might help solve these problems in the future. The first

problem is that of handling adaptive rather than static adversaries. The static adversary

model assumes that the adversary decides which player to corrupt obliviously to the execu-

tion of the protocol, while the adaptive model allows the adversary to decide which player to

corrupt based on his view of the protocol execution. This difference in the adversarial model

is not known to be crucial for the security of the above protocols in practice. However, the

above protocols are not known to be adaptively secure, while the known adaptively secure

RSA schemes [FMY99a, CGJ+99, FMY99b, FMY01] are significantly less efficient.

The second problem is that of requiring some form of additive rather than poly-

nomial secret-sharing. The additive sharing implies that the shares of all temporarily un-

available players need to be reconstructed by the active players that participate in the

signature generation protocol. This hurts both the efficiency and the resilience of a scheme

in applications where one player might be temporarily unavailable to another without an

actual corruption by the adversary. Since the threshold (but not proactive) RSA signature

schemes discussed above do not resort to additive sharing, this is a disadvantage of the cur-

rently known proactive RSA schemes. COCA (a distributed on-line certification authority)

[ZSvR02] employs a modified version of Rabin’s RSA scheme which overcomes this problem

of availability.1 However, this scheme, which is based on combinatorial secret sharing as

opposed to the additive sharing of Rabin, is applicable only for small groups, because in

large groups the number of combinations (n
t ) becomes intractable.

Insecurity of the Proactive RSA Scheme Proposed in the URSA Ad Hoc Net-

work Access Control Protocol. In an effort to mitigate the aforementioned (second)

problem of the known proactive RSA signatures, Luo, et al. proposed a new proactive RSA

scheme, geared to wards providing a security service, called “URSA”, in mobile ad hoc

1COCA signing example: for (2, 4) signing, the secret d is split in shares s1, s2, s3, s4 corresponding

to l = (n
t ) =

`

4
1

´

= 4 sets, P1 = {p1}, P2 = {p2}, P3 = {p3}, P4 = {p4}. Each player pi gets a share

corresponding to the set it does not belong to. So, p1 gets {s2, s3, s4}; p2 gets {s1, s3, s4}; p3 gets {s1, s2, s4}
and p4 gets {s1, s2, s3}. The shares si-s ∈ [−lN2, lN2] as in Rabin’s, where N denotes the RSA modulus.

In order to sign, every player creates a signature using all the secret shares it possesses. So, p1’s signature is

ms2 (mod N), ms3 (mod N), ms4 (mod N) and so on for other players. Now the signatures from any two

players can be accumulated, which will yield the RSA signature md (mod N).
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networks. The original description of this proactive RSA scheme and the URSA application

can be found in [LL00]. Subsequently both the proactive RSA scheme and URSA were de-

scribed in [KZL+01, KLX+02, LZK+02], and most recently in a journal version [LKZ+04].

The URSA proactive RSA scheme can be applicable to MANETs because it avoids the

need to access all shares during the threshold signature protocol. This is because it relies

solely on Shamir’s polynomial secret sharing scheme [Sha79], as opposed to resorting to an

additional layer of additive secret sharing, as is done by the two most efficient provably

secure proactive RSA schemes [FGMY97a, Rab98] discussed above. The core of the URSA

proactive RSA scheme is the so-called t-bounded offsetting algorithm which is used to recon-

struct the RSA signature md (mod N) from t + 1 partial signatures produced individually

by the t + 1 members participating in the signing protocol.

The first problem with this scheme was pointed out in [NTY03]. Namely, contrary

to what the authors of the proposal claimed, their scheme does not provide robustness

in signature generation in the presence of t malicious members. Simply speaking, the

robustness mechanisms proposed by the authors are faulty because they require certain

verification equations to hold even though they in fact do not hold, because the equations

involve computation in two different groups (see [NTY03] for more details). Hence, the set

of t malicious members can prevent the honest members from efficiently creating a valid

signature. However, this robustness problem in the t-bounded proactive RSA scheme can be

solved, if the secret sharing is performed over a large prime number, instead over the RSA

modulus N of the original proposal, coupled with special-purpose zero-knowledge proof

protocols for proving equality of discrete logarithms in two different groups [CM99b] and

range of a discrete logarithm [Bou00]. Such proof protocols are not very fast, but their

expense can be tolerated because they would need to be executed only in the (rare) case of

a corrupted member providing an incorrect partial signature to other members.2

Since the t-robustness of this scheme can be ensured by the above modifica-

tions, there remains a question if the (modified) URSA proactive RSA scheme is secure

against a coalition of corrupt t members3 whose goal is not to prevent members from is-

2This will be a rare occurrence because a malicious member behaving in such a manner would be detected

by the honest players, and therefore would be subsequently revoked from the group.
3In the standard (t + 1, n) threshold cryptographic model, any set of t + 1 out of a total of n members

share the ability to perform a cryptographic operation (e.g., signing) in the presence of atmost t corruptions.

All the earlier versions of the URSA papers [LL00, KZL+01, KLX+02, LZK+02] work in this standard

model. However, the latest journal version [LKZ+04] (without any stated reasoning whatsoever) employs a
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suing signatures but to learn the secret-shared RSA signature key and to be thus able

to forge signatures on the group’s behalf. The question is interesting because the pro-

posed URSA proactive RSA scheme, amended as described above, would provide efficiency

and functionality advantages over the best known provably secure proactive RSA schemes

[FGMY97b, FGMY97a, Rab98]. However, the answer turns out to be negative.4

Our Contributions: Explicit Attack on the Proactive RSA Scheme in the URSA

Protocol and a New Simpler Proactive RSA. We make a two-fold contribution in this

chapter of the thesis.

1. We demonstrate the insecurity of the URSA proactive RSA signature scheme by con-

structing an explicit attack in which the admissible group of t corrupted members

colludes in the proactive protocol in such a way so that they reconstruct the whole

RSA secret key d after a realistic number of runs of the proactive update protocol and

the threshold signature protocol.

Our attack exploits the fact that the t-bounded offsetting threshold RSA signature

protocol, which is employed in the URSA proactive RSA scheme, leaks certain seem-

ingly innocuous information about the secret signature key. The information that the

adversary learns about the secret key in a run of the signature protocol depends on

the current sharing of the secret key and on which group of members participates in

the protocol. While it is not clear how dangerous this released information is for a

single secret sharing, in a proactive signature scheme the secret sharing is refreshed

with every proactive update, and therefore the released information about the secret

key can be different in each update interval. It turns out that the corrupted members

can influence an execution of the update protocol in such a way that the executions of

the signature protocol during the subsequent update interval will release information

which is both new and correlated with the information the adversary has gained so

far. Thus our attack can be seen as a simple search algorithm, where the information

learned in a signature protocol tells the adversary which branch to pick next, and the

slightly modified and a non-standard model, wherein any t + 1 members share the signing operation, but

only a maximum of t − 1 corruptions are allowed. The attack we describe in this chapter is based on the

standard model. However, as we discuss later in Section 6.4, the URSA schemes appears insecure even in

the non-standard model.
4In particular, although Luo, et al. claim that their scheme is provably secure, the security proofs that

appear in [LL00] are incorrect.
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proactive update protocol allows the adversary to pick that branch.

The attack poses a realistic threat. For example, for the threshold size t = 7 and for the

RSA public key of e = 65537 (utilized in the implementation of URSA [KZL+01]) and

1024-bit RSA modulus N , our attack needs 163 executions of the proactive update

protocol and 1148 runs of the signature protocol to succeed. The attack succeeds

assuming that throughout these 163 update periods, the t corrupted players belong

to the so-called “update group” of players which play an active role in the proactive

update protocol.

However, the URSA proactive RSA protocol is more vulnerable than what is imme-

diately implied by the above attack. First, our attack does not make use of all the

information leaked in the signature protocol, thus it is quite possible that another

attack, which does utilize all the available information succeeds in recovering the pri-

vate RSA key even faster and/or succeeds in recovering the key even if, say, only a

smaller subset of the special “update group” of players is corrupted. Moreover, even

if the attack we describe is slowed down, for example by slowing down the rate of

the proactive updates, it recovers 512 + (r − logt+1(e)) ∗ log2(t + 1) most significant

bits of d after r > logt+1(e) update rounds, which gives 512 + 3(r − 5) MSB bits of

d for the above e = 65537 and t = 7. Therefore our attack raises doubts about the

security of the URSA proactive RSA scheme even for smaller number of rounds. It is

hard to say much about the security of this protocol, for example after r = 34 rounds,

because while it is not currently known how to recover the whole RSA key knowing

600 of the MSBs of d, we also do not know any arguments that RSA remains secure

with this side information about d revealed, and it would be rather surprising if such

arguments existed.

2. Based on the corrected use of a technique discovered by the authors of the URSA

scheme, we present a new robust and provably secure optimal-threshold proactive

RSA scheme. Our scheme is known to be secure only in the static model, and it

employs top-level additive sharing similarly as the Rabin’s scheme [Rab98], but it is

interesting for the following reasons: (1) It is simpler than the previous schemes; (2)

It offers factor of 2 improvement in share size and signature protocol efficiency for

general RSA public keys, and factor of 4 improvement for the common case of public

exponents like 3, 17, or 65537, over the most efficient previously known proactive
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RSA scheme [Rab98] as originally analyzed by [Rab98]; (3) The new scheme led us

to a tighter security analysis of the [Rab98] scheme, which resulted in similar, up

to a logarithmic factor, efficiency improvements for the [Rab98] scheme; (4) The new

scheme offers an interesting case of a technique, invented by Lu and Luo [LL00], which

makes a distributed protocol run faster but leaks some partial information about the

shared secret. This partial information leakage led to an efficient key-recovery attack

[JSY04] on the original scheme of [LL00]. Yet, with some fixes, this partial information

leakage can be provably neutralized and the same technique results in a provably

secure scheme presented here; (5) Finally, our scheme offers new techniques which

could aid in overcoming the two problems that still haunt proactive RSA solutions,

namely achieving efficient adaptive security and the removal of additive sharing.

However, it is important to note that because of the additive sharing, while the new

scheme is applicable to on-line certification authorities (such as COCA [ZSvR02]) or

on-line time-stamping services, the scheme is not applicable to group access control for

groups like MANETs, on-line peer-to-peer groups, sensor nets, etc. Thus the efficient

provably secure proactive RSA signature which would avoid additive sharing and be

applicable in such contexts, remains an open problem.

Organization. The rest of this chapter is organized as follows. We begin by describing

the URSA proactive RSA signature scheme in Section 6.2. We then present an attack on

this scheme in Section 6.3. The implications of our attack for the security of the URSA

scheme are discussed in Section 6.4. Section 6.5 presents our new proactive RSA scheme

followed by its security proof in Section 6.6. Finally, in Section 6.7 we show an efficiency

improvement for the proactive RSA scheme of [Rab98].

6.2 The Proactive RSA Signature Scheme in URSA

In this section we describe the proactive RSA signature scheme of [LL00, KZL+01,

KLX+02, LZK+02, LKZ+04] used in the URSA ad hoc network access control protocol. We

will refer to this scheme as an “URSA proactive RSA signature scheme”. The description in-

cludes the system set-up, the “t-bounded offsetting” threshold signature generation protocol,

and the proactive share update protocol.
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6.2.1 The Setup Procedure

A trusted dealer TD is involved in a one-time setup to bootstrap the system.

The dealer is not required hereafter and in fact is assumed to vanish from the scene, or,

equivalently, to erase his memory. TD generates the standard RSA private/public key pair,

i.e. it picks two random primes p and q, sets N = pq, sets (e, N) as a public key where

gcd(e, N) = 1, and as a private key it sets a number d < N such that ed = 1 mod φ(N),

where φ(N) = (p− 1)(q − 1).

Once the standard RSA key pair is chosen, TD secret-shares the RSA secret key d

using a slight modification of Shamir secret sharing [Sha79]. Namely, TD selects a random

polynomial f(z) over ZN of degree t, such that the group secret is f(0) = d (mod N). Next,

TD gives to each member Mi, for i = 1, · · · , n, a secret share ssi = f(i) (mod N). Notice

that the secret d is shared over a composite modulus N as opposed to a prime modulus as

in the original scheme of Shamir, but our attack does not depend on what modulus is used

in the secret sharing.

6.2.2 The Threshold Signature Protocol

The goal of the threshold RSA signature protocol is to generate in a distributed

manner an RSA signature s = md (mod N) under the secret-shared key d. The URSA

threshold RSA signature protocol consists of two phases: First each participating member

creates its partial signature on the intended message and sends it to the signature recipient,

and then the recipient locally reconstructs the RSA signature from these partial signatures.

Partial Signature Generation: Let G denote the set of identifiers of the t + 1 mem-

bers in the group who participate in the threshold signature protocol. Using polynomial

interpolation we can write the secret key d as

d =
∑

j∈G

ssj l
(G)
j (mod N)

where l
(G)
j =

∏

i∈G,i6=j
(−i)
j−i (mod N) Notice that N = pq has only two very large factors,

and therefore all the elements (j−i) for i, j ∈ G will have inverses modulo N . Each member

Mj , for j ∈ G, outputs his partial signature s
(G)
j on m as

s
(G)
j = md

(G)
j (mod N) , where d

(G)
j = ssj l

(G)
j (mod N) (6.1)
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Signature Reconstruction: On receiving t + 1 partial signatures s
(G)
j from the t + 1

group members Mj in G, the signature recipient reconstructs the RSA signature s using

the “t-bounded-offsetting” algorithm which works as follows. Since
∑

j∈G d
(G)
j = d (mod N)

and 0 ≤ d
(G)
j ≤ N − 1 for all j’s, therefore

d =
∑

j∈G

d
(G)
j − α(G)N (over the integers) (6.2)

for some integer α(G) ∈ [0, t]. Equation (6.2) implies that

s = md = (
∏

j∈G

s
(G)
j )m−α(G)N (mod N)

for some integer α(G) ∈ [0, t]. Since there can be at most t + 1 possible values of α(G), the

signature recipient can recover s = md (mod N) by trying each of the t + 1 possible values

Yα = Y (m−N )α (mod N) for Y =
∏

j∈G s
(G)
j and α = 0, · · · , t, and returning s = Yα if

(Yα)e = m (mod N). The most significant cost factor in this procedure is an exponenti-

ation m−N (mod N), and therefore the computational cost of the URSA threshold RSA

signature protocol for each of the signers and for the recipient is about one full (1024 bit)

exponentiation modulo N .

Remark: It is important to note that the above t-bounded offsetting threshold RSA signa-

ture algorithm reveals the value of α(G), which, as will be described in section 6.3, leaks

some information about the secret-shared private key d to an adversary who corrupts t of

the players participating in group G. This information leakage in fact exposes the whole

proactive RSA scheme to an efficient key-recovery attack.

6.2.3 The Proactive Share Update Protocol

The goal of the proactive share update protocol is to re-randomize the secret shar-

ing of the private RSA key d held by the group members. This protocol was first proposed

for both proactive secret sharing and for proactive cryptosystems and signature schemes

by Herzberg, et al. [HJKY95, HJJ+97a]. The URSA proactive share update protocol is a

variant of this protocol which is more efficient, especially in settings where some players

can be inactive or temporarily disconnected from others, as in MANETs.

The “Classic” Share Update Protocol. The proactive share update protocol of [HJKY95,

HJJ+97a] proceeds as follows (when sharing is done modulo N): Every member Mj chooses
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a random partial update polynomial δj(z) over ZN of degree t with the constant term

being zero. The sum of these partial update polynomials defines the update polynomial

δ(z) =
∑

j=1,n δj(z) (mod N). Note that δ(0) = 0. For each pair of members (Mj , Mi),

player Mj gives a share δj(i) of his partial update polynomial to Mi. Each member Mi

then computes his new secret share (to be used in the threshold signature protocol in the

subsequent update interval) as

ssi = ss′i +
n
∑

j=1

δj(i) = ss′i + δ(i) (mod N)

where ss′i is Mi’s existing share, i.e. a share this player used in the previous interval. All the

information pertaining to this protocol except of the new share ssi is then erased. Note that

if ss′ = f ′(i) (mod N) for all i then the new secret-sharing polynomial f(z) is defined as

f(z) = f ′(z)+ δ(z) (mod N), and it is therefore a t-degree polynomial s.t. f(0) = f ′(0) = d

(mod N).

However, it is important to notice that the new secret-sharing polynomial f(z)

is not necessarily a random t-degree polynomial s.t. f(0) = d (mod N). This is because a

corrupt player Mj can distribute its update polynomial δj(z) only after all the other corrupt

players Mi see their shares of all the other update polynomials. In this way, the corrupt

players can control the new secret-sharing polynomial f(z) to some degree, by controlling

the shares of f(z) held by the corrupted players. In provably-secure proactive schemes

that employ this proactive share update protocol, like the proactive DSS or BLS signatures

[GJKR99a, Bol03], this adversarial ability does not pose any harm. However, as we will see

in section 6.3, this control ability means trouble for the URSA proactive RSA scheme since

the information about shared secret d leaked in the threshold signature protocol depends

precisely on the shares held by the corrupted players.

The URSA Two-Stage Modification of this Protocol. The URSA proactive RSA

scheme utilizes a simple modification of the above share update protocol which improves

the protocol’s efficiency. This modification can indeed be used to speed up all proac-

tive cryptosystems that use the [HJKY95] protocol, as the above mentioned schemes of

[GJKR99a, Bol03]. The URSA proactive share update protocol consists of two stages. The

protocol relies on an existence of a designated group of players Ω, which we will call an

“update group”, consisting of t group members.5 The first stage of the protocol proceeds

5In some URSA descriptions it seems that the Ω group needs to have t+1 and not t members. We believe
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exactly like the above protocol of Herzberg et al., except that only the players Ω participate

in it. In other words, players Mj ∈ Ω create their update polynomials δj(z), send their

shares δj(i) to other members Mi ∈ Ω, and thus the players in Ω can be said to hold in

secret-shared form the update polynomial δ(z) defined as δ(z) =
∑

j∈Ω δj(z) (mod N). In

the second stage of the URSA proactive share update protocol, the members of the update

group Ω provide shares of this update polynomial δ(i) to all remaining (and non-revoked)

group members Mi 6∈ Ω. In this way all group members Mi will get their update share and

can compute the new share f(i) = f ′(i) + δ(i) (mod N) as before.

The URSA papers describe two protocols for how these δ(i) update shares are

transferred from the Ω players to their final destinations. Even though the details of the

second version of this protocol are a little unclear, these details do not affect the attack we

describe in this chapter. For completeness, we sketch the two variants as follows: In the

first version, each Mi gets its δ(i) share by communicating with each of the players Mi ∈ Ω

directly. The players in Ω jointly reconstruct the δ(i) value by first sharing masking random

values among themselves. In the second version, either the δ(i) update shares or the whole

δ(z) polynomial (this version is not very clear to us), appear to be distributed to the rest of

the group members encrypted under the group public key (e, N). Presumably, each member

Mi reconstructs his share of this update polynomial δ(i) by contacting her t + 1 neighbors

who either decrypt her encrypted share or decrypt the whole polynomial δ(z) and evaluate

it at point i at the same time. It is not clear how this second version can be implemented

securely, but the first version is standard and we see no vulnerabilities in it.

6.3 An Attack on the URSA Proactive RSA Scheme

In this section we present an efficient key-recovery attack on the URSA proactive

RSA signature scheme summarized in the previous section. The roots of this attack lie

in the t-bounded offsetting algorithm which is the core of the URSA threshold signature

protocol.

that t members is enough, and that the issue does not have a significant bearing on anything considered in

this chapter.
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6.3.1 Overview of the Attack

An adversary against a proactive signature scheme, and thus also against a MANET

group access control mechanism like URSA which utilizes a proactive signature scheme, is

able to compromise any set of at most t members in the group in every update round (see

below). After compromising a member, the adversary learns its corresponding secret share

and can force this member to behave arbitrarily in the protocol. We assume the worst case

where all the t corrupted members collude, and in fact all corruptions are simply scheduled

and controlled by a single entity, called an “adversary” and denoted by A.

The goal of the adversary in our attack is to recover the secret-shared private RSA

key d. The full attack holds as long as these t members form the “update group” Ω (see

section 6.2.3 above), and it holds regardless of what indices these players hold. However, for

the sake of simplicity in the exposition, we will assume that the adversary corrupts members

M1, · · · , Mt throughout the lifetime of the scheme, and that these players also always form

the Ω update group. We note, however, that our attack does not depend on the ability

of the adversary to corrupt a different set of members every update period. This means

that for example, as long as the Ω group is allowed not to change between the updates, the

adversary can recover the private RSA key quite quickly if only he corrupts that subset and

otherwise follows the protocol so as to avoid detection and revocation of these corrupted

members from the group.

Information Leakage in the Signature Protocol. Assume that A participates in the

threshold signature protocol on some message in which the set of participating members

G (see section 6.2.2 above) is made of all the corrupted members M1, · · · , Mt and a single

honest member Mp, for some p ∈ [t+1, · · · , 2t]. (Here too, the attack works for other players

Mp, but we fix the above t values of p to simplify the presentation.) Let Gp represent the

set of identifiers {1, · · · , t, p} corresponding to the members participating in this run of the

threshold signature protocol. By equation (6.2), the secret key d satisfies the following

equation for some integer α(Gp) ∈ [0, t]:

d =
∑

j∈Gp,j 6=p

d
(Gp)
j + d

(Gp)
p − α(Gp)N (over the integers)

Let us denote Sp =
∑

j∈Gp,j 6=p d
(Gp)
j (over integers) and Dp = Sp (mod N). Note

that since A knows ss1, ss2, · · · , sst, he can compute Sp and Dp.
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By employing the reconstruction using the t-bounded offsetting algorithm, A learns

the value of α(Gp) corresponding to this signing group Gp. Now, note that from values α(Gp)

and Sp, the adversary also learns whether the shared secret d ∈ [0, · · · , N − 1] is less than

or greater than Dp. This is because Sp < α(Gp)N if and only if d < Dp; and Sp ≥ α(Gp)N

if and only if d ≥ Dp.

Utilizing the Information Leakage to Recover the Key. At first sight, the informa-

tion of whether the secret RSA key d is left or right of some value Dp in the [0, · · · , N − 1]

range seems to provide only information on the few most significant bits of d. However,

recall that over the lifespan of the system, the members update their secret shares by per-

forming the proactive share update procedure. As we will see below, it turns out that

during this procedure, as long as the “update group” Ω is formed by the corrupted players

{M1, · · · , Mt}, the adversary can choose the values of his new shares ss1, ss2, · · · , sst, which

gives him complete freedom in specifying the resulting values Dp, for p = t + 1, · · · , 2t, to

be any values that he wants (we describe this process in subsections 6.3.2 and 6.3.3 be-

low). Since in any subsequent run of the threshold signature protocol involving members

M1, · · · , Mt, Mp the adversary learns whether the secret d lies to the left or to the right

of the corresponding value Dp (for p = t + 1, · · · , 2t), the adversary can learn most about

d if the chosen values Dt+1, · · · , D2t divide the range [0, N − 1] into t + 1 equally spaced

intervals {[0, Dt+1 − 1], [Dt+1, Dt+2 − 1], · · · , [D2t, N − 1]}.
In this case, A learns from t instances of the threshold signature protocol, for t

different values p = t + 1, · · · , 2t, whether d lies to the left or to the right of each of these

Dp’s. Consequently A shrinks the search interval for the secret d from [0, N − 1] to some

interval [Dp, Dp+1 − 1] which is smaller than the original interval by the factor of t + 1.

If the adversary repeats this attack recursively, then with every share update protocol his

search range narrows by the factor of t+1. This is equivalent to saying that in every update

interval, the adversary learns the lg(t + 1) new most significant bits (MSBs) of the secret d.

Therefore, this search procedure will end and the secret key d will be completely recovered

after d |N |
lg(t+1)e share update rounds. We refer to this search procedure as a “(t+1)-ary

search”.

Example with t=1: Consider a simple example with t = 1. Assume that the adversary

A compromises member M1. Assume also that M1 collaborates with member M2 in a

threshold signature protocol. The signing group is therefore G2 = {1, 2}, which yields the
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following equation:

d = d
(G2)
1 + d

(G2)
2 − α(G2)N

Here S2 = D2 = d
(G2)
1 . A now employs the t-bounded offsetting algorithm and

learns the value of α(G2). If α(G2) = 0, A learns that d ≥ d
(G2)
1 (mod N); otherwise if

α(G2) = 1, he learns that d < d
(G2)
1 (mod N). Assuming that in the share update procedure

A can pick his secret share ss1 so that the resulting D2 = d
(G2)
1 is whatever A wants, A can

set D2 = d N−1
2 e. Then, with every share update round, A halves the search interval, and

thus he performs a binary search which recovers the secret d completely in lg(N)[= |N |
lg(2) ]

rounds.

Attack Speed-ups: Since in many cases the RSA secret key d can be efficiently recovered

once some number of the most significant bits are recovered, the number of rounds in the

attack can be further reduced. Moreover, for the commonly used small values of e, like

e = 3, 17, or 65537, the attack can be sped-up by the factor of two because the first few

MSB bits of d enable A to efficiently compute the first half of the MSBs of d. We describe

such speed-up mechanisms in subsection 6.3.4 below.

6.3.2 Optimal Choice of New Secret Shares

In each share update protocol the adversary’s goal is to set the t values Dt+1, · · · , D2t

which will hold in the subsequent update period in a manner described above. In order to

do that, the adversary first solves for the optimal new secret shares ss1, ss2, · · · , sst which

would result in values Dt+1, · · · , D2t he desires, using the following system of t modular

linear equations:

ss1l
(Gt+1)
1 + ss2l

(Gt+1)
2 + · · ·+ sstl

(Gt+1)
t = Dt+1 (mod N)

ss1l
(Gt+2)
1 + ss2l

(Gt+2)
2 + · · ·+ sstl

(Gt+2)
t = Dt+2 (mod N)

· · · · · ·

· · · · · ·

ss1l
(G2t)
1 + ss2l

(G2t)
2 + · · ·+ sstl

(G2t)
t = D2t (mod N)

These equations are linearly independent as the following matrix L is invertible:
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L =















l
(Gt+1)
1 l

(Gt+1)
2 · · · l

(Gt+1)
t

l
(Gt+2)
1 l

(Gt+2)
2 · · · l

(Gt+2)
t
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Thus, by inverting the above matrix the adversary can compute the optimal secret

share values ss1, · · · , sst he needs in the next update round, in order to achieve his optimal

values St+1, · · · , S2t in the signature protocols performed in that update round. The adver-

sary is now left with the task of forcing the proactive update protocol to actually arrive at

these optimal secret shares ss1, · · · , sst for the corrupted members M1, · · · , Mt.

6.3.3 Adversarial Behavior in the Update

We show that as long as the adversary controls the players in the update group

Ω, the adversary can easily influence the proactive share update protocol to arrive at the

optimal shares ss1, · · · , ssn he computed above. In the case of larger Ω groups, the attack

succeeds as long as the adversary corrupts t members in Ω, and as long as some of these

members can “speak last” in the first phase of the URSA share update protocol (see section

6.2.3).

Let us describe the attack assuming the most general case that |Ω| ≥ t. Let

B ⊆ Ω denotes the subset of t members corrupted by the adversary, and let Mb ∈ B be

the corrupted member who “speaks last” in the first phase of the share update protocol.

Since there is no established sequence or order in which the members in Ω take part in

the secret share update procedure, the adversary can wait until each member in Ω except

of Mb distributes their shares of the random update polynomials δj , j ∈ Ω \ {Mb}, before

distributing the shares of his polynomial δb(z) as the last one. (If the order is somehow

fixed, although it’s not clear how it could be without heavy performance penalty for the

protocol, the adversary would still win assuming that he corrupts the player who is entitled

to speak last.) Recall that the update polynomial is equal to

δ(z) =
∑

j∈Ω\{Mb}

δj(z) + δb(z) (mod N)

and that the new shares of each members are computed as ssi = ss′i + δ(i) where ss′i is the

current share of Mi.

To fix the resulting shares of the corrupted members to come out as the optimal
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values ss1, · · · , sst specified above, member Mb chooses his partial update polynomial δb(z)

in such a way that the resulting update polynomial δ(z) satisfies δ(i) = ssi − ss′i (mod N)

for i = 1, · · · , t. To do that, Mb sets values δb(i) for i = 1, · · · , t as

δb(i) = ssi − ss′i −
∑

j∈G\{Mb}

δj(i) (mod N)

The Mb player then interpolates these values to recover the δb(z) update polynomial he

should use.

Importantly, note that this adversarial behavior is indistinguishable to outside

observers from prescribed behavior an honest player exhibits in the protocol. The attack

succeeds if Mb picks his partial update protocol in the above way instead of the prescribed

way of picking this polynomial at random, but the difference cannot be observed by the

honest players, and thus this attack would be undetected.

6.3.4 Speeding-up the Attack

By following the above attack procedure, in every update round the adversary A
learns new lg(t + 1) most significant bits (MSBs) of d. Assuming that A needs to discover

all the |N |-bits of the RSA secret key d, A needs d |N |
lg(t+1)e update rounds, and t signature

protocol instances within each update interval as described above, to complete the attack.

However, there are several ways in which A can speed up this search. First, we can assume

that at least the last 40-bits of the secret d can be obtained by a brute-force search once all

the other bits are found, because the candidate d can be efficiently tested given the public

key (e, N). This reduces the number of rounds in the attack to d 1
lg(t+1)(|N | − 40)e. Second,

we can speed up this search by making a simple observation about half of the MSBs of

d for small e values, and by utilizing several known results regarding the security of the

RSA cryptosystem under partial key exposure [BDF98, BM03]. Below we explain the speed

up for small e’s, and we list the other applicable results and explain how they speed up

our search algorithm. The graph in Figure (6.1) summarizes this discussion by showing

the number of rounds required in the attack w.r.t the range of the public exponent e for

1024-bit RSA modulus N , taking as an example a threshold value t = 7.

Theorem 4. Given only the first log2(e) MSBs of d, the first half of MSBs of d can be

efficiently computed.
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Figure 6.1: Currently required # of proactive update rounds to recover d for a given value
of logN (e), assuming |N | = 1024, t = 7.

Proof. Note that ed = 1 (mod φ(N)) implies that d = 1/e(1 + kφ(N)) for some integer

k = 1, · · · , e − 1. Therefore, since N − φ(N) <
√

N , it follows that 0 ≤ d̂k − d <
√

N for

d̂k = b1/e(1+kN)c for one of the e−1 choices of k. Note that the d̂k values can be publicly

computed, and note that d̂k+1− d̂k ≈ N/e for every k, and therefore that the log2(e) MSBs

of d determine the appropriate k (and d̂k) values, and therefore, since |d̂k − d| <
√

N for

that k, they also determine the 512 MSBs of d.

The import of the above observation for our attack is very simple: Since the above

choices of the e−1 values d̂1, · · · , d̂e−1, are neatly spread in the [0, N−1] interval in distances

of N/e apart from each other, in our attack based on the (t + 1)-ary search, the adversary

can identify the appropriate d̂k (and k) value, and thus recover the first |N |/2 MSBs of d

by the above theorem, after just d lg(e)
lg(t+1)e rounds of the share update protocol.

Therefore, for small e’s, the attack requires only

r >
1

lg(t + 1)

(

lg(e) +
|N |
2
− 40

)

(6.3)

rounds of share updates for the adversary to learn the whole secret d. This means that the

current implementation of URSA which uses the well-known value e = 65537 [KZL+01] can

be attacked in just 163 update rounds for a modest threshold of t = 7.

For larger values of e, the results of [BDF98, BM03] on the RSA key security with

partial key exposure imply the following speed-ups in our RSA key recovery attack:
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Theorem 5. [BDF98] If e is a prime in the range [2m, 2m+1], with |N |
4 ≤ m ≤ |N |

2 , then

given m MSBs of d, there is a polynomial time algorithm to compute d.

Theorem 6. [BDF98] If e is in range [2m, 2m+1] and is a product of at most r primes, with
|N |
4 ≤ m ≤ |N |

2 , then given the factorization of e and m MSBs of d, there is a polynomial

time algorithm to compute all of d.

If e meets either of the above criteria, the number of rounds r required in our

attack reduces to within the range

d |N |
4lg(t + 1)

e ≤ r ≤ d |N |
2lg(t + 1)

e

Theorem 7. [BM03] If e is in range [N 0.5, N0.725], then the number of MSBs needed to

completely recover d is given by
|N |
8 (3 + 2α +

√
36α2 + 12α− 15) where α = logN (e).

If e meets the above criteria, the number of rounds required to recover the secret

key d is given by d |N |
8lg(t+1)(3 + 2α +

√
36α2 + 12α− 15)e

6.4 Discussion: Efficiency of Our Attack and Insecurity of

the URSA scheme

While the above results for general e values are interesting, in practice people want

to use RSA with small e values, like e = 3, 17, or 65537 (all of which are prime numbers of

the form 2i + 1 for a small value of i, which makes the exponentiation se (mod N) involved

in the RSA signature verification take only i + 1 modular multiplications), and for these

values our attack holds if (1) t members of the update group Ω are corrupted and one of the

corrupted player speaks last, (2) if in every update interval some t chosen honest players

Mp are coaxed into participating in a signature protocol (note that the adversary’s attack

does not depend on what message is used in this protocol!), and (3) if the system lasts for

r = 163 update rounds, which given the twice a day rate of updates gives only two months.

We think that these are quite reasonable assumptions. There’s certainly nothing in

the adversarial model of a proactive signature scheme and of the URSA group access control

scheme, which would disallow the adversary from satisfying each of the above criteria.

Since our attack depends crucially on all of the t players in the share update group

Ω to be the corrupted players, it is therefore important for the practical feasibility of the
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attack how this Ω group is decided. From the initial reply of the URSA authors to the attack

presented in this chapter [Lu], it appears that the details of how the Ω group is decided are

not set in stone in the design of the URSA scheme. This is not surprising since the idea of

modifying the Herzberg et al. protocol by delegating the update work to a smaller set of

players Ω was introduced for the reasons of efficiency, not security.

The fixes proposed in [Lu], e.g. choosing the Ω group as the t players with smallest

IDs, seem problematic: First, such players would need to be identified in some distributed

protocol, and second, the resulting protocol would now be still under the attack, but only

if the t players with lowest IDs are corrupted. Moreover, the resulting protocol would then

need all these Ω players to be always present and connected, which goes against the URSA

philosophy of providing group access control in environments where some players can become

inactive and disconnected. Possibly, the tweak that would slow the attack we describe in

this chapter the most would choose the Ω group differently in every round. This tweak,

however, has similar problems: (1) It is not clear how to make sure that the Ω membership

rotates without the global knowledge of the current membership list, which would reduce

the applicability of the resulting protocol, and (2) the resulting protocol would again need

the scheduled players to be up and connected at the right times. In our understanding, the

attractive idea of the original philosophy of URSA was that the Ω group can be formed

by any t players, and moreover that several such groups can be independently created in

disconnected fragments of the network.

Unfortunately, while the ability for any group of t currently active and connected

players to form the Ω update group would make the URSA scheme most reliable and

attractive, because of the security vulnerability of this scheme which we describe in this

chapter, such freedom in choosing Ω would also lead to the fastest key-recovery attack on the

resulting scheme. While it is still possible that there exists a smart tweak of the Ω-choosing

process which would both slow down in practice the attack we describe here, and would not

impact the applicability of the URSA scheme to the “on/off presence, on/off communication

links” setting it targets, we believe that what is really needed is a replacement of the URSA

proactive RSA scheme with a provably secure proactive signature scheme.

The attack can be probably slowed down in practice if some modifications are

employed in the process of choosing the “update group” Ω, to make it harder for the

adversary to corrupt this group, or, equivalently, to make it harder for the adversary to

have whatever players he does corrupt be chosen as the Ω group. However, summing up the
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above discussion, it is not clear how to modify the protocol in order to make the adversary’s

success significantly harder, and at the same time not to severely limit the applicability of

the URSA scheme.

Perhaps more importantly, the attack we exhibit shows that even if the adversary

does not satisfy all the above criteria, the adversary still learns meaningful information

about the RSA private key d, which makes the security of the resulting system doubtful.

For example, as we discussed in the introduction, if the adversary successfully participates

in just r = 34 instead of r = 163 update rounds (for 1024-bit N , e = 65537 and t = 7), the

adversary will learn 600 most significant bits of d. Given the steady progress in the ability

to recover the full d from partial knowledge [BDF98, BM03], there is little hope that such

partial information can be shown not to weaken the RSA system.

Finally, our attack uses only very specific part of the information leaked in the

URSA threshold RSA signature protocol. We showed that if the adversary corrupts t of the

signing t+1 players, and if the remaining (t+1)-th player Mp can be known beforehand, the

leaked information is equivalent to whether the shared secret d lies to the left or to the right

of some value Dp which can be computed and in fact controlled by the adversary. However,

information about d leaks also if (1) other players Mp, p 6∈ [t + 1, · · · , 2t] participate in

the threshold signature protocol, and if (2) less than t corrupted players participate in this

protocol. The information revealed about d in these cases is more complicated than the

d < or > Dp information we used in our attack, but it is nevertheless easy to define as well,

and it can very well be used to either speed up the attack we propose even more, or to

extend it to adversaries who (1) corrupt less than t (e.g., t−1 as in the non-standard model

of [LKZ+04]) the players participating in the threshold signature protocol, or (2) corrupt

less than t players in the update group Ω, or (3) fail to predict which honest players will

participate in the threshold signature protocol.

6.5 The New Proactive RSA Signature Scheme

In this section, we build a new proactive RSA signature scheme based on a cor-

rected use of the URSA proactive RSA.
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6.5.1 Computational and Adversarial Model

We work in the standard model of threshold cryptography and distributed al-

gorithms known as synchronous, secure links, reliable broadcast, trusted dealer, static,

and proactive adversary model. This is the same model as employed for example in

[HJKY95, HJJ+97b, FGMY97b, FGMY97a, Rab98] discussed in the introduction, with

the exception that the first two did not need a trusted dealer (but did not handle RSA).

This model involves n players M1, ..., Mn equipped with synchronized clocks and

an ability to erase information. The players are connected by weakly synchronous commu-

nication network offering secure point-to-point channels and a reliable broadcast. The time

is apriori divided into evenly spaced update rounds, say of length of one day. We assume the

presence of the so-called “mobile” adversary, modeled by a probabilistic polynomial time

algorithm, who can statically, i.e., at the beginning of the life time of the scheme, schedule

up to t < n/2 arbitrarily malicious faults among these n players, independently for every

update round. We also assume a trusted dealer who initializes the distributed scheme by

picking an RSA key and securely sharing the private key among the players. Since the ad-

versary attacks a proactive signature scheme, the adversary can also stage a chosen-message

attack [CMA], i.e. it can ask any of the n players to run a signature protocol on any message

it chooses. The adversary’s goal is to either (1) forge a signature on a message he did not

request a signature on, exactly as in the CMA attack against a standard (non-threshold)

signature scheme, or (2) to prevent the efficient generation of signatures on messages which

at least t + 1 uncorrupted players want to sign.

6.5.2 Overview of the Proposed Scheme

The sharing of the private RSA key d is done additively modulo a prime q s.t.

q ≥ r2|N |+τ , where r is the maximal number of rounds in the lifetime of the system, |N | is

the bit length of the RSA modulus N , and τ is a security parameter, e.g. τ = 80. Namely

each player Mi holds a share di which is a random number in Zq s.t. d1 + ...+dn = d mod q.

Each of these top-level additive shares is also polynomially shared for backup reconstruction

of di in case Mi is corrupted, using the information-theoretically secret verifiable secret

sharing (Pedersen-VSS) of Pedersen [Ped91a] (refer to Section 2.7 for details), similarly as

in the proactive RSA scheme of Rabin [Rab98]. In order to handle the common case of a

small public RSA exponent e more efficiently, the most significant l = |N |
2 bits of the private
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key d can be publicly revealed as dpub, and only the remaining portion of the private key d,

namely d− 2|N |−ldpub, is shared as above modulo q, for any q ≥ r2|N |−l+τ .

The proactive update is very easy in this setting, adopting the original proac-

tive secret sharing of [HJKY95] to additive sharing. Such method was used before e.g. in

[CGJ+99]. To re-randomize the the sharing, each Mi picks random partial shares dij in Zq

s.t. di = di1 + ... + din mod q, and sends dij to Mj . Each Mj computes then his new share

as d′j = d1j + ... + dnj mod q, and shares it polynomially for backup again. All this can be

easily verified using Pedersen-VSS, and the new shares sum to the same secret d modulo q.

For the threshold signature protocol, we use the observation (as in the URSA

scheme) that if
∑n

j=1 dj = d (mod q) and 0 ≤ dj ≤ q − 1 for all j’s, then

d =
n
∑

j=1

dj − αq (over the integers) (6.4)

for some integer α ∈ {0, ..., n− 1}. Consequently, if ∀j , sj = mdj mod N then

md = (
n
∏

j=1

sj)m
−αq (mod N)

Therefore the signature md mod N can be reconstructed if players submit their

partial signatures as sj = mdj (mod N), and the correct value of α is publicly reconstructed

by cycling over the possible n choices of α, which adds at most 2n modular exponentiations

to the cost of the signature generation protocol. (Note that in most applications n < 100.)

In the (rare) case of a malicious fault causing a failure in this procedure, each player has to

prove in zero-knowledge that it used a correct value di in its partial signature, i.e. the value

committed in the Pedersen-VSS that shares this di. Efficient zero-knowledge proofs to handle

such statement were given by Camenisch and Michels [CM99a], and Boudot [Bou00], and

while not blazing fast, they have constant number of exponentiations, and they are practical.

This procedure is more expensive than the robustness procedure in [Rab98], but we believe

that this efficiency difference does not matter since active corruptions of this type should

be unlikely, as active faults are rare in general and the adversary would not gain much by

using his corrupted player in this way.

Recall (from section 6.3) that in our attack on the URSA scheme involving poly-

nomial rather than additive top-level sharing, the adversary uses the fact that the above

procedure reveals whether d is greater or smaller than some value in the [0, q] interval which
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the adversary can easily compute from his shares. Since the adversary can perfectly control

his shares in the proactive update protocol for this (top-level) polynomial secret sharing

scheme, the adversary can use this partial information leakage to stage a binary search for

the shared secret d.

However, the scheme we present fixes the above problem. Assume that the ad-

versary corrupts players M1, ..., Mt. Giving the adversary the extra knowledge of shares

dt+1, ..., dn−1, the only information about the secret key revealed by value α is, by equa-

tion (6.4), whether or not the secret d is smaller or larger than R = (D mod q) where

D = d1 + ... + dn−1. Since the adversary does not have enough control over the shares

created by our “additive” proactive update protocol, shares dt+1, ..., dn−1 are random in Zq,

and hence so is value R. Therefore, if q is significantly larger than the maximal value of d,

then the α value almost never reveals anything about d, because d is almost always smaller

than R. For this reason, if q ≥ r2|N |+τ then the modified scheme keeps d indistinguishable

from a value uniform in Zn, with the statistical difference of 2−τ . The additional factor r in

the bound on q appears because of the linear increase in the statistical difference with every

update round. This captures the security proof of our scheme in a nutshell. The security

and robustness of our new scheme is based on Discrete Logarithm, RSA and Strong RSA

assumptions, which we described in Section 2.2.

6.5.3 Setup Procedure

We require a trusted dealer to securely set up the system. The dealer generates

RSA private/public key pair, i.e. an RSA modulus N , public exponent e, and private key

d = e−1 mod φ(N). Optionally, l ≤ |N |
2 most significant bits of d can be publicly revealed

as dpub (otherwise dpub = 0 and l = 0). The dealer also chooses an instance of Pedersen

commitment [Ped91a], i.e. primes p and q s.t. q|(p − 1), and two random elements g, h of

order q in Z
∗
p, for |q| = log2 r + |N |− l + τ + 1, where τ is a security parameter (τ ≥ 80) and

r is the number of rounds the system is expected to run. The dealer then runs the sharing

protocol of Figure 6.2.

6.5.4 Threshold Signature Protocol

The goal of the threshold RSA signature protocol is to generate in a distributed

manner an RSA signature s = md (mod N) under the secret-shared key d, where m ∈ Z
∗
n is
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Input: private key d ∈ Zφ(n), public value dpub corresponding to l MSBs of d, public

RSA modulus N , Pedersen commitment instance (p, q, g, h).

1. Select shares dj ∈ Zq uniformly at random for j = 1, . . . , n − 1 and set dn =

d− 2|N |−ldpub −
∑n−1

j=1 dj (mod q).

2. Share each dj using Pedersen-VSS protocol [Ped91a]. Namely, select random

polynomials fj(z) = dj + fj1z + · · ·+ fjtz
t and f ′

j(z) = d′j + f ′
j1z + · · ·+ f ′

jtz
t over

Zq of degree t s.t. fj(0) = dj . Compute and publish the witnesses wj0 = gdjhd′j

(mod p) and wjk = gfjkhf ′
jk (mod p) for k = 1, . . . , t.

3. Compute the secret shares ssij and ss′ij as ssij = fj(i) (mod q) and ss′ij = f ′
j(i),

deliver di, d
′
i, ssij and ss′ij (∀j) to each Mi over a secure channel.

Figure 6.2: Trusted Dealer’s Protocol: Sharing of the Private Key d

some hashed/padded function of the signed message, e.g. m = H(M) for the Full Domain

Hash RSA [BR93]. Our protocol consists of two parts. First each player Mj creates its

partial signature on the intended message sj = mdj mod N , and sends it to the signature

recipient. The recipient then locally reconstructs the RSA signature from these partial

signatures using the n-bounded reconstruction algorithm of [LL00]. The threshold signature

generation and reconstruction protocol is summarized in Figure 6.3, and we explain the

details of the reconstruction algorithm below.

Signature Reconstruction with n-Bounded Offsetting. On receiving n partial signa-

tures sj from the n players, the signature recipient reconstructs the RSA signature s using

the n-bounded-offsetting algorithm [KZL+01] which works as follows. Since
∑n

j=1 dj =

d− 2|N |−ldpub (mod q) and 0 ≤ dj ≤ q − 1 for all j’s, therefore

d = 2|N |−ldpub +
n
∑

j=1

dj − αq (over the integers) (6.5)

for some integer α ∈ {0, . . . , n− 1}, which implies that

s = md = m2|N|−ldpub(
n
∏

j=1

sj)m
−αq (mod N)

Since there can be at most n possible values of α, the signature recipient can recover

s = md (mod N) by trying each of the n possible values Yα = Y (m−q)α (mod N) for
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Input: (hashed) message m ∈ Z
∗
n, outputs of the Setup procedure

1. Player Mi broadcasts its partial signature si = mdi (mod N).

2. If Mi fails to provide its partial signature, all players reconstruct di and compute

si = mdi (mod N).

3. Reconstruct RSA signature using the n-bounded offsetting algorithm (see below).

4. If signature reconstruction fails, trace the faulty signer(s) by executing the pro-

tocol ZKPK(di : wi0 = gdihd′i (mod p) ∧ si = mdi (mod N)) ∧ di ∈ [0, q−1]))

with each Mi (see Appendix A).

5. If Mi fails this proof, any set of t + 1 players reconstruct di and compute and

broadcast si = mdi (mod N).

Figure 6.3: Signature Generation and Reconstruction

Y = m2|N|−ldpub(
∏n

j=1 sj) and α = 0, ..., n−1, and returning s = Yα if (Yα)e = m (mod N).

The decisive factor in the cost of this procedure is the cost of the full exponentiation

mq mod N , where q can be e.g. 613-bit long for N = 1024, e = 3, l = |N |/2, τ = 80, and

r ≤ 220.

As discussed in the overview subsection above, this procedure reveals value α

which contains some partial information on the shared secret d. Namely, granting to the

adversary some extra knowledge and assuming he knows shares d1, ..., dn−1, the α value

reveals whether d ∈ Zφ(n) lies in the interval [0, R[ or in [R, N ], where R = (D mod q)

and D = d1 + . . . + dn−1, if l = 0. More generally, α reveals if d is smaller or larger than

R + 2|N |−ldpub.

Robustness Mechanisms.

In case some player Mu does not issue a partial signature, share du of Mu needs

to be reconstructed to recover partial signature su = mdu (mod N). In reconstruct du,

every player Mi broadcasts its shares ssiu, ss′iu of du. The validity of these shares can be

ascertained by checking

gssiuhss′iu =
t
∏

k=0

(wuk)ik (mod p).
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Share du can then be recovered using the interpolation

du =
∑

j∈G

ssjulj(u) (mod q)

where G is a subgroup of t+1 players who broadcast valid shares and lj(u) =
∏

j∈G,j 6=i
(u−j)
i−j mod

q is the Lagrange interpolation polynomial computed at u.

If all the partial signatures are present but the above n-bounded signature recon-

struction algorithm fails, then at least one out of n players did not issue a correct partial

signature. The signature recipient must then trace the faulty players(s) by verifying the

correctness of each partial signature. Once a player is detected as faulty, the share(s) of the

faulty player(s) can be reconstructed as above. To prove correctness of its partial signature,

each Mi proves in zero-knowledge that there is a pair of integers (di, d
′
i) s.t.

wi0 = gdihd′i mod p , si = mdi mod N , 0 ≤ di < q

It is crucial that the range of di is checked because otherwise player Mi can submit its partial

signature as md′i mod N where d′i = di + kq for some k. An efficient zero-knowledge proof

system for the proof of equality of discrete logarithms (and representations) in two different

groups was given in [BT99, CM99b], and the efficient proof that a committed number lies in

a given range appeared in [Bou00]. The resulting ZKPK proof system is shown in Appendix

A. It is non-interactive in the random oracle model and involves a (small) constant amount

of exponentiations.

6.5.5 Proactive Update Protocol

At the beginning of every update round, the players perform the share update

protocol of Figure 6.4 to re-randomize the sharing of d.

6.6 Security Analysis of the New Proactive RSA Scheme

Theorem 8 (Security). If there is a t-threshold proactive adversary for t < n/2, which

in time T succeeds with probability β in a chosen-message attack against our new proactive

(full domain hash) RSA signature scheme running for up to r rounds, for any l ≤ |N | and

prime q ≥ r2|N |−l+τ , then there is a CMA attack against the standard (full domain hash)

RSA signature scheme, which succeeds in time T + poly(n, |N |) with probability β − 2−τ

given the l most significant bits of the secret key d as an additional public input.
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Input: Outputs of the Setup procedure or the previous Update protocol.

Let r ≥ 1 be the round number. Denote current values d
(r−1)
i , d

′(r−1)
i , w

(r−1)
ij , etc.

1. Each player Mi selects (sub)shares dij and d′ij ∈ Zq, uniformly at random for

j = 1, . . . , n − 1, and sets din = d
(r−1)
i −∑n−1

k=1 dik (mod q) and d′in = d
′(r−1)
i −

∑n−1
k=1 d′ik (mod q). Mi broadcasts witness values w

(r)
ij = gdijhd′ij (mod p), and

hands (dij , d
′
ij) to Mj (∀j) over a secure channel.

2. Mj verifies the validity of the received shares using witness values as w
(r)
ij =

gdijhd′ij (mod p), and ascertains whether the sub-shares in fact sum up to the

previous share of Mi by checking that
∏n

j=1 w
(r)
ij = w

(r−1)
i0 (mod p).

3. Mj computes its new additive shares as d
(r)
j =

∑n
i=1 dij (mod q) and d

′(r)
j =

∑n
i=1 d′ij (mod q). (Note that

∑n
j=1 d

(r)
j = d− 2|N |−ldpub (mod q).)

4. Mj shares its new additive shares d
(r)
j , d

′(r)
j using Pedersen-VSS, as in the setup

phase described in Section 6.5.3. In order to check if Mj is indeed sharing its

new additive share, every player checks that the witness value in this VSSinstance

corresponding to the shares d
(r)
j , d

′(r)
j equals to

∏n
i=1 w

(r)
ij (mod p).

Figure 6.4: Proactive Share Update
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Proof. We show that if the adversary succeeds in staging the CMA attack on our (Full

Domain Hash) proactive RSA signature scheme in time T with probability β, then there

is also an efficient CMA attack against the standard (non-threshold) FDH-RSA signature

which given the l most significant bits of d succeeds in time comparable to T by an amount

polynomial in |N | and n, with probability no worse than β−2−τ . We show it by exhibiting a

very simple simulator, which the adversary against the standard FDH-RSA scheme can run

to interact with the proactive adversary which (T, β)-succeeds in attacking the proactive

scheme. We will argue that the statistical difference between the view presented by this

simulator on input of the public RSA parameters, l MSBs of d, and (message,signature)

pairs acquired by the CMA attacker from the CMA signature oracle, and the adversarial

view of the run of the real protocol on these parameters, for any value of the private key d

with these l most significant bits, is at most 2−τ , which will complete the proof.

The simulator SIM is described in Figure 6.5. The simulation procedure is very

simple. The simulator picks a random value d̂ in Zn with the given l most-significant bits,

and runs the secret-sharing protocol in the setup stage using this d̂. Similarly in every

update, the simulator just runs the actual protocol, but on the simulated values which we

denote d̂i, d̂ij , etc. The only deviation from the protocol is that in the simulation of the

threshold signature protocol, assuming w.l.o.g. that the Mn is an uncorrupted player, the

simulator runs the actual protocol for all uncorrupted players except of Mn, i.e. it outputs

ŝj = md̂j for each uncorrupted Mj , j 6= n. The simulator then determines the α̂ value,

which is an approximation to the actual value α the adversary would see in the protocol, by

computing D =
∑n−1

j=1 d̂j , and taking α̂ = bD/qc+ 1. In this way we have D = (α̂−1)q +R

where R = (D mod q). Finally, the simulator computes the missing partial signature ŝn

corresponding to the player Mn as ŝn = s ∗ mα̂q/(m2|N|−ldpub
∏n−1

j=1 ŝj) (mod N). In this

way, partial signatures ŝj add up to a valid RSA signature ŝ, and value α̂ the adversary sees

in the simulation of the signature reconstruction algorithm is equal to the above α with an

overwhelmingly high probability.

For ease of the argument, assume that the adversary corrupts players M1, ..., Mt

throughout the lifetime of the scheme. We will argue that the adversarial views of the

protocol and the simulation are indistinguishable with the statistical difference no more

than 2−τ , even if the adversary additionally sees shares dt+1, ..., dn−1 and the shared secret

key d.
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Input: Pedersen commitment instance (p, q, g, h), RSA public parameters (N, e), optional

values l > 0 and dpub < 2l (otherwise set l = dpub = 0).

Setup Procedure

Pick random d̂ ∈ Zn and proceed as in the Setup of the actual protocol:

1. Select random shares d̂j , d̂
′
j ∈ Zq, for j = 1, . . . , n− 1, and set d̂n = d̂− 2|N |−ldpub −

∑n−1
i=1 d̂j (mod q), as in step 1 of the Setup procedure.

2. Share each d̂j and d̂′j using the Pedersen-VSS: Choose random polynomials f̂j(z) =

d̂j + f̂j1z + · · ·+ f̂jtz
t and f̂ ′

j(z) = d̂′j + f̂ ′
j1z + · · ·+ f̂ ′

jtz
t over Zq of degree t; compute

and publish the witnesses ŵj0 = gd̂jhd̂′j (mod p) and ŵjk = gf̂jkhf̂ ′
jk (mod p) for

k = 1, . . . , t.

3. Compute the secret shares ŝsij and ŝs′ij as ŝsij = f̂j(i) (mod q) and ŝs′ij = f̂ ′
j(i) and

distribute d̂i, d̂
′
i, ŝsij and ŝs′ij (∀j) to each Mi over a secure channel.

Threshold Signature Protocol (on additional input (m, s), where s = md mod N):

1. Generate partial signatures ŝi for i = 1, . . . , n − 1 as ŝi = md̂i (mod N). Compute

D = d̂1 + . . .+ d̂n−1, and α̂ = bD/qc+1. Compute ŝn = s∗mα̂q/(m2|N|−ldpub
∏n−1

j=1 ŝj)

(mod N).

2. Output values ŝi on behalf of the uncorrupted players Mi.

3. If needed, execute the ZKPK proof for Mi 6= Mn, and simulate it for Mn.

Proactive Update

Proceed in exactly the same manner as the Proactive Update protocol:

1. At the beginning of round r, for all uncorrupted players Mi, select (sub)shares d̂ij and

d̂′ij uniformly in Zq for j = 1, . . . , n − 1, and set d̂in = d̂
(r−1)
i −∑n−1

k=1 d̂ik (mod q)

and d̂′in = d̂
′(r−1)
i −∑n−1

k=1 d̂′ik (mod q). Broadcast witness values ŵ
(r)
ij = gd̂ijhd̂′ij

(mod p), and hand (d̂ij , d̂
′
ij) to Mj (∀j) over a secure channel.

2. Compute Mj ’s new secret shares d̂
(r)
j =

∑n
i=1 d̂ij (mod q) and d̂

′(r)
j =

∑n
i=1 d̂′ij

(mod q), as in the Proactive Update protocol.

3. Re-share the new additive share d̂
(r)
j , d̂

′(r)
j using Pedersen-VSS.

Figure 6.5: Simulator Construction (SIM)
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Setup Procedure: Since di and d′i in the protocol and d̂i and d̂′i in the simulation are all

picked uniformly from Zq for i = 1, . . . , n − 1, the two ensembles (d, {di, d
′
i}i=1,...,n−1) and

(d, {d̂i, d̂
′
i}i=1,...,n−1) have identical distributions.

By the information theoretic secrecy of Pedersen-VSS, the second-layer shares and

the associated verification values visible to the adversary are also distributed identically in

the protocol and in the simulation.

Threshold Signature Protocol: Since di and d̂i, for i = 1, . . . , n − 1, have the identical

distributions, therefore distributions of the corresponding partial signatures si and ŝi, are

also identical. However, values sn and ŝn are the same only in the event that value α in

the protocol and value α̂ in the simulation are the same. Recall that α̂ in the simulation

is computed as α̂ = bD/qc + 1 where D =
∑n−1

j=1 d̂j . Note that D = (α̂ − 1)q + R where

R = (D mod q). By equation (6.5), value α computed by the protocol would satisfy equation

d = 2|N |−ldpub + D + dn − αq = 2|N |−ldpub + R + dn + (α̂− α− 1)q

because d1, ..., dn−1 are distributed identically to d̂1, ..., d̂n−1.

Since dn and R are elements in Zq for q ≥ 2|N |−l+τ+log r, and since d ∈ [2|N |−ldpub,

2|N |−ldpub + 2|N |−l], the above equation implies that there are only two possible cases:

α = α̂ − 1 and α = α̂. The first case happens if d ≥ 2|N |−ldpub + R and the second if

d < 2|N |−ldpub + R. However, the probability that d < 2|N |−ldpub + R, and hence that

α = α̂, is at least 1 − 2−(τ+log r) because the probability of the other case is at most the

probability that R is less than 2|N |−l, which, given that R is a uniformly distributed element

in [0, q], is at most 2−(τ+log r).

Note that value α stays the same in all instances of the threshold signature protocol

in any given update round. Since the same holds for the α̂ value in the simulation, the

probability that the adversary’s view of all these protocol instances is different from the view

of all the simulation instances remains at most 2−(τ+log r). In other words, the statistical

difference between the adversary’s view of the real execution and the simulation in any

update round, is at most (1/r)2−τ .

Proactive Update Protocol: Since values {di}i=1..n−1 and {d̂i}i=1..n−1 are distributed iden-

tically, the only difference in the execution and the simulation of the update protocol can

come from sharing of the dn value in the protocol and d̂n in the simulation. However, since

this sharing is a “additive” equivalent of Pedersen-VSS, and the second-layer sharing of the
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shares of the dn or d̂n value is done with Pedersen-VSS too, the whole protocol hides the

shared value dn perfectly, and hence the adversarial view in the simulation of the update

protocol is identical to the adversarial view of the actual protocol.

Since the statistical difference between the protocol and the simulation is zero

in the setup stage and in any proactive update stage, and at most (1/r)2−τ in any single

update round, given r rounds the overall difference between adversarial view of the protocol

execution and its simulation is at most 2−τ , which completes our argument.

Theorem 9 (Robustness). Under the Discrete Logarithm and Strong RSA assumptions,

our proactive signature scheme is robust against a t-threshold proactive adversary for t <

n/2.

Proof. Note that the only way robustness can be broken is if some malicious player Mi

cheats either in the proactive update protocol, by re-sharing a value different than its proper

current share di committed in Pedersen commitment wi = gdihdi mod p, or Mi cheats in

the signature protocol, by proving correct the wrong partial signature si 6= mdi mod N .

Since the first type of cheating is infeasible under the discrete logarithm assumption and

the second type is infeasible under the strong RSA assumption, the claim follows.

6.6.1 Security Implications

Taking l = 0, Theorem 8 implies that the new proactive signature scheme is as

secure as the standard RSA:

Corollary 1. Under the RSA assumption in the Random Oracle Model, our scheme is a

secure t-threshold proactive signature, for l = 0 and q ≥ r2|N |+80.

On the other hand, note that the RSA adversary can always correctly guess the

most significant half of the bits of d with probability 1/(e− 1).6 Together with theorem 8,

this implies the following corollary:

6Note that ed = 1 (mod φ(N)) implies that d = 1/e(1 + kφ(N)) for some integer k = 1, ..., e − 1.

Therefore, since N − φ(N) <
√

N , it follows that 0 ≤ d̂k − d <
√

N for d̂k = b1/e(1 + kN)c for one of the

e − 1 choices of k. Thus any adversary facing the RSA cryptosystem can with probability 1/(e − 1) guess

the |N |/2 most significant bits of d by picking the right k and computing d̂k as above.
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Corollary 2. Under the RSA assumption (in the Random Oracle Model), the time TPRSA

to break the new proactive signature scheme for e = 2i + 1, l = |N |/2 and q ≥ r2|N |/2+80, is

at least TPRSA ≥ 2−iTRSA, where TRSA is the time required to break the CMA security of

the standard (FDH) RSA signature scheme for modulus of length |N |.

For the most popular value of e = 3, this implies that if the 1024-bit modulus RSA

has a 280 security then our proactive RSA scheme running on the same modulus for l = 512

and q ≥ r2512+80 would have at least 279 security. For e = 17 the provable security would be

276. Of course, our scheme could be executed with slightly larger N to compensate for the

2i factor in security degradation, but with key shares sizes still limited by q < r2|N |/2+80.

The efficiency of the resulting schemes resulting from Corollary 2 should be compared with

the straightforward settings implied by Corollary 1, where same 280 security is given by

1024 bit N but with larger bound of r2|N |+80 on the share size q.

However, since there are no known attacks against RSA which speed up the fac-

torization of N when half of the most significant bits of d are revealed for small values of

e, it can be plausibly hypothesized that for small e’s, the proposed proactive RSA scheme

remains as secure as standard RSA for the same modulus size even with half of the most

significant bits of d are revealed.

Finally we remark that the security analysis of our scheme given in Theorem 8

grants the adversary the knowledge of n− 1 shares instead of just t shares he can see in the

protocol, which suggests that our security analysis can be improved and that our scheme is

possibly secure using smaller share sizes than our analysis recommends.

6.7 Improved Security Analysis of Rabin’s Proactive RSA

Overview of Proactive RSA Scheme of [Rab98]. During the setup, a trusted dealer

generates the RSA public (N, e) and private (d, p̂, q̂) key pairs. The signature key d is shared

additively among the players. Each Mi gets a share di, chosen uniformly in [−R, R] where

R = nN2, and the dealer publishes public value dpublic such that

dpublic = d−
n
∑

i=1

di (over Z) (6.6)

This can be easily extended, so that like our new scheme, l most significant bits of d are

publicly revealed and added to the dpub value, and only the remaining (|N | − l)-bit value
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d − 2|N |−ldpub is shared as above. The witness value wi = gdi (mod N) corresponding to

each di is published, where g is an element of high order in Z
∗
n. Each share di is then

itself shared using the Feldman VSS[Fel87] over Zn. To sign a message m, each player Mi,

generates a partial signature si = mdi (mod N). Since the signature key d is shared over

integers, the RSA signature can be easily reconstructed by simply multiplying n partial

signatures, i.e.,

s = mdpublic

n
∏

i=1

si (mod N)

The detection of faults during the signing process can be performed using the protocols of

[GJKR96a, FGY96]. The secret share of the faulty player is then reconstructed by pooling

in the shares of any t + 1 players using a special variant of polynomial interpolation (refer

to [Rab98] for details). In the share update protocol each Mi additively re-shares its secret

share di with (sub)shares dij ∈ [−R/n, R/n] and

di,public = di −
n
∑

j=1

dij (over Z)

is made a public value. The new secret share for d
(r)
i of Mi is then computed as d

(r)
i =

∑n
j=1 dji, and Mi shares it using Feldman VSSover Zn.

Improved Security Analysis and Improved Performance. First, we note that the

simulator for the setup phase presented in [Rab98] has a small error. That simulator for

the key distribution protocol picks random shares d̂i ∈ [−R, R], for i = 1, . . . , n − 1, and

it picks d̂public uniformly at random in [−nR, nR + N ]. However, values generated in this

way are not statistically indistinguishable from the values in the protocol, because if the di

values are chosen uniformly in [−R, R], then by equation (6.6), value dpublic has a normal

probability distribution, which is immediately distinguishable from the uniform distribution

of d̂public.

The corrected simulation of the key distribution (and the subsequent update pro-

tocols) works exactly in the same manner as the actual protocol. The simulator should

choose some secret value d̂ ∈ [0, N − 1] at random, and share this new value in exactly the

same manner as in the protocol. After r update rounds, the overall statistical difference

between the view of the adversary interacting with the protocol and the view of the adver-

sary interacting with the (new) simulator is at most rN/R. This difference is negligible if

R = rN2τ , where τ ≥ 80, instead of the R = nN 2 value recommended in [Rab98].
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This shows that secret shares can be picked from range [−rN2τ , rN2τ ], instead of

range [−nN2, nN2] of the original scheme, which means an almost factor of 2 improvement

in the share size. Since the computational cost of this scheme is driven by cost of the

exponentiation si = mdi mod N done by each player, factor of 2 improvement in the size of

di speeds the signature generation by the same factor.
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Chapter 7

Decentralized Admission in Ad

Hoc Groups

In this chapter, we present a secure, efficient and a fully non-interactive protocol

to securely extend an ad hoc group. The main feature of our protocol is that it is

non-interactive and requires only a single round of asynchronous communication.

The protocol is developed using secret sharing techniques based on bi-variate polyno-

mials. We evaluate the proposed protocol in a real MANET setting and show that it

compares favorably to previously proposed protocols.

7.1 Introduction

Ad hoc groups, such as mobile ad hoc networks (MANETs), have many well-known

applications in military settings as well as in emergency and rescue operations. However,

lack of infrastructure and lack of centralized control make ad hoc groups inherently insecure,

and therefore specialized security services are needed for their deployment. Admission

Control (or secure node admission) is a fundamental security service in ad hoc groups; it

is required to ascertain membership eligibility and to bootstrap other important security

services, such as secure routing (e.g., [HPJ02, HJP02]) and secure group communication

(e.g., [STW00b, STW00a]).

Node admission in ad hoc groups cannot be performed centrally. Since, requiring
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constant presence (availability) of a central fixed entity which is charged with admission

control is not realistic for many types of ad hoc groups. First, such an entity is a single

point of failure. Second, it represents an attractive and high-payoff target for attacks.

Third, topology changes due to mobility and node outages may cause the central entity to

be unreachable and thus unable to perform its duties in the parts of a ad hoc group not

connected to it. This motivates us to investigate admission control techniques that function

in a distributed or decentralized manner. Since our emphasis is on security, the natural

technology to consider is threshold cryptography.

Recall that the concept of threshold cryptography involves distributing crypto-

graphic primitives (such as decryption or digital signatures) in order to secure them against

corruption of a certain number of parties, i.e., a threshold. For example, a (t+ 1, n) thresh-

old signature scheme [DF90] allows, in a group of n parties, to share the ability to digitally

sign messages in such a way that any t + 1 parties can do so jointly, whereas, no coalition

of up to (t) parties can. Such a threshold signature scheme is resilient against the so-called

static adversary who corrupts at most (t) parties in the entire lifetime of the system.

More advanced proactive cryptographic schemes [HJKY95] offer improved resis-

tance against corruptions. Time is divided into update rounds, and the proactive scheme

offers the same combination of security and robustness even in the presence of so-called

mobile adversaries [OY91], whereby a potentially new set of up to (t) parties becomes cor-

rupted in each update round. This is done by the proactive update procedure which involves

parties randomly re-sharing the shared secret at the start of each update round.

Two features of ad hoc groups make decentralized node admission a very chal-

lenging problem. First, the devices of ad hoc groups often have very weak computational

facilities and battery power. Second, these devices usually function in an asynchronous

(on/off) manner, often becoming temporarily unavailable. Therefore, an ideal admission

control protocol must be efficient in terms of both computation and communication1. It

must also involve minimal (ideally, none at all) interaction among the nodes of the network.

A number of admission control techniques have been proposed in recent years

[KZL+01, KLX+02, LZK+02, NTY03, STY03, STY04]. (See the following section for more

details on prior work.) Most are based on (t + 1, n) threshold cryptography and allow any

set of t + 1-out-of-n nodes (called sponsors) to admit a new node by issuing to it:

1Communication is directly related to the consumption of battery power in most mobile devices [BA03].
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(1) a share of a group secret (to be used in future admissions), and

(2) a membership certificate (used for secure communication)

In order to ensure the robustness of the secret sharing and secret reconstruction

protocols in the presence of malicious nodes, Feldman’s verifiable secret sharing (VSS as

described in Section 5.3) [Fel87] is employed.

Unfortunately, all previous schemes are far from ideal. They are heavily interac-

tive among the sponsors as far as either item (1) or (2) above. Furthermore, they are very

computationally expensive in performing item (2). This severely limits their practicality.

Our Contributions. In this chapter, we first show that as long as each node is able

to obtain an updated VSS information, there is no need for node-specific certificates. This

implies that admission control for ad hoc groups can be realized by only issuing node-specific

secret shares (item (1) above) and obviating the need for expensive membership certificate

issuance.

Second, we construct an efficient and a fully non-interactive admission control

protocol and evaluate it in the context of MANETs. In contrast with prior work, our

protocol does not require any interaction among the nodes sponsoring admission and has

a single round of asynchronous communication between the new node and each sponsoring

node. We thoroughly analyze our protocol and show that it compares favorably to previous

protocols.

The proposed protocol is the result of a collaborative work which first appeared

in [STY05], and is also included in the dissertation by Jeong Hyun Yi [Yi05].

Organization. The rest of the chapter is organized as follows: we first review prior

work in Section 7.2. The generic admission protocol ad hoc groups is presented in Section

7.3, followed by the overview of prior admission control protocols based on uni-variate

polynomial secret sharing (UniAC) in Section 7.4. We then describe, in Section 7.5, the

proposed admission control protocol based on bi-variate polynomial secret sharing (BiAC).

The detailed performance results, analysis and comparison of BiAC with UniAC are presented

in Section 7.7. Finally, some we discuss the security of the proposed scheme in Section 7.6.
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7.2 Related Work

We now review relevant prior work in ad hoc group security. Zhou and Haas [ZH99]

first suggested the use of threshold cryptography to secure mobile ad hoc networks. Their

idea was to distribute the trust among the nodes of the network such that no less than a

certain threshold of nodes are trusted. They proposed a distributed certification authority

(CA) which issues certificates (using some threshold signature [DF90] protocol) to nodes

joining the network. These certificates enable nodes to communicate with each other in a

confidential and authenticated manner. This work also led to the development of COCA

[ZSvR02], an on-line certification authority for wired networks. Although quite attractive,

this idea is not directly applicable for the purposes of admission control in ad hoc groups.

The proposed approach is hierarchical in the sense that only select nodes can serve as parts

of the certification authority, i.e., take part in admission decisions. Moreover, contacting

distributed CA nodes in a multi-hop and ever-changing ad hoc group might not always be

possible.

Kong, et al. considered the same problem in series of papers [KZL+01, KLX+02,

LZK+02, LKZ+04] and proposed a set of protocols for providing ubiquitous and robust

admission control for ad hoc groups. They adapted the model of Zhou and Haas so that any

node can participate in admission control decisions, thus maintaining the true “peer” nature

of a ad hoc groups and providing increased availability. The security of their admission

mechanism relies upon a specific variant of the proactive threshold RSA signature scheme.

Unfortunately, this scheme is neither robust [NTY03] (i.e., it can not tolerate malicious

nodes) nor secure [JSY04].

Recently, Narasimha, et al. [NTY03] and Saxena, et al. [STY04] proposed similar

admission control protocols based on threshold DSA [GJKR96b] and threshold BLS [Bol03]

signatures, respectively. While provably secure, both solutions are quite inefficient.

As pointed out in the previous section, all of the above techniques require admitting

nodes to interact in order to issue a new node its secret share. Both heavy interaction and

costly cryptographic computation make these techniques overly expensive for most ad hoc

group applications.

The admission control technique developed in this thesis is completely non-interactive.

It uses secret sharing based on so-called bi-variate polynomials which have been employed

for related purposes in the literature [BOGW88, NPR99, BSH+92]. In particular, [LN03]
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presents a key pre-distribution scheme for sensor networks using bi-variate polynomials

[BSH+92] in the presence of a centralized authority. The protocol we propose is fully dis-

tributed and allows nodes in a ad hoc group to readily and efficiently share pairwise secret

keys without any centralized support.

7.3 Generic Admission Control Protocol

We claimed earlier (in Section 7.1) that admission control for ad hoc groups can

be realized by only issuing node-specific secret shares. Whereas, in prior proposals, it is also

necessary to issue individual node membership certificates. We now discuss the reasoning

behind this claim.

In prior solutions, certificates are needed to achieve secure communication among

the nodes, and secret shares are needed to take part in the admission protocols. We observe

that secure communication among the nodes can be achieved if each node just has a secret

share and, in addition, the updated VSS information. (How to achieve such public-key based

secure communication using shares and VSS information, is the topic of the next chapter.)

The updated VSS information can be provided to a new node during the admission protocol

by the existing nodes. Indeed, the VSS information needs to be signed (via a distributed

signature protocol) by a set of t + 1 nodes. However, it only needs to be signed once per

update interval (since the VSS remains constant per interval), and the signed responses can

simply be copied to the new node during the admission protocol.

Based on the above description, we define an admission control mechanism for ad

hoc groups as a set of three components:

1. Initialization: The group is initialized by either a trusted dealer or a set of founding

members. The dealer or founding members initialize the group by choosing a group

secret key, and computing and publishing the corresponding public parameters in the

group certificate [KMT03]. The group secret is shared among the founding member(s)

in such a way that any set of t+1 members can reconstruct it. The share of the group

secret possessed by each member is referred to as its secret share.

2. Admission: A prospective member Pn+1 who wishes to join the group must be issued

its secret share by current member nodes. Pn+1 initiates the admission protocol by

sending a JOIN REQ message to the network. A member node, that receives this
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JOIN REQ message and approves the admission of Pn+1, replies, over a secure channel,

with a partial secret share (derived from its secret share) for Pn+1. Once Pn+1 receives

partial secret shares from at least t + 1 different nodes, it uses them to compute its

secret share.

During the above process, a malicious node can easily preclude a prospective node

from being admitted by inserting incorrect partial secret shares, i.e., a denial-of-service

(DoS) attack. To prevent this, a prospective node must be able to verify the validity

of its reconstructed secret share before using them. This feature is called verifiability

in the rest of the chapter. Also, when the node detects that its secret share is invalid,

it must be able to trace the bogus shares and the malicious node(s) in the ad hoc

group. This functionality is provided by the so-called traceability feature. Note that

verifiability is always required, whereas, traceability is only necessary when a node

detects (via verifiability) that its reconstructed secrets are not valid.

3. Pairwise Key Establishment: Each node can use its secret share and/or the public

parameters to compute pairwise keys with any other node. This allows nodes to

securely communicate with each other.

7.4 UniAC: Admission Control using Uni-variate Polynomial

Secret Sharing

In this section, we briefly describe previously proposed admission control methods

[KZL+01, KLX+02, LZK+02, NTY03, STY03, STY04] (adapted with our optimization that

obviates certificates). These methods are based on uni-variate polynomial secret sharing;

we refer to them collectively as: UniVariate Admission Control (UniAC). UniAC involves the

following steps (for protocol message flows, see Figure 7.2).

1. Initialization: The system can be initialized by a trusted dealer TD or a set of founding

nodes. As in Shamir’s secret sharing [Sha79] based on a uni-variate polynomials, the

TD (or founding members) choose(s) a large prime q, and select(s) a polynomial

f(x) =
t
∑

i=0

aix
i (mod q)

such that f(0) = S, where ai-s are the coefficients of the polynomial, q is a large

prime, and S is the group secret. The TD computes each node’s secret share ssi
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such that ssi = f(idi) (mod q), and securely transfers ssi to node Pi. [Recall that

any group of t + 1 nodes, say first t + 1 nodes, who have their shares can recover the

secret using Lagrange interpolation: f(0) =
∑t+1

i=1 ssi λi(0) (mod q), where λi(x) =
∏t+1

j=1,j 6=i
x−idj

idi−idj
(mod q).]

TD also publishes a commitment to the polynomial as in VSS. VSS setup involves a

large prime p such that q divides p − 1 and a generator g which is an element of Z
∗
p

of order q. TD computes Wi, called the witness, such that Wi = gai (mod p) for all

i ∈ [0, t], and publishes these Wi-s in the group certificate.

2. Admission: We described this procedure in Section 5.7. During this procedure (which

we call random shuffling hereafter), a new node Pn+1 is given a shuffled partial secret

share as pssj(n + 1) = ssjλj(idn+1) + Rjλj(0) (mod q) by each sponsoring node Pj .

Here, Rj ∈ Zq denotes Pj ’s random secret share of “zero”, and is generated during

the joint zero secret sharing protocol (JZSS as described in Section 5.5) among the

sponsoring nodes. Upon receiving these partial share values from t + 1 nodes, Pn+1

obtains its secret share ssn+1 by simply adding them. Note that
∑t+1

j=1 Rjλj(0) = 0.

(This random shuffling process is illustrated in Figure 7.1(a).)

Pn+1 then performs the verifiability checking and, if needed, the traceability proce-

dure. (See [CSY05] for details regarding the actual computations involved in these

procedures.)

We note that, due to the above random shuffling procedure, this admission proto-

col becomes heavily interactive among the t + 1 sponsoring nodes – it requires O(t2)

point-to-point messages as well as extremely expensive O(t) reliable broadcast messages

[Bra84]. All this makes it impractical for most ad hoc group settings.2

3. Pairwise Key Establishment: Any pair of nodes Pi and Pj can establish shared keys

using their respective secret shares ssi, ssj and public VSS information. Pi computes:

gssj =
t
∏

k=0

(Wk)idj
k

(mod p)

2The messages in the random shuffling procedure can be routed via the new node Pn+1, as was proposed

in [LL00]. This avoids any direct communication among the t + 1 sponsors, however, at the cost of Pn+1

becoming the bottleneck.
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from the public witness values, and exponentiates it with its share ssi to get a key

Kij = (gssj )ssi (mod p). Similarly, Pj computes:

gssi =
t
∏

k=0

(Wk)idi
k

(mod p)

and exponentiates it with its share ssj to get a key Kji = (gssi)ssj (mod p). Since,

Kij = Kji, Pi and Pj now have a shared secret key.

This key establishment procedure remains secure under the computational Diffie-

Hellman (CDH) assumption in the random oracle model (ROM). (The security proof

appears in the next chapter).

7.5 BiAC: Non-interactive Admission Control

We now describe a new admission technique for ad hoc groups. It is based on

secret sharing using bi-variate polynomials and is fully non-interactive. We call the protocol

BiVariate Admission Control (BiAC).

P5
P4

P7

P6

quorum of
t members

P1

P2

P3

Pn+1

1. JOIN_REQ   (broadcast)

2. JOIN_RLY   (t’  unicasts)

3. SHAR_REQ  (t unicasts)
Random
Shuffling

4. SHAR_RLY   (t unicasts)

P8

(a) UniAC

Pn+1

1. JOIN_REQ  (broadcast)

2. JOIN_RLY  (t’  unicasts)
P5

P4

P7

P6

P1

P2

P3

P8

(b) BiAC

Figure 7.1: Comparison of UniAC and BiAC

126



7.5.1 Overview

As shown in Figure 7.1(b), we avoid interaction among sponsoring nodes by using a

bi-variate polynomial f(x, y). Bi-variate polynomials have been previously used for related

purposes [BOGW88, NPR99, BSH+92].

The secret sharing based on bi-variate polynomial works as follows. To distribute

shares among n nodes, a trusted dealer chooses a large prime q, and selects a random sym-

metric bi-variate polynomial f(x, y) =
∑t

α=0

∑t
β=0 fαβxαyβ (mod q) such that f(0, 0) = S,

where the constants fαβ-s are the coefficients of the polynomial and S is the group secret.

Since the polynomial is symmetric, fαβ = fβα for each α, β and f(x, y) = f(y, x). For each

node Pi, the dealer computes a uni-variate polynomial, called a share-polynomial, bi(x) of

degree (t) such that bi(x) = f(x, idi) (mod q), and securely transfers bi(x) to each node Pi.

Note that, after initializing at least t + 1 nodes, the dealer is no longer needed.

In order to admit a new node Pn+1, the current member nodes must issue it a share-

polynomial bn+1(x) in a distributed manner. This can be achieved if at least t + 1 member

nodes provide Pn+1 with partial shares bj(idn+1) such that bj(idn+1) = f(idn+1, idj) for

some j ∈ [1, n]. Pn+1 can then use the standard Gaussian elimination procedure [PFTV92]

to compute f(idn+1, x), which is the same as f(x, idn+1) (since the polynomial f(x, y) is

symmetric) and thus obtain its share-polynomial bn+1(x) = f(x, idn+1) from t + 1 partial

shares bj(idn+1).

Unlike protocols based on sharing of uni-variate polynomials, this scheme does not

require any interaction among the admitting member nodes.

7.5.2 Initialization

In BiAC, the ad hoc group can be initialized by one node (centralized initialization)

or a set of nodes (distributed initialization).

Centralized Initialization: the trusted dealer TD computes a two-dimensional sharing

of the secret by choosing a random bi-variate polynomial:

f(x, y) =
t
∑

α=0

t
∑

β=0

fαβxαyβ (mod q)

such that f(0, 0) = S. TD computes Wαβ , called a witnesses, such that Wαβ = gfαβ

(mod p) for all α, β ∈ [0, t− 1], and publishes these Wαβ-s as part of the group certificate.
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Once TD computes the witness matrix, it sends each node Pi (i ∈ [1, n]) a distinct share-

polynomial: bi(x) = f(x, idi). TD’s presence is needed only during this initialization phase

in order to bootstrap the system.

Distributed Initialization: alternatively, the network can be initialized by a set of t + 1

or more founding nodes. These nodes agree on a random bi-variate polynomial f(x, y) using

the bi-variate variant of GJKR-DKG, the Distributed Key Generation (DKG) technique of

[GJKR99b] (refer to Section 5.4 for details).

7.5.3 Admission Process

In order to join the network, Pn+1 must collect at least t + 1 partial shares of the

polynomial from t + 1 current nodes. Figure 7.3 shows the protocol message flow for the

node admission process3. We assume that the communication between Pn+1 and each Pi

takes place over a secure channel. Such channels can be established, for example, by using

out-of-band channels (as was proposed in Chapters 3 and 4).

Pn+1 → Pi: idn+1 (1)
Pn+1 ← Pi: idi (2)
Pn+1 → Pj : SLn+1 (3)
Pi ←→ Pj : Random Shuffling (4)
Pn+1 ← Pj : pssj(n + 1) (5)

Figure 7.2: UniAC Admission Protocol

Pn+1 → Pi: idn+1 (1)
Pn+1 ← Pi: idi, bi(idn+1), (2)

Figure 7.3: BiAC Admission Protocol

1. Pn+1 broadcasts JOIN REQ message which contains its identity idn+1.

2. Each receiving node (Pi) willing to admit Pn+1, computes a partial share bi(idn+1)

using its own share-polynomial such that bi(idn+1) = f(idn+1, idi). Pi then replies

3In order to secure the protocol against common attacks such as replay, impersonation, and interleaving

attacks [MvOV97], we note that it is necessary to include additional information such as timestamps, nonces,

and identity information of the sender as well as the receiver. However, in order to keep our description

simple, we omit these values.
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to Pn+1 with a SHARE REP message. Each message contains bi(idn+1) along with the

respective identifiers idi.

Note that, in order to compute their partial shares above, sponsors do not need to

be aware of each other and thus no interaction is needed. This is in contrast with

UniAC scheme, where each sponsor needs to be aware of and connected with all other

sponsors.

3. Upon receiving m (≥ t + 1) SHARE REP messages, Pn+1 selects any t + 1 of them

and interpolates its own share-polynomial bn+1(x) using standard Gaussian elimina-

tion as follows. Let us denote the share-polynomial bn+1(x) reconstructed by Pn+1 as
∑t

α=0 Aαxα. Since bi(idn+1) = bn+1(idi) (due to symmetry), the problem to interpo-

late bn+1(x) using t + 1 bi(idn+1)-s is equivalent to the problem to solve the matrix A

such that XA = B as follows:
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The above system of linear equations yields a unique solution since the idi values are

distinct and the matrix X = [xij ], where xij = (idi)
j−1 for all i, j ∈ [0, t], is invertible.

Verifiability: In order to verify the acquired hare-polynomial
∑t

α=0 Aαxα, Pn+1 must

perform the verifiability procedure. In order to be a valid share-polynomial, Aα must

be equal to
∑t

β=0 fαβ(idn+1)β , for all α ∈ [0, t]. Using the public witness values (from

the group certificate) Wαβ = gfαβ (mod p), the polynomial can be verified as follows:

gAα =
t
∏

β=0

(Wαβ)(idn+1)β

(mod p)

for all α ∈ [0, t].

Note that the right-hand side in the above equation can be pre-computed by Pn+1

prior to starting the admission process.

Traceability: If verification fails, Pn+1 can trace the faulty share provider(s) by per-

forming the traceability procedure. This involves verifying the validity of each partial
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share bi(idn+1) = f(idn+1, idi), that Pn+1 received. This can be achieved by checking

the following equation for each i:

gbi(idn+1) =
t
∏

α=0

t
∏

β=0

(Wαβ)(idn+1)α(idi)
β

(mod p)

Note that
∏t

α=0(Wαβ)(idn+1)α
in the above equation can be pre-computed since Wαβ-s

and idn+1 are known to Pn+1 in advance.

7.5.4 Pairwise Key Establishment

Once every node has its share-polynomial, pairwise key establishment is the same

as in [BSH+92] and [LN03]. Any pair of nodes Pi and Pj can establish shared keys as

follows: Pi uses its share-polynomial f(x, idi) to compute

Kij = f(idj , idi) (mod q)

and Pj its share-polynomial f(x, idj) to compute

Kji = f(idi, idj) (mod q).

Since f(x, y) is a symmetric polynomial, Kij = Kji. Thus, Pi and Pj now have a shared

key that can be used for secure communication.

Unlike the pairwise key establishment in UniAC (security of which is based on the

CDH assumption in ROM) as described in Section 7.4, the security of above procedure is

unconditional, i.e., not based on any assumption. Refer to [BSH+92] for details regarding

the security arguments of this pairwise key establishment.

Table 7.1: Feature Comparison

Key Features UniAC BiAC

Security Assumption (for Admission) DL DL

Security Assumption (for Key Comp.) CDH Unconditional

Decentralized Admission Yes Yes

DoS Resistance Yes Yes

Interaction among Sponsors Required Yes No

Random Shuffling Required Yes No

Reliable Broadcast Required Yes No
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7.6 Security Analysis

In this section, we discuss the security of the proposed BiAC scheme. Security of

BiAC is based on the discrete logarithm (DL) assumption as long as the adversary is not

allowed to corrupt more than (t) (< n/2, where n is the total number of nodes) nodes in

the network. We only present a sketch of this argument. Basically, as in the Feldman’s

VSS, we use the idea of simulated adversarial view to show that an adversary who corrupts

at most t nodes learns nothing extra (other than the witness gS (mod p)) about the secret

S during the initialization and admission procedures of the scheme. This is achieved by

generating a simulator, which on input gS (mod p), produces public information and the

private information to the adversary which is statistically indistinguishable from the one

produced in the actual run of these procedures.

For the security arguments of BiAC pairwise key establishment, we refer the reader

to [BSH+92].

7.7 Performance Analysis

In this section we discuss the implementation of UniAC and BiAC and compare

them in terms of node admission, traceability and pair-wise key establishment costs. We also

summarize and compare some salient features in Table 7.1. As expected, BiAC significantly

outperforms UniAC in our overall evaluation.

7.7.1 Complexity Analysis and Comparison

We summarize computation and communication complexities4 in Tables 7.2 and

7.3, respectively, where n ≥ m ≥ t. More specifically, BiAC requires each sponsoring node

Pi to perform O(t) modular multiplications and the joining node Pn+1 to perform O(t3)

modular multiplications for Gaussian elimination and O(t) exponentiations for verifiability.

On the other hand, UniAC requires each Pi to perform O(t) multiplications, and Pn+1 to

perform O(t) multiplications plus 1 exponentiation for verifiability. For traceability, both

the schemes require O(t2) multiplications and O(t2) exponentiations with pre-computation.

BiAC is significantly more efficient than UniAC for computing pairwise keys, since the former

4The costs required for protecting each protocol message are not taken into account since these costs

vary with the specific signature scheme.
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requires only O(t) multiplications, while the latter needs O(t) exponentiations as well as

O(t) multiplications. Note that, pairwise key establishment is a very frequent operation in

a MANET, thus, its efficiency is extremely important.

Table 7.2: Computation Complexity

Category UniAC BiAC

Admission

Pi’s
view

M O(t) O(t)
E O(t) 0

Pn+1’s
view

M O(t) O(t3)
E 1 O(t)

Traceability
M O(t2) O(t2)
E O(t2) O(t2)

Pairwise Key
Establishment

M O(t) O(t)
E O(t) 0

M: modular multiplication E : modular exponentiation

Table 7.3: Communication Complexity

Category UniAC BiAC

Rounds
broadcast 1 1

unicast O(t2) O(t)
reliable broadcast O(t) 0

Bandwidth
log q-bit O(t2) O(t)
log p-bit O(t) O(t)

As far as overall communication costs5, BiAC consumes O(t log q) and O(t log p)

bits, while bandwidth consumption in UniAC is O(t2 log q) plus O(t log p) bits due to the

interactive random shuffling procedure.

7.7.2 Experimental Setups

UniAC and BiAC protocols have been implemented over the popular OpenSSL

library [Operg]. The source is written in C in Linux and consists of about 10, 000 lines of

code for each protocol. The code is available at [Peeac].

We used five laptops in our experimental set-up: four with Pentium-3 800MHz

CPU-s and 256MB memory and one with Mobile Pentium 1.8 GHz CPU and 512MB mem-

ory. Each laptop ran Linux 2.4 and was equipped with a 802.11b interface configured for

5We assume that the identity and the public key are log q bits long and log p bits long, respectively.
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ad-hoc mode. Specifically, for measuring the admission cost, four laptops with the same

computing power were used as current member nodes and the high-end laptop was used as

the joining/new node. Traceability and pairwise key computation experiments were also

performed with this high-end laptop. In our experiments, each node (except the joining

node) was emulated by a daemon and each machine was running up to three daemons. The

measurements were performed with different threshold values t. The size of the parameter

q was set to be 160-bits and p 1024-bits.

To measure consumption of battery power, we performed the following experiment:

the test machine was an iPAQ (model H5555) running Linux (Familiar-0.7.2). The CPU

on iPAQ is a 400 MHz Intel XScale with 48MB of flash memory and 128MB of SDRAM.

In order to obtain accurate power measurements, we removed the battery from the iPAQ

during the experiment and placed a resistor in series with the power supply. We used

a National Instruments PCI DAQ (Data AcQuisition) board to sample the voltage drops

across the resistor to calculate current at 1000 samples per second.

7.7.3 Experimental Results

We compare our experiment results in terms of admission, energy consumption for

admission, traceability, and pairwise key computation.

7.7.3.1 Admission Results

To evaluate admission cost, we measured total processing time between sending

of JOIN REQ by the prospective member and receiving (plus verification) of acquired secret

shares. Our measurements include the average computation time of the basic operations

(such as modular multiplications, exponentiations etc.) as well as communication costs,

such as packet en/decoding time, network delay, and so on.

As observed from Figure 7.4, the admission (join) cost with BiAC is much lower

than that with UniAC. The difference is even higher for higher threshold values. The reason

is quite intuitive: not only is BiAC computationally cheaper than UniAC, but it also requires

less communication.

Energy consumption results for admission operation are plotted in Figure 7.5. This

experiment is quite tricky to measure fairly. Energy consumption is directly proportional

to processing time. It is meaningless to measure energy consumption based on computation
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Figure 7.4: Admission Costs

time. However, it is well known that, in many small devices such as low-end MANET nodes

or sensors, sending a single bit is roughly equivalent to performing 1,000 32-bit compu-

tations in terms of batter power consumption [BA03]. Therefore, we measured the power

consumption in terms of communication bandwidth required by each admission protocol. In

more detail, we sent some bulk data (e.g., 100 Mbytes) from a single iPAQ PDA, measured

the power consumed while sending out this data, and then computed the average power

consumption per bit. After that, we calculated the power consumption of each admission

protocol by multiplying this measurement result by the bit length of the transmitted data.

These results in Figure 7.5 clearly illustrate that BiAC is much more energy-efficient than

UniAC.
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7.7.3.2 Traceability Results

Figure 7.6 displays traceability costs for the two approaches. Even in the worst

case, BiAC is as good as UniAC for performing the (very infrequent) operation of tracing

malicious nodes.
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Figure 7.6: Traceability Costs

7.7.3.3 Pairwise Key Establishment Results

Figure 7.7 shows that BiAC is significantly more efficient than UniAC for computing

pairwise keys. The achieved gains range approximately from 115 (t = 1) to 412 (t = 9);

in other words, BiAC is 115 to 412 times faster than UniAC when establishing a shared

secret key. This result was actually expected because in BiAC the pairwise key computation

requires only O(t) multiplications where the modular size is 160 bits. In contrast, UniAC

requires O(t) exponentiations with a modular size of 1024 bits as well as O(t) multiplications

with 160-bit modulus.
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Chapter 8

Efficient Secure Communication in

Ad Hoc Groups

In this chapter, we show how to perform necessary public key operations without

node-specific certificates in ad hoc groups. These operations include pair-wise key

establishment, signing, and encryption. Our proposal is based upon the use of secret

shares generated in Feldman’s VSS as private keys.

8.1 Introduction

We saw in Chapter 7, that as long as each node is able to obtain an updated

VSS information, there is no need for node-specific certificates. However, Chapter 7 focuses

mainly on how to efficiently admit new nodes, i.e., how to create new secret shares in a

distributed manner. In this chapter, we are concerned with the problem of how to enable

secure communication among the nodes once they have been admitted. In particular, we

show that the secret shares created by Feldman’s VSS can be securely and efficiently used

as private keys in many standard discrete-log based public-key cryptosystems, namely in a

Schnorr signature scheme, in an ElGamal encryption, and in a non-interactive version of the

Diffie-Hellman pairwise key establishment protocol. Note that if the VSS share xi is treated

as Pi’s private key, the Feldman’s VSS public information allows everyone to compute the

corresponding public key yi.
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Motivation. The motivation for establishing pairwise keys is straight-forward – it is

needed to secure communication between any pair of nodes, e.g., as required in various

secure routing protocols, such as Ariadne [HPJ02]. Signing is required in cases when non-

repudiation is needed, e.g., as in ARAN secure routing protocol [DLRS01]. Encryption is

suitable for scenarios where an authorized node outside the network needs to send a private

query to a node inside. An example scenario is in a wireless sensor network, where a base

station sends a maintenance query to a particular sensor node (e.g., to obtain its reading

of nuclear activity in the environment). However, sending the query in clear would leak

critical information to an adversary who might be interested in knowing what the sensor

network is installed for (e.g., for detecting a nuclear attack [Hil01]).

Related vs. Independent Keys. It is not obvious whether the proposed usage of secret

shares as private keys is safe. The reason is simple – unlike the standard public-key cryp-

tosystems where every user gets an independently created private/public key pair, here the

private keys of all parties are related by being values of a t-degree polynomial (Note, for

example, that any set of t + 1 such values determines all the others). Recall, for example,

that the “text-book RSA” is not secure when public keys of two users are related [MvOV97].

Our Contributions. We show that indeed such use of the secret shares as private keys

is just as secure as the standard discrete-log based signatures, encryption, and key estab-

lishment, as long as no more than t of the players in the group collude or are corrupted by

an attacker. Note that this is the best that one can hope for because if the private keys

are shares in a secret sharing with t-degree privacy threshold, any collection of t + 1 such

keys enables reconstruction of the whole secret-sharing and hence also all the other private

keys. Our proposal renders necessary public key operations efficiently feasible in ad hoc

networks, without the need of certificates.

Threshold-tolerant ID-based Cryptography. The proposed scheme is essentially equiv-

alent to an identity-based cryptosystem that tolerates upto a threshold of corruptions/collusions.

However, as compared to well-known ID-based cryptographic mechanisms, such as IBE

[BF01] and other related schemes, our approach is more efficient and is also based on stan-

dard cryptographic assumptions.
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Organization. Section 8.3 presents our new scheme. In Section 8.4, we compare our

proposal to prior identity-based cryptosystems.

8.2 Communication and Adversarial Model

We work in the standard model of threshold cryptography and distributed al-

gorithms known as synchronous, reliable broadcast, static adversary model. This model

involves nodes equipped with synchronized clocks. We assume some nomenclature system

that provides each node in the network with a unique identifier, and also that it’s compu-

tationally hard for an adversary to forge identities.

We assume the existence of an on-line trusted public repository where the network-

wide or group public key is published. The nodes (both within and outside the network) are

connected by weakly synchronous communication network offering point-to-point channels

and a reliable broadcast. To interact with a node in the network, an outsider must first be

able to retrieve the group public key from the repository.

We consider the presence of the so-called “static” adversary, modeled by a proba-

bilistic polynomial time algorithm, who can statically, i.e., at the beginning of the life time

of the scheme, schedule up to t < n/2 arbitrarily malicious faults among n users in the

group. Such an adversary is said to break our scheme if it is able to break the underly-

ing key establishment, signature and encryption schemes against the standard notions of

security.

8.3 Our Proposal: “Secret-Shares-as-Private-Keys”

In this section we present our proposal on using secret VSS shares as private keys

that renders public key operations efficiently feasible in ad hoc networks. We begin by

providing a brief overview of the scheme.

8.3.1 Overview

The idea of the scheme is very simple. Basically, we use Feldman’s VSS ( summa-

rized in Section 5.3), to build our scheme.

A dealer (or a set of founding nodes) chooses a secret sharing polynomial f(z) =

a0 + a1z + · · · atz
t in Zq, where a0 (also denoted as x) is the group secret key. The dealer
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also publishes commitments to the coefficients of the polynomial, as wi = gai (mod p), for

i = 0, · · · , t. These witnesses constitute the public key of the group. To join the group, a

user Mi with a unique identifier (such as an email address) idi, receives from the dealer (or

a set of t + 1 or more nodes distributedly as described in previous chapter) a secret share

xi = f(idi) (mod q) over a secure channel. The public key yi = gxi (mod p) of Mi can be

computed using the public key of the group and its identifier idi as

yi =
t
∏

j=0

(wj)
idi

j

(mod p)

Now, any user (within or outside) the group, can send encrypted messages to Mi

using its public key yi, which Mi can decrypt using its secret key xi. Similarly, Mi can

use xi to sign messages, which can be publicly verified using yi. Moreover, any two users

Mi and Mj can establish pairwise keys in a non-interactive manner: Mi and Mj compute

kij = (yj)
xi (mod p), and kji = yi

xj (mod p), respectively. Since Kij = kij = kji, a hash of

Kij can be used as session keys for secure communication between Mi and Mj .

We call these secret sharing based pairwise key establishment, signature and en-

cryption procedures as SS-KE, SS-Sig and SS-Enc, respectively. SS-Sig is realized using the

Schnorr’s signature scheme, and SS-Enc using ElGamal encryption.

Remark: The scheme that we present in this chapter is based on the original Feldman’s

VSS, i.e., the one that uses uni-variate polynomial for secret sharing. However, the scheme

is also applicable to the variant of VSS based on bi-variate polynomials, and thus can be

used in conjunction with the solutions that we proposed in the last chapter.

8.3.2 Setup and Joining

In order to setup the system, a dealer first chooses appropriate parameters (p, q, g)

for the group, and selects a polynomial f(z) = a0 + a1z + · · · + atz
t in Zq, where a0 (also

denoted as x) is the group secret. The dealer keeps the polynomial secret and publishes

commitments to the coefficients of the polynomial, as wi = gai (mod p), for i = 0, · · · , t.
These witnesses constitute the public key of the group.

To join the group, a user Mi sends its unique identifier idi to the dealer, who

issues it its secret share xi = f(idi) (mod q). (We assume there exists some kind of a

unique nomenclature system for the users in the group, and that its computationally hard

for anyone to forge the identities.)
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Remark: In an ad hoc network, the setup and joining are performed in a dis-

tributed manner. The setup is performed using GJKR-DKG and the joining is performed

using the admission protocol UniAC based on random shuffling (described in the previous

chapter).1

8.3.3 SS-KE: Secret Sharing based Pairwise Key Establishment

Any pair of users Mi and Mj in the group can establish shared keys with each

other using their secret keys and the group public key. Mi computes the public key yj of

Mj (knowing its identifier idj only) as

yj =
t
∏

i=0

(wi)
idj

i

(mod p)

Mi then exponentiates yj to its own secret key xi, to get kij = yj
xi = gxjxi (mod p).

Similarly, Mj computes public key yi of Mi as

yi =

t
∏

j=0

(wj)
idi

j

(mod p),

and exponentiates it to its own secret key xj , to get kji = yi
xj = gxixj (mod p). Since,

kij equals kji, Mi and Mj can use Kij = H(kij) = H(kji), as a session key for secure

communication with each other.

Computational Complexity. Each party needs to compute the other party’s public

key via interpolation, and one exponentiation only. Using the well-known scheme of multi-

exponentiation (or Shamir’s trick) [Möl01], the cost of interpolation is O(log(nt)) squarings

and O(log(nt)) multiplications, where n denotes the total number of parties. For reasonable

threshold values and network sizes, the interpolation is fairly efficient.

Next, we present the security argument for the above SS-KE procedure. Basically

we show that an adversary, who corrupts t users, can not distinguish a key KIJ for some

uncorrupted user pair (MI , MJ) from random even if he learns all other session keys Kij for

1Note that the security proofs for the secret sharing based key establishment, signatures and encryption

that we present in this chapter are based on Feldman’s VSS and require an on-line TD. However, same

proofs also hold when the setup is performed in a distributed manner using GJKR-DKG and joining using

UniAC; the only difference being in their respective simulations, which follow directly from the simulations

of GJKR-DKG and of UniAC.
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(i, j) 6= (I, J). This is the standard notion for the security of a key establishment protocol

and is adopted from [CK01].

Theorem 10 (Security of SS-KE). Under the CDH Assumption in ROM, there exists

no probabilistic polynomial time adversary A, which on inputs of secret keys of t corrupted

users, and shared keys Kij between every user pair except KIJ {(i, j) 6= (I, J)}, is able to

distinguish with a non-negligible probability KIJ from a random value.

Proof. We prove the above claim by contradiction, i.e, we prove that if a polynomial time

adversarial algorithm A, which on inputs of secret keys of t corrupted users, and shared

keys Kij between every user pair except KIJ {(i, j) 6= (I, J)}, is able to distinguish with

a non-negligible probability KIJ from a random value, then there exists a polynomial time

algorithm B, which is able to break the CDH assumption in the random oracle model.

In order to construct the algorithm B which breaks the CDH assumption, we

first construct a polynomial time algorithm C, which breaks the SCDH assumption. The

algorithm C runs on input of an SCDH instance y = gx (mod p), and would translate the

adversarial algorithm A into outputting gx2
(mod p).

Without loss of generality, we first assume that the adversary A corrupts t players

denoted by M1, M2, · · · , Mt. Now, the algorithm C runs as follows:

As in the simulation of Feldman’s VSS C picks x1, x2, · · · , xt values corresponding

to the secret keys of corrupted users, uniformly at random from Zq. It then sets xi = F (idi),

and employs appropriate Lagrange interpolation coefficients in the exponent to compute the

public witnesses gA1 , · · · , gAt (mod p), where F (z) = x + A1z + · · ·+ Atz
t (mod q).

Corresponding to the shared keys Kij between every user pair, C picks a random

value Rij , and runs the algorithm A on x1, · · · , xt and Ri,j values. Note that the values

x1, · · · , xt and the witnesses have an identical distribution to an actual run of the Feldman’s

secret sharing protocol, and therefore A can not see the difference between C’s inputs and

actual protocol run. Also, since the Kij values for (i, j) 6= (I, J) are obtained by hashing

gxixj , the only way A can tell the difference, except with negligible probability, between Ki,j

and Ri,j for (i, j) 6= (I, J), is by querying the random oracle on at least one appropriate

gxixj value. If A does tell the difference, then C records R = gxixj , and use the following

equations to compute gx2
,
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x =
t
∑

k=1

xkl
i
k + xil

i
i (mod q)

x =
t
∑

k=1

xkl
j
k + xjl

j
j (mod q)

(lik denotes the lagrange coefficient lGk (0), where G = {1, · · · , t, i}).
Multiplying above two equations, we get

x2 = (
t
∑

k=1

xkl
i
k)(

t
∑

k=1

xkl
j
k) + xixjl

i
il

j
j (mod q)

This implies,

gx2
= g(

Pt
k=1 xkli

k
)(

Pt
k=1 xklj

k
)Rliil

j
j (mod p)

If A doesn’t tell the difference between Ki,j and Ri,j for (i, j) 6= (I, J), then it

must tell the difference between KI,J and RI,J . However, as above, this is only possible,

except with negligible probability, if A queries gxIxJ to the random oracle. Them C records

this value (say K) and computes gx2
similarly as above, using the following equation

gx2
= g(

Pt
k=1 xklI

k
)(

Pt
k=1 xklJ

k
)K lII lJJ (mod p)

Now, we will use C to construct B to break a CDH instance (gu, gv). This is very

simple as outlined in [MW96]: B runs C on input gu, then on gv, and finally on gu+v = gugv,

and receives gu2
, gv2

, g(u+v)2 , respectively. Now, since (u + v)2 = u2 + v2 + 2uv (mod q), B

can easily compute guv from the outputs of C.

Clearly, Pr(B) = Pr(C)3, where Pr(B), P r(C), denote the probabilities of success

of B and C respectively.

8.3.4 SS-Sig: Secret Sharing based Signatures

As mentioned previously, we realize SS-Sig using the Schnorr’s signature scheme.

Signing. To sign a message m , Mi (having secret key xi), picks a random secret k ∈ Zq

and computes r = gk (mod p). It then outputs the signature as a pair (c, s), where c =

H(m, r) and s = k + rxi (mod q).
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Verification. In order to verify the above signature (c, s), a recipient first computes the

public key yi of the signer Mi using its identity idi as yi =
∏t

j=0(wj)
idi

j

(mod p), and then

verifies whether c = H(m, r), where r = gsyi
−c (mod p).

Computational Complexity. The signer needs to compute only one exponentiation,

while the verifier requires one interpolation operation, two exponentiations and and two

multiplications.

In the following theorem, we argue the security of SS-Sig. More precisely, we argue

that SS-Sig remains secure against existential forgery under chosen message attack (CMA)

[GMR84] in ROM as long as the discrete logarithm assumption holds. Notice that SS-Sig is

different from regular signatures in the sense that the users generate signatures with related

(and not independent) secret keys, and the adversary knows at most t of these secret keys.

For clarity of our argument, we first recall the argument for security of the un-

derlying Schnorr’s signature scheme against CMA attack in ROM and discrete logarithm

assumption; the simulator algorithm, on input y = gx, can produce Schnorr’s signatures

on any m by picking s and c at random in Zq, computing r = gsy−c (mod p) and setting

H(m, r) = c. This simulator can also translate the adversary’s forgery into computing

dloggy as follows. It runs the adversary until the adversary outputs a forgery (c, s) on some

message m. Note that because H is a random function, except for negligible probability,

the adversary must ask to H a query (m, r) where r = gsy−c (mod p), because otherwise it

could not have guessed the value of c = H(m, r). The simulator then rewinds the adversary,

runs it again by giving the same answers to queries to H until the query (m, r), which it

now answers with new randomness c′. If the adversary forges a signature on m in this run,

then, except for negligible probability, it produces s′ s.t. r = gs′y−c′ (mod p), and hence

the simulator can now compute dloggy = (s − s′)/(c′ − c) (mod q). One can show that if

the adversary’s probability of forgery is ε, this simulation succeeds with probability ε2/4q:

O(ε) probability that the adversary forges in the first run times the O(ε/qH) probability

that it will forge on the second run and that it will choose to forge on the same (m, r) query

out of its q queries to H. We refer to [PS96] for the full proof.

Theorem 11 (Security of SS-Sig). Under the DL assumption in ROM, as long as the

adversary corrupts no more than t users, SS-Sig is secure against the chosen-message attack

for every remaining uncorrupted user
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Proof. We prove the following claim: if there exists a polynomial time algorithm A, which

on inputs the secret keys of t corrupted users, is able to create an existential forgery in CMA

model corresponding to an uncorrupted user, then there exists a polynomial time algorithm

B, which can break the DL assumption in ROM.

We construct an algorithm B, which runs on input of a DL instance y = gx

(mod p), and would translate the adversarial algorithm A into outputting x. We first

assume that the adversary A corrupts t players denoted by M1, M2, · · · , Mt, w.l.o.g.

Note that in our multiple user scenario, the adversary A can request the signature

oracle to sign chosen messages corresponding to any honest player. In other words, when

A sends (m, idi) to the signature oracle, the oracle responds with a signature on message

m signed with xi.

B picks x1, x2, · · · , xt values corresponding to the secret keys of corrupted users,

uniformly at random from Zq. It then sets xi = F (idi), and employs appropriate Lagrange

interpolation coefficients in the exponent to compute the public witnesses gA1 , · · · , gAt

(mod p), where F (z) = x+A1z + · · ·+Atz
t (mod q). Since, x =

∑t
k=1 xkl

i
k +xil

i
i (mod q),

B can compute the public key yi, corresponding to an honest player Mi (i ≥ t + 1) as

yi = (y/g
Pt

k=1 xkli
k)1/lii (mod p) (8.1)

B now runs A on inputs x1, x2, · · · , xt and simulates the signature oracle on A’s

query (m, idi), by picking s and c at random in Zq, computing r = gsyi
−c (mod p) and

setting H(m, r) = c. A then outputs a forgery (C, S) on some message M corresponding

to user Mi. Note that because H is a random function, except for negligible probability,

A must have asked to H a query (M, R) where R = gSyi
−C (mod p), because otherwise it

could not have guessed the value of C = H(M, R). B then reruns A by giving the same

answers to queries to H until the query (M, R), which it now answers with new randomness

C ′. If A outputs the forgery on the same message M , but this time for a different user Mj

(i 6= j) then, except for negligible probability, it produces S ′ s.t. R = gS′
yj

−C′
(mod p). B

can now (using equation 8.1) compute

x = (S − S ′ + (C/lii)
t
∑

k=1

xkl
i
k − (C ′/ljj)

t
∑

k=1

xkl
j
k)/(C/lii − C ′/ljj) (mod q)

As in the security proof of Schnorr’s Signatures, the probability of success of B

would be ε2/4q, where ε represents the success probability of A and q is the total number
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of queries to H().

8.3.5 SS-Enc: Secret Sharing based Encryption

We use Hashed ElGamal encryption scheme in the SS-Enc procedure.

Encryption. In order to encrypt a message m for a user Mi in the group, the encryptor

computes the public key of Mi as yi =
∏t

j=0(wj)
idi

j

(mod p), chooses a random r ∈ Zq and

then sends a pair (c1, c2) to Mi, where c1 = gr (mod p) and c2 = m ⊕H(yi
r) (⊕ denotes

the bit-wise XOR operator).

Decryption. Mi recovers the message by computing c2 ⊕ H(cxi

1 ) from the ciphertext

(c1, c2).

Computational Complexity. In the above procedure, the encryptor performs one in-

terpolation and two exponentiation. The decryptor, on the other hand, needs to compute

only a single exponentiation.

Before presenting the security argument for SS-Enc, we briefly discuss the indis-

tinguishability notion [GM89]. Indistinguishability is defined as the following game: the

adversary is first run on input of the public key and outputs two messages to be challenged

upon. Next, one of these messages is encrypted and given to the adversary. The adversary

is said to win this game if he can output which message was encrypted with non-negligible

probability greater than half.

The above notion of indistinguishability was designed for a single user scenario,

where multiple messages are being encrypted for one user. However, to capture the security

of SS-Enc, where there are multiple users in the group and the messages are encrypted using

related keys, we adopt the multi-user indistinguishability notion of Baudron et al. [BPS00]

and Bellare et al. [BBM00]. In this notion, the adversarial game is as follows: first the

adversary is given as input n public keys (pk1, · · · , pkn) of all the users. The adversary

then outputs two vectors of n messages M0 = {m01, · · · , m0n} and M1 = {m11, · · · , m1n},
which might be related or same, to be challenged upon. One of the message vectors Mb (b

is 0 or 1) is then encrypted with n public keys (the order of the encryption is preserved,

i.e., mbi is encrypted with pki). The adversary is said to win the game if he can, with
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probability non-negligibly greater than half, output which message was encrypted. It has

been shown in [BBM00, BPS00] that an encryption scheme secure in the sense of single-user

indistinguishabilty is also secure in the sense of multi-user indistinguishability.

Following is the security argument for SS-Enc based on a slightly modified multi-

user indistinguishability notion, as described above (Basically, the adversary is only chal-

lenged for the encryptions of n− t honest users in the group).

Theorem 12 (Security of SS-Enc). Under the CDH assumption in ROM, as long as

the adversary corrupts no more than t users, SS-Enc is secure in the sense of multi-user

indistinguishability notion.

Proof. As usual, the proof goes by contradiction, i.e., we proof that if there exists a polyno-

mial time algorithm A, which on inputs the secret keys of t corrupted users, is able to break

the multi-user indistinguishability notion, then there exists a polynomial time algorithm B,

which can break the CDH assumption in ROM.

We construct an algorithm B, which running on input of a CDH instance U =

gu, V = gv, translates the algorithm A into outputting guv. As usual, we first assume that

the adversary A corrupts t players denoted by M1, M2, · · · , Mt, w.l.o.g.

As in the security proof of SS-Sig, B picks x1, x2, · · · , xt values corresponding to

the secret keys of corrupted users, uniformly at random from Zq. It then sets xi = F (idi),

and employs appropriate Lagrange interpolation coefficients in the exponent to compute

the public witnesses gA1 , · · · , gAt (mod p), where F (z) = u + A1z + · · · + Atz
t (mod q).

Since, u =
∑t

k=1 xkl
i
k + xil

i
i (mod q), B can compute the public key yi, corresponding to

an honest player Mi (i ≥ t + 1) using Equation 8.1.

To help the reader understand the construction of our translator algorithm B, we

first recall the how the translator works in the security proof (under CDH and ROM) of

single-user hashed ElGamal. The translator works as follows: on input of a CDH instance

(U = gu, V = gv), it first runs the adversary on input gu. The adversary outputs two

messages m0, m1. The translator picks one message mb (b = 0 or 1) at random, and sends

the encryption (c1, c2) to the adversary, where c1 = V ∗ gr (mod p) and c2 = R (r is a

random value in Zq and R is a random pad of same length as the message). In the random

oracle model, the only way the adversary can distinguish this encryption is by querying the

random oracle on value O = cu
1 = U r+v, which will be recorded by the translator, and used

to compute guv = OU−r. If there are a total of q queries being made to the oracle, this
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means that the probability of success of translator would be 1/q times the probability of

success of the adversary.

Now, we are ready to describe the reduction based on our multi-user setting: B

runs A on inputs the secret keys x1, · · · , xt corresponding to the corrupted users, and

the public keys yt+1, · · · , yn of all honest ones. A outputs two vectors of n − t messages

M0 = {m0i} and M1 = {m1i}, where i = t + 1, · · · , n, to be challenged upon. B then picks

Mb (b is 0 or 1) and sends to A the vector {(V ∗ gri , Ri)}, where ri is a random value in

Zq, and Ri is a random pad equally long as the message mbi, for i = t + 1, · · · , n. The only

possibility for A to win this game, is by querying the random oracle on at least one of the

value O = (V ∗ grj )xj , for some j ∈ {t + 1, · · · , n}. B records this value, and assuming that

it corresponds to Mj , it computes guv as follows:

u =
t
∑

k=1

xkl
j
k + xjl

j
j (mod q)

This implies that

guv = gv
Pt

k=1 xklj
kgvxj ljj (mod q)

and

guv = V
Pt

k=1 xklj
kV xj ljj (mod p)

Since, O = (V ∗ grj )xj , this means V xj = Oyj
−rj , and therefore,

guv = V
Pt

k=1 xklj
kOyj

−rj ljj (mod p)

Given that there are a total of q queries to the random oracle, the probability of

success of B would be probability of success of A times 1/q(n − t), as only one query will

yield correct guv value and each query might correspond to one j value in {t + 1, n}.

Remark: Extension to Chosen Ciphertext Security. The hybrid encryption tech-

niques for extending standard hashed ElGamal to chosen ciphertext security (refer to

[BBP04], [FO99]) can be used to achieve chosen ciphertext security for the SS-Enc scheme.
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8.4 Comparison with ID-based Cryptography

As previously pointed out in the introduction section, our proposed scheme can be

viewed as an identity-based cryptosystem based on threshold assumption. Refer to Section

2.9, where we provided a brief background of ID-based cryptography. Basically, a trusted

center provides each user with a secret value (VSS share in our case) derived from the unique

identifier of the user, and publishes the VSS information as its public key. Knowing the

identifier of a particular user and also the public key of the trusted center, one can send

encrypted messages and verify signatures. This is equivalent to IBE [BF01], and ID-based

signatures [CC03], apart from the fact that our scheme becomes insecure if there are more

than a threshold of collusions or corruptions. However, unlike other ID-based schemes, our

proposal is based on standard (DL-based) assumptions. Moreover, for reasonable group

sizes and threshold values, our scheme is much more efficient than these prior ID-based

schemes, which require costly computations (such as scalar point multiplications, map-to-

point operations and bilinear mappings [BF01]) in elliptic-curves. For example, for a group

size of around 100, and threshold of 10 (10% of group size), the encryption in our scheme

would require less than 70 squarings, less than 70 modular multiplications, and only 2

modular exponentiations. The decryption would just require 1 exponentiation. On the

other hand, IBE requires 1 map-to-point operation, 2 scalar point multiplications, and 1

bilinear mapping, for encryption, and 1 bilinear mapping for decryption. It is well-known

that for appropriate security parameters, the IBE computations are extremely costly (e.g.,

a bilinear mapping takes around 80ms, scalar point multiplication costs around 30 ms, while

a single modular exponentiation is only a few milliseconds on fast processors). Refer to,

e.g., [STY04] for details regarding these cost comparisons.
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Appendices

A Zero Knowledge Proof of Partial Signature Correctness in

the New Proactive RSA

For the purpose of proving the correctness of partial signatures in the proposed

proactive RSA scheme, we apply the zero knowledge proofs for the equality of committed

numbers in two different groups and for the range of a committed number. All these proofs

are honest verifier zero-knowledge and can be converted either into standard zero-knowledge

proof either at the expense of 1-2 extra rounds using techniques of [Dam00, DF02, MP03], or

into a non-interactive proof in the random oracle model using the Fiat-Shamir heuristic. We

adopt the notation of [CM99a] for representing zero-knowledge proof of knowledge protocols.

For example, ZKPK{x : R(x)} represents a ZKPK protocol for proving possession of a

secret x which satisfies statement R(x). In the protocols to follow, u (≥ 80) and v (≥ 40)

are security parameters.

Protocol for proving the correctness of a partial signature:

ZKPK{di, d
′
i : wi0 = gdihd′i (mod p) ∧ si = mdi (mod N) ∧ di ∈ [0, q − 1]}

The signer (or prover) Mi proves to the verifier the possession of its correct secret

share di by using the following zero-knowledge proof system. The verifier can either be one

of the players or an outsider who has inputs wi0, g, h, p, si, m, N, q. All the protocols run in

parallel, and failure of these protocols at any stage implies the failure of the whole proof.

1. The verifier follows the setup procedure of the Damgard-Fujisaki-Okamoto commit-

ment scheme [FO97, DF02], e.g. it picks a safe RSA modulus n and two elements

G, H in Z
∗
n whose orders are greater than 2. (We refer to [DF02] for the details of this

commitment scheme.) If N is a safe RSA modulus then set n = N , G = (G′)2 mod N ,
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H = (H ′)2 mod N for random G′, H ′ ∈ Z
∗
n.

2. The prover computes the commitment C = GdiHR (mod n), where R is picked

randomly from [0, 2v(q − 1)] and uses Protocol (1) (see below), by substituting

(x, x′
1, x

′
2, g1, h1, g2, h2, n1, n2, w1, w2, b, b

′) with (di, R, d′i, G, H, g, h, n, p, C, wi0, q − 1,

2v(q − 1)), respectively, to execute:

ZKPK{di, R, d′i : C = GdiHR (mod n) ∧ wi0 = gdihd′i (mod p)}.

3. The prover then uses Protocol (1) (see below), by substituting (x, x′
1, x

′
2, g1, h1, g2,

h2, n1, n2w1, w2, b, b
′) with (di, R, 0, G, H, m, m, n, N, C, si, q − 1, 2v(q − 1)), respec-

tively, to execute:

ZKPK{di, R : C = GdiHR (mod n) ∧ si = mdi (mod N)}.

4. The prover uses Protocol (2) (see below), by substituting (x, x′, b) with (di, R, q−1),

respectively, to execute:

ZKPK{di, R : C = GdiHR (mod n) ∧ di ∈ [0, q − 1]}

Protocol (1). ZKPK{x, x′
1, x

′
2 : w1 = gx

1h
x′
1

1 (mod n1) ∧ w2 = gx
2h

x′
2

2 (mod n2)}

Assumption: x, x′
2 ∈ [0, b] and x′

1 ∈ [0, b′].

This protocol is from [CM99a], [Bou00], and is perfectly complete, honest veri-

fier statistical zero-knowledge and sound under the strong RSA assumption [FO97] with

the soundness error 2−u+1, given than (g1, h1, n1) is an instance of the Damgard-Fujisaki-

Okamoto commitment scheme [FO97, DF02].

1. The prover picks random r ∈ [1, . . . , 2u+vb − 1] , η1 ∈ [1, . . . , 2u+vb′ − 1], η2 ∈
[1, . . . , 2u+vb − 1] and computes W1 = gr

1h
η1
1 (mod n1) and W2 = gr

2h
η2 (mod n2).

It then sends W1 and W2 to the verifier V .

2. The verifier selects a random c ∈ [0, . . . , 2u − 1] and sends it back to the prover.

3. The prover responds with s = r + cx (in Z), s1 = η1 + cx′
1 (in Z) and s2 = η2 + cx′

2

(in Z)

4. The verifier verifies as gs
1h

s1
1 = W1w1

c (mod n1) and gs
2h

s2
2 = W2w2

c (mod n2).

Protocol (2). ZKPK{x, x′ : C = GxHx′
(mod n) ∧ x ∈ [0, b]}
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Assumption: x ∈ [0, b] and x′ ∈ [0, 2vb].

This protocol (from [Bou00]) is an exact range proof, honest verifier statistical zero-

knowledge, complete with a probability greater than 1 − 2−v, and sound under the strong

RSA assumption given that (G, H, n) is an instance of the Damgard-Fujisaki-Okamoto com-

mitment scheme, similarly as in protocol (1).

1. The prover sets T = 2(u + v + 1) + |b|, X = 2T x, X ′ = 2T x′, β = 2u+v+1
√

b and

CT = GXHX′
(mod n).

2. The prover uses Protocol (3) (see below), by substituting (x, x′, com, B, γ) with

(X, X ′, CT , 2T b, 2T/2β), respectively, to execute the following (note that X ∈ [0, 2T b]):

ZKPK{X, X ′ : CT = GXHX′
(mod n) ∧ X ∈ [−2T/2β, 2T b + 2T/2β]}

Proving that X ∈ [−2T/2β, 2T b + 2T/2β] implies that x ∈ [0, b], since 2T/2β < 2T .

Protocol (3). ZKPK{x, x′ : com = GxHx′
(mod n) ∧ x ∈ [−γ, B + γ]}

Here γ = 2u+v+1
√

B.

Assumption: x ∈ [0, B] and x′ ∈ [0, 2vB].

This proof was proposed in [Bou00] and is honest verifier statistical zero-knowledge,

complete with a probability greater than 1−2−v, and sound under the strong RSA assump-

tion just like protocol (2).

1. The prover executes ZKPK{x, x′ : com = GxHx′
(mod n)}

2. The prover sets x1 = b√xc, x2 = x−x2
1, x̂1 = b

√
B − xc, x̂2 = B−x− x̂2

1, and chooses

randomly r1, r2, r̂1, r̂2 in [0, 2vB], such that r1 + r2 = x′ and r̂1 + r̂2 = −x′.

3. The prover computes new commitments e1 = Gx2
1Hr1 (mod n), ê1 = Gx̂2

1H r̂1 (mod n),

e2 = Gx2Hr2 (mod n), ê2 = Gx̂2H r̂2 (mod n), and sends e1 and ê1 to the verifier.

4. The verifier computes e2 = com/e1 (mod n) and ê2 = GB/(com ∗ ê1) (mod n).

5. The prover uses Protocol (4) (see below), by substituting (x, x′, comsq) with (x1, r1, e1)

and then with (x̂1, r̂1, ê1), to execute the following:

ZKPK{x1 : e1 = Gx2
1Hr1 (mod n)}

ZKPK{x̂1 : ê1 = Gx̂2
1H r̂1 (mod n)}

This proves that e1 and ê1 hide a square.
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6. The prover uses Protocol (5) (see below), by substituting (x, x′, com2, B1) with

(x2, r2, e2, 2
√

B), respectively and then with (x̂2, r̂2, ê2, 2
√

B), respectively, to execute

the following (note that x2 and x̂2 ∈ [0, 2
√

B]):

ZKPK{x2 : e2 = Gx2Hr2 (mod n) ∧ x2 ∈ [−γ, γ]}
ZKPK{x̂2 : ê2 = Gx̂2H r̂2 (mod n) ∧ x̂2 ∈ [−γ, γ]}
This proves that e2 and ê2 hide numbers belonging to [−γ, γ].

Steps 2, 5 and 6 above, imply that x ∈ [−γ, B + γ].

Protocol (4). ZKPK{x, x′ : comsq = Gx2
Hx′

(mod n)}

This protocol first appeared in [FO97], generalized (and corrected) in [DF02] and

proves that a committed number is a square. The protocol is honest verifier statistical

zero-knowledge, perfectly complete, and sound under the strong RSA assumption just like

protocol (2).

Protocol (5). ZKPK{x, x′ : com2 = GxHx′
(mod n) ∧ x ∈ [−2u+vB1, 2u+vB1]}

Assumption: x ∈ [0, B1], and x′ ∈ [0, 2vB1].

This proof was proposed in [CFT98], allows a prover to prove the possession of a

discrete logarithm x lying in the range [−2u+vB1, 2u+vB1] given x which belongs to a smaller

interval [0, B1]. Using the commitment scheme of [FO97, DF02], this proof is honest verifier

statistical zero-knowledge, complete with a probability greater than 1 − 2−v, and sound

under the strong RSA assumption with soundness error 2−u+1.
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B Difficulty in Extending the General Compilation Theorem

of [PVar]

We give some intuition for the claim we make in the introduction, namely that the

general composition theorem given by Passini and Vaudenay [PVar], for transforming KA

protocols to SAS-AKA protocols given any SAS-MCA scheme, appears difficult to extend

to KA schemes which share state between sessions. Consider a 2-round (non-authenticated)

KA protocol. Note that both Diffie-Hellman and encryption-based KA protocols fall into

this category. To save round complexity in the compiled SAS-AKA protocol, we would like

to make the two messages generated by the KA protocol, mi of the initiator Pi and mj of

the responder Pj , inputs to the SAS-MCA scheme, where Pi goes first, and mj is possibly

based on mi. (The known 3-round SAS-MCA protocols allow the responder’s message mj

to be picked in the second round.)

Note that at the time Pj computes his response mj , following the algorithm of the

KA protocol on the received message mi, the message mi is not yet authenticated by Pj .

If the KA protocol does not share state between sessions, if Pj computes mj computed on

adversarially-chosen m̂i, this can possibly endanger only the current session, and since the

SAS-MCA subprotocol will eventually let Pj know that m̂i was not sent by Pi, Pj will reject

in this session anyway. (And so will Pi, if we assume that mj always contains imitators own

message, or its hash.)

However, if Pj keeps a shared state between sessions then the information Pj

reveals in mj , computed on unauthenticated message m̂i, could potentially reveal some

secret information that endangers all other sessions of player Pj , or at least all other sessions

between Pj and Pi. One can easily create a perverse example of a KA protocol which is

secure over authenticated channels and becomes insecure in this case. For example, take

any Key Agreement protocol KA secure over authenticated links and let each player Pj keep

an additional long-term secret sj and compute a per-partner secret ki = Fsj
(< Pi >) where

F is a pseudorandom function. If the initiator’s message mi contains a special symbol ⊥,

Pj sends mj = ki to Pi. Otherwise, Pj follows the KA protocol but also at the end encrypts

the resulting session key under this key ki. In the authenticated link model, considering a

static adversary model, an honest player never sends the ⊥ symbol. If the encryption is

semantically secure, encrypting the session key does not endanger its security. Also, if F is a

PRF, if the adversary learns other values of the F function, under indices corresponding to
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the corrupt players, again does not reveal any information about the values of F on indices

corresponding to honest players. On the other hand, this protocol is an insecure SAS-AKE

protocol, because an adversary can inject message m̂i =⊥ on the insecure channel on behalf

of any player Pi, and learn all the session keys between Pj and Pi in this way.
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C Sketch of an Improved Security Analysis of the Enc-MCA

Protocol

As mentioned in footnote 5 on page 63, the security bound we show for the Enc-

MCA protocol in Theorem 10 is not optimal, as it wastes one bit of the SAS bandwidth.

However, this security claim can be improved to show that a probability of an attack against

the Enc-MCA protocol can be bounded by 2−k + O(εC , εE), under the same assumptions.

Here is a sketch of the improved security analysis. Recall the proof of theorem 10

which constructs two reductions, BC and BE , attacking the OW-ExA commitment game and

OW-R-CCA encryption game, respectively. In the improved analysis, we let BC and BE at-

tack the “multi-challenge” versions of both the OW-ExA commitment game and OW-R-CCA

encryption game. In the “multi-challenge” versions of either the OW-ExA or the OW-R-CCA

security notions the adversary gets an array of encryption/commitment challenges from

which it chooses the one which it wants to attack in the sense of the original notion.

(Moreover, the adversary gets an access to the decryption/extraction oracle for each of the

challenges.) The modified reductions BC and BE depend on the probabilities αC and αE ,

αE + αC ≤ 1, that adversary A chooses the attack pattern useful for either reduction (cor-

responding to our Case1 and Case2 events). The improved reduction algorithms BC and BE

re-run the Enc-MCA-protocol adversary A, and in each attempt they use another key from

these “multi-challenge” versions of the encryption/commitment challenge. If the adversary

successfully attacks in any of the runs, the reduction translates this attack successfully as

well. The conditional probability that either one succeeds provided the adversary chooses

the appropriate attack pattern, is bounded, respectively, by 2−k+O(εmC) and 2−k+O(εmE),

where εmC and εmE are the security bounds on the multi-challenge versions of the commit-

ment/encryption games. However, since the reduction needs O(1/α) of these challenges, by

hybrid arguments we get εmC ≈ εC/αC and εmE ≈ εE/αE , and hence the overall probability

that A succeeds is bounded by 2−k + O(εC , εE).
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D Proof of Theorem 11 (multi-player, multi-session SAS-

MCA)

Proof. As usual, the proof goes by contradiction. That is, we prove that if there exists an

(n, R, R̄)-adversary A which can attack the proposed protocol in time T ≥ min(TC , TE)−µ,

with a probability better than nRR̄2−k + max(nRR̄εC , nRR̄εE), then there exists either

a T -time adversary BC which wins the hiding-on-extraction-attack game OW-ExA with a

probability better than 2−k +εC , or there exists an adversary BE which wins the OW-R-CCA

game for the encryption scheme with probability better than 2−k + εE .

A succeeds if it can find a player Pi and a session s with a party Pj , such that Pi

accepts a message m̂j
(s) on this session, without launching an instance of Pj on message

m̂j
(s) on s. A can achieve this by routing the SAS message SAS

(s′)
j corresponding to some

other session s′, on the session s. In other words, A wins if R
(s)
i ⊕ R̂j

(s)
turns out to be the

same as R̂i
(s′) ⊕R

(s′)
j .

Similar to the proof for the (2, 1, 1)-attacker case ( see the proof of Theorem 10),

we proceed as follows.

For each of these three message interleaving patterns we’ll have to consider two

subcases, depending on whether the pair (m̂
(s′)
i , ˆPKi) that the adversary delivers to Pj in

message #5 (see Figure 4.3) is equal to (m
(s)
i , PKi) that player Pi sends in message #1.

Let’s denote the event that adversary succeeds in an attack as AdvSc, the event

that (m̂
(s′)
i , ˆPKi) = (m

(s)
i , PKi) and that the attack succeeds as SM, the event that

(m̂
(s′)
i , ˆPKi) 6= (m

(s)
i , PKi) and that the attack succeeds as NSM, and we’ll use Int[1], Int[2], Int[3]

to denote events when the adversary follows, respectively, the 1st, 2nd, or 3rd message in-

terleaving pattern. We divide the six possible patterns which the successful attack must

follow into the following two cases:

Case1 = (NSM ∨ (SM ∧ Int[2])) and Case2 = (SM ∧ Int[1]) ∨ (SM ∧ Int[3]))

We show that if adversary succeeds in any of the above cases with probability p,

then this implies an attack against one of the above security assumptions. We construct

two reduction algorithms, BC and BE , which attack respectively the commitment and the

encryption scheme used in the Enc-MCA protocol. More specifically, BC attacks the OW-ExA

property of the commitment scheme, and BE attacks the OW-R-CCA property of encryption.

Both algorithms BC and BE will use the Enc-MCA attacker A. The reductions BC and BE
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are successful depending on which of the above cases A takes. Namely, in event Case1

reduction BC wins the OW-ExA commitment game, and in event Case2 reduction BE wins

the OW-R-CCA encryption game.

Note that BC and BE need to guess the values (Pi, s, Pj) that A attacks, out of

the instances launched by A (with a probability 1/(nR)) and the intermediary session s′

(with a probability 1/R̄).

Since, AdvSc = Case1∨Case2, and therefore, if Pr[AdvSc] = p then either Pr[Case1] ≥
p/(2nRR̄) or Pr[Case2] ≥ p/(2nRR̄). Note that by assumption on p, we have that p/(2nRR̄) >

2−k + εC and p/(2nRR̄) > 2−k + εE , and hence either BC wins the OW-ExA commitment

game with probability greater than 2−k + εC or BE wins the OW-ExA commitment game

with probability greater than 2−k +εE . Moreover, both BC and BE make only a few crypto-

graphic operations in addition to running A, so their running time will be T +µ for a small

constant µ, and hence, by assumption on T , their running times are below both TC and

TE . Since this contradicts either the (TC , εC) OW-ExA-security of the commitment scheme

or the (TE , εE) OW-R-CCA-security of the encryption, the theorem will follow.

It remains for us to construct algorithms BC and BE with the properties claimed

above. Algorithm BC , depending on the behavior of A, executes one of the following sub-

algorithms:

If (m̂i, ˆPKi) 6= (mi, PKi) and A chooses interleaving pattern I, II, or III, then BC

executes sub-algorithms, respectively, BC [1], BC [2], and BC [3].

If (m̂i, ˆPKi) = (mi, PKi) and A chooses interleaving pattern II, BC executes BC [4].

Otherwise, i.e. if A sends (m̂i, ˆPKi) = (mi, PKi) and A follows patterns I or III, BC

fails.

Similarly, based on the behavior ofA, algorithm BE proceeds in one of the following

ways:

If (m̂i, ˆPKi) = (mi, PKi) and A chooses interleaving pattern I, BE executes BE [1].

If (m̂i, ˆPKi) = (mi, PKi) and A chooses interleaving pattern III, BE executes BE [2].

Otherwise, i.e. if A sends (m̂i, ˆPKi) 6= (mi, PKi) or A follows interleaving pattern II,

BE fails.
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Constructions of BC [1], BC [2] and BC [3]. Whenever A starts a protocol for any

player PI with role as “ROLE” on any session S, such that (I, ROLE, S) 6= (i, init, s′)

or (I, ROLE, S) 6= (j, resp, s), BC [1], BC [2] and BC [3] simulate a perfect view to A by

simply following the protocol. The

interaction of BC [1], BC [2] and BC [3] with A and with an instance each of player

Pi and Pj , when A launches an instance of Pi as initiator on session s′ and an instance of

Pj as responder on session s, follow in exactly the same manner as depicted in Figures E.1,

E.2 and E.3, respectively, of the proof of Theorem 10.

Construction of BC [4]. BC [4] simply follows the protocol for any player PI with role as

”ROLE” on session S such that (I, ROLE, S) 6= (i, init, s) or (I, ROLE, S) 6= (j, resp, s′)

BC [4]’s communication with A and with an instance each of player Pi and Pj , when A
launches an instance of Pi as an initiator on session s and an instance of Pi as a responder

on session s′ and an instance of Pj on s′, follows in exactly the same manner as we showed

in Figure E.4 of the proof of Theorem 10.

Construction of BE[1] (BE[2] follows similarly). BE [1] chooses the secret key, private

key pair for every player except Pi. The public key of Pi is set to be the public key

PK that BE [1] obtains from the challenger. Whenever A starts a protocol for any player

PI with role “ROLE” on a session S, such that I 6= i or (I = i, ROLE 6= “init”) or

(I, ROLE, S) 6= (j, resp, s′), BE [1] simply follows the protocol. When A launches a protocol

for Pi as an initiator, but on a session S different than s, CE follows the protocol with

public key of Pi being set to PK and makes use of the decryption oracle to obtain R
(S)
j by

querying the ciphertext EncPK(S, m̂j
(S), R

(S)
j ) that A provides, to the decryption oracle.

The interaction of BE [1] with A and with the challenger, when A launches an instance of

Pi as an initiator on session s and an instance of Pj as responder on session s′ follows in

exactly the same manner we showed in Figures 4.4 of the proof of Theorem 10.

IfA wins in time T with probability p, then our algorithm B wins in time T +µ with

probability p/(2nRR̄), where µ is a small constant denoting the additional time complexity

taken by B. This contradicts either (TC , εC)-security of the commitment scheme or (TE , εE)-
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security of OW-R-CCA encryption scheme, and therefore,

T ≥ min(TC , TE)− µ or p ≤ nRR̄2−k+1 + max(2nRR̄εC , 2nRR̄εE) (D.2)
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E Reductions BC[1], BC[2], BC[3] and BC[4] in the Proof of

Theorem 10 (two-player, single-session SAS-MCA)

A BC [1] OW-ExA

Challenger

mi,mj
// Pick (SKi, PKi)

mi,PKi
// Pick Ri

(ci, di)←
commit((mi, PKi),
Ri)

mi,PKi,ci
oo

ci
oo

m̂i, ˆPKi,ĉi
//

ej=Enc ˆPKi
(mj ,Rj)

oo Pick Rj

êj=EncPKi
(m̂j ,R̂j)

// R̂i ←
extract((m̂i, ˆPKi), ĉi)

R̂j ← DecSKi
(êj)

Ri=R̂i⊕Rj⊕R̂j
//

di , SASi=Ri⊕R̂j
oo

di
oo

d̂i
//

Figure E.1: Construction of BC [1] ((mi, PKi) 6= (m̂i, ˆPKi), interleaving case I)
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A BC [2] OW-ExA

Challenger

mi,mj
// Pick (SKi, PKi)

mi,PKi
// Pick Ri

(ci, di)←
commit((mi, PKi),
Ri)

mi,PKi,ci
oo

ci
oo

m̂i, ˆPKi,ĉi
//

ej=Enc ˆPKi
(mj ,Rj)

oo Pick Rj

d̂i
// R̂i ←

open((m̂i, ˆPKi), ĉi, d̂i)

SASj=R̂i⊕Rj
oo

êj=EncPKi
(m̂j ,R̂j)

// R̂j ← DecSKi
(êj)

Ri=R̂i⊕Rj⊕R̂j
//

di , SASi=Ri⊕R̂j
oo

di
oo

Figure E.2: Construction of BC [2] ((mi, PKi) 6= (m̂i, ˆPKi), interleaving case II)

174



A BC [3] OW-ExA

Challenger

mi,mj
// Pick (SKi, PKi)

mi,PKi
// Pick Ri

(ci, di)←
commit((mi, PKi),
Ri)

mi,PKi,ci
oo

ci
oo

êj=EncPKi
(m̂j ,R̂j)

// R̂j ← DecSKi
(êj)

Pick R
R

//

di , SASi=Ri⊕R̂j
oo Ri ←

di
oo

open((mi, PKi), ci, di)

m̂i, ˆPKi,ĉi
// R̂i ←

extract((m̂i, ˆPKi), ĉi)
ej=Enc ˆPKi

(mj ,Rj)
oo Pick Rj

d̂i
//

Figure E.3: Construction of BC [3] ((mi, PKi) 6= (m̂i, ˆPKi), interleaving case III)

A BC [4] OW-ExA

Challenger

mi,mj
// Pick (SKi, PKi)

mi,PKi
// Pick Ri

(ci, di)←
commit((mi, PKi),
Ri)

mi,PKi,ci
oo

ci
oo

mi,PKi,ĉi
//

ej=EncPKi
(mj ,Rj)

oo Pick Rj

d̂i
// R̂i ←

open((mi, PKi), ĉi, d̂i)

êj=EncPKi
(m̂j ,R̂j)

// R̂j ← DecSKi
(êj)

Ri=R̂i⊕Rj⊕R̂j
//

di
oo

di
oo

Figure E.4: Construction of BC [4] ((mi, PKi) = (m̂i, ˆPKi), interleaving case II)
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