
Exploring Mobile Proxies for Better Password
Authentication

Nitesh Saxena1 and Jonathan Voris2

1 University of Alabama at Birmingham
2 Columbia University

Abstract. Traditional textual password authentication techniques have
numerous well-documented security and usability flaws, yet have seen
near universal deployment due to their desirable efficiency properties.
As a result, many users who may prefer alternative authentication ap-
proaches are forced to use passwords or PINs on a daily basis due to
a lack of control over third party servers. This work explores the use
of a mobile device as a proxy for password management, in an attempt
to improve remote password authentication without making changes to
remote servers.
A universal proxy-based authentication framework is presented which
allows users to employ a method of their own choice to authenticate
locally to their mobile devices (e.g., biometrics or graphical passwords).
The framework is also compatible with many communication channels
between the mobile proxy and local terminal (e.g., Bluetooth or audio).
To demonstrate the practicality of this general framework, a concrete
implementation using an “out-of-band” audio channel, called PIN-Audio,
is also provided. While existing password management solutions may
provide a reasonable level of security for commonplace services, PIN-
Audio is recommended for a user-friendly deployment for security critical
applications, such as online banking.

Keywords: User Authentication, Passwords, Mobile Devices

1 Introduction

The goal of user authentication is to ensure that only legitimate users are granted
access to a computer system while all others are restricted. User authentication
can be achieved by establishing credentials between a user and a system, and
having users demonstrate that they possess them whenever they wish to access
the system. Authentication is one of the most widely studied problems in the
realm of computer security. This is due both its fundamental nature, as few
security guarantees can be made for a system which allows unauthorized access,
as well as the frequency and wide variety of settings in which it takes place.

While many innovative authentication techniques have been proposed, his-
torical and economic factors have stymied the adoption of these novel methods
in practice. Updating an entire system of computers to use an alternate approach

2 Exploring Mobile Proxies for Better Password Authentication

might be costly and time consuming. As such, despite the great theoretical ad-
vancements made in this domain, the vast majority of computer systems are left
using basic passwords as their primary form of authentication. Recent develop-
ments in mobile devices, such as cell phones, can be utilized to help address this
issue. The past decade has seen the emergence of smarter and cheaper mobile
phones that have both the computational power and user interfaces necessary
to support a wide variety of potential new authentication techniques. Further-
more, phone usage habitats have evolved alongside this technology to the point
where some people consider their mobile devices to be more important than their
wallets [12].

This paper proposes a way in which mobile phones can be used to place users
in control of what authentication method they use. Updating a single mobile
phone is far more cost effective than altering an entire computer system; indeed,
most cell phone users are already accustomed to installing new applications and
software. As a result, this would allow users to select the authentication method
that works best for them rather than waiting for a less likely event that the
operators of a remote service (that needs authentication) updates their system
with a more suitable mechanism.

The core improvement detailed in this work is a framework for providing
more secure authentication without necessitating any changes be made to remote
servers. The technique is referred to as “proxy-based authentication”. The basic
concept is to provide users with a mobile proxy for authentication to a local
terminal, which in turn authenticates users to a remote service. Rather than
forcing users to remember passwords themselves, leading to short and predictable
passwords, passwords will be stored in the portable device, allowing them to be
long and fully randomized.

While phone based password management software has been previously pro-
posed, our innovation lies in the automated transfer of credentials from the
mobile appliance to the terminal. Furthermore, previous portable password man-
agers again restrict users to standard PIN or passphrase techniques for authenti-
cation to the mobile proxy. In contrast, proxy-based authentication allows users
to select whichever technique they are most comfortable with for authenticating
to the proxy phone. This opens up the possibility for utilizing novel authentica-
tion technology that is best suited for mobile hardware without forcing service
providers to make any alterations to their systems.

2 Related Work

A vast majority of remote services that are available today utilize password-based
authentication. In the absence of action on behalf of service providers, attempts
have been made to improve the security and usability of authentication while
preserving backward compatibility with passphrases. This section briefly outlines
previous solutions of this kind, which are known as password managers.

Password managers are programs that accept weak passwords as input and
output passphrases that are considered to be strong. This is accomplished by

Exploring Mobile Proxies for Better Password Authentication 3

using a computing device to generate strong passwords rather than humans
themselves, who behave poorly when asked to create passphrases of sufficient
entropy. The appliance can then store the secure passwords that have been gen-
erated and output them to its user whenever he or she requires access. Password
management software is divisible into three broad categories: desktop, remote,
and portable managers.

Desktop password management systems store passwords directly on the ter-
minal that is used to authenticate to remote hosts. High profile examples of
programs in this category include Mozilla Firefox [9] and RoboForm by Siber
Systems [13]. In contrast, remote managers such as LastPass, developed by the
corporation of the same name [8], and Mozilla Weave [10] use one or more non-
local servers to keep track of passphrases. The third class of managers utilize
auxiliary mobile hardware like cell phones as a password bank. Sperle’s KeeP-
assMobile for J2ME enabled devices [5] and OI Safe for the Android platform
by OpenIntents UG [11] both fall into this category.

All of these solutions utilize a master password to protect the numerous
passwords which they store, therefore increasing usability but having no effect
on security. Beyond this, each manager category has its own set of shortcomings.
Desktop managers offer no portability for people who use more than a single
terminal to authenticate to remote servers. That is, since these programs use
the terminal itself as a password repository, they do not provide a mechanism
for retrieving these passwords when a different terminal is in use.

While remote managers do allow for use from numerous terminals, they force
users to place trust in the system of a third party service provider. This branch of
passphrase managers operate by encrypting individual passwords with a master
value prior to storing them remotely. They are therefore vulnerable to an offline
dictionary attack in the event that these remote machines are compromised.
Furthermore, if one computer is used to store passwords for more than one
user, an adversary will be able to recover passwords belonging to several users
by compromising a single machine. As a final drawback, remote managers are
often proprietary, allowing their operators keep the precise details behind how
passwords are treated after they leave a user’s system guarded as a secret.

In contrast, it is easier to place trust in a portable manager as it can be
managed locally by users themselves rather than relying on an external entity to
do so [1]. It is also more difficult to eavesdrop on authentication with portable
devices due to the small form factor of mobile hardware. Unfortunately, exist-
ing mobile password managers suffer from poor usability by requiring that the
long and random passwords stored on the portable appliance be manually copied
to the authentication terminal. This also provides malicious entities with a po-
tential opportunity for observing the password entry. Such an attack could be
accomplished either through casual non-technical attacks like shoulder surfing
or sophisticated attacks such as Balzarotti, Cova, and Vigna’s video based tech-
nique [6] or the audio logging technique introduced by Zhuang, Zhou, and Tygar
[7].

4 Exploring Mobile Proxies for Better Password Authentication

3 Secure Authentication Framework from the Client Side

3.1 Threat Model

Before delving deeper into the details of the proxy-based authentication frame-
work, it is necessary to establish the capabilities attributed to adversaries in
our system as well as which devices are trusted with which pieces of data. The
parties involved in this system are a human user U, a mobile device M, a local
terminal T, and a remote server S. In order to provide increased security, rather
than placing the burden of generating and remembering a password on U, a
password is assumed to be pre-established between M and S.

While U is responsible for recalling the credentials used to authenticate to
M, U need not remember or even be aware of the password shared between M
and S. It can therefore be as long and random as dictated by the security needs
of the application in question rather than the memory and security knowledge
of a human user. Whenever U would usually authenticate to S through T, U
instead authenticates to M. M reacts by retrieving the encrypted password for S
from secure, tamper-resistant storage. This secure storage medium is available on
many portable appliances. Only when U authenticates to M is the password cor-
responding to S unlocked. Next, M authenticates to T, encrypts the passphrase
for S and transmits it to T.

If M and T were to share a traditional high bandwidth wireless channel such
as WiFi or Bluetooth, this could be utilized to efficiently transmit the encrypted
PIN. Doing so would have a unfavorable impact on the framework’s universality,
usability, and security, however. Along the same lines, since wireless channels
are not physically authenticatable, they would leave the channel vulnerable to
man-in-the-middle attacks on the framework. For these reasons OOB channels
are recommended over conventional wireless channels for forming the secure
communication link from M to T. Adversaries are assumed to be capable of
eavesdropping on, but not modifying, transmissions over an OOB channel.

In this system, T, S, and M are all trusted with knowledge of the pass-
word, but it is only permanently stored in an encrypted form on M. T transmits
password values to S without storing them, while S need only store the value
produced by hashing password values with a weakly collision resistant hash func-
tion. While it is natural that S and M share this secret value, T’s awareness of
the secret is undesirable. This is because it would be beneficial to be able to au-
thenticate to S using Ts that are public or may be compromised. Unfortunately,
T’s knowledge of the secret password is a necessary consequence of avoiding any
server side changes in this proxy-based authentication framework. If changes to
the server were permitted, T could instead blindly pass the encrypted password
through to S who would then be delegated the responsibility of decrypting it
and recovering the plaintext secret. A third party could perform the same ser-
vice, but this presents similar and perhaps deeper security challenges to those
incurred by trusting T.

Exploring Mobile Proxies for Better Password Authentication 5

3.2 Design

The proxy-based authentication framework is comprised of two overall compo-
nents. First, a phase occurs where U authenticates to M. This is followed by a
phase where the M authenticates itself to T instead of U doing so directly.

User-to-Phone Authentication The authentication primitive that U selects
to access M is critical to the framework as a whole both in terms of security and
usability. The method used to secure M will unlock all of the passwords it stores,
so it must be as resilient to attack as possible. Adding to its importance, using
a mobile proxy burdens users by requiring them to interact with an additional
device, so the authentication mechanism put into effect must be as usable as
possible. Biometric authentication is a good match for these needs and adapts
more easily for use on portable devices than for use in alternative settings, such
as remote servers.

Phone-to-Terminal Authentication Prior to using this proxy-based authen-
tication framework to authenticate to a given service, users must first initialize
M and T. This process need only be carried out once for each T U wishes to
authenticate through. The rest of the initialization step depends on the time
of channel in use. If M and T share compatible interfaces for a conventional
wireless channel, this channel must be bootstrapped by establishing a shared
key. Previous work on this topic, also known by “device pairing,” can be used
to achieve this.

If an OOB channel is to be used in place of an in-band wireless channel as
discussed in Section 3.1, a suitable channel must first be selected based on the
transmitters and corresponding receivers available on T and M. Since a bidirec-
tional channel is needed, M and T must be equipped with both complementary
input and output interfaces. One possibility is to form an audio channel using
microphones and speakers. This particular OOB channel is particularly promis-
ing due to the ubiquity of these interfaces and is explored in more detail in its
own section, 4.

Finally, a shared secret must be established between M and T. Once a given
M and T have been properly initialized, the next required step is for M to
authenticate to T. This can be executed immediately following the initialization
phase when it is required by using particular a particular combination of M and
T for the first time. The authentication protocol can be accomplished by using
the keys established in the initialization phase to execute any challenge-response
(C-R) authentication protocol of the user’s choosing.

The difference between the distinct initialization and registration phases
should be noted. The initialization phase is required whenever a new M and
T are to be used in conjunction with each other. The registration phase, on the
other hand, is required whenever a new S is used with M for the first time or
when U wishes to refresh the password used to authenticate to S. After initial-
izing, M can register with any number of Ss, after which M can skip directly to
the authentication phase when using this service in the future.

6 Exploring Mobile Proxies for Better Password Authentication

3.3 Framework Security Guarantees

In this section the security implications of the proxy-based authentication frame-
work are explored. In Section 3.1, it was established that M, S, and T are all
trusted with the password used to authenticate to S. Let p bits be the length
of the shared password and k bits be the size of the key by U to authentication
to M. Additionally, assume for the sake of simplicity that both M and S have a
policy in effect restricting U to q authentication attempts.

Given these values, an adversary has at most a q/2p chance of success by
bypassing M completely and simply attempting to pose as U by guessing pass-
words and sending them to S for verification. If the attacker compromises the
M’s tamper-proof hardware and is able to copy the contents M, but is not able to
bypass M’s access control mechanisms, he or she will have 2k key possibilities to
try in order to gain access to M’s data, implying a q/2k probability of success for
this attack. If an adversary instead compromises S, he or she will only be able to
recover the weakly collision resistant hashes of the passwords stored on S, since
S is assumed to store these values in lieu of saving the passwords themselves.

If a malicious entity was able to gain access to both M and S, he or she
could perform a brute force attack to recover the password corresponding to
S by performing 2k hash operations at worst. The most direct attack on this
framework would involve recovering the secret U uses to authenticate to M as
well as compromising M, in which case all the passwords on M could be unlocked,
breaking the security of the framework entirely. If reasonable parameters are
selected, such as p = k = 80 and q = 3, proxy-based authentication achieves
computational security against all adversaries except the one who is able to
both compromise M and learn the secret to authenticate to M.

4 Illustrative Instantiation Using an Audio Codec

In this segment of the paper, we discuss PIN-Audio, a practical implementation
of the theoretical proxy-based authentication framework introduced in Section
3. It is possible to use a conventional wireless channel as a communication link
between M and T was mentioned. Due to the universality, security, and usability
issues involved, it may not always be possible or desirable to use such a channel.
Fortunately, M and T will always feature some other forms of output interfaces.
In scenarios where M and T share corresponding input and output interfaces,
these can be used to construct an OOB channel instead. This section proposes the
use of an audio channel as a basis for transmissions from T to M and vice versa.
In essence, a C-R protocol adhering to the framework established in Section 3.2
will be executed over this audio channel. While any authentication mechanism
can be used by U to access M, we opted to use a standard PIN based approach.
A pictorial representation of this concrete version of proxy-based authentication
is provided in Figure 1

Exploring Mobile Proxies for Better Password Authentication 7

2. Site ID, Challenge

5. Enck(Challenge, Password)

4. Input PIN

[K, Password]

1.
 In

itia
te

 L
og

in3. Prompt for PIN

[K]

6.
 L

og
in

[PIN]

Fig. 1. Authenticating to a Remote Server Using a Mobile Proxy and an Audio Channel

4.1 Design and Implementation

In order to support this authentication system it is necessary to install new
software on T and M. T requires a password client application while a password
server program is needed by M. Recall, however, that no modifications of S
need to be made in order to accommodate PIN-Audio. In this implementation
the initialization phase was assumed to already be completed. That is, a pre-
shared symmetric key was simply copied on to M and T at installation time. In
practice, this can be achieved by performing a Diffie-Hellman key exchange over
the audio channel as described in Section 3.2. This technique does handle both
the registration and authentication steps required to access a remote service,
though. Both of these phases proceed as per the framework outlined in Section
3.2.

Device Setup Before proceeding with the implementation, specific devices had
to be chosen to fit all of the players involved in the proxy-based authentication
framework provided in Section 3.1. A Dell desktop computer with Windows XP
as an operating system was selected for T as would be the case in a practical
implementation. Rather than actually using a cell phone as M, however, a sim-
ulated proof-of-concept prototype was developed using a Dell laptop computer
that was also running Microsoft Windows XP. With built in microphones and
speakers, these devices had all the hardware necessary to serve the roles of T
and M respectively. Thus, a password server application was designed for the
laptop and a password client application was crafted for the desktop. Since no
changes to it were necessary, S was left out of this simulation.

Construction of a Robust Audio Channel Data is encrypted prior to trans-
mission. The resultant ciphertext is used as input to a Base64 encoder in order
to facilitate transfer via audio. Base64 was selected because this encoding leads

8 Exploring Mobile Proxies for Better Password Authentication

to lower error rates for audio transmissions. This is owed to the fact that byte
encoded data produces values that are outside the range of sounds that can be
reliably produced on low quality audio hardware. In contrast, a Base64 encoding
ensures that data is within the required range. unfortunately, this higher relia-
bility comes at the cost of a decrease in efficiency, as Base64 encoded data takes
1.33 times as long to transmit as equivalent data under a byte encoding.

Once Base64 encoded, the data is next passed to Schifra, which is a robust
and open source implementation of the Reed-Solomon (RS) Error Correcting
Code (ECC) developed by Partow [2]. RS ECC is required to guard the audio
data against transmission errors and to perform forward error correction. This is
a necessary component as retransmitting data in this setting is too costly to be
viable. With these preprocessing steps out of the way, the proper conversion of
data to sounds can begin. To attain this, the RS ECC processed data is encoded
on last time using the Pulse-Code Modulation codec of Lopes and Aguiar’s
Digital Voices project [3, 4]. This codec is robust, working well in environments
with high levels of ambient noise, as well as usable, since it uses a pleasant
“Soprano Flute” sound as a basis for its transmissions. A start marker or “initial
hail sequence” and end indicator or “stop sequence” are employed in order to
detect the beginning and end of the audio based data transmissions.

Intuitively, once encoded the audio data is sent through the originating com-
puter’s speakers and received by the destination device’s microphone. The de-
coding process at the recipient’s end is the inverse of the encoding process. In
order to provide security, it is only necessary to encrypt the data being sent
from M to T. Leaving the channel from T to M open will impact the protocol’s
privacy, however, since T’s responses contain an identifier of the S that U wishes
to access. In order to achieve privacy as well as security the link from T to M can
be encrypted as well. This implementation opted for security as well as privacy
by encrypting transmissions in both directions.

Desktop Password Client Application The password client program de-
veloped for T can be divided into five main components: a keyboard listener,
an active window handler, an encryption/decryption and encoding/decoding en-
gine, an audio codec engine, and a key thrower. The keyboard listener comes into
play first. When U presses the keyboard shortcut associated with the password
client (for PIN-Audio, the F8 key was used in this capacity) this portion of the
program triggers the application.

The software’s active window handler then checks if the window that is cur-
rently active is a web browser. If this is the case, it extracts the name of the
web site that is currently active in the browser. Note that while PIN-Audio
only supports authentication to web sites through a browser, the proxy-based
authentication framework can be extended to support authentication to any
remote server S. Next, the client generates a 80 bit long random nonce and con-
catenates it with the specified request type and S’s identifier. Possible options
for the request type are login, registration, and password change. The two engine
segments are then called upon to encrypt and encode this data as detailed in
Section 4.1, which is played through T’s speakers.

Exploring Mobile Proxies for Better Password Authentication 9

Once T has finished its audio transmissions, it shifts to its listener component
to wait for the start sequence of the response from M’s password server program.
When this special value is detected, T’s application captures audio until it no-
tices the designated stop sequence value. This acquired audio is decrypted and
decoded again using the process provided in Section 4.1. Finally, if the nonce
that was initially sent by T matches the nonce M sent back to it, the software’s
key thrower places the transmitted password in the correct field of the web site
that is currently being viewed.

Laptop Password Server Application The password server for our laptop
M was written in Java, with the exception of Schifra, Partow’s C++ RS ECC
implementation. Just as with the desktop password client, the laptop server ex-
ecuted this code through a shell. Further, the encryption, decryption, encoding,
and decoding processes all occur in the same fashion as T’s client program as
it is laid out in Section 4.1. As soon as M’s server application starts it begins
listening for the unique audio start sequence. When this has been detected the
program decodes the received audio and asks U to authenticate to M by entering
his or her PIN.

After authenticating, M requests that U confirm the request sent by T. If U
accepts, M reacts as dictated by the transmitted request type. If the solicita-
tion is for registration, a password of the minimum length deemed secure for the
application at hand is generated uniformly at random. The passphrase is then en-
crypted and stored. Note that in a real setting tamper resistant hardware would
be used to store this sensitive data. If a login type request is received, an existing
password corresponding to S is retrieved from the phone’s memory. Password
change requests were omitted from the PIN-Audioprototype. Irrespective of the
request type, M always concludes by transmitting the proper passphrase over the
audio channel. After handling a request from T’s client, M’s server immediate
resumes waiting for the next client request to arrive as indicated by the initial
hail sequence.

4.2 Implementation Security Guarantees

PIN-Audio utilizes a 4 decimal digit PIN for user-to-phone authentication. As-
suming that 4 decimal digits are equivalent to 15 bits, the chance of success for
an attack scenario where M alone is compromised becomes q

215 at best. This con-
trasts with the security offered by conventional user selected passwords, which
can be guessed with a maximum probability of q

|D| where D is the dictionary

containing all of U’s possible password choices. PIN-Audio clearly offers better
security in cases where |D| < 215. Compromising S in place of M would yield an
attacker no advantage when PIN-Audio is in use. This is also an improvement
over normal passwords, which can be recovered by launching a dictionary at-
tack on a compromised S. Like the general framework, PIN-Audio offers no real
security in the scenario where both M and S were compromised, though. This
is due to the fact that a malicious entity could recover the password for S by
performing at worst 215 hash operations.

10 Exploring Mobile Proxies for Better Password Authentication

5 Conclusion

This paper presented a mobile proxy-based framework for authenticating to re-
mote servers. This system leverages a personal, portable device in a novel manner
by using it as an intermediary between a user and the authentication terminal
used. This provides the possibility of performing both secure user-to-phone au-
thentication and cryptographic phone-to-terminal authentication. This scheme
also provides better resistance to observational attacks compared to other ap-
proaches. Most critically, it can be readily utilized by users in search of stronger
security without requiring any changes be made to existing server architectures.
While the manual transfer of shorter, less secure passwords offered by alternative
mobile password managers may be sufficient for less sensitive applications, PIN-
Audio is recommended for authentication to online services, such as banking,
that demand high levels of security.

Acknowledgments
This work is supported, in part, by the NSF grant CNS-1209280. The authors
also thank Md. Borhan Uddin for his work on the audio codec used in the
implementation of PIN-Audio.

References

1. A. Karole, N. Saxena and N. Christin. A Comparative Usability Evaluation of
Traditional Password Managers. In Information Security and Cryptology (ICISC),
2010.

2. A. Partow. Schifra Reed-Solomon Error Correcting Code Library. Available at:
http://www.schifra.com, 2010.

3. C. Lopes. Digital Voices. Available at: http://www.ics.uci.edu/~lopes/dv/dv.
html, 2003.

4. C. Lopes and P. Aguiar. Acoustic Modems for Ubiquitous Computing. In Pervasive
Computing, 2003.

5. C. Sperle. KeePassMobile. Available at: http://www.keepassmobile.com, 2010.
6. D. Balzarotti and M. Cova and G. Vigna. ClearShot: Eavesdropping on Keyboard

Input from Video. In Symposium on Security and Privacy, 2008.
7. L. Zhuang and F. Zhou and J. Tygar. Keyboard Acoustic Emanations Revisited.

In Conference on Computer and Communications Security, 2005.
8. LastPass Corporation. LastPass Password Manager. Available at: https://

lastpass.com, 2010.
9. Mozilla Corporation. Firefox Browser. Available at: http://www.mozilla.com/

firefox, 2010.
10. Mozilla Corporation. Weave Sync. Available at: http://labs.mozilla.com/

projects/weave, 2010.
11. OpenIntents UG. OpenIntents Safe. Available at: http://www.openintents.org/

en/node/205, 2009.
12. R. Kim. The World’s a Cell-phone Stage. In The San Fransisco Chroni-

cle, Available at: http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2006/

02/27/BUG2IHECTO1.DTL, 2006.
13. Siber Systems. RoboForm Password Manager. Available at: http://www.

roboform.com, 2010.

