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Abstract— Peer-to-peer (P2P) security has received a lot
of attention as of late. Most prior work focused almost en-
tirely on issues related to secure communication, such as key
management and peer authentication. However, an impor-
tant pre-requisite for secure communication – secure peer
admission – has been neither recognized nor adequately
addressed. Only very recently, some initial work began
to make inroads into this difficult problem. In particular,
[1] constructed a peer group admission control framework
based on various admission policies matched with appropri-
ate cryptographic techniques. Recent results [2], [3] also il-
lustrate the design of, and experiments with, certain group
admission control mechanisms.

In this work, we report on the implementation of
Bouncer, an experimental peer group admission control
toolkit used in [2] and its trial integration with two peer
group systems with very different goals and semantics:
Gnutella and Secure Spread. We also discuss some outstand-
ing issues, challenges and future research directions relevant
to this topic.

I. INTRODUCTION

The rising popularity of P2P applications prompts the
need for specialized P2P security services and mecha-
nisms. This has been recognized by the research commu-
nity, however, the bulk of prior work is concerned with se-
cure P2P communication, e.g., authentication, anonymity
and key management. Although these issues are certainly
important, another equally important topic has remained
mostly unaddressed. Informally, it has to do with how one
becomes a peer in a P2P system. More concretely, the
technology for secure admission of peers into a P2P ap-
plication simply does not exist. This statement does not
contradict the fact that there are many currently operat-
ing P2P applications; they either operate in a completely
open manner (i.e., have no admission control whatsoever)
or admit peers on some ad hoc basis. This state of affairs
bears a certain similarity to the early days of group key
management when group keying was either non-existent
or obtained by out-of-band means. To exploit this a lit-
tle further, we observe that, just as trivial key management
solutions severely limited the functionality of peer group

applications, equally trivial admission control techniques
will do (or already have done) the same. In other words,
we believe that – without a well-thought-out architecture
and appropriate techniques for peer admission – most P2P
systems will sooner or later hit the proverbial “brick wall”.

A. Prior Work

Recently, Kim, et al. [1] developed a group admission
control framework based on various cryptographic tech-
niques. This framework classifies group admission policy
according to the entity (or entities) that makes peer admis-
sion decisions. The classification includes simple admis-
sion control policies, such as static ACL(Access Control
List)- or attribute-based admission, as well as admission
based on the decision of some fixed entity: external (e.g.,
a TTP) or internal (e.g., a group founder). Such simple
policies are relatively easy to support and do not present
much of a technical challenge. However, they are inflex-
ible and ultimately unsuitable for a dynamic P2P setting.
Static ACLs enumerate all possible members and hence
cannot support truly dynamic membership (although they
work well for closed groups). Admission based on deci-
sions of a TTP or a group founder violates the peer na-
ture of P2P, since the entire philosophy of P2P paradigm is
based on collective, distributed services and decisions.

To address more challenging collective (group-centric)
admission policies, a follow-on work [2] built upon the
framework in [1] by designing a menu of suitable dis-
tributed mechanisms on a number of cryptographic tech-
niques. This work yielded mechanisms for both central-
ized and (more challenging, yet also more realistic) de-
centralized group settings. In the latter, all current group
members can take part in the admission process in a fully
distributed manner. This work also assessed the practical-
ity of distributed cryptographic mechanisms (such as veri-
fiable threshold signatures) in both synchronous and asyn-
chronous P2P settings. For an in-depth discussion of these
admission control mechanisms, protocols and the experi-
mental results, the reader is referred to [2], [3], [1].

In this work we focus on the design and implementation



of Bouncer, the admission control toolkit [2] integrated
with an asynchronous P2P system (Gnutella [4]) and a syn-
chronous group communication system with strong mem-
bership semantics (Secure Spread [5]). The Bouncer
toolkit is general, i.e., it can be easily grafted onto any
peer group setting.

II. BACKGROUND

In this section, we describe a typical P2P admission pro-
cedure. The goal of this procedure is to allow a prospective
member to obtain a group membership certificate. Using
this certificate, a new member can prove membership and
take part in future admission decisions.

As described in [2], the admission process is similar to
a general voting mechanism whereby a prospective mem-
ber needs to collect a certain minimum (threshold) number
of positive votes (endorsements) before becoming a group
member. There are two types of threshold admission poli-
cies: fixed and dynamic. The former is specified as the
minimum number of votes, whereas, a dynamic threshold
is specified as a fraction or percentage of the current group
size. A fixed threshold is essentially a � -out-of- � model
where the threshold � is fixed and � (current group size)
varies over time. In contrast, a dynamic threshold (such as
30%) implies that � shrinks or grows in tandem with � .

The table below summarizes the notation used in the re-
mainder of the paper.
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The “generic” peer admission process is as follows:

Step 0. Bootstrapping: A prospective peer $&%('*) obtains
the group charter [1] out of band and then the information
of current group size from either GAuth or some boot-
strap node. The group charter contains various parame-
ters and admission policies, including: group name, signa-
ture/encryption algorithm identifiers, threshold (numeric
or fractional corresponding to fixed or dynamic threshold,
respectively), below-threshold policy and other optional
fields. This process is performed only once per admission.

Step 1. Join Request: As shown in Fig. 1, $&%('+) ini-
tiates the protocol by sending a join request (JOIN REQ)
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Fig. 1. Admission Control

message to the group. This message, signed by $,%-'+) , in-
cludes $.%-'+) ’s public key certificate ( /�0213%('+) ) and the
target group name. How this request is sent to the group is
application-dependent.1

Step 2. Admission Decision: Upon receipt of JOIN REQ,
a group member first extracts the sender’s /�0214%-'+) and
verifies the signature. If a voting peer approves of ad-
mission it replies with a signed message (JOIN COMMIT)
Several signature schemes (as described later in this sec-
tion) can be used for this purpose. $&%('*) verifies each
vote.

Step 3. GMC Issuance: Exactly who issues the 56$714%('*)
for $8%-'+) depends on the security policy. If the policy stip-
ulates using an existing GAuth, once enough votes are col-
lected (according to the group charter), $ %-'+) sends to the
GAuth a group certificate request message (GMC REQ). It
contains: /�021 %('*) , group name, and the set of collected
votes. In a distributed setting with no GAuth, $,%('*) ver-
ifies the individual votes, and, from them, composes her
own 56$719%('*) .

Armed with a GMC, $ %('+) can act as a bona fide group
member. To prove membership to another party (within
or outside the group) $.%('*) simply signs a message (chal-
lenge) to that effect.

To carry out the admission decision process, various sig-
nature schemes are used, namely the plain RSA, Threshold
RSA (TS-RSA) [6], [7], [8], Threshold DSA (TS-DSA)
[9] and Accountable Subgroup Multisignatures (ASM)
[10]. For a detailed description of these signature schemes
and the admission protocol, refer to [2] and [3].

:
Note that

����� 
"���
does not have to be an identity certificate; it

could also be a group membership certificate for another group.



III. BOUNCER: ADMISSION CONTROL TOOLKIT

We have implemented Bouncer, a general-purpose
toolkit for P2P admission control based on the description
in Section II. All cryptographic functions are developed
using the OpenSSL library [11]. The toolkit is written in
C on Linux and currently consists of about ����������� lines of
code. The source code for the membership control toolkit
is publicly available at [12].

A. System Design

The admission control system is made up of three basic
layers of the architecture; GAC APIs, security and man-
agement services, and the underlying cryptographic func-
tions. Figure 2 illustrates the architecture.
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Fig. 2. GAC System Architecture

The GAC APIs define the application programming in-
terface for accessing the admission control services. These
APIs are useful when integrating our Bouncer with other
peer group applications. The security and management
services are carried out by the following modules:
� Policy Management Module
� Certificate Handling Module
� Data Encoding Module
� Protocol Handling Module

All security services are provided by the underlying
cryptographic libraries.

B. Cryptographic Libraries

Most of the general cryptographic functions such as
SHA-1, RSA, DSA, and so on, are supported by OpenSSL.
Specifically, we have implemented three distributed cryp-
tographic schemes on top of OpenSSL, and embedded our
libraries into it. The Bouncer supports four different sig-
nature schemes; plain RSA, ASM, TS-RSA, and TS-DSA
as addressed earlier.

C. Security and Management Services

1 Policy Management Module

A policy management module is the component which
checks for conformance to the policy specified in the group
charter [1]. First, this module contains functions to check
the threshold type. If the threshold type is a static, it checks
if the number of current members is at least equal to the
threshold ( �
	 � ). If �
� � , the policy manager enforces
the BelowThreshold policy which requires it to either
forward the JOIN REQ to GAuth directly, or to reset the
threshold to reflect current � .

In most P2P systems, group size can fluctuate drasti-
cally within a short time. As the number of peers grows
or shrinks, we need to increase or decrease the thresh-
old. Since updating the threshold is an expensive operation
which requires a random number generation, it is imprac-
tical for every membership event to trigger an update pro-
cess. In order to prevent this, we apply a simple window
mechanism as shown in Fig. 3. Specifically, every member
keeps state of �
����� , which is the group size at the time of
the last threshold-update process. A new threshold-update
process is triggered only when the difference between the
current group size ������� and �
����� is greater than ��� � – the
window buffer. In other words, threshold update process
is triggered only when � ��������� � ��������	!��� � .

Function GAC Dynamic Threshold Update();

Input parameters:
X509* GChart, \* group charter *\

int N "$# % , \* old group size *\

int N &('*) , \* current group size *\

int T &('*) \* current threshold *\

Body:
int diff;
int offset;
int Win; \* Window buffer size *\

int T


���

\* new threshold *\

T

"�#�

=T &('*) ;
Win=WIN TIMES*GChart.threshold.fixed;
diff = N &('*) - N "$# % ;
if (diff >= Win) +

offset = , diff - Win . ;
N "$# % = N "$# % + (offset*Win);
T

"�#�

= , (GChart.threshold.dynamic -
100) * N "$# %�. ;

if (T


���

> T &/'0) )
T &('*) =T 

��� ;1

return T


���

;

Fig. 3. Dynamic Threshold Update Procedure

2 Certificate Handling Module

Both GMC-s and group charters generated by the
Bouncer are compatible with X.509v3 [13]. This certifi-



cate handling module takes care of all functions related to
certificate compatibility. For example, in the group charter,
we need to define several attributes in the extension field
of certificate in order to codify certain admission policy.
And this module also has a function to bind the identity of
GMC to that of PKC as shown in Fig. 4 to protect against
the Sybil attack [14], assuming that a Certification Author-
ity (CA) issues a PKC with a unique identity to each user.

Further, possession of a GMC does not prove that the
GMC actually belongs to the bearer. One way to accom-
plish this is by requiring for every group member to have
a standard X.509 public key certificate (PKC) issued by
the CA. The GMC simply needs to contain the public key
of the member extracted from her PKC. Now the member
(bearer of a GMC) can prove ownership of the GMC by
demonstrating knowledge (e.g., by signing a message) of
the private key corresponding to the public key referred to
in in the GMC.

Subject ID
Issuer
Serial Number
Public Key
Extensions
Signature

X.509 PKC

Owner
Group ID
Serial Number
Public Key
Attributes
Extensions
Signature

X.509 GMC

Fig. 4. Binding GMC to PKC

3 Data Encoding Module

The data encoding module contains all encoding and
decoding functions which convert ASN.1-formed mes-
sages to and from DER-encoded from. For example,
i2d PS Join Request() is a function which con-
verts ASN.1-structured JOIN REQ message based on
plain RSA into DER-encoded binary data in order to
transfer the message over the networks. Similarly,
d2i PS Join Request() is called when receiving
JOIN REQ message, to get internal form of the message.

4 Protocol Handling Module

The protocol handling modules includes functions used
to identify admission control protocols and transfer the
messages to and from the corresponding libraries. Fig. 5
shows the structure of GAC packet. Each packet is clas-
sified on the protocol using the packet type in the packet
header.

D. GAC APIs

Application developers require no special knowledge of
the organization of the security and management mod-
ules as well as cryptographic libraries. They just need

Protocol Packet Data Length

0 7 8 15 16 31

Data

Protocol: the protocol identifier
   1) PS (0x01)
   2) TS-RSA (0x02)
   3) TS-DSA (0x03)
   4) ASM (0x04)
Packet: the packet type defined
   1) JOIN_REQ: the join request (0x01)
   2) JOIN_CMT: the join commit (0x02)
   3) CHAL_REQ: the challenge request (0x03)
   4) CHAL_RLY: the challenge response(0x04)
   5) SIGN_REQ: the sign request (0x05)
   6) PART_SIG: the partial signature reply (0x06)
   7) GMC_REQ: the GMC request (0x07)
   8) GMC_RLY: the GMC reply (0x08)

Fig. 5. GAC Packet Structure

to use the GAC function interface to bulid any applica-
tion. GAC APIs are logically partitioned into functional
categories. The goal of this logical partitioning is to as-
sist application developers in understanding and making
effective use of the security APIs. With this logical clas-
sification, we support the following APIs. Among these
APIs, GMC Request() and GMC Reply() are option-
ally required only when we can assume the presence of a
centralized authority.
� Plain RSA APIs
GAC_PACKET *PS_Join_Reqest();
GAC_PACKET *PS_Join_Commit();
GAC_PACKET *PS_GMC_Request(); /* optional */
GAC_PACKET *PS_GMC_Reply(); /* optional */� TS-RSA APIs
GAC_PACKET *TSS_Join_Request();
GAC_PACKET *TSS_Join_Commit();
GAC_PACKET *TSS_Sign_Request();
GAC_PACKET *TSS_Part_Sign();
GAC_PACKET *TSS_GMC_Request(); /* optional */
GAC_PACKET *TSS_GMC_Reply(); /* optional */
� TS-DSA APIs
GAC_PACKET *TSD_Join_Request();
GAC_PACKET *TSD_Join_Commit();
GAC_PACKET *TSD_Chal_Req();
GAC_PACKET *TSD_Chal_Rly();
GAC_PACKET *TSD_Rnd_Req();
GAC_PACKET *TSD_Rnd_Rly();
GAC_PACKET *TSD_Sign_Request();
GAC_PACKET *TSD_Part_Sign();
GAC_PACKET *TSD_GMC_Request(); /* optional */
GAC_PACKET *TSD_GMC_Reply(); /* optional */
� ASM APIs
GAC_PACKET *ASM_Join_Request();
GAC_PACKET *ASM_Join_Commit();
GAC_PACKET *ASM_Sign_Request();
GAC_PACKET *ASM_Part_Sign();
GAC_PACKET *ASM_GMC_Request(); /* optional */
GAC_PACKET *ASM_GMC_Reply(); /* optional */

IV. INTEGRATION WITH P2P AND GROUP

COMMUNICATION SYSTEMS

To evaluate the performance of our mechanisms and to
measure the overhead incurred due to incorporating admis-



sion control in the context of real-world application, we in-
tegrated the Bouncer with a popular P2P file sharing sys-
tem, Gnutella and with a wide area secure group commu-
nication system, Secure Spread. Secure Spread is selected
as an example of a synchronous P2P system, and Gnutella
as an asynchronous one. We integrated the centralized ad-
mission protocol with the former and the decentralized one
with the latter to measure the performance in both settings.

In the following sub-sections, we discuss the implemen-
tation details for the integration with both the systems.

A. Integration with Gnutella

The Gnutella is the “pure” P2P file sharing system
which is closest to the ideal structure of the P2P spirit,
where all participants have uniform role. In such an archi-
tecture, users are free to join and leave the group. Even
malicious users can easily join to deny or disrupt the sys-
tem. To prevent such a security threat in a fully distributed
P2P environment, we integrated our Bouncer with Gnut-
0.4.21 [15] (an open-source Gnutella [4] implementation).

Ping

Pong

Query

QueryHit

Push

(download by http)

New Member Group Members

Join

Commit

SigReq

SigRly

SPing

SPong

<Gnutella> <Secure Gnutella>

Fig. 6. Secure Gnutella Protocol Flow

At the setup phase of the Gnutella protocol, a connec-
tion is established by communicating so-called Ping and
Pongmessages which are based on IP addresses as shown
in Fig. 6. To look for a file, a new member sends out a
broadcast Query message to every member to which it
is directly linked. The group members identifying the re-
quested file in their repository answer with a QueryHit
message which is returned to the connection from which
the request arrived. The QueryHitmessage contains the
ResultSet and the pair � IP address, port � that must be used
to download the file via HTTP.

The Secure Gnutella protocol, illustrated in Fig.
6, defines some extra messages for secure admis-
sion control; Join, Commit, SigReq, SigRly,
SPing, and SPong. The message format for new pro-
tocol steps is defined as follows;

� Join (mesg, PKC, Sig)

� Commit (port, IP addr, GMC, commit val, Sig)� SigReq (servant ID, sigreq val, Sig)� SigRly (servant ID, sigrly val, Sig)� SPing (Group ID, GMC)� SPong (port, IP adddr, # of files, # of Kbytes, GMC)

First, like in a standard Gnutella protocol, a new mem-
ber broadcasts to all her neighbors Join message which
contains the join request message and her own PKC. Upon
reception of the Join message, some of group mem-
bers reply with Commit message to confirm that they
will participate in admission process. In this message,
the commit val is an encapsulated message of the GAC
protocol, which is DER-encoded form. The SigReq and
SigRly are newly specified messages for the GAC pro-
tocol. For checking the integrity of protocol message,
Commit, SigReq, and SigRly messages include the
signature thereon which is PKCS7-formatted.

In order to prevent Sybil attacks [14], we modified stan-
dard Ping and Pong messages so that the connection is
made only if the responder answers with its valid GMC.
For this purpose, we specified two new messages: SPing
and SPong. The SPingmessage contains the requester’s
PKC, and the SPong message contains the responder’s
GMC and its signature (to prove possession of its pri-
vate key). In Secure Gnutella system, standard Ping and
Pong messages are no longer used.

B. Integration with Secure Spread

Spread [16] is a wide area group communication sys-
tem. It provides a high performance messaging service that
is resilient to faults across external or internal networks.
Spread functions as a unified message bus for distributed
applications, and provides highly tuned application-level
multicast and group communication support. Spread ser-
vices range from reliable message passing to fully ordered
messages with delivery guarantees, even in case of com-
puter failures and network partitions.

Secure Spread [5] is an application built atop Spread. It
enhances Spread by integrating security services and key
management.

In its present form, Secure Spread supports only static
group access control which is provided at the daemon level
using ACL’s. This clearly poses a single point of fail-
ure problem. Moreover, as argued before, static admission
control is no good for dynamic groups. Secure Spread also
has a notion of a flush mechanism, in which all current
group members need to acknowledge any change in mem-
bership (e.g. join, leave, partition, merge). A prospective
member can join a group only after it has received flush OK
messages from all current group members. This is a very
weak form of providing admission as this mechanism of-



fers no security at all because there involves no authentica-
tion of either prospective or current members. Moreover,
all group members need to be involved in every admission
process simultaneously.

In order to resolve these problems and of course to mea-
sure the performance, we integrated Bouncer with Secure
Spread. The integration involves extension to the Spread
API and can be used with any application (including Se-
cure Spread) that uses Spread.

We added the following function to the current interface
of Spread.

int SP GAC join(mailbox mbox, const char *group)

This function is declared in sp.h of Spread source tree.
It joins a group using the group admission mechanisms
described in previous sections, with the name passed as the
string group. If the group does not exist among the Spread
daemons it is created, otherwise it joins the existing group.
The mbox of the connection upon which to join a group is
the first parameter. The group string represents the name
of the group to join.

The function Returns 0 on success or one of the follow-
ing errors ( � 0):

ILLEGAL GROUP

The group given to join was illegal for some rea-
son. Usually because it was of length 0 or length �
MAX GROUP NAME.

ILLEGAL SESSION

The session specified by mbox is illegal. Usually because
it is not active.

CONNECTION CLOSED

During communication errors occured and the join could
not be initiated.

In case, the prospective member is not able to receive
enough votes, the function call will not be completed and
the member will wait forever.
JOIN REQmessage is encapsulated within the standard

spread message and sent to all the group members using
Spread multicasting. Fig. 7 and 8 show Spread header and
the encapsulation of GAC message inside the spread mes-
sage (sizes are in bytes). The function makes a call to the
SP multicast function of the Spread API. For details re-
garding the multicast message, refer to the spread function
interface in [16].

In order to receive replies back from the group mem-
bers, the function SP GAC join() uses the SP receive

function of the Spread API.

type private group name num of groups hint data length

0 4 36 40 44 48

Fig. 7. Spread Message Header

Spread Header GAC Header Join_REQ/CMT

0 48 52

Fig. 8. Spread GAC Encapsulation

We have also modified the SP receive function. This
takes care of the fact that when a current group member
receives the JOIN REQmessage from a prospective mem-
ber, it responds with a JOIN CMT message as its vote.
This message again is encapsulated within the standard
Spread message and its sent to the requesting member us-
ing the Spread unicasting. For this purpose, we again use
the SP multicast function to send unicast message to the
new member using its private group name which is repre-
sented by #private user name#daemon name.

After collecting enough votes from group members, the
prospective member requests the GMC from the external
GAuth. Once, the GAuth issues the GMC to the new
member, the admission process is completed. Then, the
spread daemons update the membership information and
update/distribute the new key to the newly joined member.

V. EXPERIMENTS

In our experiments with Gnutella and Secure Spread, we
measured the costs of basic operations and then compared
the performance of four cryptographic protocols with both
fixed and dynamic thresholds. We used 1024-bit modulus
in all mechanisms; that is, 1024-bit � in RSA and TS-
RSA, and 1024-bit � and 160-bit � in TS-DSA and ASM.

Since each protocol has different number of commu-
nication rounds, we measured total processing time from
sending of the JOIN REQ to obtaining new GMCs2. This
means the join cost includes not only the signature gener-
ation and verification time in basic operations, but also the
communication costs such as packet encoding/decoding
time, the network delay, and so on. To get reasonably cor-
rect results, the experiments were repeated more than 1000
times for each.

A. Computation Costs

In this section, we demonstrate the cost of each signa-
ture scheme used as a primitive in Bouncer.

Fig. 9(a) shows the cost of signature generation versus
the key size, where t=3. We found that in TS-RSA, the cost

�
In these experiments we did not consider the partial share shuffling

for both TS-RSA and TS-DSA.



in generating a signature is much more expensive than that
of RSA signature generation, since we can not apply CRT
(Chiness Remainder Theorem) to speed up the compuation
as in plain RSA scheme. TS-RSA is slightly better than
TS-DSA with 512-bit modulus, while TS-DSA is faster
than TS-RSA with larger key size. As evident from the
figure, ASM is the best performer because it is based on
the efficient Schnorr’s signature scheme.
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Fig. 9. Basic Operation Cost

Fig. 9(b) shows the cost of signature verification with
varying key sizes. In PS, the cost of signature verification
is proportional to the threshold. All other schemes, except
PS, have only one resulting signature due to the aggrega-
tion of partial signatures. We also observe that the veri-
fication costs of TS-DSA and ASM are almost the same
as for the underlying DSA and Schnorr signature schemes
respectively. However, verification cost for TS-RSA is ex-
tremely high. This is because � �������	�

��
 in t-bounded
offsetting algorithm [6] has to be computed almost every
time the signature is verified. Due to this expensive oper-
ation, it turns out that the TS-RSA performs much worse
than the other schemes, contrary to our intuition.

B. Signature Size

From the analysis of the computation cost above, it
turned out that both plain RSA and ASM are more effi-
cient than the two threshold signature schemes. However,
the length of the signature in plain RSA and ASM is linear
in threshold � . In this experiment we extract the identities
(which are X.509 DN formatted) from the GMC-s. We
also used 1024-bit RSA key and SHA-1 as a hash function
for both ASM and TS-DSA.

In both plain RSA and ASM schemes, the signers’ iden-
tities should be included in the resulting signature. Due
to the size of the identity (i.e., 952 bits), the resulting
signatures become very large depending on the threshold;
whereas, both TS-RSA and TS-DSA have a constant sig-
nature size (i.e., 1024 bits and 320 bits, respectively). For
example, from the Fig. 10, we can see that the size of plain
RSA is about 150 times as long as that of ASM when the
threshold is set to 25. Therefore, we recognize that both
plain RSA and ASM would not be suitable for large groups
where the bandwidth is a major concern.
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C. Gnutella Experiments

We measured the performance of the Secure Gnut
which is the Gnut system integrated with our Bouncer.
We performed all measurements on the following Linux
machines connected with a high-speed LAN: P4-1.2GHz,
P3-977MHz, P3-933MHz, and P3-797MHz.

Fig. 11(a) shows the join cost for the static threshold
case. Fig. 11(b) shows the join costs for the dynamic
threshold case where the threshold ratio is set to 30% of
current group size. All of these measurements were per-
formed with the equal number of member processes on
each machine.

D. Secure Spread Experiments

For our experiments with Secure Spread, we used a clus-
ter of 10 machines at Johns Hopkins University. Each ma-
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Fig. 11. Gnutella Expriments

chine has P3-667 MHz CPU, 256 KB Cache and 256 MB
memory and runs Linux 2.4. We ran Spread daemons on
all machines which formed a Spread Machine Group. Al-
most equal number of clients running on these machines
connect randomly to the daemons. The new joining mem-
ber is a client running on a machine at UC Irvine with a
Celeron 1.7 GHz CPU, 20 KB cache and 256 MB mem-
ory.

Experiments were performed with the above testbed
for both fixed and dynamic thresholds for all signature
schemes discussed thus far.

Fig. 12(a) shows the plot for the average time taken by
a new member to join a group with a fixed threshold. We
performed this test with 4-5 processes on each machine
and measured the join cost by changing the threshold. As
expected, plain RSA is the best performer in terms of com-
putation time. However, we also see that both TS-RSA and
TS-DSA exhibit reasonable costs ( ��� sec.), at least until
t=10.

Fig. 12(b) show the plots for the average time for a new
member to join a group with a dynamic threshold. In this

experiment, the threshold ratio ( � ) is set to 30% of the
current group size. The actual numeric threshold is deter-
mined by multiplying the group size by � . We measured
the performance up to ��� � � .
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Fig. 12. Secure Spread Expriments

For a detailed discussion regarding the results of these
experiments, the reader is referred to [2].

VI. DISCUSSION

As it is clearly reflected from the measurement results
above, all the advanced cryptographic constructs i.e. the
threshold signatures and the multisignatures perform quite
poorly. Especially the threshold signatures are about 4-7
times costlier than the plain RSA signatures for relatively
larger groups. But, as discussed in [2], since for plain sig-
natures and multisignatures the size of the combined sig-
nature and thus the size of the GMC varies proportionally
with the threshold, we can’t pick just one signature scheme
for all P2P settings. A certain balance has to be maintained
between the size of the GMC and the average join cost
apart from the choice of the scheme-specific features like
anonymity, accountability, membership awareness and so
on.



One might argue that group signature scheme [17] might
also be a possible candidate for the admission control espe-
cially in a P2P scenario where signer anonimity is a must.
We did in fact implement the group signature scheme in
our toolkit and experimented with it. But, unfortunately,
we have to rule out the possibility of using group signa-
tures as they perform way worse than the other signature
schemes. Moreover, group signature scheme can only be
used for the centralized admission protocol as it requires
the presence of a group manager.

In summary, we are faced with a couple of challenges in
order to provide secure admission control. One challenge
is to make the admission process as distributed as possi-
ble and the other is to do so in a highly efficient manner
with the lowest possible overhead (storage as well as band-
width). Though in a P2P setting, a distributed approach
seems like the most natural one but it turns out to be the
hardest as well. A admission control mechanism will only
be applicable in mobile ad-hoc and sensor networks if it
is both distributed and power-efficient. As of now none of
the schemes seem very useful in these scenarios.

VII. FUTURE DIRECTIONS

As is evident from the experimental results and above
discussion, there is a lot of scope for improvement and
promise for further work. We have seen that there is a
tradeoff between the performance and the signature size
among various schemes. So, one immediate objective
is to find/design an efficient signature scheme which on
one hand has a fewer rounds in the protocol and on the
other smaller signature size in the GMC. Recently pro-
posed aggregated signature scheme [18] appears to be an
attractive candidate for the same. But, we claim that one
particular signature scheme would not be sufficient for our
purpose of admission control. The choice of the scheme to
be used has to be made based on a number of factors like
type/size of group, bandwidth, various features desired and
the group policies.

Another possible enhancement could be to have admis-
sion decision based on a trust based model. In the usual
more practical scenario, a group member can only prob-
abilistically vote in or vote out a prospective member. In
the presence of a trust model, voting would be more deter-
ministic.

This work uses a certificate based approach towards ad-
mission control. With certificates arises the issue of re-
vocation which could be a hard problem to deal with in a
distributed setting. In order to avoid this issue, another fu-
ture direction is to design a non-certificate based approach
for admission.

Another prospect of future work is the complementary

problem of membership revocation. If providing secure
admission is hard, solving the problem of revocation will
be even more challenging.
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