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ABSTRACT

Keyboard acoustic side channel attacks to date have been mostly
studied in the context of an adversary eavesdropping on keystrokes
by placing a listening device near the intended victim creating
a local eavesdropping scenario. However, being in close physical
proximity of the victim signi!cantly limits the applicability of the
attack.

In this paper, we study the keyboard acoustic side channel attacks
in remote attack settings and propose countermeasures in such
attack settings. Speci!cally, we introduce an o!ense-defense system
that: (1) highlights the threat of a remote adversary eavesdropping
on keystrokes while the victim is on a VoIP call, and (2) builds
a way to mask the leakage through the use of system-generated
sounds. On the o"ensive side, we show the feasibility of existing
acoustic side channel attacks adapted to a remote eavesdropper
setting against sensitive input such as random passwords, PINs etc.
On the defensive side, we demonstrate a software-based approach
towards masking the keystroke emanations as a defense mechanism
against such attacks and evaluate its e"ectiveness. In particular,
we study the use of white noise and fake keystrokes as masking
sounds and show the latter to be an e"ective means to cloak such
side channel attacks. Finally, we discuss a novel way of masking by
virtually inserting the masking signal in remote voice calls without
distracting the user.
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1 INTRODUCTION

Acoustic side channel attacks have been shown to be successful at
decoding keystrokes by exploiting keystroke emanations from the
victim’s typing, by placing a covert listening device in vicinity of
the victim. 1. The fundamental insight of these attacks is that, due
to the mechanical characteristics of the keyboard, each key on the
keyboard produces a unique sound on press and release. Studies

1We use the terms “victim” and “user” interchangeably throughout this work.
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have indicated that such attacks are reasonably accurate at decoding
typed words by using methods described in [5–7, 11, 16]. As such,
they pose a viable threat to highly sensitive information such as
(random or non-random) passwords and other natural language
text input by the user.

Given the huge concern about privacy issues in the digital world,
these threats pose a serious risk to a user’s interactions in an in-
secure environment. However, the existing acoustic emanation
attacks have all been studied only in a local setting where the vic-
tim is being eavesdropped by a covert listening device placed in its
vicinity. Such a setting may limit the applicability of the attack since
the attacker is forced to be in close physical proximity of the victim
user. The proximity-based attacks may also be detected/prevented
via physical means, for example, with closer inspection of the space
around the user such as through bug sweeping [3]. It is also impor-
tant to note that, in such proximity settings, there may be other,
simpler and more e"ective mechanisms to learn sensitive informa-
tion from the user, such as simple shoulder-sur!ng attacks that
monitor the user as she types her con!dential information.

In this paper, our goal is to expand the research on keyboard
acoustic emanations by exploring other attack avenues for the
adversary and investigating defensive scenarios, especially when
the victim is typing sensitive information such as passwords and
PINs. First, since acoustic emanation attacks have already been
studied extensively in a local setting where the victim is being
eavesdropped by a covert listening device placed in its vicinity, we
investigate the behavior of such attacks in a more broader remote

eavesdropper setting. In this setting, the victim is unknowingly
being eavesdropped by an attacker from a remote location while the
victim is on a call with a malicious or compromised entity, or by a
wiretapper who is sni#ng the VoIP tra#c containing the keystrokes
between two honest parties. We also concentrate on attacks against
random passwords and PINs as they demand more security and are
supposed to be harder to decode due to their randomness. When
compared to the localized attack setting, the remote attacks give
immense %exibility to the attacker and are harder to detect, and
therefore can be more devastating in practice.

Second, while the study of acoustic side channel attacks have
been extensively highlighted, there is a scarcity of adequate de-
fense techniques that can thwart such attacks. Most of the pro-
posed defense revolves around improved hardware and a sanitized
environment to suppress the acoustic emanations. However, these
methods come with an expensive implementation making them
impractical in assisting a common user, especially in a remote eaves-
dropping setting. In the face of such challenges, we examined the
e#ciency of system generated sounds in suppressing or masking
the acoustic emanations to make the proposed remote acoustic side
channel attacks ine"ective. We investigate two types of defense
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mechanisms: noisy defense mechanism that generates masking
signal at the victim’s end using speakers and noiseless defense that
virtually mixes the masking signal with the victim’s microphone
output and directs it seamlessly to the remote calling application.
While noiseless defense is user transparent, noisy defense can be
utilized to counteract the threat of a local eavesdropping adversary
(in addition to a remote attacker).

Our Contributions: In this paper, we show that keyboard acoustic
eavesdropping is possible in remote voice calling applications like
VoIP scenarios, where the attacker is eavesdroppingwhile the victim
is typing during the call. Moreover, we show that such attacks can
be thwarted with acoustic masking mechanisms. We also introduce
the idea of noiseless masking where the masking mechanism is used
without distracting the victim from the important task of password
entry. Our contributions are summarized below:

• Leakage of Password Keystrokes: We utilize similar attack
methodology as in [8] and show in Section 5 that traditional
attack vectors (like time-frequency distance and machine learning
tools) provide a reasonable accuracy at decoding single keystrokes
(74.33% for lowercase alphabet keys and 77.33% for numeric keys),
6-character length random passwords (46.67%), and 4-digit PIN
(70.00%) using the keystroke sounds transmitted over VoIP calls.

• Noisy Masking Defense:We propose a noisy defense mecha-
nism based on sound masking in Section 6 to hide the keystroke
acoustic emanations during password (and PIN) entry. We study
the e"ectiveness of white noise and fake keystrokes in hiding the
keystrokes typed by the victim.

• Noiseless Masking Defense: We introduce the idea of a novel
defense mechanism in Section 7 that silently injects masking
signal into the audio stream of a voice call during password (or
PIN) entry. This setup allows a noise free environment at victim’s
end while preventing an eavesdropping attacker at the other end
from exploiting leaked password keystroke emanations.

2 BACKGROUND AND RELATEDWORK

Acoustic eavesdropping over keystrokes has been a well researched
area in computer security. The acoustic emanations resulting from
the keystrokes were identi!ed as leaking signi!cant amount of
information about the keys being pressed. Asonov et al.[5] used
neural networks with labeled keystroke samples to identify a key-
stroke using Fast Fourier Transformation (FFT ) as a feature from
the key press regions. They were able to identify the keystrokes
with an accuracy of 80%. Zhuang et al.[16] improved upon this
work by using non labeled training samples and Cepstrum features
to achieve accuracy up to 96%.

Berger et al.[7] exploited the correlation between keystrokes
based on their physical location on the keyboard to decode single
words of length 7-13 using dictionary attack. Halevi et al.[11] stud-
ied keyboard acoustic emanations attacks by using time-frequency

decoding that provided improved accuracy over previous methods.
They also explored the e"ect of a user’s typing style on keystroke
identi!cation in the context of decoding random passwords. They
inferred that di"erent typing styles a"ect the accuracy of keyboard
acoustic attacks and random passwords are less vulnerable to such
attacks as language modeling techniques and dictionary based at-
tacks are not applicable. Context free attack was proposed by Zhu

et al. [14] that utilized multiple microphones placed strategically
around a keyboard to identify keystrokes based on time di"erence
of arrival (TDoA) of the keystroke emanation at each microphone.

Compagno et al. [8] explored the issue of a remote adversary
eavesdropping on keystrokes through VoIP calls. They used MFCC

features for keystroke detection and investigated the impact of
bandwidth as well as presence of speech on the accuracy of their
classi!er. Our work re-investigates this issue with a focus on ran-
dom passwords and PINs while proposing a defense mechanism
against a remote eavesdropping adversary. Similar to [8], our work
does not consider geometry based attacks such as [14] because
remote eavesdropping removes the distance factor between the
eavesdropping device and the keyboard. This renders these class of
attacks infeasible in our threat model as distance i.e. TDoA can not
be used as a unique identifying factor.

3 ATTACK MODEL AND OVERVIEW

In this section, we give an overview of the acoustic eavesdropping
attack system, which is a reincarnation of existing localized key-
board acoustic attacks [5, 7, 11, 16] for remote voice call setting.
We describe in detail our threat model for the voice call scenario
elaborating the capabilities of the attacker.

In our threat model, we consider the victim to be in a voice call
while typing sensitive information such as random passwords, PINs,
or credit card information. We assume the user at the other end
of the call is using speakers to listen to the victim. This allows the
attacker to remotely eavesdrop on the voice call. In this scenario, the
attacker could be a malicious application exploiting the microphone
on the other end of the victim’s call or it could be a dishonest user
itself communicating with the victim. The attacker could also install
a hidden listening device near the benign user (using speakers) who
is on call with the victim. The voice call in our model could be a
VoIP call, a video call or a normal phone call. In this work, we will
limit ourselves to the VoIP scenario that can easily be extended to
any types of calls with the victim.

Our threat model assumes that the victim is typing sensitive
information during the call. One way to ensure this scenario could
be using social engineering trickeries to in%uence the victim into
logging to a website or authentication system while on the voice
call. For example, in a customer service call, the customer service
agent may ask the user to login to test if his account is accessible.
The victimmay also log into an authentication service even without
the attacker’s prompt while on the call.

To obtain training samples for the victim’s keyboard, we assume
the attacker has access to prior calls from the victim that allows
building a keystroke feature set to be used for keystroke identi!ca-
tion. Other ways for the attacker to build a training model for the
victim’s keyboard involve an exchange of chat messages between
the attacker and the victim, online editing of a shared document (e.g.
Google Docs) or coercing the victim to send an email while on call.
In all of these scenarios, the attacker can record victim’s keystrokes
through VoIP call and match them against the written text. This
is in contrast to prior keyboard emanations attacks [5, 7, 11, 16]
where the attacker had physical access to victim’s keyboard. As an
analogy, this constitutes a type of known-plaintext attack against
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(b) Network sni!ng attacker

Figure 1: Eavesdropping attack scenarios

encryption systems where the attacker has the general knowledge
of the keys on the victim’s device but not the actual typed keys.

We also consider a scenario where the attacker builds the training
model by eavesdropping locally on the victim’s keystrokes and
then using the obtained training model to recognize the remotely
eavesdropped keystrokes of the same victim. This scenario assumes
that attackermay have one-time access to victim’s keyboard (similar
to lunch-time attack) that allows him to build a trainingmodel using
the exact keyboard of the victim. This training model is later used
to decode victim’s keystroke over VoIP call.

In our model, we limit ourselves to eavesdropping on random
passwords and numerical data (like PINs, credit card number, and
date of birth). Hence, we eliminate the e"ect of individual typing
style from the recorded keystrokes as such data is generally not
entered using touch typing[2]. Also, HMM (Hidden Markov Model)
language-based models and dictionary attack can not be useful in
this case as random passwords and numbers are devoid of language
features that make such attacks possible. To give the attacker a
realistic chance for decoding the keystrokes, we allow multiple
samples of the sensitive data to be collected by the attacker (e.g.,
the same password typed multiple times).

In line with prior acoustic side channel attacks, we design our
environment to be free of noise to evaluate the maximum likelihood
of a successful attack. While it is realistic for the victim to converse
during the call while entering the sensitive information, we do not
consider this scenario in our threat model. Note that the attacker
side noise/speech does not a"ect our attacks, only the victim’s
side is important. Another important scenario in our threat model
involves the attacker sni#ng on the network tra#c of the VoIP call
between two honest parties. When a VoIP call is made to or from the
victim, the attacker monitors the network tra#c for VoIP packets.
One amendable setting for this attack involves unencrypted VoIP
communication, or third-party encryption (who themselves can be
the attacker). However, even if VoIP services employ end-to-end
encryption, VoIP packets have been shown to be vulnerable and
can still be decoded as shown by Wright et al.[13]. Thus, our work
may apply to both encrypted and cleartext VoIP communications.

4 ATTACK SETTINGS & TECHNIQUES

In this section, we lay out the design of the experiment that was
conducted to study the feasibility of the attacker eavesdropping

remotely on an unaware victim during a voice call while she enters
some sensitive information (password or PIN).

4.1 Experiment Design

In our experiments, we study the following scenarios based on the
threat model: a) An attacker (a malicious user) communicating with
the victim, or a compromised machine on call with the victim, b)
an attacker sni#ng and capturing the audio packets directly from
the network, and c) the attacker obtains a training model of the
keystrokes locally and later eavesdrops remotely intending to use
the training model for decoding. The !rst scenario is depicted in
Figure 1a and the second scenario is depicted in Figure 1b.

4.2 Keystroke Processing

The keystroke processing done by the attacker for audio signals
eavesdropped over voice calls is in line with keystroke extraction
and processing done in previous works [5, 7, 11, 16]. The process is
divided in two phases: keystroke extraction, and keystroke classi!-
cation and recognition. We restrict our signal processing (that uses
Fast Fourier transform) to the frequency band 400Hz-12kHz as we
obtained best results in this band. For classi!cation and recognition,
we compared single character detection accuracy for existing meth-
ods in literature such as MFCC with neural networks [16], cross-
correlation [7], frequency distance measure [7], frequency-time
distance measure [11] and machine learning methods described in
[8], and chose the method that gave us the best accuracy.

Our threat model di"ers from previous works in the sense that
the eavesdropping is done remotely and not in the proximity of
the victim, the eavesdropped signal is not the same signal that em-
anated from the keystrokes at the victim’s end. The eavesdropped
keystroke signal is a result of an encoding-decoding (de!ned by
the underlying VoIP protocol) of the original keystroke emanation
from the keyboard that is transmitted over the network. Therefore
we implement and test all the previously described methods and
choose the method that provides us with the best accuracy.

5 ATTACK EXPERIMENT AND RESULTS

This section describes the setup details of our experiments and the
results that show the threat of an acoustic eavesdropping attack.
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Table 1: Single key classi"cation using time-domain and
frequency-domain distance estimates

Classi"cation Method Accuracy (in %)

Alphabet keys (a-z)

Cross-correlation 56.00
Frequency Distance 64.70
Frequency Time 67.30

Numpad keys (0-9)

Cross-correlation 73.30
Frequency Distance 70.00
Frequency Time 83.30

Table 2: Single key classi"cation using FFT coe!cients

Classi"cation Algorithm Accuracy (in %)

Alphabet keys (a-z)

J48 15.79
Random Forest 32.35

Linear Nearest Neighbor Search 20.92
SMO 21.95

Simple Logistic Regression 39.54

Multinomial Logistic Regression 38.89

Numpad keys (0-9)

J48 39.67
Random Forest 49.67

Linear Nearest Neighbor Search 42.33
SMO 38.67

Simple Logistic Regression 53.00

Multinomial Logistic Regression 53.67

Table 3: Single key classi"cation using MFCC

Classi"cation Algroithm Accuracy (in %)

Alphabet keys (a-z)

J48 34.40
Random Forest 66.88

Linear Nearest Neighbor Search 53.91
SMO 74.33

Simple Logistic Regression 73.17

Multinomial Logistic Regression 62.52
Numpad keys (0-9)

J48 44.67
Random Forest 73.67

Linear Nearest Neighbor Search 62.00
SMO 77.33

Simple Logistic Regression 70.67

Multinomial Logistic Regression 56.33

5.1 Single Character Detection

Single character detection involves determining the accuracy of
correctly recognizing a keystroke. For this purpose, two sets of
keystroke samples are used: a labeled training set and a testing set.
The testing set is evaluated against the training set using the meth-
ods described in Section 4.2 for determining the single character
detection accuracy.

5.1.1 Experimental Setup. For our experiment, we collected 20
keystroke samples for each of the lowercase alphabetical keys (a-z)
and each of the numpad keys (0-9). The keyboard used was Dell
SK-8125 and the recording was performed by a PC microphone (DX-
USBMIC13). The scenario involved victim typing each key (a-z; 0-9)
twenty times while communicating with the attacker on Skype.
The typing was done in hunt and peck style where the victim used
right hand index !nger to press each key individually. The victim
and the attacker are not present on the same network connection.

As per our attack model, no other sounds were present except the
keystroke sounds. The keystroke sounds generated at the victim’s
end were transmitted through the microphone of the victim to the
attacker by Skype. Themicrophone was placed at a distance of 15cm
from the victim’s keyboard to allow the attacker to have the best
quality recording. The attacker recorded the victim’s keystroke
using a microphone from the other end of the Skype call. This
captured our !rst attack setting involving a malicious end point.

5.1.2 Processing and Results. We divided the collected samples
for each keystroke into training set (14 samples) and testing set (6
samples). We extracted the key press and the key release regions
from each keystroke sample as detailed in Section 4.2. To get the
best possible accuracy, we built models for each of the methods
described in Section 4.2 and trained them on the obtained training
set for each of the keys (a-z; 0-9). The testing set for each key was
then used to determine the accuracy of the models. The results are
enumerated in Table 1.

For applying supervised machine learning, we used FFT coef-
!cients and MFCC as classifying features for each keystroke. We
calculated FFT features with a window of 441 samples with overlap
of half the window size. We also used "melfcc” code provided at [4]
with frequency wrap of type htkmel and used the !rst 32 channels
in our calculations. We performed 10 fold cross validation on the
collected samples of keystrokes with following algorithms: Simple
Logistic Regression, Multinomial Logistic Regression, J48, Random
Forest, SMO and Linear Nearest Neighbor Search.

The results are compiled in Table 2 and 3. From the results, we
observe that MFCC provide a better classi!cation accuracy than
FFT coe#cients. The best accuracy achieved by FFT coe#cients
was 39.54% using Simple Logistic Regression while using MFCC as
features, the classi!cation accuracy was 74.33% (SMO) and 73.17%
(Simple Logistic Regression).

We compared the results obtained using multiple machine learn-
ing algorithms that use MFCC features against time domain meth-
ods like cross-correlation or derived features in frequency domain
such as frequency-distance or frequency-time distance estimate.
We clearly observe from Table 1 and Table 3 that machine learning
method using MFCC delivers better results for a single keystroke
accuracy for both alphabets and numpad keys. Hence, we utilize
machine learning using MFCC features in our subsequent analysis
of decoding random passwords and PINs over VoIP calls.

5.2 Random Passwords and PIN Detection

We now focus on the feasibility of decoding random passwords
and PINs using same technique as in single character detection.
Random passwords are di#cult to decode as the accuracy of the
attack method depends only on the single character detection rate
as we can not use language models and dictionaries to deduce the
correct word from a partially decoded word.

5.2.1 Experimental Setup. In order to test for random passwords,
we allowed the victim to type 5 randomly generated 6-character
passwords consisting of only lowercase alphabets (a-z). The length
of 6 characters is the minimum requirement for a password on
most of the authentication systems. The victim typed each of the 5
passwords for a total of 10 times with a time interval of 5 seconds
between successive password inputs for the same password. For
testing PINs, we allowed the victim to type 5 randomly generated
PINs of length 4, which is the standard length in most PIN authen-
tication systems. Each PIN was typed 10 times allowing for an
interval of 5 seconds between successive PIN entries for the same
PIN similar to random passwords.

5.2.2 Processing and Results. For decoding random passwords,
we used MFCC features extracted from password keystrokes, eaves-
dropped over the remote call. We used previously collected samples
of single keystrokes (30 instances per key) to build the training
model and keystrokes from each password attempt were used as
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the testing set. We used all ten attempts of each of the !ve ran-
dom passwords against our training model and recorded the best
obtained accuracy for each password over ten samples.

The results for password decoding is shown in Appendix Table 4
that indicate that SMO and Simple Logistic Regression algorithms
were able to decode, on an average, more than 40% of the password
over ten samples for each of the !ve random passwords. Single key-
stroke accuracies observed in Table 3 collaborate the e"ectiveness
of these two algorithms when used with MFCC features. In terms
of search space, SMO algorithm is able to decode almost half of the
password, averaging about 3 characters for a 6-character length
password. Since the experiments were performed over ten samples
for each password, the required search space is C10

1
× C

6

3
× 26

3

guesses. A brute force attack would require 26
6 guesses which

means our attack reduces the search space by a factor of 88, for a
6-character length password.

If we consider a 10-character password, a brute force attack
would require 2610 guesses. Using our best accuracy for password
decoding (approximately 46.67%), the required number of guesses
would be C10

1
× C

10

5
× 26

5 reducing the search space by a factor
of 4716. While the accuracies are not very high, they still show
an underlying threat that has the potential to compromise user’s
security if the password is not truly random.

The decoding accuracy for 4-digit PINs is also shown in Appen-
dix Table 4 demonstrating average accuracies using SMO, Simple
Logistic Regression and Linear Nearest Neighbor Search. For a 4-
digit PIN, the attacker can reveal as many as 3 digits contained in
the PIN. The search space for this attack would be C10

1
×C

4

3
× 10

1.
When compared to a brute force attack (a search space of 104), the
attacker’s search space has been reduced by an order 103.

5.3 Network Sni!ng

For this scenario, we assumed that the attacker had direct access
to the network and can sni" audio packets from it. To emulate
this scenario, we installed the recorder plugin for Skype named
Supertintin [1] that can directly record the audio from Skype instead
of relying upon the user’s speaker to get access to the keystroke
sounds. This also removes the need for the use of a microphone for
the attacker as the recording was now done through the software.

We performed the experiment with no explicit limit imposed on
the network bandwidth. Compagno et al. [8] showed that classi!-
cation of remote keystrokes using MFCC su"ers noticeable loss at
and under 40 Kbits/s. Thus, we perform the experiment where the
Skype conversation was working at almost best possible quality
thereby creating the most favorable scenario for the attacker.
Top 5 Matching Character List: In this technique, we !nd the
5 most frequently matching characters for each of the characters
(a-z). We match each of the samples for each keystroke against
the samples of remaining 25 keystrokes using our classi!cation
algorithms and arrange thematching candidates in decreasing order
of frequency during the matching process. The matching character
list describes the similarity of a given alphabetical key with other
alphabetical keys. Thus, for each decoded character in our attack,
we get a possible search space of 5 characters that could replace the
decoded characters. If the replaced character resulted in a successful

match, i.e. it was the same character typed by the victim, we count
it as a correctly decoded character in the 6-character password.

For random passwords decoding, the attack was able to decode
2 out 6 characters for random passwords with a single character
accuracy of 8.0% for the raw samples and after the application of
top 5 matching list, it rose to 24.0%. For the 4 digit PIN, it was able
to decode 3 out of 4 characters with the single character detection
rate of 20.0% for the raw samples that rose to 50% after applying the
top 5 matching character list. These results are in line with those of
the end point attack setting and again demonstrate the feasibility
for a network sni#ng attacker, which will give rise to a signi!cant
factor reduction in the search space for passwords and PINs.

5.4 Local and Remote Eavesdropping Attacker

We used the same setup as used in the experimental setup described
in Section 5.1.1. However, on this occasion, we also recorded the
keystrokes locally at the victim’s end by placing a microphone
near the victim’s keyboard. This setup mimics the threat scenario
for eavesdropping on keystrokes locally as studied in previous
literature ([5], [7], [9], [11], [15],[16]).

We build the training model as per Section 4.2 by using the
keystrokes signals recorded locally at the victim’s end. We then
tested the remotely recorded keystrokes against this local eaves-
dropping based training model. We found out that using the top
5 matching character list as described in Section 5.2.2, we could
only achieve a single character detection accuracy of 18.6% as com-
pared to 32.7% as achieved in Section 5.2.2. This indicates that the
steps involved in the transmission of the audio signal from victim’s
to attacker’s end a"ect the features of signal to an extent that is
lowers the accuracy of the classi!er. This is to be expected when
VoIP applications need to compress and encode the signals that
may result in loss of some information about the signals.

6 NOISY AUDIO MASKING DEFENSE

Audio masking is used to hide susceptible sounds by introducing a
di"erent sound in the environment that should be able to cloak the
susceptible sounds. In acoustic side channel attacks, the attacker
exploits the sounds emanated from the victim’s device (keyboard)
to recover sensitive information. In our setup, the attacker records
keystroke emanations that are transmitted over the VoIP call and
decode them to extract random passwords, PINs, etc.

The main principle behind audio masking is to decrease signal to
noise ratio (SNR) making it hard to separate the signal from noise.
The audio emanations from the keystrokes constitute the signal
and the masking sound is the background noise. If the loudness
of the background noise is comparable to the signal, it becomes
hard for an adversary to !lter out the noise. To implement audio
masking, an audio signal could be introduced in the victim’s en-
vironment coexisting with the keystroke audio emanations. The
masking signal could be generated from the victim’s device or it
could come from an external source.

6.1 Types of Masking Sound

For our defense based on masking keystroke emanations, we ex-
plore the masking ability of two types of masking sounds: white
noise and fake keystrokes. We evaluate the masking signals on their
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ability to cloak keystroke emanations by measuring the accuracy
of the adversary in decoding the keystrokes typed by the victim.

6.1.1 White Noise. Theoretically, white noise is de!ned as a
random signal of constant spectral density and in!nite bandwidth.
However, in practice the bandwidth of white noise is regulated for
the noise generator and is dependent on the context of generation.
In our work, we are interested in masking keystroke sounds so
we limit white noise to the frequency range of keystroke sounds.
White noise is often used in o#ce environments to drown out
distracting sounds. While white noise is a simple masking signal, it
lacks sophistication due to uniform frequency distribution leading
to poor frequency spectrum overlap with keystroke sounds. It is
also susceptible to !ltering by most of the VoIP applications for
enhancing speech and hence merely serves a baseline in our work
from which we build upon more sophisticated masking signals.

6.1.2 Fake Keystrokes. Fake keystrokes refer to a pre-recorded
sound of keystroke emanations where random keystrokes are typed
without any pause between successive keystrokes. Fake keystrokes
have similar frequency spectrum as the keystrokes typed by the
victim during the VoIP call hence they lie in the same frequency
spectrum. Due to this property, it may become di#cult to !lter
fake keystrokes from real keystrokes for an attacker. In order to
have maximum e#ciency at masking the real keystrokes, the fake
keystrokes should aim to overlap with the real keystrokes as much
as possible. The overlap of the real and fake keystrokes may change
the frequency features of the real keystrokes causing the resultant
keystroke sound to be di"erent than the real keystroke sound. Most
VoIP applications, in our knowledge, do not !lter out keystrokes
during a call making the fake keystrokes a viable defense mechanism.

6.2 Experimental Setup

Our experimental setup for implementing the noisy defense mech-
anism was similar to the attack’s experimental setup. The victim
was in a VoIP call (Skype) with a malicious end user while enter-
ing sensitive information (passwords or PINs) at the same time
on a computer terminal. The call from the victim was recorded at
the malicious user’s end using a PC microphone. In addition, we
generated the masking sound using the victim’s computer speaker.
We divided the experiment in two stages: the !rst stage involved
the use of white noise as the masking signal, and the second stage
involved the usage of fake keystrokes as the masking signal.

The victimwas instructed to type !ve unique 6-character random
passwords, with each password being typed 30 times. Similarly, !ve
unique 4-digit PINs were entered by the victim using the computer’s
keyboard, with each PIN being entered 30 times. We increased the
number of samples for each password/PIN compared to the attack
setup in order to test the defense against a more determined adver-
sary. For the !rst stage of the experiment involving white noise, we
generated white noise using the “wgn” function of Matlab in the
frequency range 400Hz-12kHz at a sampling frequency of 44.1kHz.
The resulting audio was played back using Windows Media Player
by the inbuilt speaker at a sound level of 60dB. This is considered to
be the sound level for a normal speech conversation and therefore
any noise at the same level should probably be not distracting to the
conversation. The keystroke sound was also measured and found
to be around similar audio level.

For the second stage of the experiment, fake keystrokes were
recorded o*ine by the victim locally, prior to the VoIP conversation
with the malicious end point attacker. Since each keystroke lasts
around 100ms and an average time duration between two successive
keystrokes while entering a random password (we assume touch
typing is not used for random passwords) is signi!cantly more than
100ms, the victim presses random keys on the keyboard as fast as
she can while recording the resulting keystroke sounds at the same
time. Once the recording is complete, any part or whole of it can be
played during the sensitive information entry event making sure
that the masking sound is present during the entirety of this event.

6.3 Experimental Results

In order to test the viability of masking signals in cloaking acoustic
emanations of keystrokes, we used our attack described in Section
5.2.2 to recover information from the eavesdropped signal.

6.3.1 In Presence of White Noise. Our results from the testing of
white noise as a masking signal point out to the fact that white noise
is recorded at a very low volume as compared to the keystrokes at
the attacker’s end. Hence in the presence of white noise, for the 6-
character random passwords, we were able to recover on an average
5 out of 6 characters. Out of the 180 decoded characters (30 samples
× length of a single password), we were able to correctly decode
9.2%, i.e, 16 characters correctly. After using the top 5 matching list,
the percentage of correctly decoded characters went up to 35.9%.

For 4-digit PINs, we were able to recover almost all of the 4 digits
of the PIN. Out of the 120 decoded numbers (30 samples × length of
a single PIN), 12.5%, of digits were correctly decoded. Applying the
top 5 matching list made the percentage of correctly decoded digits
rise up to 67.2%. Thus, we can see that white noise has no e"ect
upon the accuracy of the attack.2 This is not surprising as most of
the microphones and voice calling software implement some type
of background noise suppression for improving the quality of the
call. In other words, our experiments con!rm that white noise as
masking signal is not e"ective to defeat eavesdropping attack.

6.3.2 In Presence of Fake Keystrokes. Our recordings of the vic-
tim’s keystrokes in the presence of fake keystrokes show that Skype
does not !lter out the fake keystrokes. This means that the real
keystrokes typed by the victim may get obfuscated by the fake
keystrokes that were played at the victim’s end.

From the spectrum analysis, we observe that it may be di#cult
to identify fake keystrokes from real keystrokes as they lie in the
same frequency spectrum. There may be cases of complete overlap
of fake and real keystrokes, partial overlap between the fake and
real keystrokes or no overlap between the fake and real keystrokes.
In the !rst two cases, where there is a complete or a partial overlap
between the fake and real keystrokes, the resultant keystroke signal
will have di"erent characteristics than the original real keystroke
that was typed by the victim. In the case of no overlap between
the fake and the real keystrokes, the fake keystrokes will still be
mapped to some alphabetical key (a-z) and hence result in a false
positive detection/insertion of a character.

2These accuracies are a bit higher compared to the ones reported in our attack section,
which could be attributed to the independent setting in which this new data set was
collected.
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We tested the resultant keystroke audio signal captured by the
attacker consisting of both real and fake keystrokes. The !rst chal-
lenge was to determine the correct number of samples. According to
the experimental setup, 30 samples were recorded for a 6-character
random password. However, the number of detected characters was
fairly higher (261) than the number of characters actually typed
by the victim (180). This results indicated that the recorded signal
contains a high number of false positives in addition to the false
negatives that may occur due to the overlapping of real and fake

keystrokes as explained above.
Since there seems to be no viableway to identify the real keystrokes

from the attack perspective, we can assume that the search space
would increase drastically for an attacker trying to separate fake
keystrokes from real keystrokes and the attack would fail. Also the
randomness of fake keystrokes prevents the attacker from building
up a pro!le of fake keystrokes over repeated trials. Thus we may say
that fake keystrokes possess the capability of thwarting an acoustic
side channel attack.

6.4 Keystroke Eavesdropping with Speech

While our threat model did not consider speech to be present during
the eavesdropping of keystrokes, we examined the e"ect of speech
on the accuracy of the remote eavesdropping attack. If speech has a
detrimental e"ect on the attack’s accuracy, it may have the potential
to be used as a defensive measure against such attacks.

We tested the passwords and the PINs (2 instances randomly gen-
erated each) with 20 samples per instance. For each password/PIN
entry on the victim’s side, the victim also read aloud an English
language text from a newspaper clip. The attack could deduce only
2 out of 6 characters for the password using the top 5 matching
character list and 3 out of 4 for the PIN. This result indicates that
the attack accuracy drops in presence of speech as compared to the
scenario when no speech or masking signal is present. When com-
pared to masking signals (white noise and fake keystrokes), speech
may be more e"ective at masking keystrokes than white noise but
less e"ective than the fake keystrokes over the VoIP channel.

7 NOISELESS AUDIO MASKING DEFENSE

While the approach of generating a masking sound at the victim’s
end may be able to hide keystroke sounds from a potential eaves-
dropper, it may also distract the victim from typing password. Since
the malicious eavesdropper is not in proximity to the victim and the
only feedback he can get is the from VoIP application itself, it may
be bene!cial for the victim if the masking signal is injected directly
into the audio stream of VoIP application while being inaudible to
the victim. In this manner, the masking sound will only be heard
by the attacker and the victim will face no distraction while typing.

A virtual audio driver that provides the capability of rerouting
the audio from a media software (the masking signal) to the au-
dio input of the VoIP software while mixing it with audio from the
user’s microphone would be ideal for setting up a noiseless masking
defense mechanism. Such a system would allay the usability con-
cerns that arise when the masking signal is played through speakers
on the user’s end and a"ects the microphone output. This may be
distracting to the user especially while trying to enter sensitive
information that requires user’s full attention.

Masking Signal: Same type of masking signal could be used in
this setup as in noisy defense. White noise was not found to be very
e#cient at masking keystrokes in our noisy defense setup as Skype
!lters the noise in order to provide speech clarity. In our noiseless
setup, we aim to inject white noise directly into Skype without it
being relayed to Skype via microphone. We also use fake keystrokes
in a similar manner since fake keystrokes seemed to have provided
e#cient masking to actual keystrokes from the victim’s device. The
experiments and evaluation of this approach are deferred to the
full version of this paper.

8 DISCUSSION AND FUTUREWORK

We studied the feasibility of a remote eavesdropping acoustic side
channel attack and demonstrated that such attack was able to re-
duce the search space for guessing the correct password/PIN when
compared to a random guess. We also demonstrated that it is pos-
sible for an attacker to directly sni" the audio packets from the
network with similar accuracy as a malicious end point attacker.
We proposed two defense mechanisms based on sound masking to
mitigate the investigated attacks. In our noisy defense setup, we
generated the masking signal at the victim’s end while the victim
was typing the sensitive information. In the noiseless defense setup,
a virtual audio driver can be used to mix the masking signal with
the output from the victim’s microphone and transmit it over the
communication channel.

We evaluated two types of masking signal: white noise and fake
keystrokes. We found out that white noise was not a suitable candi-
date to defend against our attack system due to noise suppression
mechanisms deployed by the microphone and the voice calling
applications. Fake keystrokes proved to be a better candidate against
our attack system by e"ectively masking the keystroke emanations
from the victim due to similarity of the fake keystroke signal and
the real keystroke signal in the frequency domain which increased
the search space for an attacker (more false negatives) during the
attack. However, they should be randomly generated with random
time intervals (none lasting more than 100ms) between successive
fake keystrokes for e"ective overlap with real keystrokes. Longer
passwords also increase the e"ectiveness of fake keystrokes due to
increase in typing duration and are also harder to guess.

Continuous speech may also have potential as a defensive mea-
sure as it performs better than white noise since VoIP applications
are con!gured to allow speech to be transmitted and suppress back-
ground noise. Compagno et al. [8] showed that the accuracy of their
classi!er decreased when speech became louder than keystroke
sounds. When speech was 20dB higher than the keystroke sounds,
their classi!er reached a random guess baseline. We measured the
loudness of keystrokes for three di"erent keyboards (Dell SK-8125,
Dell L100 and) using a sound meter and the average sound pressure
level was 62dB. If the speech needs to be around 20db higher than
the keystroke sound, it needs to be at 80dB which is beyond normal
conversation loudness level (around 65-70db). Compared with the
fake keystroke sounds that only need to be as loud as the keystroke
themselves, we believe that speech as a masking signal may su"er
from usability issue as the victim would only be conversing at a
normal loudness level most of the time.
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Real-world Defense Implementation: The design of our noise-
less defense requires the masking signal generation capability to be
in-built within the system (the source of the audio leakage) and the
ability to inject the masking signal directly into the communication
channel of VoIP call while being inaudible to the user. One such
tool for virtual mixing and injection of audio into VoIP channel has
already been introduced and utilized in our experiments. However,
there needs to be a mechanism that allows the user to activate and
deactivate the defense by the click of a button without explicitly
going through audio settings of each involved application.

An alternative and zero-e"ort design for a real life implementa-
tion of the noiseless defense would be to detect the !rst key press
for the password or sensitive input entry that will act as a trigger
for the defense mechanism to activate and start injecting masking
signal into the audio stream. In scenarios such as web login through
passwords and PINs, the trigger can also be bound to the URL of
the website, in particular to the login webpage. In our experiments,
a Java swing based UI was constructed to test the defense mech-
anism. However, the defense mechanism can also be deployed as
a browser plugin that can generate the masking sounds based on
the visited URL. It is also possible to allow the user to enable or
disable the defense mechanism at his discretion (e.g., by typing
in a special character sequence such as “@@” as in an existing
password manager application [12]).
Beyond Random Passwords and PINs: The focus of this paper
was centered on short and sensitive input (e.g., random passwords
and PINs). However, any arbitrary input containing sensitive data
can be protected by our proposed defense. This may include, for
example, email messages or documents prepared by the user while
on a call that may be sensitive to the user. However, given these
tasks are longer in time duration, further usability studies need to
performed to analyze the e"ect of background noise generation on
arbitrary text input in case of noisy defense. Our proposed noiseless
defense remedies this issue and therefore is capable of working
with even longer inputs and gets better at thwarting attacks with
longer time duration as discussed before.
OtherAcoustic SideChannelsAttacks andDefenses overVoIP:
The idea of applying acoustic side channel attacks to remote voice
call setting is not limited to keyboard inputs alone. CPU acoustic
emanations [10] and printer acoustic emanations [6] would also be
potentially signi!cant threats in a general remote setting explored
in the paper. Further work, however, would be needed to study
the impact of VoIP transmission over voice channel to these audio
emanations. In the similar vein, our defense idea involving masking
sounds would be applicable to defense against these attacks too
that need to be studied in future work as well.

9 CONCLUSION

In this paper, we highlighted and quanti!ed the threat of keyboard
acoustic side channel attacks in the context of remote eavesdrop-
ping over voice calls. We showed the feasibility of the attack against
short-length sensitive input, random passwords and numeric PINs
based on o"-the-shelf signal processing techniques. In contrast
to localized attacks considered in prior work, our remote attack
presents a threat to users’ private information inadvertently leaked
over a simple phone call unbeknownst to the user. We also proposed

defense mechanisms against such attacks that attempt to obfuscate
the acoustic leakage by inserting system-generated sounds while
the user provides any sensitive input. Our noisy defense gener-
ates user-audible masking signal while noiseless defense silently
combines the masking signal with microphone output while being
inaudible to the user. The results for noiseless defense are deferred
to the full version of the paper. The signi!cance of our work lies in
systematically investigating a known threat in a broader application
setting and coming up with a near practical and user-transparent
defense against this threat.
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A APPENDIX

Table 4: Decoding accuracy using MFCC features

Accuracy in %

Password J48
Random
Forest

Linear Nearest
Neighbor Search

SMO
(SMV)

Simple Logistic
Regression

Multinomial Logistic
Regression

hfkgml 33.33 50.00 50.00 33.33 33.33 33.33
jotfmk 16.67 33.33 16.67 50.00 33.33 33.33
loughl 16.67 33.33 66.67 50.00 50.00 50.00
mlcabd 33.33 33.33 33.33 33.33 50.00 33.33
vaorkg 33.33 33.33 33.33 66.67 50.00 33.33

Average accuracy 26.67 36.66 40.00 46.67 43.33 36.66

PIN

0075 75.00 75.00 75.00 75.00 75.00 50.00
1282 50.00 100.00 75.00 75.00 50.00 50.00
1446 50.00 50.00 75.00 50.00 75.00 75.00
3684 50.00 50.00 75.00 75.00 75.00 75.00
4793 50.00 50.00 50.00 50.00 75.00 50.00

Average accuracy 55.00 65.00 70.00 65.00 70.00 60.00
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