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Abstract—This paper explores the effectiveness of common
sound masking solutions deployed for preserving speech privacy
in workplace environment such as hospitals, financial institutions,
lawyers offices, nursing homes and government buildings. With
the increased awareness about personal privacy among the
general population, we set out to examine the effectiveness of
current speech privacy preserving tools. We seek to determine if
the general approach used by the current masking mechanisms
is adequate to provide the level of privacy desired from these
solutions. In addition, we also seek to investigate preservation
of speech privacy in the face of ubiquitous and less conspicuous
devices like smartphones that possess the capability of sound
recording with inbuilt noise cancellation technology.

Our approach in this paper is to expose the vulnerability in
sound masking technology in scenarios that require preserving
privacy in personal spaces. We use human listeners to attack
speech privacy under sound masking where we aim to identify
spoken words eavesdropped under different scenarios. We also
test currently available speech recognition tools to assess their
performance at decoding speech in noisy environment. Our
results indicate that pink noise, the commonly used technology
to provide speech privacy for use in personal space, is ineffective
against a dedicated eavesdropping adversary that uses common-
place devices such as smartphones to record the speech and noise
reduction tools to counteract sound masking.

I. INTRODUCTION

Speech privacy can be described as the inability of an unin-

tentional listener to understand another person’s conversation

[2]. A study conducted by the Center for the Built Environment

(CBE) at UC Berkeley in 2003 [22], showed that almost 72%

of office workers do not consider their workplace as a safe

environment for speech privacy. The current workplace designs

include open office space that can be defined as workspace

where the perimeter boundaries do not go to the ceiling

and private office space where the location has four walls

extending to the ceiling and a door [6].

In real-world scenarios, speech privacy can be compromised

if an unintended listener can overhear a confidential conver-

sation. As an example, a patient’s private details like medical

prescriptions could be discussed between a doctor and a nurse

in a hospital ward. If the conversation is overheard by other

patients, doctors, or medical staff present in the ward, then the

speech privacy of that conversation would be compromised.

Open office spaces have been heavily promoted at work-

places by several companies who believe that such design

facilitates a better flow of communication and interaction

within the workforce; thereby improving overall performance

and satisfaction of the team [4]. However there exist several

studies that point out the detrimental effect of open office

spaces on speech privacy due to lack of inhibitive measures

against noise. A survey by Karleela-Tuomaala et al. [17]

showed that there was a significant loss of speech privacy felt

by people when they were moved from private office rooms

to open office space. Loss of speech privacy may lead to

less communication as people may refrain from carrying out

work related sensitive communication that could potentially

be eavesdropped in the surrounding area [5].

To combat the dangers facing speech privacy at workplace

and offices, three principles commonly referred to as “The

ABC’s”, are used to maintain the desired privacy levels [18],

[25]. “A” stands for absorb, “B” stands for block and “C”

stands for cover. Each principle is implemented individually,

but their combined contributions aid in achieving the desired

level of privacy. Sound masking is an implementation of the

“Cover” principle wherein a masking sound in the desired

spectrum is continuously generated in the background at the

required location to hide speech. Such sound masking setups

consist of loudspeakers called emitters, and a control panel that

regulates the volume of the produced sound [18]. The emitters

can be mounted on walls or ceiling and can be invisible to

unsuspecting eavesdroppers. They can be used in open office

spaces like call centers, research areas, hospitals and other

medical facilities, as well as in closed office spaces like cor-

porate boardrooms, lawyers’ offices and financial institutions.

Many commercial solutions are present in the market and

deployed in real-life settings that aim to provide speech privacy

in an individual space through sound masking. For example,

Sonet Qt R© from Cambridge Sound Management is geared

towards reducing distractions in an individual’s personal space.

AtlasIED offers the sound masking system UL2043 and has

selectable white and pink analog sources for masking sounds.

Speech Privacy Systems provides different masking solutions

for cubicles, private offices, medical facilities and call centers.

Our Contributions: In this paper, we show the ineffectiveness

of sound masking in maintaining speech privacy in different

workplace settings. We use human eavesdropper to decode the

speech samples which are recorded under multiple loudness

levels of masking sound consisting of pink noise (preferred

for speech masking [13]) and in different workplace settings.

We also make use of common speech recognition tools such as
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Google Cloud Speech API that can be used to extract speech

from the eavesdropped samples. We show that a malicious

eavesdropper can compromise speech privacy by using low

cost, off the shelf devices such as PC microphones and smart-

phones. To provide additional capability to the eavesdropper,

we also use noise reduction using spectral subtraction to

reduce the masking sound from the recorded samples making

it more intelligible for the eavesdropper.

1) Compromising speech privacy through human eavesdrop-

per: We designed a study on the Amazon Turk platform

to decipher speech samples recorded in three workplace

designs: open office (Figure 1a), closed office (Figure 1b)

and hybrid/semi-private office. We show that in the open

office design, the best attack accuracies at decoding speech

are obtained (over 90%(60%) for male(female) speakers at

65dB; approximately 70%(40%) for male(female) speakers

at 55dB) when speech is comparable or louder (+10dB)

than the masking sound.

The closed office design seemed to be effective at preserv-

ing speech privacy when the speech volume is comparable

to the masking sound volume. The results showed that the

speech was incomprehensible to listeners (17% for male

speaker). However the masking proved ineffective when the

speech was louder than the masking sound (90% and 100%

for male and female speakers 10dB louder than masking

sound at 55dB).

2) Compromising speech privacy through speech recognition

tools: We test the eavesdropped speech samples against

speech recognition tools to determine if it is possible to

perform an automated attack where human eavesdropping

is not required. We also test the performance of these

tools against human listeners to see if they are better

at speech recognition under noisy conditions. We show

that automatic speech recognition (ASR) tools are not as

competent in extracting speech from the noisy samples

as human listeners, especially when SNR approaches 1.

In the open office scenario, ASR achieves an accuracy of

92% and 62% with loud male and female voices (65dB)

in the presence of noise at 55dB. These accuracies are

however degraded to 85% and 31% respectively, after noise

reduction. ASR performs worse in the closed office and

semi-closed office scenarios where the decoding accuracies

drop to 0% with an SNR of 1 or lower.

3) Effect of noise filtering: We show that noise filtering

techniques that use spectral subtraction can be used to

improve upon the decoding accuracies by making the

recorded samples more intelligible for human listeners. For

the open office scenario, we report an increase in maximum

possible decoding accuracy for female speakers (65dB) at

a 75dB noise level (23% → 38%) and for male speakers

(55dB) at a 55dB noise level (69% → 77%). For the

closed office design, the average accuracies increased for

male speakers (55dB) in a noise level environment of 55dB

from 32% to 58% while for male speakers at 65dB and at

the same noise level, it increased from 30% to 43%. The

maximum accuracies are also boosted for female speakers

(65dB) with a noise level of 65 dB (14% → 28%), and with

a noise level of 55dB (86% → 100%). A similar trend was

observed in the semi-closed office scenario for the same

speakers and noise levels.

Our work demonstrates that any deployed solution that uses

psuedorandom noise for preserving speech privacy may not be

effective. Since a masking sound level is expected to be around

45-48dB(A) in order to be acceptable for users [28], we believe

our results reveal the ineffectiveness of a masking sound at the

acceptable loudness levels in individual workspaces.

II. BACKGROUND

A. Speech Masking Basics

Sound masking in the context of speech privacy refers

to the process of hiding meaningful and sensitive human

conversation from unwanted listeners. It can be useful in

scenarios that require maintaining speech privacy, as well as

in situations that demand a reduction of noise due to undesired

human voices affecting productivity at the workplace.

Most privacy preserving mechanisms deployed in open of-

fice settings consist of physical partitions between workspaces

of individual workers. While these methods do well at block-

ing unwelcome visual contacts, they are not very good at

blocking sounds. In the open office setting, these partitions

do not extend up to the ceiling or completely surround a

workspace, allowing the sound waves to travel unimpeded

along many directions throughout the workplace. In contrast, a

personal office provides better overall privacy to an individual.

However, it can not fully prevent sound from traveling outside

or seeping into the room unless the closed office space is also

sealed acoustically.

Both of the office scenarios described above show a need

for an auxiliary privacy preserving mechanism in place that is

able to prevent, to the most extent, the detrimental effect of

speech movement across an individual’s confidential space.

Most of the current sound masking solutions utilize a steady

stream of ambient sound for hiding speech and providing a

distraction free environment by reducing the speech to noise

ratio, thereby reducing intelligibility [18], [24]. Increasing

background noise level has the same effect on speech compre-

hension as does attenuating the speech signal [8]. Pink noise,

in particular, has been the widely used background noise in

these systems [13] and is defined as a signal having equal

amount of energy in each octave.

Speech Intelligibility: The extent to which the speech

privacy of a person is compromised depends upon multiple

factors that determine the amount of meaningful speech that

the unintentional listener is able to comprehend.

1) Speaker’s intensity: The loudness of spoken words deter-

mines how far the sound will travel and how much of it

would be intelligible.

2) Attenuation: It refers to the dissipation of energy in a

signal as it travels through the transferring medium. Human

sound after leaving the vocal tract of the speaker, travels

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on October 22,2020 at 19:03:15 UTC from IEEE Xplore.  Restrictions apply. 



through the air and other physical obstacles like doors,

walls, partitions etc. until it reaches the listener’s ear. This

will cause the sound to be attenuated and hence it will have

a lower volume than at the origin.

3) Background noise: If background noise intensity is high,

it will become very hard for the listener to make out the

speech. If there is little background noise, the listener will

have no trouble in deciphering the speech if it is near

hearing levels.

B. Related Work

Cavanaugh et al.[8] studied the relation between speech pri-

vacy and speech intelligibility. They proposed a speech privacy

index that rated the satisfaction of users about their privacy

based on speech intelligibility in the presence of continuous

background noise in an office space. Their measurement index

was simplified by Young [31] and was modified to be used

in open office designs by Pirn [21]. Egan [11] extended this

work for the closed office design. Jensen et al. [16] analyzed

acoustic satisfaction in office environments in the context of

noise and speech privacy. They reported that people in closed

offices are more satisfied with acoustics than in cubicles (semi-

closed offices). They also found out that people in open office

spaces felt satisfied with their acoustics and speech privacy as

they could visually spot any unintended listener.

A spectrum for acceptable masking sound was proposed

by Beranek [1]. Veitch et al. [27] reported that an optimum

spectrum for masking sound should follow a similar slope

as that of speech close to Brown noise (resembles waterfall

or heavy rainfall). The effects of several masking sounds

such as instrumental music, vocal music, water sounds, air

ventilation system and filtered pink noise were studied by

Haapakangas et al. [12]. They found that water sound followed

by pink noise provided the most acoustic satisfaction while

vocal music performed the worst. Hongisto et al. [13] revisited

the issue and reported that sounds having mid-low frequencies

were most satisfactory to users. Balancing speech masking

and usability of the masking sound, they recommended a

psuedorandom pink noise filtered to a slope of -7dB per octave

to be used in open office environments.

III. THREAT MODEL AND POSSIBLE ATTACK SCENARIOS

Speech privacy mechanisms involve generating a masking

sound to drown out any unintended acoustic leakage from an

individual’s confidential space. We will now describe scenarios

that resemble some real world settings that may require the

need for an evaluation of the deployed speech privacy tool

based on sound masking.

Open office scenario: As discussed in Section I, an open

office space is described as a workspace shared by multiple

individual workers where the partitions defining the perimeter

for each individual do not reach to the ceiling. This setting

allows sound to travel around the boundaries of the partitions

that are meant to provide privacy for each person. Examples

of open office workplace include call centers, research areas,

hospital wards, reception areas etc.

This setting introduces multiple situations where the indi-

vidual may have their privacy compromised. As an example,

the individual may be talking on the phone or having a

private conversation with a coworker within the confinement

of their space but their voices can be overheard by a malicious

eavesdropper whose workspace is adjacent to the concerned

workspace. Any person walking or standing in the vicinity of

the speaker’s workspace is also a potential eavesdropper. The

perimeter of possible eavesdroppers in open office design is

influenced by the loudness of the speaker.

Private office scenario: In this scenario, the individual

space is totally surrounded by walls and doors. There is little

to no space between the door and the ground while the walls

make sure that the acoustic leakage does not go unimpeded

over or around them. While this setup is more privacy friendly

than the open office scenario described previously, sound

can still travel through walls, doors, and any gaps that exist

between or around them.

In our threat model, we will not consider the materials used

in building the walls or the door of the office. Similarly we

will not discuss the acoustic design of the room or the work-

place in the private office scenario and open office scenario

respectively. The reason behind our exclusion of these factors

is to isolate the vulnerability of the current sound masking

approach. As stated in Section I, sound masking is used to hide

unwanted sounds that have escaped even after application of

“absorb” and “block” techniques. Hence, our experiments only

consider the intelligibility of the leaked speech from the office

space assuming “absorb” and “block” methods have already

been implemented.

The eavesdropper in this scenario is a malicious entity

whose intention is to learn sensitive information from the

speaker’s conversation. In our threat model, we place the

eavesdropper in front of the door as its thickness is usually

on par or less than the surrounding walls making it the most

plausible leakage point. In addition, most of the offices are

designed in fashion that places the occupant in front of the

door making it directly in line with the direction in which the

speaker’s voice would be propagating.

In our work, we will only be analyzing masking solutions

for individual workspaces. This class of sound masking so-

lution provides the flexibility and portability to install the

sound masking generator at a convenient location. These

sound masking products for individual workspaces (Section

I: Our Contributions) typically consist of a single masking

sound generator system that can be turned on and off at an

individual’s preference. In our work, we focus only on sound

masking and again, assume that other privacy measures such

as “absorb” and “block” have already been implemented. This

is an entirely plausible scenario as no measure can completely

absorb or block sound except in acoustically sealed rooms.

An important component in our threat model is the equip-

ment used for eavesdropping on speech. While many sophisti-

cated devices are available that enable eavesdropping through

doors and even walls, we restrict ourselves to generally avail-

able devices such as PC microphones (microphones used with
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(a) Open office model

(b) Closed office model

Fig. 1: Threat model for different workplace scenarios

desktop computers) and smartphones for the eavesdropping

device. The desktop microphones are a common commodity

found in offices and are geared towards recording human

voices. Most modern smartphones are equipped with fairly

powerful microphones and their ubiquitous nature makes them

a preferred tool for eavesdropping without raising any suspi-

cion about the nefarious purpose of the eavesdropper.

Active noise cancellation: This technology is used for

noise reduction in applications that necessitate high quality

sound reception. The principle behind active noise cancellation

involves estimating the existing background noise and gener-

ating an anti-noise signal similar to the existing background

noise but inverted in phase. The anti-noise signal approxi-

mately cancels out the existing background noise to an extent,

delivering a noise free signal. Since this technology already

exists on smartphones that enjoy ease of access, we use it in

our experiments to eavesdrop on leaked confidential speech.

Offline processing: In addition to active noise cancellation

technology that can be used with an array of multiple micro-

phones or the dual microphone setup found on smartphones, it

also allows the eavesdropper to listen to the recorded speech

samples multiple times offline. This advantage facilitates the

eavesdropper to get familiar with recording and speculate on

the spoken words. It also allows the eavesdropper to apply

noise cancellation algorithms that use spectral subtraction

among other techniques to remove noise from recorded sam-

ples and isolate vocals.

IV. EXPERIMENT SETUP

In this section, we will draw out the scenarios where

acoustic eavesdropping poses a security risk by compromising

speech privacy. We will also discuss the masking signal used in

our experiments and the motivation behind its usage. Finally,

we will list other details about our experiment.

A. Tested Attack Scenarios

As discussed in Section III, a workplace design can roughly

be categorized as open office space or private office space.

In an open office space, the partitions between individual

workspaces do not extend all the way up to the ceiling. On the

other hand, a private office is sealed off from all sides with

partitions (walls) that join the ceiling and a door, all of which

are supposed to minimize audio and visual intrusion.

In our experiments, we designed three scenarios that repre-

sent various models for individual office space design. The

first scenario is the open office scenario which offers the

least obstruction of acoustic leakage from the workspace.

For this setup, we chose an office space that lacks doors

between adjacent rooms allowing sounds to travel unimpeded

through the air across the rooms. This design offers the same

advantage to an eavesdropper as the open office design where

the partitions do not reach up to the ceiling, thereby allowing

sounds to travel through the air gap between the partitions and

the ceiling (e.g. cubicles). This setup is depicted in Figure 1a.

The second scenario is a private office design that we

achieve by selecting an office room with walls on each side

and a wooden door that reaches all the way to the floor with

very little space between the floor and the door. This office

space allows minimal sound leakage via the air and is the

hardest to eavesdrop upon. This design is shown in Figure 1b.

The third and final scenario in our experiment is eavesdrop-

ping in a hybrid/semi-closed office room setting. This setup

can be described as a mix of open office cubicle style and

closed private office style. In this setup, the office space is

surrounded by walls that join the ceiling similar to the closed

private office setting but the door is not acoustically sealed in

the manner that it does not reach all the way to the floor. This

means that there exists a significant gap between the door and

the floor through which sounds can travel unimpeded (directly

or reflected) to the eavesdropper.

B. Masking Signal

Most of the current commercial speech masking systems

have their patent sound masking algorithm but the desired

property for a masking sound is to have a random neutral

spectrum like pink noise as the masking signal in their speech

privacy solutions [9]. White noise, on the contrary, is a poor

choice for sound masking as it sounds “hissy” (like static

from a radio) and does not provide effective coverage of the

speech spectrum [18], [20]. Voicearrest Sound Masking system

generates a masking sound similar to the whooshing sound of

a high-end Heating, Ventillation and Air Conditioning (HVAC)

system [26] that is spectrally similar to the masking sounds

detailed above.
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In order to closely resemble the noise generated by com-

mercial solutions, we did an initial test with the AM1200,

a self contained sound masking system from AtlasIED [14].

This device provides two types of masking signal, white noise

and pink noise, which are played via inbuilt loudspeakers. In

order to generalize the type of masking sound, we generated

pink noise from Matlab using the Pink, Red, Blue and Violet

Noise Generation tool [32]. We found that spectrum wise, both

approaches produced similar pink noise hence we used the

Matlab approach in our experiments.

C. Equipment

We played the pink noise through a portable Sony SRS-XB2

Bluetooth speaker while the speech samples were played by a

Logitech z323 loudspeaker system that emulates live human

speech. The loudspeakers allow us to modulate the loudness of

the speech samples and its ability to reproduce low frequencies

(bass effect) makes it a viable alternative to human speakers.

The SRS-XB2 speaker has a frequency transmission range of

20 Hz – 20,000 Hz with a sampling rate of 44.1 kHz. The

Logitech z323 system has a frequency response of 55 Hz –

20,000 Hz and is comprised of two speakers and a subwoofer.

Sound pressure level was measured by an SLM305 digital

sound level meter that has a frequency response of 31.5 Hz

– 8500 kHz, measuring range of 30 dBA to 130 dBA, and a

sampling rate of 2 times per second.

We tested four microphones as possible eavesdropping

devices. Senal UB-440 is a USB condenser microphone with

a frequency response of 50 Hz – 18,000 Hz with a sample

rate of 48 kHz and Dynex USB microphone has a 150 Hz –

10,000 Hz frequency response. We also tested LG Nexus 5x

and Samsung Galaxy S6 phones for eavesdropping on speech.

Using a smartphone as an eavesdropping device provides the

eavesdropper two advantages: a smartphone is a ubiquitous

device and can be used covertly for eavesdropping, and

smartphones have active noise cancellation in order to capture

good quality speech. Both the LG Nexus 5X and Samsung

Galaxy S6 have a dual microphone setup that is used for active

noise cancellation as detailed in Section III. After initial tests

in each scenario using both cellphones as the eavesdropping

device, we found that there were no significant differences in

the recording quality of each cellphone and therefore chose

the Samsung Galaxy S6 as the eavesdropping device for the

rest of our experiments.

D. Sound Pressure Level

Normal conversation levels in term of Sound Pressure Level

(SPL) are estimated to be 40-60dB at a distance of 1 meter

and ambient office environment to be 20-30dB [10], [23]. In

our experiments, we maintained the distance of the speech

source and the eavesdropper to be at 2 meters and the locations

were devoid of any speech and other noise except the air

conditioning vents with the SPL measurement to be 50dB. We

measured SPL both at the eavesdropping location and and the

speech source. At the speech source, it was set to be 70dB and

at the eavesdropping location to 55dB representing a normal

conversation at eavesdropping location. An SPL of 80dB at

the speech source and 65dB at the eavesdropping location was

denoted a loud conversation.

For the masking sound generator, we set the noise levels

to be 55dB, 65dB and 75dB that represent scenarios where

the masking sound is equal to or more than normal and loud

conversations in the room. Since the ambient noise in our

experiment locations was around 50dB, we also tested the

eavesdropping in absence of any masking sound generator,

relying upon the ambient noise to hide the speech. This

testing also represents the case when the masking sound is

softer/quieter than the conversation.

E. Speech Database

We used a phonetically balanced, US English single speaker

CMU Arctic speech dataset [3] consisting of both male and

female speakers. The speech samples were around 5 seconds

long containing an average of 10 words. For each noise

level described in Section IV-D, we used four speech sam-

ples; two from the US English bdl (male) and two from the

US English slt (female) databases. We also used different sets

of voice samples for each location described in Section IV-A.

F. Noise Reduction

To counteract sound masking, deployed to prevent any un-

intended listeners from eavesdropping on confidential speech,

we equip the eavesdropper with a noise cancellation ability.

To have a more powerful solution for noise cancellation, we

use the spectrum subtraction mechanism to reduce any con-

sistent noise such as pink noise. VOICEBOX [7] is a speech

processing toolbox implemented in Matlab that provides audio

processing routines. We were particularly interested in speech

enhancement routines: “specsub”, “spendered”, “ssubmmse”

and “ssubmmsev”. We applied these routines on speech sam-

ples that were recorded under different noise levels (Section

IV-D) and scenarios (Section IV-A). We performed an initial

study to determine the most effective speech enhancement

routine to be used in our next stages of the experiment. The

factors determining effectiveness of the speech enhancement

routine were intelligibility of post-processed speech sample

and amount of artifacts [30] produced in the post-processed

sample. We observed that “ssubmmse” performed the best out

of the four routines described above based on our criteria

and hence we chose to use it for filtering out noise in our

experiment.

V. SPEECH PRIVACY AGAINST HUMAN LISTENERS

Based on the threat model described in Section III and the

experiment setup detailed in Section IV, we test the feasibility

of speech eavesdropping in various workplace scenarios in the

presence of masking noise. We chose graduate student lab

space (office space with walls but lacking any doors between

individual spaces) in the university for the open office scenario

because it offers a very similar design. Additionally, we chose

a private, restricted access lab room for the closed office

scenario and a semi-private conference room for the hybrid

office scenario.
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A. Study Design

Our aim is to measure the intelligibility of eavesdropped

speech, using human listeners, when the speech is recorded

under different noise conditions as described in Section IV.

We implemented the experiment in two phases: a recording

phase and a comprehension phase. In the recording phase,

we placed the eavesdropper at a distance of approximately 2

meters from a loudspeaker (Section IV-C) located centrally

in the workspace. In the open office scenario, this placed the

speaker in the middle of the room while the eavesdropper

was outside in the adjacent workspace. For the closed office

scenario, the speaker was placed inside the room centrally

behind a closed door while the eavesdropper stood outside

the door In the semi-closed office scenario, the speaker and

the eavesdropper were situated similar to the closed office

scenario.

For all three scenarios, the eavesdropper attempted to record

speech with a Samsung Galaxy S6’s IV-C microphone using

the Smart Voice Recorder app with a sampling rate of 44.1

kHz. For the recording phase, two samples of male speech and

two samples of female speech were played from the database

(Section IV-E). After recording, we performed post-processing

on the samples using Voicebox (Section IV-F). We listened

to each post-processed sample and determined if any part of

speech could be detected (not necessarily comprehended) in it.

Samples containing only noise with no trace of human speech

were marked as unusable.

For the comprehension phase, we used Amazon Mechanical

Turk workers to listen to the recorded samples from the

recording phase and write down the parts of speech that they

could comprehend. We designed an online survey approved

by our university’s IRB that consisted of three stages, one

for each of the three scenarios described in Section IV-A.

We presented users of the survey with noisy speech samples

recorded by the eavesdropper followed by the same set of

noisy samples after applying noise reduction as per Section

IV-F. This enabled us to determine the effect of noise reduction

on the comprehension of noisy speech samples which in

turn would indicate the effectiveness of masking sounds in

preserving speech privacy.

Accuracy: We calculate accuracy for each sample as the

ratio of number of words correctly inferred by listener to total

number of words present in the speech sample.

B. Initial Observations from Post-processing

After post-processing with noise reduction, we marked each

sample as usable or unusable based on traces of human speech

contained in the sample. Our observations for each scenario

are described below.

Open office scenario: We observed that when the noise

level was 75dB, male and female speech samples recorded at

55dB at the eavesdropping site were unusable even after the

post-processing phase. At a noise level of 65dB, male speech

samples recorded at 55dB were unusable, but all samples were

usable at a noise level of 55dB.

TABLE I: Average (and Maximum) accuracy for decoding words (0
represents lowest accuracy and 1 represents highest accuracy)

Speaker’s loudness → Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (75dB) 0.12 (0.62) 0.03 (0.23) 0.00 (0.00) 0.00 (0.00)

Noise level (65dB) 0.40 (0.92) 0.17 (0.62) 0.00 (0.00) 0.07 (0.44)

Noise level (55dB) 0.90 (1.00) 0.51 (1.00) 0.20 (0.69) 0.19 (0.54)

Noise level (50dB) 0.86 (1.00) 0.83 (1.00) 0.82 (1.00) 0.55 (1.00)

Closed office scenario: At a noise level of 75dB, male and

female speech samples at 65dB and 55dB were deemed to be

unusable. At a noise level of 65dB, male and female speech

samples recorded at 55dB were also marked as unusable.

However, at a noise level of 55dB, all samples were usable.

Hybrid office scenario: In this case, a noise level of 75dB

made both male and female speech samples at 65dB and 55dB

unusable. However, the other noise levels of 65dB and 55dB

did not have any effect on the usability of the speech samples.

C. Results of Amazon Turk Survey

We collated the results from the amazon turk study and

analyzed the users’ response from various perspectives. The

results contained responses from 29 human subjects (male 13;

female 15; undisclosed 1) and are detailed for each of the

scenarios below.

1) Open Office Scenario:: The average user response ac-

curacy for the open office scenario are displayed in Table I.

The results indicate that when the masking sound has a high

loudness level (i.e. 75dB), users have difficulty comprehending

any words. The maximum accuracy were only 0.12 or 12%

when the spoken voice was from a loud male at 65dB. At

a noise level comparable to conversation loudness at 65dB,

the maximum accuracy for a male speaker at a similar

loudness level jumped up to 0.40 or 40%. However female

speaker’s speech samples at the same loudness level were

undecipherable. The male and female voice levels that are at

normal loudness (55dB) could not be deciphered. This is to

be expected as the masking sound would be louder than the

speech.

When the masking sound level is decreased further to 55dB,

the male speech samples at 65dB became almost completely

comprehensible at 0.9 or 90% and the female voice samples at

similar loudness also witnessed a jump in decoding accuracy

up to 0.51 or 51%. The male and female speech samples that

had the same loudness level as the masking sound were still

not decipherable. Comparing these results to eavesdropping in

the absence of any active masking sound generator (denoted

by the last row in Table I), we observed that a male voice at

the loud level was unaffected until the loudness of the masking

sound was equal to or more than the male speaker’s loudness.

Female speaker’s intelligibility was lower than male speaker’s

and was affected by masking sounds that were 10dB lower

than their loudness level.

Table II denotes the accuracies after applying noise reduc-

tion as per Section IV-F. We excluded samples that were

recorded in the absence of noise to restrict the effect of noise

reduction when filtering the masking sound only. The results

showed a minor increase in accuracies across different speech
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TABLE II: Average (and Maximum) decoding accuracy after noise
reduction

Speaker’s Loudness→ Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (75dB) 0.14 (0.62) 0.03 (0.38) 0.00 (0.00) 0.00 (0.00)

Noise level (65dB) 0.42 (0.92) 0.20 (0.69) 0.00 (0.00) 0.12 (0.44)

Noise level (55dB) 0.91 (1.00) 0.52 (1.00) 0.25 (0.77) 0.22 (0.44)

TABLE III: Average (and Maximum) accuracy for decoding words
(0 represents lowest accuracy and 1 represents highest accuracy)

Speaker’s Loudness→ Male (65dB) Female (65dB) Male (55dB)

Noise level (65dB) 0.01 (0.18) 0.01 (0.14) 0.00 (0.00)

Noise level (55dB) 0.30 (0.91) 0.01 (0.86) 0.32 (0.17)

Noise level (50dB) 0.73 (1.00) 0.95 (1.00) 0.26 (0.92)

levels but did not show any dramatic improvements over the

results obtained in Table I.

We also observed the maximum accuracy that could be

obtained by decoding words from the speech samples under

the influence of a masking sound. The results are shown within

parenthesis in Table I. The figure indicates that the maximum

accuracy even at a high loudness of masking sound (75dB)

was over 60% for male speaker at 65dB and around 20%

for female speaker at 65dB. The accuracies climbed higher

when the masking sound level was lowered to 65dB with

male speaker (65dB) reporting a maximum accuracy of over

90% and the female speaker (65dB) at around 60%. Even

female speaker’s speech samples at 55dB were decoded with

a maximum accuracy of around 40%. Maximum accuracy after

applying the noise reduction process detailed in Section IV-F

is shown within parenthesis in Table II. This result is similar to

the one shown in Table I so we see no major difference after

noise reduction except in one case. There was an increase

in the maximum accuracy for female speakers (65dB) in the

presence of a masking sound at 75dB from 20% to 40%. A

minor increase in accuracy exists for male speakers (55dB) in

the presence of a masking sound at 55dB where it goes from

around 70% to 77%.

2) Closed Office Scenario:: The results from the closed

office scenario are shown in Table III. It indicates that the

average accuracies are very low compared to the open office

scenario. In the presence of a masking noise, the best accuracy

was 30% when the masking sound level was 55dB and the

speaker was male, speaking at 65dB. We did not consider

female speakers at 55dB because it was too low to be

heard in the presence of any level of masking sound at the

eavesdropper’s location. Also, loud masking sound at 75dB

made any speech inaudible and hence was not included in our

experiment with human subjects.

After noise reduction, we observe in Table IV that there

is an increase in average accuracies with the best accuracy

(58%) now that of the male speaker (55dB) in the presence

of a masking noise at 55dB. There is also an increase in the

decoding accuracy for male speakers at 65dB from 30% to

43% at masking sound (55dB).

The numbers within parenthesis in Table III show the max-

imum accuracy that we achieved among the human listeners

that we used for decoding the speech samples in the closed

TABLE IV: Average (and Maximum) decoding accuracy after noise
reduction (underlined numbers represent increase from Table III)

Speaker’s Loudness→ Male (65dB) Female (65dB) Male (55dB)

Noise level (65dB) 0.03 (0.09) 0.05 (0.28) 0.00 (0.00)

Noise level (55dB) 0.43 (0.91) 0.01 (1.00) 0.58 (0.17)

Noise level (50dB) 0.73 (1.00) 0.95 (1.00) 0.26 (0.92)

TABLE V: Average (and Maximum) accuracy for decoding words
(0 represents lowest accuracy and 1 represents highest accuracy)

Speaker’s Loudness→ Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (65dB) 0.04 (0.50) 0.04 (0.50) 0.00 (0.00) 0.00 (0.00)

Noise level (55dB) 0.58 (1.00) 0.59 (1.00) 0.10 (0.67) 0.03 (0.33)

Noise level (50dB) 0.82 (1.00) 0.93 (1.00) 0.91 (1.00) 0.63 (1.00)

office scenario. At a masking noise level of 65dB, we see that

the best accuracy was below 20%. A male speaker at 55dB was

not audible at this noise level and a female speaker was not

audible at all noise levels. However, at a noise level of 55dB,

we could decode almost 90% of spoken words for speakers

louder than the masking sound i.e. at 65dB. For the male

speaker at the same loudness as the masking sound (55dB),

the accuracy was low at less than 20%. In the absence of any

active masking sound generation, the speech was audible for

all speakers with almost all words audible to them. When noise

reduction is applied to the recorded speech samples in the

closed office scenario as per Section IV-F, we see an increase

in the decoding accuracies for the female speaker at both

masking sound levels. For a masking sound level of 65dB,

it increases to around 30% from 15% and at a masking sound

level of 55dB, the increase is from 86% to 100%.

3) Hybrid/Semi-closed Office Scenario:: A semi-closed of-

fice scenario represents a setup between the two common

workplace designs of open office and closed office scenarios.

Table V suggests at a masking sound level of 55dB, almost half

of the spoken words from male and female speakers in a loud

voice (65dB) were successfully decoded. The accuracies were

low for speakers at the same loudness as the masking sound

(55dB). Similar to the closed office scenario, loud masking

sound at 75dB outside the door completely obfuscated the

speech at the eavesdropper location and hence was excluded

from the comprehensibility test. In Table VI, we show the

mean accuracies after applying noise reduction as detailed

in Section IV-F. We observe an increase in accuracies for

speakers at 65dB and for male speakers at 55dB. For speakers

at 65dB in the presence of a low masking sound of 55dB, the

mean accuracies now reach until 70% from 60%. Similarly we

observe an approximately 10% increase in accuracies for male

speakers at 55dB (masking sound at 55dB) and for speakers

at 65dB (masking sound at 65dB).

The maximum accuracies for the semi-closed office scenario

are shown within parenthesis in Table V. In the presence of a

masking sound at 65dB for both male and female speakers at

65dB, 50% of the spoken words were decoded successfully.

At a lower level of 55dB of masking sound, speech samples

for loud speakers (65dB) were fully decipherable while male

speakers at 55dB had a decoding accuracy of around 70% and

female speakers at 55dB had an accuracy of approximately
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TABLE VI: Average (and Maximum) decoding accuracy after noise
reduction (underlined numbers represent increase from Table V)

Speaker’s Loudness→ Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (65dB) 0.12 (0.50) 0.16 (0.83) 0.00 (0.00) 0.00 (0.00)

Noise level (55dB) 0.69 (1.00) 0.73 (1.00) 0.22 (0.89) 0.03 (0.33)

Noise level (50dB) 0.82 (1.00) 0.93 (1.00) 0.91 (1.00) 0.63 (1.00)

30%. After application of the noise reduction technique, there

was a sizeable increase in the accuracy of female speakers

at 65dB, in the presence of a masking sound at the same

loudness, from 50% to over 80%. For a male speaker at 55dB

in the presence of a masking sound at 55dB, we see an increase

from approximately 70% to 90%.

VI. SPEECH PRIVACY AGAINST AUTOMATIC SPEECH

RECOGNITION

In this section, we will detail our experiments and results

of using speech recognition tools to compromise speech pri-

vacy. We use the same threat model described in Section III

outlining the attack scenarios for workplace environments.

A. Automatic Speech Recognition

An automatic speech recognition mechanism converts a

recorded audio signal into words. In modern automatic speech

recognition methodology, the aim is to infer spoken words

from the given signal by using neural networks that utilize

Hidden Markov Models (HMM) combined with acoustic mod-

els and based on Gaussian Mixture Models (GMM). A more

recent trend in the industry has been to replace the GMM based

models with deep neural network (DNN) learning [15], [19]

that was first introduced in [29]. A common use of automatic

speech recognition today is in recognizing voice commands

and queries from a user in different environments. From a

usability perspective, such systems should be able to recognize

voice commands under varying scenarios that typically include

background noise and different types of user’s speech. An

effective way of successfully performing speech recognition

under adverse conditions is to use DNN and train it on a

vast set of pre-collected noisy samples. We utilize this method

for compromising speech privacy by feeding such speech

recognition tools with audio samples that were eavesdropped

under background noise produced by sound masking systems.

B. Experiment Setup

In our automatic speech recognition setup, we reuse the

speech samples that were collected in Section V-A for the three

scenarios: open office, closed office and semi-closed office.

Both raw speech samples and speech samples post processed

with Voicebox, to limit the effect of background noise on

the comprehensibility of the spoken words, were used for

determining the effectiveness of automatic speech recognition

systems in this endeavor.

We tested the Google Cloud Speech Recognition service,

Microsoft Bing Voice Recognition service, PocketSphinx and

the IBM Watson Speech to Text service in our speech recog-

nition task. Our results indicated that Google Cloud Speech

Recognition service performed best while Microsoft Bing

TABLE VII: Average accuracy for decoding words (0 represents
lowest accuracy and 1 represents highest accuracy)

Speaker’s loudness → Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (75dB) 0.00 0.00 0.00 0.00

Noise level (65dB) 0.00 0.31 0.00 0.11

Noise level (55dB) 0.92 0.61 0.00 0.00

Noise level (50dB) 0.92 0.92 0.92 0.33

Voice Recognition, IBM Watson Speech to Text service and

PocketSphinx performed poorly being unable to recognize the

majority of the spoken words in our samples. Hence, we report

the speech recognition results from using Google’s services as

they were the most accurate under noisy environment. Google

Cloud Speech Recognition claims to perform accurately for

noisy audio which also makes it a suitable candidate for our

experiments.

C. Results from Automatic Speech Recognition

We report the results from the three scenarios for both

noisy speech samples and speech samples generated after noise

subtraction. We use a method similar to the one described in

Section V-A to calculate the accuracy of a speech recognition

system in transcribing words from the audio samples.

1) Open Office Scenario:: Our results for decoding words

from the recorded audio sample in the open office scenario

are tabulated in Table VII. It can be observed that the Google

Cloud Speech Recognition service was able to recover almost

full speech (92%) from eavesdropped sentences in the audio

samples for all speakers (except normal female voice at 55dB

that produced an accuracy of 33%) at both normal and loud

acoustic levels in the absence of any artificial noise.

In the presence of an artificial noise generator producing

static Gaussian noise as described in Section IV-C at 55dB,

we noticed a decrease in the decoding accuracy that dropped

to 0% for male and female voices at a similar loudness level

as the generated noise. The loud male voice (65dB) did not

get affected though there was a decrease in accuracy of loud

female voice (65dB) dropping from 92% to 61%. Increasing

the level of noise in the recorded audio samples indicated

a further decrease in the decoding accuracy with the speech

recognition tool almost completely failing when the noise level

was very loud (75dB).

TABLE VIII: Average decoding accuracy after noise reduction

Speaker’s loudness → Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (75dB) 0.00 0.00 0.00 0.00

Noise level (65dB) 0.08 0.08 0.00 0.00

Noise level (55dB) 0.85 0.31 0.00 0.22

After applying noise reduction using Voicebox as explained

in Section IV-F, we tested the processed audio samples against

the speech recognition tool again. The results are shown

in Table VIII and indicate that applying of noice reduction

actually degraded the quality of human voice in the audio

sample with a decrease in recognition accuracy for loud male

voice from 92% to 85% and for loud female voice from 61%

to 31% at a noise level of 55dB. This behavior may be due to

artifacts produced in the audio sample during noise reduction
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TABLE IX: Average accuracy for decoding words (0 represents
lowest accuracy and 1 represents highest accuracy)

Speaker’s loudness → Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (75dB) 0.00 0.00 0.00 0.00

Noise level (65dB) 0.00 0.00 0.00 0.00

Noise level (55dB) 0.45 0.28 0.00 0.00

Noise level (50dB) 0.91 1.00 0.00 0.00

that uses spectrum subtraction. This procedure seemed to

adversely affect the accuracy of the speech recognition system

that tends to rely on its pre-trained dataset for deciphering

speech which does not work well with artificial post processing

side-effects.

2) Closed Office Scenario:: In the closed office scenario,

the accuracies for decoding words from the noisy audio

samples are shown in Table IX. The speech recognition

system failed to decipher any words from the audio samples

for normal human voices (both male and female). For loud

voices at 65dB, male and female spoken words were almost

completely decoded in an ambient noise atmosphere at 50dB.

In the presence of a noise generating device, the decoding

accuracies dropped to 45% from 92% for the male voice and

28% from 100% for the female voice at a noise level of 55dB.

There was a complete failure of speech recognition at higher

loudness levels of noise. For the processed audio samples

(where noise reduction is performed), the speech recognition

tool failed to detect any human voice in this scenario. Thus we

determine that the speech recognition system can not be used

effectively in conjunction with a noise reduction method like

spectrum subtraction in the closed office scenario where the

SNR is already low and applying noise reduction may harm

the human voice segments in the recorded audio.

3) Hybrid/Semi-closed Office Scenario:: The results for the

semi-closed office scenario are depicted in Table X and show

that the Google Cloud Speech Recognition service was able

to detect male voices at 65dB with 67% and at 55db with

55% accuracy. The accuracies were higher for female voices:

92% at 65dB and 100% at 55dB. In the presence of active

noise generation at 55dB, these accuracies quickly dropped

with complete recognition failure at the normal voice levels

of 55dB. The accuracies at a loudness of 65dB were 17%

for male voices and 58% for female voices. No words were

detected at higher noise levels for any of our samples.

TABLE X: Average accuracy for decoding words (0 represents lowest
accuracy and 1 represents highest accuracy)

Speaker’s loudness → Male (65dB) Female (65dB) Male (55dB) Female (55dB)

Noise level (75dB) 0.00 0.00 0.00 0.00

Noise level (65dB) 0.00 0.00 0.00 0.00

Noise level (55dB) 0.17 0.58 0.00 0.00

Noise level (50dB) 0.67 0.92 0.55 1.00

VII. DISCUSSION

Summary and Reflection on Results: We showed that

sound masking using pink noise and other similar masking

sounds may not be suitable for preserving speech privacy in

workplace environments. Using human subjects as decoders,

we showed that in an open office environment, almost 90%

of speech could be deciphered when masking sound was

10dB lower than the speaker. We also observed that it was

easier to decipher male speech in a noisy environment than

female speech at the same loudness level and under similar

noisy conditions. The average accuracy for decoding loud

male voices was around 90% and for a female voice at the

same loudness level and noise conditions, it was 50%. We

attribute this result to the differences between male and female

voices as male voices contain lower frequencies due to heavier

and larger vocal folds and hence travel farther and suffer less

attenuation.

We also measured the maximum accuracy that tends to

exploit the best comprehension ability among all the human

workers and represents the maximum degree of speech privacy

threat. We found out that at a low level of sound masking

at 55dB, loud human voices (65dB) could be completely

deciphered while softer voices (55dB) could be decoded with

a reasonable accuracy. At 65dB of masking sound, loud human

voices could still be heard and comprehended denoting the fact

that any masking sound used should be louder than speech.

We also noted that in this setting, noise reduction tools only

marginally increased the accuracy except in the case of female

speakers (65dB) in the presence of a masking sound at 55dB

where the maximum accuracy gets doubled from 20% to 40%.

Results from the closed office scenario show that it is

more difficult to eavesdrop on speech when compared to the

open office scenario. The average accuracies are around 30%

or lower. Application of noise reduction techniques however

increase the accuracies to 40% and above for male speakers.

In this scenario, the female speaker’s voice is hardly audible

at 65dB and 55dB when compared to male speech. This

observation is in line with the observations made in the open

office scenario described previously. The maximum accuracies

in this scenario indicate that the closed office scenario is harder

to eavesdrop upon and a masking sound makes it harder for

an eavesdropper to decode the speech. Still, if the speech is

louder than the masking sound (a difference of 10dB in our

experiments), it is possible to decode 90% of the speech. Using

a noise reduction process, this accuracy can be increased to

100%.

A semi-closed office scenario is more vulnerable to eaves-

dropping attacks than a closed office scenario. The average

accuracies indicate that almost half of the speech can be

decoded if the speaker’s voice is louder (+10dB in our exper-

iments) than the masking sound. Noise reduction can improve

this accuracy to 70%. The maximum accuracies indicate that

speech privacy can be totally compromised in this scenario if

the speaker’s voice is louder than the masking sound (+10dB

in our experiments). For speakers of comparable loudness,

the accuracies are still high for male speakers at around 70%

while for female speakers, the accuracy is around 30%. Noise

reduction improves the accuracy for male speakers at 55dB to

almost 90dB thereby increasing the threat level significantly

in the case of comparable loudness level of the speaker and

masking noise.

Our results from offline processing of the audio samples
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using the Google Cloud Speech API indicate that such systems

still may not be as effective at determining speech in noisy

environments as human listeners. These systems completely

failed to detect speech as the SNR approached 1, in all

workplace scenarios. In our work, application of spectrum

subtraction reduced noise and some portion of the speech

spectrum which resulted in deterioration of the recognition

accuracy. Thus these tools may perform reasonably well

compared to human listeners, but their performance is worse

after noise reduction.

Potential Countermeasures: In order to counteract attacks

that exploit the weakness of the noise generating mechanism,

careful steps need to be taken that comply with the privacy

demands of the scenario. Proper efforts must be made to

ensure that the SNR in the environment remains close to 1

and the system must maintain usability for the victim. Since

we showed that pseudo-random noise is susceptible to filtering

by spectrum subtraction and by active noise cancellation (used

extensively in smartphones), it may be fruitful to revisit the

frequency spectrum of masking sound and possibly redesign

the masking signal with a dynamic frequency spectrum. In

addition to masking sounds based on pink or brown noise,

other options must be explored that may provide a more robust

coverage against such eavesdropping attacks.

VIII. CONCLUSION

In this work, we showed that individual workplaces deploy-

ing commercial sound masking solutions which use psuedo-

random noise for speech privacy may be vulnerable against

an eavesdropping adversary. We observed that in different

workplace settings for individual offices, such psuedo-random

noise can be effectively counteracted by using low cost, off

the shelf devices such as smartphones. Additionally, spectral

subtraction algorithms can be used for noise reduction, further

compromising the speech privacy. Based on our results, we

believe that psuedo-random noise may not be suitable for

speech masking and masking sounds need to be redesigned

in a manner that is robust against the mentioned attacks.
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