
Two-Factor Password-Authenticated Key Exchange with
End-to-End Security

STANISLAW JARECKI, University of California Irvine
MOHAMMED JUBUR, University of Alabama at Birmingham
HUGO KRAWCZYK, Algorand Foundation
NITESH SAXENA, University of Alabama at Birmingham
MALIHEH SHIRVANIAN, Visa Research

We present a secure two-factor authentication (TFA) scheme based on the user’s possession of a password
and a crypto-capable device. Security is “end-to-end" in the sense that the attacker can attack all parts of the
system, including all communication links and any subset of parties (servers, devices, client terminals), can
learn users’ passwords, and perform active and passive attacks, online and offline. In all cases the scheme
provides the highest attainable security bounds given the set of compromised components. Our solution builds
a TFA scheme using any Device-Enhanced PAKE, defined by Jarecki et al., and any Short Authenticated
String (SAS) Message Authentication, defined by Vaudenay. We show an efficient instantiation of this modular
construction which utilizes any password-based client-server authentication method, with or without reliance on
public-key infrastructure. The security of the proposed scheme is proven in a formal model that we formulate
as an extension of the traditional PAKE model. We also report on a prototype implementation of our schemes,
including TLS-based and PKI-free variants, as well as several instantiations of the SAS mechanism, all
demonstrating the practicality of our approach. Finally, we present a usability study evaluating the viability of
our protocol contrasted with the traditional PIN-based TFA approach in terms of efficiency, potential for errors,
user experience and security perception of the underlying manual process1.

1 INTRODUCTION
Passwords provide the dominant mechanism for electronic authentication, protecting a plethora
of sensitive information. However, passwords are vulnerable to both online and offline attacks. A
network adversary can test password guesses in online interactions with the server while an attacker
who compromises the authentication data stored by the server (i.e., a database of salted password
hashes) can mount an offline dictionary attack by testing each user’s authentication information
against a dictionary of likely password choices. Offline dictionary attacks are a major threat, routinely
experienced by commercial vendors, and they lead to the compromise of billions of user accounts
[1, 2, 4, 5, 8, 9]. Moreover, because users often re-use their passwords across multiple services,
compromising one service typically also compromises user accounts at other services.

Two-factor password authentication (TFA), where user U authenticates to server S by “proving
possession” of an auxiliary personal device D (e.g. a smartphone or a USB token) in addition to
knowing her password, forms a common defense against online password attacks as well as a second
line of defense in case of password leakage. A TFA scheme which uses a device that is not directly
connected to U’s client terminal C typically works as follows: D displays a short one-time secret
PIN, either received from S (e.g. using an SMS message) or computed by D based on a key shared
with S, and the user manually types the PIN into client C in addition to her password. Examples of

1This paper is an extension of our work published in PKC 2018 [46].

Authors’ addresses: Stanislaw Jarecki, University of California Irvine, sjarecki@uci.edu; Mohammed Jubur, University of
Alabama at Birmingham, mjabour@uab.edu; Hugo Krawczyk, Algorand Foundation, hugo@ee.technion.ac.il; Nitesh Saxena,
University of Alabama at Birmingham, saxena@uab.edu; Maliheh Shirvanian, Visa Research, mshirvan@visa.com.

.

systems that are based on such one-time PINs include SMS-based PINs, TOTP [62], HOTP [61],
Google Authenticator [14], FIDO U2F [13], and schemes in the literature such as [66].

Vulnerabilities of traditional TFA schemes. Our work addresses a large set of vulnerabilities
unresolved by the current practice of composing the standard password-over-TLS authentication
with PIN-based TFAs. These vulnerabilities include:

∙ Password is always visible to the server at the TLS decryption endpoint leading to password
exposure to insiders and accidental storage of plaintext passwords [12, 15].
∙ Password is open to PKI attacks and exposure at midpoints (e.g., TLS decryption points for

content inspection, at CDNs, etc.).
∙ Password is vulnerable to offline dictionary attacks upon compromise of the user’s state

(“password file") at the server.
∙ Password guesses can be validated through login attempts at the server (not prevented by TFA

schemes that first verify the password and only then activate the TFA mechanism).
∙ TFA defense is broken if keys shared between TFA device and server leak to the attacker (e.g.,

they are stolen from the server).
∙ Low-entropy PINs have non-negligible probability of being guessed, e.g., PIN guessing can

be used in a large-scale online attack against accounts whose passwords the attacker already
collected [4, 5, 8, 9].
∙ PIN sent from server to device is vulnerable to PIN redirection attacks, e.g., via SMS hijacking

and SIM card swap attacks [6]2.
∙ PIN entered by user into the host computer is vulnerable to eavesdropping via shoulder-surfing,

PIN recording, keyloggers, screen scrapers [57], PIN phishing [48], etc. (Note that some
eavesdropping attacks are also possible with high-entropy PIN’s such as QR codes.)

The first two vulnerabilities, specific to password-over-TLS, can be addressed by replacing this
protocol with a PKI-free asymmetric PAKE (aPAKE) (e.g., [47]). The other weaknesses are prevented
by our TFA design even if used with password-over-TLS!

Our Contributions. The main contribution of the present paper is the design of a device-based
TFA and PAKE solution that eliminates all of the above weaknesses. Particularly, we: (1) introduce
a precise security model for TFA schemes capturing well-defined maximally-attainable security
bounds, (2) exhibit a practical TFA scheme which we prove to achieve the strong security guaranteed
by our formal model, and (3) prototype several methods for validating user’s possession of the
secondary factor, and evaluating usability of each method.

TFA Security Model with End-to-End Security. We introduce a Two-Factor Authenticated Key
Exchange (TFA-KE) model in which a user authenticates to server S by (1) entering a password
into client terminal C and (2) proving possession of a personal device D which forms the second
authenticator factor by the user confirming in the device equality of a 𝑡-bit checksum displayed
by D with a checksum displayed by C. Following [71] (see below), this implements a 𝑡-bit C-to-D
user-authenticated channel, which confirms that the same person is in control of client C and device
D. This channel authentication requirement is weaker than the private channel required by current
PIN-based TFAs and, as we show, it allows TFA schemes to be both more secure and easier to use.

The TFA-KE model, that we define as an extension of the standard Password-Authenticated Key
Exchange (PAKE) [25] and the Device-Enhanced PAKE (DE-PAKE) [45] models, captures what
we call end-to-end security by allowing the adversary to control all communication channels and

2PINs diverted to the attacker’s phone exploiting SS7 vulnerabilities [53] led to NIST’s recent decision to deprecate SMS
PINs as a TFA mechanism [7].

2

compromise any protocol party. For each subset of compromised parties, the model specifies best-
possible security bounds, leaving inevitable exhaustive online guessing attacks as the only feasible
attack option. In particular, in the common case that D and S are uncorrupted, the only feasible
attack is an active simultaneous online attack against both S and D that also requires guessing the
password and the 𝑡-bit checksum. Compromising server S allows the attacker to impersonate S, but
does not help in impersonating the user to S, and in particular does not enable an offline-dictionary
attack against the user’s password. Compromising device D makes the authentication effectively
password-only, hence offering best possible bounds in the PAKE model (in particular, the offline
dictionary attack is possible only if D and S are both compromised). Finally, compromising client C
leaks the password, but even then impersonating the user to the server requires an active attack on D.
We prove our protocols in this strong security model.

Practical TFA with End-to-End Security. Our main result is a TFA scheme, GenTFA that achieves
end-to-end security as formalized in our TFA-KE model and is based on two general tools. The first
is a Device-Enhanced Password Authenticated Key Exchange (DE-PAKE) scheme as introduced
by Jarecki et. al [45]. Such a scheme assumes the availability of a user’s auxiliary device, as in
our setting, and utilizes the device to protect against offline dictionary attacks in case of server
compromise. However, DE-PAKE schemes provide no protection in case that the client machine C
is compromised and, moreover, security completely breaks down if the user’s password is leaked.
Thus, our approach for achieving TFA-KE security is to start with a DE-PAKE scheme and armor it
against client compromise (and password leakage) using our second tool, namely, a SAS-MA (Short-
Authentication-String Message Authentication) as defined by Vaudenay [71]. In our application, a
SAS-MA scheme utilizes a 𝑡-bit user-authenticated channel, called a SAS channel, to authenticate
data sent from C to D. More specifically, the SAS channel is implemented by having the user verify
and confirm the equality of two 𝑡-bit strings, called checksums, displayed by both C and D. It follows
from [71] that if the displayed checksums coincide then the information received by D from C
is correct except for a 2−𝑡 probability of authentication error. We then show how to combine a
DE-PAKE scheme with such a SAS channel to obtain a scheme, GenTFA, for which we can prove
TFA-KE security, hence provably avoiding the shortcomings of PIN-based schemes. Moreover, the
use of the SAS channel relaxes the required user’s actions from a read-and-copy action in traditional
schemes to a simpler compare-and-confirm which also serves as a proof of physical possession of
the device by the user (see more below).

We show a concrete practical instantiation of our general scheme GenTFA, named OpTFA,
that inherits from GenTFA its TFA-KE security. Protocol OpTFA is modular with respect to the
(asymmetric) password protocol run between client and server, thus it can utilize protocols that
assume PKI as the traditional password-over-TLS, or those that do not require any form of secure
channels, as in the (PKI-free) asymmetric PAKE schemes [26, 39]. In the PKI case, OpTFA can run
over TLS, offering a ready replacement of current TFA schemes in the PKI setting. In the PKI-free
case one gets the advantages of the TFA-KE setting without relying on PKI, thus obtaining a strict
strengthening of (password-only) PAKE security [25, 58] as defined by the TFA-KE model.

The cost of OpTFA is two communication rounds between D and C, with 4 exponentiations by
C and 3 by D, a one-round Diffie-Hellman exchange between C and S, plus the cost of a password
authentication protocol between C and S. In the PKI setting the latter is the cost of establishing a
server-authenticated TLS channel, while in the PKI-free case one can use an asymmetric PAKE
(e.g., [47]) with cost (some of it computable offline) of 3 exponentiations for C, 2 for S, and one
multi-exponentiation for each.

Implementation and SAS Channel Designs. We prototyped protocol OpTFA, in both the PKI
and PKI-free versions, with the client implemented as a Chrome browser extension, the device as

3

an Android app, and D-C communication implemented using Google Cloud Messaging. We also
designed and implemented several instantiations of the human-assisted C-to-D SAS channel required
by our TFA-KE solution and model. Recall that a SAS channel replaces the user’s read-and-copy
action of a PIN-based TFA with the compare-and-confirm action used to validate the checksums
displayed by C and D. The security of a SAS-model TFA-KE depends on the checksum entropy 𝑡,
called the SAS channel capacity, hence the two important characteristics of a physical design of a
SAS channel are its capacity 𝑡 and the ease of the compare-and-confirm action required of the user.
In Section 6 we show several SAS designs with different channel capacity and usability.

Our base-line implementation of a SAS channel encodes 20-bit checksums as 6-digit decimal
PINs, which the user compares when displayed by C and D (no copying involved). We also propose
two novel and higher-capacity SAS channels. In the first design, the device D is assumed to have a
camera and the checksum calculated by the client is encoded as a QR code and displayed by C. The
user prompts D to capture this QR code which D decodes and compares against its own checksum.
The second design is based on an audio channel implemented using speech transcription. If device
D is a smartphone then the user can read out an alphanumeric checksum displayed by C into D’s
microphone3, and D decodes the audio using the transcriber tool and compares it to its checksum.

Usability Study of our SAS Channel Designs. Perhaps the most interesting aspect of OpTFA, from
the usability perspective, is that the user interaction in this method is changed from copying the
PIN (as in PIN-based TFA) to verifying the equality of the checksums. The hypothesis is that such
verification provides higher usability compared to manual PIN copying of PIN-based TFA, while the
use of a full-size PIN over the authenticated and secure channel improves the security of TFA. Also,
while in the OpTFA, the SAS-MA protocol is used in conjunction with DE-PAKE, its use could be
extended to any other standard TFA method to improve the security against online guessing and
offline dictionary attacks, and to provide resistance against PIN eavesdropping by authenticating the
device-client channel. Hence, it is important to evaluate the usability of such strong protocol.

We ran a lab-based study with 30 participants and asked them to use each of the aforementioned
SAS transfer methods and the traditional TFA PIN entry (as the baseline of the study) multiple times
as part of the login procedure to a website we created for this study. We recorded the participants’
responses to analyze the user errors that might occur while inputting the PIN or checksum, as
well as errors that might occur due to the transcriber, or the QR code decoder while automatically
verifying the checksum. We also recorded the time it takes to perform each of the tasks to measure
the efficiency/delay overhead of each method. We then asked the participants to answer several
questions about the usability of the system, and their perception regarding the adoptability, security,
trust, and efficiency of the system. Our results showed that OpTFA could provide a higher usability
compared to PIN-TFA if the QR code checksum comparison method is to be deployed. This method
also seems to be more efficient compared to other approaches and offers higher usability in terms of
user perception. Our study design is in line with other TFA studies [35, 40, 72–74].

Contribution over Conference Publication. This work is an extension of our earlier PKC 2018
publication [46], in which we introduced our end-to-end secure two factor authentication scheme.
In this publication we extend our PKC 2018 work by reporting on an extensive usability study of
the PKC 2018 protocol and comparing it as the baseline to the traditional PIN based two factor
authentication. We also include cryptographic proofs of the security theorems claimed in [46].4

3Thanks to the full resistance of our TFA-KE to eavesdropping, overhearing the spoken checksum is of no use to the attacker.
4This expanded version of our PKC 18 paper [46] has been submitted to ACM Transactions on Privacy and Security, but
for space-constraint reasons the journal version does not include the security proofs for all party corruption cases, and the
intuitive overview of the main “no corruptions” case of the security theorem, all of which are included here in Section 5.

4

Road-Map. In Section 2 we present TFA-KE security model. In Section 3 we describe our protocol
building blocks, including the SAS-MA protocol of [71]. In Section 4 we present a practical TFA-KE
protocol OpTFA, and we provide informal rationale for its design choices. In Section 5 we show our
general TFA-KE protocol construction GenTFA, of which OpTFA is an instance, together with its
security proof. In Section 6 we report on the implementation and testing of protocol OpTFA, and we
describe several SAS channel designs, followed by a report on the usability of the system in Section
7. In Section 8 we include more details on related works.

2 TFA-KE SECURITY
We introduce the Two-Factor Authenticated Key Exchange (TFA-KE) security model that defines
the assumed environment and participants in our protocols as well as the attacker’s capabilities
and the model’s security guarantees. Our starting point is the Device-Enhanced PAKE (DE-PAKE)
model, introduced in [45], which extends the well-known two-party Password-Authenticated Key
Exchange (PAKE) model [25] to a multi-party setting that includes users U, communicating from
client machines C, servers S to which users log in, and auxiliary devices D, e.g. a smartphone. A
DE-PAKE scheme has the security properties of a two-server PAKE (2-PAKE) [30, 52] where D
plays the role of the 2nd server. Namely, a compromise of either S or D (but not both) essentially
does not help the attacker, and in particular leaks no information about the user’s password. However,
a DE-PAKE scheme has the additional crucial property that even an adversary who compromises
both S and D must still stage an offline dictionary attack to learn the password.

The TFA-KE model considers the same set of parties as in the DE-PAKE model and all the
same adversarial capabilities, including controlling all communication links, the ability to mount
online active attacks, offline dictionary attacks, and to compromise devices and servers. However,
the DE-PAKE model does not consider client corruption or password leakage. Indeed, in case of
password leakage an active adversary can authenticate to S by impersonating the legitimate user in a
single DE-PAKE session with D and S. Since a TFA scheme is supposed to protect against the client
corruption and password leakage attacks, our TFA-KE model enhances the DE-PAKE model by
adding these capabilities to the adversary while preserving all the other strict security requirements
of DE-PAKE. DE-PAKE requirements were such that the only allowable attacks, under a given set of
corrupted parties, are the unavoidable exhaustive online guessing attacks for that setting; the same
holds for TFA-KE but with additional best resilience to client compromise and password leakage.

Note, however, that if C,D,S communicate only over insecure links then an attacker who learns
the user’s password will always be able to authenticate to S, by impersonating the user to D and S.
Consequently, to allow device D to become a true second factor and maintain security in case the
password leaks, one has to assume some form of authentication in the C to D communication which
would allow the user to validate that D communicates with the user’s own client terminal C and not
with the attacker who performs a man-in-the-middle attack and impersonates this user to D.

To that end our TFA-KE model augments the communication model by an authentication ab-
straction on the client-to-device channel, but it does so without requiring the client to store any
long-term keys (other than the user’s password). Namely, we assume a uni-directional C-to-D “Short
Authenticated String” (SAS) channel, introduced by Vaudenay [71], which allows C to communicate
𝑡 bits to D that cannot be changed by the attacker. The 𝑡-bit C-to-D SAS channel abstraction comes
down to a requirement that the human user compares a 𝑡-bit checksum displayed by both C and D,
and approves (or denies) their equality by choosing the corresponding option on device D.

As is standard, we quantify security by attacker’s resources that include the computation time
and the number of instances of each protocol party the adversary interacts with. We denote these
as 𝑞𝐷, 𝑞𝑆 , 𝑞𝐶 , 𝑞

′
𝐶 , where the first two count the number of active sessions between the attacker and

D and S, resp., while 𝑞𝐶 (resp. 𝑞′𝐶) counts the number of sessions where the attacker poses to C as

5

S (resp. as D). Security is further quantified by the password entropy 𝑑 (we assume the password
is chosen from a dictionary of size 2𝑑 known to the attacker), and parameter 𝑡, which is called the
SAS channel capacity. As we explain in Section 3, a C-to-D SAS channel allows for establishing a
confidential channel between D and C, except for the 2−𝑡 probability of error [71], which explains
2−𝑡 factors in the TFA-KE security bounds stated below.

TFA Security Definition. We consider a communication model of open channels plus the 𝑡-bit
SAS-channel between C and D, and a man-in-the-middle adversary that interacts with 𝑞𝐷, 𝑞𝑆 , 𝑞𝐶 , 𝑞

′
𝐶

sessions of D,S,C, as described above. The adversary can also corrupt any party, S, D, or C, learning
its stored secrets and the internal state as that party executes its protocol, which in the case of C
implies learning the user’s password. All other adversarial capabilities, as well as the test session
experiment, are as in the DE-PAKE model, and we refer to [45] for the detailed exposition of this
model. In particular, the adversary’s advantage is in distinguishing between a random string and a
key computed by S or C on a tested session, and this advantage can be intuitively understood as the
probability that the adversary successfully attacks any session key output by either client C or server
S in the course of adversary’s interaction with the TFA scheme.

The security requirements set by Definition 2.1 below are the strictest one can hope for given the
communication and party corruption model. That is, wherever we require the attacker’s advantage to
be no more than a given bound with a set of corrupted parties, then there is an (unavoidable) attack -
in the form of exhaustive guessing attack - that achieves this bound under the given compromised
parties. Importantly, and in contrast to typical two-factor authentication solutions, the TFA-KE
model requires that the second authentication factor D not only provides security in case of client
and/or password compromise, but that it also strengthens online and offline security (by 2𝑡 factors)
even when the password has not been learned by the attacker.

Definition 2.1. A TFA-KE protocol TFA is (𝑇, 𝜖)-secure if for any dictionary Dict of size 2𝑑, 𝑡-bit
SAS channel, and attacker A bounded by time 𝑇 , attackers’s advantage AdvTFAA in distinguishing the
tested session key output by the protocol from random is bounded as follows, for 𝑞𝑆 , 𝑞𝐶 , 𝑞′𝐶 , 𝑞𝐷 as
defined above:

(1) If S, D, and C are all uncorrupted:

AdvTFAA ≤ min{𝑞𝐶 + 𝑞𝑆/2
𝑡, 𝑞′𝐶 + 𝑞𝐷/2𝑡}/2𝑑 + 𝜖

(2) If only D is corrupted: AdvTFAA ≤ (𝑞𝐶 + 𝑞𝑆)/2
𝑑 + 𝜖

(3) If only S is corrupted: AdvTFAA ≤ (𝑞′𝐶 + 𝑞𝐷/2𝑡)/2𝑑 + 𝜖

(4) If only C is corrupted (or the user’s password leaks by any other means): AdvTFAA ≤
min(𝑞𝑆 , 𝑞𝐷)/2𝑡 + 𝜖

(5) If both D and S are corrupted (but not C), and 𝑞𝑆 and 𝑞𝐷 count A’s offline operations performed
based on resp. S’s and D’s state: AdvTFAA ≤ min{𝑞𝑆 , 𝑞𝐷}/2𝑑

Explaining Security Bounds. The security of the TFA scheme relative to the DE-PAKE model can
be seen by comparing the above bounds to those in [45]. Here we explain the meaning of some of
these bounds. In the default case of no corruptions, the adversary’s probability of attack is at most
min(𝑞𝐶+𝑞𝑆/2

𝑡, 𝑞′𝐶+𝑞𝐷/2𝑡)/2𝑑 improving on DE-PAKE bound min(𝑞𝐶+𝑞𝑆 , 𝑞
′
𝐶+𝑞𝐷)/2𝑑 and on

the PAKE bound (𝑞𝐶+𝑞𝑆)/2
𝑑. For simplicity, assume that 𝑞𝐶 = 𝑞′𝐶 = 0 (e.g., in the PKI setting

where C talks to S over TLS and the communication from D to C is authenticated), in which case the
bound reduces to min(𝑞𝑆 , 𝑞𝐷)/2𝑡+𝑑. The interpretation of this bound, and similarly for the other

6

bounds in this model, is that in order to have a probability 𝑞/2𝑡+𝑑 to impersonate the user, the attacker
needs to run 𝑞 online sessions with 𝑆 and also 𝑞 online sessions with 𝐷. (In each such session the
attacker can test one password out of a dictionary of 2𝑑 passwords, and can do so successfully only if
its communication with D is accepted over the SAS channel, which happens with probability 2−𝑡.)
This is the optimal security bound in the TFA-KE setting since an adversary who guesses both the
user’s password and the 𝑡-bit checksum can successfully authenticate as the user to the server.

In case of client corruption (and password leakage), the adversary’s probability of impersonating
the user to the server is at most min(𝑞𝑆 , 𝑞𝐷)/2𝑡, which is the best possible bound if the password
leaks. In case of device corruption, the adversary’s advantage is at most (𝑞𝐶+𝑞𝑆)/2

𝑑, which matches
the optimal advantage of PAKE, i.e. where there is no device. In case of server corruption, the
adversary’s probability of impersonating the user to an uncorrupted server session is (assuming
𝑞′𝐶 = 0 for simplicity) at most 𝑞𝐷/2𝑡+𝑑. In other words, learning server’s private information allows
the adversary to authenticate as the server to the client, but it does not help to impersonate the client
to the server. In contrast, widely deployed PIN-based TFA schemes that transmit passwords and PINs
over a TLS channel are subject to an offline dictionary attack in this case.

Note on Security under S and C Corruptions. If S is corrupted then the adversary cannot test any
C session keys (technically, such sessions are declared “not fresh”, see [45]). Indeed, an adversary
who learns S’s long-term secrets can successfully authenticate as S to C. However, even if S is
corrupted and its long-term secrets leak we can still achieve security for S sessions whose local
state is not compromised by the adversary. (This is known as KCI-security of Authenticated Key
Exchange, see e.g. [45].) By contrast, if client C is compromised and its password leaks then we must
also declare all C sessions “not fresh”, because in our model the client has no other input than the
password, and it has no other means of authenticating either server S or device D,5 as our assumption
is that the SAS-channel authenticates C to D, and not vice versa.6 Consequently, an adversary who
learns the password can successfully authenticate to the client. However, our TFA model requires
security of S sessions in the C-corruption case, which is the main concern of TFA authentication:
If the password leaks, the adversary must still have at most 2−𝑡 probability of authenticating to the
server per each attempt which involves an interaction with both server S and device D.

Extension: The Case of simultaneous C and S Corruption. Note that when C and D are corrupted,
there is no security to be offered because the attacker has possession of all authenticator factors, the
password and the auxiliary device. However, in the case that both C and S are corrupted one can hope
that the attacker could not authenticate to sessions of S that the attacker does not actively control.
Indeed, the above model can be extended to include this case with a bound of min(𝑞𝑆 , 𝑞𝐷)/2𝑡. Our
protocols as described in Figures 2 and 4 do not achieve this stronger bound, but it can be achieved
by the following small modification (refer to the figures): S is initialized with a public key of D and
before sending the value 𝑧𝑖𝑑 to D (via C), S encrypts it under D’s public key.

3 BUILDING BLOCKS
We recall several of the building blocks used in our TFA-KE protocol.

SAS-MA Scheme of Vaudenay [71]. The Short Authentication String Message Authentication
(SAS-MA) scheme allows the transmission of a message from a sender to a receiver so that the
receiver can check the integrity of the received message. A SAS-MA scheme considers two communi-
cation channels. One that allows the transmission of messages of arbitrary length and is controlled by
5However, see the discussion of the “password-over-TLS” implementation option under the aPAKE heading in Section 3.
6A bi-directional SAS channel would allow client session security in the case of leaked password, up the 2−𝑡 bound, and
it would authenticate D to C in the password-over-TLS implementation, see footnote 5 above. Note that all SAS channel
implementations in Section 7.1 extend to bi-directional authentication if checksum validation is done on both D and C.

7

an active man-in-the-middle, and another that allows sending up to 𝑡 bits that cannot be changed by
the attacker (neither channel is assumed to provide secrecy). We refer to these as the open channel and
the SAS channel, respectively, and call the parameter 𝑡 the SAS channel capacity. A SAS-MA scheme
is called secure if the probability that the receiver accepts a message modified by a (computationally
bounded) attacker on the open channel is no more than 2−𝑡 (plus a negligible fraction). In Figure 1
we show a secure SAS-MA implementation of [71] for a sender C and a receiver D. The SAS channel
is abstracted as a comparison of two 𝑡-bit strings checksum𝐶 and checksum𝐷 computed by sender
and receiver, respectively. As shown in [71], the probability that an active man-in-the-middle attacker
between D and C succeeds in changing message MC while D and C compute the same checksum is
at most 2−𝑡. Note that this level of security is achieved without any keying material (secret or public)
pre-shared between the parties. Also, importantly, there is no requirement for checksums to be secret.
(In Section 5 we present a formal SAS-MA security definition.)

Input: Sender C holds message MC; Receiver D holds MC
′.

Output: Receiver D accepts if MC = MC
′ and rejects otherwise.

Assumptions: C-to-D SAS channel with capacity 𝑡; security parameter 𝜅; hash function 𝐻com onto {0, 1}𝜅.

SAS-MA Protocol:
(1) C sends Com = 𝐻com(MC, 𝑅𝐶 , 𝑑) to D for random 𝑅𝐶 , 𝑑 s.t. |𝑅𝐶 | = 𝑡 and |𝑑| = 𝜅;
(2) D sends to C a random string 𝑅𝐷 of length 𝑡;
(3) C sends (𝑅𝐶 , 𝑑) to D and enters checksum𝐶 = 𝑅𝐶⊕𝑅𝐷 into C-to-D SAS channel;
(4) D sets checksum𝐷 = 𝑅𝐶⊕𝑅𝐷 and it accepts if and only if Com = 𝐻com(MC

′, 𝑅𝐶 , 𝑑) and checksum𝐶

received on the SAS channel equals checksum𝐷 .

Fig. 1. SAS Message Authentication (SAS-MA) [71]

Thus, the SAS-MA protocol reduces integrity verification of a received message MC to verifying
the equality of two strings (checksums) assumed to be transmitted “out-of-band", i.e. away from
adversarial control. In our application, the checksums will be values displayed by device D and
client C whose equality the human user verifies and confirms via a physical action, e.g. a click, a QR
snapshot, or an audio read-out (see Section 6). In the TFA-KE application this user-confirmation of
checksum equality serves as evidence of the physical control of terminal C and device D by the same
user, and a confirmation of user’s possession of the 2nd authentication factor implemented by D.

SAS-SMT. One can use a SAS-MA mechanism from C to D to bootstrap a confidential channel
from D to C. The transformation is standard: To send a message 𝑚 securely from D to C (in our
application 𝑚 is a one-time key and D’s PTR response, see below), C picks a CCA-secure public
key encryption key pair (sk, pk) (e.g., pair (𝑥, 𝑔𝑥)) for an encryption scheme (KG,Enc,Dec), sends
pk to D, and then C and D execute the SAS-MA protocol on MC = pk. If D accepts, it sends 𝑚
encrypted under pk to C, who decrypts it using sk. The security of SAS-MA and the public-key
encryption imply that an attacker can intercept 𝑚 (or modify it to some related message) only by
supplying its own key pk′ instead of C’s key, and causing D to accept in the SAS-MA authentication
of pk′ which by SAS-MA security can happen with probability at most 2−𝑡. The resulting protocol
has 4 messages, and the cost of a plain Diffie-Hellman exchange if implemented using ECIES [23]
encryption. We refer to this scheme as SAS-SMT (SMT for “secure message transmission").

aPAKE. Informally, an aPAKE (i.e. an asymmetric or augmented PAKE) is a password protocol
which offers limited form of security against server compromise [26, 39]. Namely, the server stores
a one-way function of the user’s password, and the attacker who breaks into the server can only
learn information on the password through an exhaustive offline dictionary attack. While the aPAKE
terminology is typically used in the context of password-only protocols that do not rely on public

8

keys, we extend it here (following [45]) to the PKI-based password-over-TLS protocol. This enables
the use of our techniques in the context of TLS, a major benefit of our TFA schemes. Note that
password-over-TLS, while secure against server compromise, is not strictly an aPAKE as it allows an
attacker to learn plaintext passwords (decrypted by TLS) while the attacker is in control of the server.
As shown in [45], dealing with this property requires a tweak in the DE-PAKE protocol (C needs to
authenticate the value 𝑏 sent by D in the PTR protocol described below - see also Sec. 6).

DE-PAKE. A Device-Enhanced PAKE (DE-PAKE) [45] is an extension of the asymmetric PAKE
model by an auxiliary device, which strengthens aPAKE protocols by eliminating offline dictionary
attacks upon server compromise. We use DE-PAKE protocols as a main module in our general
construction of TFA-KE, and our practical instantiation of this construction, protocol OpTFA, uses
the DE-PAKE scheme of [45] which combines an asymmetric aPAKE with a password hardening
procedure PTR described next.

Password-to-Random Scheme PTR. A PTR is a password hardening procedure that allows client
C to translate with the help of device D (which stores a key 𝑘) a user’s master password pwd into
independent pseudorandom passwords (denoted rwd) for each user account. The PTR instantiation
from [45] is based on the Ford-Kaliski’s Blind Hashed Diffie-Hellman technique [38]: Let 𝐺 be a
group of prime order 𝑞, let 𝐻 ′ and 𝐻 be hash functions which map onto, respectively, elements of 𝐺
and 𝜅-bit strings, where 𝜅 is a security parameter. Define 𝐹𝑘(𝑥) = 𝐻(𝑥, (𝐻 ′(𝑥))𝑘), where the key 𝑘
is chosen at random in Z𝑞 . In PTR this function is computed jointly between C and D where D inputs
key 𝑘 and C inputs 𝑥 = pwd as the argument, and the output, denoted rwd = 𝐹𝑘(pwd), is learned
by C only. The protocol is simple: C sends 𝑎 = (𝐻 ′(pwd))𝑟 for 𝑟 random in Z𝑞, D responds with
𝑏 = 𝑎𝑘, and C computes rwd = 𝐻(𝑥, 𝑏1/𝑟). Under the One-More (Gap) Diffie-Hellman (OM-DH)
assumption in the Random Oracle Model (ROM), this scheme realizes a universally composable
oblivious PRF (OPRF) [44], which in particular implies that 𝑥 = pwd is hidden from all observers
and function 𝐹𝑘(·) remains pseudorandom on all inputs which are not queried to D.

4 OpTFA: A PRACTICAL SECURE TFA-KE PROTOCOL
In Section 5, we present a general design, GenTFA, of a TFA-KE scheme based on two generic com-
ponents, namely, SAS-MA and DE-PAKE. But first, in this section, we show a practical instantiation
of GenTFA, called OpTFA, using the specific building blocks presented in Section 3, namely, the
SAS-MA scheme from Fig. 1 and the DE-PAKE scheme from [45] (that uses the DH-based PTR
scheme described in Section 3 composed with any asymmetric PAKE). This concrete instantiation
serves as the basis of our implementation in Section 6 and helps explaining the rationale of our
general construction. Protocol OpTFA is presented in Figure 2, and in a schematic form in Fig. 3.

Enhanced TFA via SAS. Before going into the specifics of OpTFA, we describe a general technique
for designing TFA schemes using a SAS channel. In traditional TFA schemes, a PIN is displayed
to the user who copies it into a login screen to prove access to that PIN. As discussed in the
introduction, this mechanism suffers of significant weaknesses mainly due to the low entropy of
PINs (and inconvenience of copying them). We suggest automating the transmission of the PIN over
a confidential channel from device D to client C. To implement such channel, we use the SAS-SMT
scheme from Sec. 3 where security boils down to having D and C display 𝑡-bit strings (checksums)
that the user checks for equality. In this way, low-entropy PINs can be replaced with full-entropy
values (we refer to them as one-time keys (OTK)) that are immune to eavesdropping and bound
active attacks to a success probability of 2−𝑡. These active attacks are impractical even for 𝑡 = 20
(more a denial-of-service than an impersonation threat) and with larger 𝑡’s they are even more so,

9

Components: In addition to the SAS-MA, PTR and aPAKE tools introduced in Sec. 3, OpTFA uses an unauthenticated
KE (uKE) protocol, a PRF R, a CCA-secure public key encryption scheme (KG,Enc,Dec), and a MAC function.
Initialization:
(1) On input the user’s password pwd, pick random 𝑘 in Z𝑞 and set rwd = 𝐹𝑘(pwd) = 𝐻(pwd, (𝐻′(pwd))𝑘);
(2) Initialize the asymmetric PAKE scheme aPAKE on input rwd and let 𝜎 denote the user’s state at the server.
(3) Choose random key 𝐾𝑧 for PRF R, and set zidSet to the empty set;
(4) Give (𝑘,𝐾𝑧 , zidSet) to D and (𝜎,𝐾𝑧) to S.

Login step I (C-S uKE + 𝑧𝑖𝑑 generation):
(1) S and C run a (unauthenticated) key exchange uKE which establishes session key 𝐾𝐶𝑆 between them;
(2) S generates random 𝜅-bit nonce 𝑧𝑖𝑑, computes 𝑧 ← R(𝐾𝑧 , 𝑧𝑖𝑑), and sends 𝑧𝑖𝑑 to C authenticated under key 𝐾𝐶𝑆 .

Login step II (C-D SAS-MA + PTR):
(1) C generates PKE key pair (sk, pk)← KG, 𝑡-bit random value 𝑅𝐶 , 𝜅-bit random value 𝑑, and random 𝑟 in 𝑍𝑞 . C

then computes 𝑎← 𝐻′(pwd)𝑟 , MC ← (pk, 𝑧𝑖𝑑, 𝑎), Com← 𝐻com(MC, 𝑅𝐶 , 𝑑), and sends (MC,Com) to D;
(2) D on ((pk, 𝑧𝑖𝑑, 𝑎),Com), aborts if 𝑧𝑖𝑑 ∈ zidSet, else adds 𝑧𝑖𝑑 to zidSet and sends random 𝑡-bit value 𝑅𝐷 to C.
(3) C receives 𝑅𝐷 , computes checksum𝐶 ← 𝑅𝐶⊕𝑅𝐷 , sends (𝑅𝐶 , 𝑑) to D, and inputs checksum𝐶 in C-D SAS

channel.
(4) D computes checksum𝐷 ← 𝑅𝐶⊕𝑅𝐷 and upon receiving checksum𝐶 on the C-to-D SAS channel, it checks if

checksum𝐶 = checksum𝐷 and Com = 𝐻com(MC, 𝑅𝐶 , 𝑑) and aborts if not. Otherwise D computes 𝑏 ← 𝑎𝑘

and 𝑧 ← R(𝐾𝑧 , 𝑧𝑖𝑑), and sends 𝑒𝐷 ← Enc(pk, (𝑧, 𝑏)) to C.
(5) C computes (𝑧, 𝑏)← Dec(sk, 𝑒𝐷) and rwd← 𝐻(pwd, 𝑏1/𝑟) [= 𝐹𝑘(pwd)], and aborts if Dec outputs ⊥.

Login step III (C-S aPAKE over Authenticated Link):
(1) C and S run protocol aPAKE on resp. inputs rwd and 𝜎 with all aPAKE messages authenticated by keys 𝑧 and

𝐾𝐶𝑆 (each key is used to compute a MAC on each aPAKE message).
Each party aborts and sets local output to ⊥ if any of the MAC verifications fails.

(2) The final output of C and S equals their outputs in the aPAKE instance: either a session key 𝐾 or a rejection sign⊥.

Fig. 2. OpTFA: Efficient TFA-KE Protocol with Optimal Security Bounds

as illustrated in Sec. 6. Note that this approach works with any form of generation of OTK’s, e.g.,
time-based mechanisms, challenge-response between device and server, etc.

4.1 OpTFA Explained
Protocol OpTFA (Fig. 2) requires several mechanisms that are necessary to obtain the strong security
bounds of the TFA-KE model. To provide rationale for the need of these mechanisms we show how
the protocol is built bottom-up to deliver the required security properties (refer to the introduction
for a list of vulnerabilities this design addresses). We stress that while the design is involved the
resultant protocol is efficient and practical. The presentation and discussion of security properties
here is informal but the intuition can be formalized as we do via the TFA-KE model (Sec. 2), the
generic protocol GenTFA in next section and the proof of Theorem 5.1.

In general terms, OpTFA can be seen as a DE-PAKE protocol using the PTR scheme from Sec. 3
and enhanced with fresh OTKs transmitted from D to C via the above SAS-SMT mechanism. The
OTK is generated by the device and server for each session and then included in the aPAKE interaction
between C and S. We note that OpTFA treats aPAKE generically, so any such scheme can be used. In
particular, we start by illustrating how OpTFA works with the standard password-over-TLS aPAKE,
and then generalize to the use of any aPAKE, including PKI-free ones.
∙ OpTFA 0.0. This is standard password-over-TLS where the user’s password is transmitted from C
to S under the protection of TLS.
∙OpTFA 0.1. We enhance password-over-TLS with the OTK-over-SAS mechanism described above.
First, C transmits the user’s password to S over TLS and if the password verifies at S, S sends a

10

k, Kz

PTR (k , pwd) rwd

σ(rwd), Kz

checksumD

z = RKz(zid)

zid

uKEKCS KCS

Insecure Channel

SAS-MA (Mc)

Encrypted and Authenticated Channel under KCS

z

Encrypted under pk, with C’s messages authenticated by SAS-MA along with Mc

Step 1:

uKE

+ zid

Step 3:

aPAKE

Step 2:

SAS-MA

+ PTR

aPAKE

(rwd , σ) K

pwd

User validates checksum

K

checksumC

C picks (pk, sk)

Encrypted and Authenticated Channel under both KCS and one-time key z

Mc = (pk, zid)

z = RKz(zid)

Fig. 3. Schematic Representation of Protocol OpTFA of Fig. 2

nonce 𝑧𝑖𝑑 to C who relays it to D. On the basis of 𝑧𝑖𝑑 (which also acts as session identifier in our
analysis), D computes an OTK 𝑧 = R𝐾𝑧 (𝑧𝑖𝑑) where R is a PRF and 𝐾𝑧 a key shared between D
and S. D transmits 𝑧 to C over the SAS-SMT channel and C relays it to S over TLS. The user is
authenticated only if the received value 𝑧 is the same as the one computed by S.

This scheme offers defense in case of password leakage. With a full-entropy OTK it ensures
security against eavesdroppers on the D-C link and limits the advantage of an active attacker to a
probability of 2−𝑡 for SAS checksums of length 𝑡. However, the scheme is open to online password
attacks (as in current commonly deployed schemes) because the attacker can try online guesses
without having to deal with the transmission of OTK 𝑧. In addition, it offers no security against
offline dictionary attacks upon server compromise.
∙ OpTFA 0.2. We change OpTFA 0.1 so that the user’s password pwd is only transmitted to S at the
end of the protocol together with the OTK 𝑧 (it is important that if 𝑧 does not verify as the correct
OTK, that the server does not reveal if pwd is correct or not). This change protects the protocol
against online guessing attacks and reduces the probability of the successful testing of a candidate
password to 2−(𝑑+𝑡) rather than 2−𝑑 in version 0.1.
∙OpTFA 0.3. We add defense against offline dictionary attacks upon server compromise by resorting
to the DE-PAKE construction of [45] and, in particular, to the password-to-random hardening
procedure PTR from Sec. 3. For this, we now assume that the user has a master password pwd that
PTR converts into randomized passwords rwd for each user account. By registering rwd with server
S and using PTR for the conversion, DE-PAKE security ensures that offline dictionary attacks are
infeasible even if the server is compromised (case (3) in Def. 2.1). Note that the PTR procedure runs
between D and C following the establishment of the SAS-SMT channel.
∙ OpTFA 0.4. We change the run of PTR between D and C so that the value 𝑎 computed by C as part
of PTR is transmitted over the SAS-authenticated channel from C to D. Without this authentication
the strict bound of case (3) in Def. 2.1 (simplified for 𝑞′𝐶 = 0), namely, AdvTFAA ≤ 𝑞𝐷/2𝑑+𝑡+ 𝜖 upon
server compromise, would not be met. Indeed, when the attacker compromises server S, it learns the
key 𝐾𝑧 used to compute the OTK 𝑧 so the defense provided by OTK is lost. So, how can we still
ensure the 2𝑡 denominator in the above bound expression? The answer is that by authenticating the

11

PTR value 𝑎 under SAS-MA, the attacker is forced to run (expected) 2𝑡 sessions to be able to inject
its own value 𝑎 over that channel. Such injection is necessary for testing a password guess even when
𝐾𝑧 is known. When considering a password dictionary of size 2𝑑 this ensures the denominator 2𝑑+𝑡

in the security bound.

∙ OpTFA 0.5. We add the following mechanism to OpTFA: Upon initialization of an authentication
session (for a given user), C and S run an unauthenticated (a.k.a. anonymous) key exchange uKE
(e.g., a plain Diffie-Hellman protocol) to establish a shared key 𝐾𝐶𝑆 that they use as a MAC key
applied to all subsequent OpTFA messages. To see the need for uKE assume it is omitted. For
simplicity, consider the case where attacker A knows the user’s password. In this case, all A needs for
impersonating the user is to learn one value of 𝑧 which it can attempt by acting as a man-in-the-middle
on the C-D channel. After 𝑞𝐷 such attempts, A has probability of 𝑞𝐷/2𝑡 to learn 𝑧 which together
with the user’s password allows A to authenticate to S. In contrast, the bound required by Def. 2.1
in this case is the stricter min{𝑞𝑆 , 𝑞𝐷}/2𝑡. This requires that for each attempt at learning 𝑧 in the
C-D channel, not only A needs to try to break SAS-MA authentication but it also needs to establish a
new session with S. For this we resort to the uKE channel. It ensures that a response 𝑧 to a value 𝑧𝑖𝑑
sent by S over a uKE session will only be accepted by S if this response comes back on the same
uKE session (i.e., authenticated with the same keys used by S to send the challenge 𝑧𝑖𝑑). It means
that both 𝑧𝑖𝑑 and 𝑧 are exchanged with the same party. If 𝑧𝑖𝑑 was sent to the legitimate user then the
attacker, even if it learns the corresponding 𝑧, cannot use it to authenticate back to S. We note that
uKE is also needed in the case that the attacker does not know the password. Without it, the success
probability for this case is about a factor 2𝑑/𝑞𝑆 higher than acceptable by Def. 2.1.
Note. When all communication between C and S goes over TLS, there is no need to establish a
dedicated uKE channel; TLS serves as such.

∙ OpTFA 0.6. We stipulate that D never responds twice to the same 𝑧𝑖𝑑 value (for this, D keeps
a stash of recently seen 𝑧𝑖𝑑’s; older values become useless to the attacker once they time out at
the server). Without this mechanism the attacker gets multiple attempts at learning 𝑧 for a single
challenge 𝑧𝑖𝑑. However, this would violate bound (1) (for the case 𝑞𝐶 = 𝑞′𝐶 = 0) min{𝑞𝑆 , 𝑞𝐷}/2𝑑+𝑡

which requires that each guess attempt at 𝑧 be bound to the establishment of a new session of the
attacker with S.
Note. One can allow a small number of replays of 𝑧𝑖𝑑 as this would not affect the security bounds by
much; also, in cases where S can communicate 𝑧𝑖𝑑 directly to D this stateful anti-replay mechanism
would not be needed.

∙ OpTFA 0.7. Finally, we generalize OpTFA so that the password protocol run as the last stage of
OpTFA (after PTR generates rwd) can be implemented with any asymmetric aPAKE protocol, with
or without assuming PKI, using the server-specific user’s password rwd. As shown in [45], running
any aPAKE protocol on a password rwd produced by PTR results in a DE-PAKE scheme, a property
that we use in an essential way in our analysis.

We need one last mechanism for C to prove knowledge of 𝑧 to S, namely, we specify that both C
and S use 𝑧 as a MAC key to authenticate the messages sent by protocol aPAKE (this is in addition
to the authentication of these messages with key 𝐾𝐶𝑆). Without this, an attack is possible where
in case that OpTFA fails the attacker learns if the reason for it was an aPAKE failure or a wrong 𝑧.
This allows the attacker to mount an online attack on the password without the attacker having to
learn the OTK. (When the aPAKE is password-over-TLS the MAC mechanism is not needed, since
authentication is achieved by encrypting rwd and 𝑧 under the same CCA-secure ciphertext [41].)

∙ OpTFA. Version 0.7 constitutes the full specification of the OpTFA protocol, described in Fig. 2,
with generic aPAKE.

12

Performance: The number of exponentiations in OpTFA is reported in the introduction; implementa-
tion and performance information is presented in Section 6.

OpTFA Security. Security of OpTFA follows from that of protocol GenTFA because OpTFA is its
instantiation. See Theorem 5.1 in Section 5 and Corollary 5.2.

5 THE GENERIC GenTFA PROTOCOL
In Figure 4 we show protocol GenTFA which is a generalization of protocol OpTFA shown in
Fig. 2 in Section 4. (Fig. 4 shows a simplified protocol which separates the C-D secure channel
establishment in step II from DE-PAKE in step III, but see a note below on a round-optimized version
of this protocol.) Protocol GenTFA is a compiler which converts any secure DE-PAKE and SAS-MA
schemes into a secure TFA-KE. It uses the same uKE and CCA-PKE tools as protocol OpTFA, but it
also generalizes two other mechanisms used in OpTFA as, resp. a symmetric-key Key Encapsulation
Mechanism (KEM) scheme and an Authenticated Channel (AC) scheme.

A (symmetric-key) Key Encapsulation Mechanism (KemE,KemD) (see e.g. [68]), allows for en-
crypting a random session key given a (long-term) symmetric key 𝐾𝑧 , i.e., if (𝑧𝑖𝑑, 𝑧)← KemE(𝐾𝑧)
then 𝑧 ← KemD(𝐾𝑧, 𝑧𝑖𝑑). An adversarial distinguishing advantage 𝜖KEM(𝑛) against 𝑛 instances of
KEM is defined as the distinguishing advantage between pairs (𝑧𝑖𝑑1, 𝑧1), . . . , (𝑧𝑖𝑑𝑛, 𝑧𝑛) output by 𝑛
runs of KemE(𝐾𝑧) and values (𝑧𝑖𝑑1, 𝑧*1) . . . , (𝑧𝑖𝑑𝑛, 𝑧

*
𝑛) where 𝑧1*, . . . , 𝑧*𝑛 are chosen as 𝑛 indepen-

dent random 𝜅-bit strings. In protocol OpTFA of Figure 2, KEM is implemented using PRF 𝑅: 𝑧𝑖𝑑
is a random 𝜅-bit string and 𝑧 = 𝑅(𝐾𝑧, 𝑧𝑖𝑑), in which case 𝜖KEM(𝑛) ≤ 𝑞2/(2𝜅) + 𝜖PRF(𝑛) where
𝜖PRF(𝑛) is the bound on the distinguishing advantage against PRF 𝑅 where 𝑛 is the number of PRF
quaries. We also generalize the usage of the MAC function in OpTFA as an Authenticated Channel,
defined by a pair ACSend,ACRec, which implements bi-directional authenticated communication
between two parties sharing a symmetric key 𝐾 [32, 43]. Algorithm ACSend takes inputs key 𝐾
and message 𝑚 and outputs 𝑚 with authentication tag computed with key 𝐾, while the receiver
procedure, ACRec(𝐾, ·), outputs either a message or the rejection symbol ⊥. We assume that the AC
scheme is stateful and provides authenticity and protection against replay.

Round optimization. Protocol GenTFA in Fig. 4 is simplified by separating the C-D secure channel
set-up in step II from DE-PAKE in step III. This is not round-optimal if the first step of the DE-PAKE
scheme also consists of a round of C-D interaction, as is the case for e.g. the DE-PAKE scheme of
[45], which we use to instantiate protocol GenTFA in Section 4. Indeed, such round of DE-PAKE
communication could be piggy-backed onto the C-D communication in step II as follows: C can
generate its first DE-PAKE message 𝑎 on its input password pwd, and run step (1) as in Fig. 4 but for
MC = (pk, 𝑧𝑖𝑑, 𝑎). Then device D runs step (2) as in Fig. 4 but it forms the ciphertext it sends to C as
𝑒𝐷 ← Enc(pk, (𝑧,𝐾𝐶𝐷, 𝑏)) where 𝑏 is its DE-PAKE response computed on C’s message 𝑎 and D’s
local input 𝑘. Finally, in step (3) C parses the decryption of 𝑒𝐷 as (𝑧,𝐾𝐶𝐷, 𝑏)← Dec(sk, 𝑒𝐷) and
runs the rest of the DE-PAKE execution as in step III in Fig. 4 from this point on. Protocol OpTFA
of Section 4 is an instantiation of this round-optimized version of GenTFA.

The security of GenTFA is stated in the following theorem:

THEOREM 5.1. Assuming security of the building blocks DE-PAKE, SAS, uKE, PKE, KEM, and
AC, protocol GenTFA is a (𝑇, 𝜖)-secure TFA-KE scheme for 𝜖 upper bounded by

𝜖DEPAKE + 𝑛 · (𝜖SAS + 𝜖uKE + 𝜖PKE + 6𝜖AC) + 2𝜖KEM(𝑛)

for 𝑛 = 𝑞𝐻𝑏𝐶 +max(𝑞𝑆 , 𝑞𝐷, 𝑞𝐶 , 𝑞
′
𝐶) where 𝑞𝐻𝑏𝐶 denotes the number of GenTFA protocol sessions

in which the adversary is only eavesdropping, and each quantity of the form 𝜖P is a bound on the

13

Initialization: Given the user’s password pwd, we initialize the DE-PAKE scheme on pwd. Let 𝑘 and 𝜎 be the resulting
user-specific states stored at resp. D and S. Let 𝐾𝑧 be a random KEM key. Let zidSet be an empty set. D is initialized
with (𝑘,𝐾𝑧 , zidSet) and S is initialized with (𝜎,𝐾𝑧).

Login step I (C-S KE + KEM generation):
(1) S and C create shared key 𝐾𝐶𝑆 using a (non-authenticated) key exchange uKE.
(2) S generates (𝑧𝑖𝑑, 𝑧) ← KemE(𝐾𝑧), sets 𝑒𝑆 ← ACSend(𝐾𝐶𝑆 , 𝑧𝑖𝑑), and sends 𝑒𝑆 to C, who computes

𝑧𝑖𝑑← ACRec(𝐾𝐶𝑆 , 𝑒𝑆), or aborts if decryption fails.

Login step II (C-D SAS-MA + KEM decryption):
(1) C generates a PKE key pair (sk, pk)← KG, sends MC = (pk, 𝑧𝑖𝑑) to D, and C and D run SAS-MA to authenticate

MC using the 𝑡-bit C-to-D SAS channel.
(2) D aborts if 𝑧𝑖𝑑 ∈ zidSet or if the SAS scheme fails. Otherwise, D adds 𝑧𝑖𝑑 to zidSet, computes 𝑧 ←

KemD(𝐾𝑧 , 𝑧𝑖𝑑), picks a random MAC key 𝐾𝐶𝐷 , computes 𝑒𝐷 ← Enc(pk, (𝑧,𝐾𝐶𝐷)) and sends 𝑒𝐷 to
C.

(3) C computes (𝑧,𝐾𝐶𝐷)← Dec(sk, 𝑒𝐷) (aborts if ⊥).

Login step III (DE-PAKE over Authenticated Links):
C, D, and S run DE-PAKE on resp. inputs pwd, 𝑘, and 𝜎, modified as follows:
(a) All communication between D and S is routed through C.
(b) Communication between C and D goes over a channel authenticated by key 𝐾𝐶𝐷 , i.e. it is sent via
ACSend(𝐾𝐶𝐷, ·) and received via ACRec(𝐾𝐶𝐷, ·), Either party aborts if its ACRec ever outputs ⊥.
(c) Communication between C and S goes over a channel authenticated by key 𝑧 and then the result of that is
sent over a channel authenticated by key 𝐾𝐶𝑆 , i.e. it is sent via ACSend(𝐾𝐶𝑆 ,ACSend(𝑧, ·)) and received via
ACRec(𝐾𝐶𝑆 ,ACRec(𝑧, ·)). Each party aborts and sets local output to ⊥ if its ACRec instance ever outputs ⊥.
The final outputs of C and S are their respective outputs in this DE-PAKE instance, either session key 𝐾 or a rejection
⊥.

Fig. 4. Generic TFA-KE Scheme: Protocol GenTFA

advantage of an attacker that works in time ≈ 𝑇 against a single instance of protocol building block
P, or against 𝑛 instances in case of 𝜖KEM(𝑛).

Theorem 5.1 applies to both the GenTFA protocol as shown in Figure 4 and to its round-optimized
version. Thus, as a corollary we obtain a proof of TFA-KE security for protocol OpTFA from Fig. 2
which uses specific secure instantiations of GenTFA components. The corollary follows by applying
the result of Vaudenay [71] on the security of the SAS-MA scheme used in OpTFA, assuming ROM,
and the result of [45] on the security of DE-PAKE used in OpTFA, assuming OM-DH assumption
and that a secure asymmetric PAKE scheme. The factors in front of each expression of the form 𝜖P

in Theorem 5.1 are upper-bounded by 𝑛 = 𝑞𝐻𝑏𝐶 +max(𝑞𝑆 , 𝑞𝐷, 𝑞𝐶 , 𝑞
′
𝐶), and the exact quantities

can be found in the corresponding step in the security proof.

COROLLARY 5.2. Assuming that aPAKE is a secure asymmetric PAKE, uKE is secure Key
Exchange, (KG,Enc,Dec) is a CCA-secure PKE, R is a secure PRF, and MAC is a secure message
authentication code, OpTFA is a secure TFA-KE scheme under the OM-DH assumption in ROM.

Security definition of SAS authentication. For the purpose of the proof below we state the security
property assumed of a SAS-MA scheme which was informally described in Section 3. While [71]
defines the security of SAS-MA using a game-based formulation, here we do it via the follow-
ing (universally composable) functionality FSAS[t]: On input a message [SAS.SEND, sid , 𝑃 ′,𝑚]
from an honest party 𝑃 , functionality FSAS[t] sends [SAS.SEND, sid , 𝑃, 𝑃 ′,𝑚] to A, and then, if
A’s response is [SAS.CONNECT, sid], then FSAS[t] sends [SAS.SEND, sid , 𝑃,𝑚] to 𝑃 ′, if A’s re-
sponse is [SAS.ABORT, sid], then FSAS[t] sends [SAS.SEND, sid , 𝑃,⊥] to 𝑃 ′, and if A’s response
is [SAS.ATTACK, sid ,𝑚′] then FSAS[t] throws a coin 𝜌 which comes out 1 with probability 2−𝑡 and

14

0 with probability 1− 2−𝑡, and if 𝜌 = 1 then FSAS[t] sends succ to A and [SAS.SEND, sid , 𝑃,𝑚′] to
𝑃 ′, and if 𝜌 = 0 then FSAS[t] sends fail to A and [SAS.SEND, sid , 𝑃,⊥] to 𝑃 ′.

In our main instantiation of the generic protocol GenTFA of Figure 4, i.e. in protocol OpTFA of
Figure 2, we instantiate SAS-MA with the scheme of [71], but even though the original security
argument given for it in [71] used the game-based security notion, it is straightforward to adopt this
argument to see that this scheme securely realizes the above (universally composable) functionality.

Proof of Theorem 5.1. We consider first protocol GenTFA as shown in Figure 4, and we explain
separately below how this proof extends to the round-optimized version. Let A be an adversary
limited by time 𝑇 playing the TFA-KE security game, which we will denote G0, instantiated with
the TFA-KE scheme GenTFA. Let the security advantage defined in Definition 2.1 for adversary
A satisfy AdvTFAA = 𝜖. Let ΠS

𝑖 , ΠC
𝑗 , ΠD

𝑙 refer to respectively the 𝑖-th, 𝑗-th, and 𝑙-th instances of S,
C, and D entities which A starts up. Let 𝑡 be the SAS channel capacity, 𝜅 the security parameter,
𝑞𝑆 , 𝑞𝐷, 𝑞𝐶 , 𝑞

′
𝐶 the limits on the numbers of rogue sessions of S, D, C when communicating with S,

and C when communicating with D, and let 𝑞𝐻𝑏𝐶 be the number of GenTFA protocol sessions in
which A plays only a passive eavesdropper role except that we allow A to abort any of these protocol
executions at any step. Let 𝑛𝑆 = 𝑞𝑆 + 𝑞𝐻𝑏𝐶 , 𝑛𝐷 = 𝑞𝐷 + 𝑞𝐻𝑏𝐶 , 𝑛𝐶 = max(𝑞𝐶 , 𝑞

′
𝐶) + 𝑞𝐻𝑏𝐶 , and

note that these are the ranges of indexes 𝑖, 𝑗, 𝑙 for instances ΠS
𝑖 , ΠC

𝑗 , and ΠD
𝑙 . We will use [𝑛] to

denote range {1, ..., 𝑛}.
The security proof goes by cases depending on the type of corrupt queries A makes. In all cases

the proof starts from the security-experiment game G0 and proceeds via a series of game changes,
G1, G2, etc, until a modified game G𝑖 allows us to reduce an attack on the DE-PAKE with the same
corruption pattern (except in the case of corrupt client C) to the attack on G𝑖. In the case of the
corrupt client the argument is different because it does not rely on the underlying DE-PAKE (note
that DE-PAKE does not provide any security properties in the case of client corruption). In some
game changes we will consider a modified adversary algorithm, for example an algorithm constructed
from the original adversary A interacting with a simulator of some higher-level procedure, e.g. the
SAS-MA simulator. Wlog, we use A𝑖 for an adversary algorithm in game G𝑖.

We will use 𝑝𝑖 to denote the probability that A𝑖 interacting with game G𝑖 outputs 𝑏′ s.t. 𝑏′ = 𝑏
where 𝑏 is the bit chosen by the game on the test session. Recall that when A makes the test session
query test(𝑃, 𝑖), for 𝑃 ∈ {S,C}, then, assuming that instance Π𝑃

𝑖 produced a session key sk, game
G0 outputs that session key if 𝑏 = 1 or produces a random string of equal size if 𝑏 = 0 (and if
session Π𝑃

𝑖 did not produce the key then G0 outputs ⊥ regardless of bit 𝑏). Note that by assumption
AdvTFAA = 𝜖 we have that 𝑝0 = 1/2 + 1/2 · AdvTFAA = 1/2 + 𝜖/2.

Case 1: No party is compromised. This is the case when A makes no corrupt queries, i.e. it’s the
default “network adversary” case. Below we provide an intuitive and less technical overview of the
game changes we use in this proof, while the full details of the proof are shown in Appendix 10.

GameG1: Let 𝑍 be a random function which maps onto 𝜅-bit strings. If (𝑧𝑖𝑑𝑖, 𝑧𝑖) denotes the
KEM (ciphertext,key) pair generated by ΠS

𝑖 then in G1 we set 𝑧𝑖 = 𝑍(𝑧𝑖𝑑𝑖) instead of using
KemE, and we abort if there is ever a collision in 𝑧𝑖 values. Security of KEM implies that 𝑝1 ≤
𝑝0 + 𝜖KEM(𝑛𝑆) + 𝑛2

𝑆/2
𝜅.

GameG2: Here we replace the SAS-MA procedure with the simulator SIMSAS implied by the UC
security of the SAS-MA scheme of [71]. In other words, whenever ΠC

𝑗 and ΠD
𝑙 execute the SAS-MA

sub-protocol, we replace this execution with a simulator SIMSAS interacting with A and the ideal
SAS-MA functionality FSAS[t]. For example, ΠC

𝑗 , instead of sending MC = (pk, 𝑧𝑖𝑑) to A1 and
starting a SAS-MA instance to authenticate MC to D, will send [SAS.SEND, sid ,ΠD

𝑙 ,MC] to FSAS[t],
which triggers SIMSAS to start simulating to A the SAS-MA protocol on input MC between ΠC

𝑗 and

15

ΠD
𝑙 . The rules of FSAS[t] imply that A can make this connection either succeed, abort, or, if it attacks

it then ΠD
𝑙 will abort with probability 1− 2−𝑡, but with probability 2−𝑡 it will accept A’s message

MC
* instead of MC. Security of SAS-MA implies that 𝑝2 ≤ 𝑝1 +min(𝑛𝐶 , 𝑛𝐷) · 𝜖SAS.

GameG3: Here we re-name entities involved in game G2. Note that adversary A2 interacts with G2

which internally runs algorithms SIMSAS and FSAS[t], and that SIMSAS interacts only with FSAS[t] on
one end and A2 on the other. We can therefore draw the boundaries between the adversarial algorithm
and the security game slightly differently, by considering an adversary A3 which executes the steps of
A2 and SIMSAS, and a security game G3 which executes the rest of game G2, including the operation
of functionality FSAS[t]. In other words, G3 interacts with A3 using the FSAS[t] interface to SIMSAS,
i.e. G3 sends to A3 messages of the type [SAS.SEND, sid ,ΠC

𝑗 ,Π
D
𝑙 ,MC], and A3’s response must

be one of [SAS.CONNECT, sid], [SAS.ABORT, sid], and [SAS.ATTACK, sid ,MC
*]. Since we are

only re-drawing the boundaries between these algorithms, we have that 𝑝3 = 𝑝2.
GameG4: Here we change game G3 s.t. if A sends [SAS.CONNECT, sid] to let the SAS-MA instance
go through between ΠC

𝑗 and ΠD
𝑙 with MC containing ΠC

𝑗 ’s key pk, then we replace the ciphertext
𝑒𝐷 subsequently sent by ΠD

𝑙 by encrypting a constant string instead of Enc(pk, (𝑧,𝐾𝐶𝐷)), and if A
passes this 𝑒𝐷 to ΠC

𝑗 then it decrypts it as (𝑧,𝐾𝐶𝐷) generated by ΠD
𝑙 . In other words, we replace the

encryption under SAS-authenticated key pk by a “magic” delivery of the encrypted plaintext. The
CCA security of PKE implies that 𝑝4 ≤ 𝑝3 +min(𝑛𝐶 , 𝑛𝐷) · 𝜖PKE.
GameG5: Here we abort if, assuming that key pk and ciphertext 𝑒𝐷 were exchanged between ΠC

𝑗 and
ΠD

𝑙 correctly, any party accepts wrong messages in the subsequent DE-PAKE execution authenticated
by 𝐾𝐶𝐷 created by ΠD

𝑙 . The authentic channel security implies that 𝑝5 ≤ 𝑝4 +min(𝑛𝐶 , 𝑛𝐷) · 𝜖AC.

GameG6: We perform some cleaning-up, namely abort if the SAS-MA instance between ΠC
𝑗 and ΠD

𝑙)

sent MC correctly, but adversary did not deliver ΠD
𝑙 ’s response 𝑒𝐷 back to ΠC

𝑗 and yet ΠD
𝑙 did not

abort in subsequent DE-PAKE. Since ΠC
𝑗 has no information about 𝐾𝐶𝐷 we get 𝑝6 ≤ 𝑝5 + 𝑞𝐷 · 𝜖AC.

GameG7: We replace the keys created by uKE for every ΠS
𝑖 -ΠC

𝑗 session in step I.1 on which A was
only an eavesdropper, with random keys. Security of uKE implies that 𝑝7 ≤ 𝑝6+min(𝑛𝐶 , 𝑛𝑆) ·𝜖uKE.
GameG8: Let EACbreak(CS) be an event that there is some session pair (ΠS

𝑖 ,Π
C
𝑗) s.t. (a) the adversary

is passive on the KE executed in step I.1 and (b) in the DE-PAKE interaction between ΠC
𝑗 and ΠS

𝑖

authenticated by key 𝐾𝐶𝑆 in step III either party accepts a message either not sent by the counterparty
or delivered out of order. Let A8 = A7 and G8 be as G7 except that G8 aborts if EACbreak(CS) ever
happens. Since in game G7 the adversary has no information about 𝐾𝐶𝑆 , by the security of the
authenticated channel implementation we have that 𝑝8 ≤ 𝑝7 +max(𝑛𝐶 , 𝑛𝑆) · 𝜖AC.

At this point the game has the following properties: If A is passive on the C-S key exchange in
step I then A is forced to be passive on the C-S link in the DE-PAKE in step III. Also, if A does not
attack the SAS-MA and delivers D’s response to C then A is forced to be passive on the C-D link in
the DE-PAKE in step III (and if A does not deliver D’s response to C then this D instance will abort
too). The remaining cases are either (1) active attacks on the key exchange in step I or (2) when A
attacks the SAS-MA sub-protocol and gets D to accept MC* ̸= MC or (3) A sends 𝑒*𝐷 ̸= 𝑒𝐷 to C.
In handling these cases the crucial issue is what A does with the 𝑧𝑖𝑑 created by S. Consider any S
instance ΠS

𝑖 in which the adversary interferes with the key exchange protocol in step I.1. Without loss
of generality assume that the adversary learns key 𝐾𝐶𝑆 output by ΠS

𝑖 in this step. Note that D keeps
a variable zidSet in which it stores all 𝑧𝑖𝑑 values it ever receives, and that D aborts if it sees any 𝑧𝑖𝑑
more than once. Therefore each game execution defines a 1-1 function 𝐿 : [𝑛𝑆]→ [𝑛𝐷] ∪ {⊥} s.t. if
𝐿(𝑖) ̸=⊥ then 𝐿(𝑖) is the unique index in [𝑛𝐷] s.t. ΠD

𝐿(𝑖) receives MC = (pk, 𝑧𝑖𝑑𝑖) in step II.1 for
some pk, and 𝐿(𝑖) =⊥ if and only if no D session receives 𝑧𝑖𝑑𝑖. If 𝐿(𝑖) ̸=⊥ then we consider two

16

cases: First, if MC = (pk, 𝑧𝑖𝑑𝑖) which contains 𝑧𝑖𝑑𝑖 originates with some session ΠC
𝑗 , and second if

MC = (pk, 𝑧𝑖𝑑𝑖) is created by the adversary.

GameG9: Let ΠS
𝑖 and ΠC

𝑗 be rogue sessions s.t. A sends 𝑧𝑖𝑑𝑖 to ΠC
𝑗 in step I.2, but then stop ΠC

𝑗 from
getting the corresponding 𝑧𝑖 by either attacking SAS-MA or misdelivering D’s response 𝑒𝐷. In that
case neither ΠC

𝑗 nor A have any information about 𝑧𝑖, and therefore ΠS
𝑖 should reject. Namely, if in

G9 we set ΠS
𝑖 ’s output to ⊥ in such cases then 𝑝9 ≤ 𝑝8 + 𝑞𝑆 · 𝜖AC.

GameG10: Let ΠS
𝑖 and ΠC

𝑗 be rogue sessions and A send 𝑧𝑖𝑑𝑖 to ΠC
𝑗 as above, but now consider the

case that A lets ΠC
𝑗 learn 𝑧𝑖 but A does not learn 𝑧𝑖 itself, i.e. A lets SAS-MA and 𝑒𝐷 go through. In

this case we will abort if in DE-PAKE communication in Step III between ΠS
𝑖 and ΠC

𝑗 either party
accepts a message not sent by the other party. Since A has no information about 𝑧𝑖 the authenticated
channel security implies that 𝑝10 ≤ 𝑝9 +min(𝑞𝐶 , 𝑞𝑆) · 𝜖AC.

Note that at this point if A interferes with the KE in step I.1 with session ΠS
𝑖 , sends 𝑧𝑖𝑑𝑖 to some

ΠC
𝑗 and does not send it to some ΠD

𝑙 by sending [SAS.ATTACK, sid , (pk*, 𝑧𝑖𝑑𝑖)] for any 𝑙 then A
is forced to be a passive eavesdropper on the DE-PAKE protocol in step III. Note that this holds
when 𝐿(𝑖) = 𝑙 s.t. the game issues [SAS.SEND, sid ,ΠC

𝑗 ,Π
D
𝑙 , (pk, 𝑧𝑖𝑑𝑖)] for some pk, i.e. if some

ΠD
𝑙 receives value 𝑧𝑖𝑑𝑖, it receives it as part of a message MC sent by some ΠC

𝑗 .

GameG11: Finally consider the case when A itself sends 𝑧𝑖𝑑𝑖 to D, i.e. when 𝐿(𝑖) = 𝑙 s.t. A
sends [SAS.ATTACK, sid ,MC

* = (pk*, 𝑧𝑖𝑑𝑖)] in response to [SAS.SEND, sid ,ΠC
𝑗 ,Π

D
𝑙 ,MC], but

the FSAS[t] coin-toss comes out 𝜌𝑙 = 0, i.e. A fails in this SAS-MA attack. In that case we can
let ΠS

𝑖 abort in step III because if 𝜌𝑙 = 0 then A has no information about 𝑧𝑖 = 𝑍(𝑧𝑖𝑑𝑖), hence
𝑝11 ≤ 𝑝10 + 𝑞𝑆 · 𝜖AC.

After these game changes, we finally make a reduction from an attack on underlying DE-PAKE to
an attack on TFA-KE. Namely, we construct A* which achieves advantage AdvDEPAKE

A* = 2 · (𝑝11 −
1/2) against DE-PAKE, and makes 𝑞*𝑆 , 𝑞

*
𝐷, 𝑞𝐶 , 𝑞𝐶 rogue queries respectively to S, D, to C on its

connection to S, and to C on its connection with D, where 𝑞*𝑆 = 𝑞*𝐷 = 𝑞* where 𝑞* is a random
variable equal to the sum of 𝑞 = min(𝑞𝑆 , 𝑞𝐷) coin tosses which come out 1 with probability 2−𝑡 and
0 with probability 1− 2−𝑡. Recall that AdvTFAA = 2 · (𝑝0 − 1/2) and that by the game changes above
we have that |𝑝11 − 𝑝0| is a negligible quantity, and hence AdvDEPAKE

A* is negligibly close to AdvTFAA .
The reduction goes through because after the above game-changes A can either essentially let

a DE-PAKE instance go through undisturbed, or it can attempt to actively attack the underlying
DE-PAKE instance either via a rogue C session or via rogue sessions with device S and server D.
However, each rogue D session is bound to a unique rogue S session, because of the uKE and (𝑧𝑖𝑑, 𝑧)
mechanism, and for each such D,S session pair, the probability that an active attack is not aborted
is only 2−𝑡. This implies that the (𝑞𝑆 , 𝑞𝐷, 𝑞𝐶) parameters characterizing the TFA-KE attacker A
scale-down to (𝑞𝑆/2

𝑡, 𝑞𝐷/2𝑡, 𝑞𝐶) parameters for the resulting DE-PAKE attacker A*, which leads to
the claimed security bounds by the security of DE-PAKE. (The full version of this proof in Appendix
10 includes in particular the details of the construction of algorithm A*.)

Extension to the round-optimized version. Recall that if the DE-PAKE protocol starts by a round
of C-D communication then the round-optimized version of GenTFA amends the protocol by forming
the SAS-authenticated C-to-D message as MC = (pk, 𝑧𝑖𝑑, 𝑎) where 𝑎 is C’s first DE-PAKE message,
and forming the D-to-C’s response as 𝑒𝐷 ← Enc(pk, (𝑧,𝐾𝐶𝐷, 𝑏)) where 𝑏 is D’s DE-PAKE response
to 𝑎. The security proof extends to this version because SAS-MA authentication of MC and CCA-
security of PKE bind DE-PAKE messages 𝑎, 𝑏 to this session in the same as the ACSend(𝐾𝐶𝐷, ·)
mechanism binds the DE-PAKE to this session in the non-optimized protocol. Specifically, by
G6 applied to the round-optimized protocl we have the following cases: (1) If A let message MC

17

pass from C to D and message 𝑒𝐷 pass from D to C then the C-D DE-PAKE exchange 𝑎+𝑏 was
delivered honestly and A is likewise reduced to only passive attack on the rest of C-to-D DE-PAKE
communication; (2) If A attacks this SAS session and succeeds, then it gets access to a rogue D
instance of DE-PAKE, just like in the non-optimized protocol; (3) If A sends its own ciphertext
𝑒*𝐷 ̸= 𝑒𝐷 to C then it gets access to a rogue C instance of DE-PAKE, again just like above.

Case 2: D corruption. The proof in this case is immediate since in the case A makes a corrupt(D)
query we claim the exact same bound as for the underlying DE-PAKE. The reduction A* in this
case can therefore trivially emulate the TFA-KE protocol by implementing the steps of the GenTFA
protocol exactly and surrendering both the KEM private key (and hence surrendering every OTK 𝑧
to the adversary) and the internal state of the DE-PAKE party D to the TFA-KE adversary. Since in
this case all the mechanisms GenTFA implements over the underlying DE-PAKE scheme essentially
play no role (each OTK 𝑧 is revealed to the adversary, and the SAS-MA authentication plays no
role because it authenticates C to a corrupt party D), it follows that AdvTFAA is bounded by the same
bound by the same expression (𝑞𝐶 + 𝑞𝑆)/2

𝑑 + 𝜖 as AdvDEPAKE
A* . An alternative way to think of this

case is to set 𝑡 := 0, because SAS-MA authentication plays no role when D is corrupted, set 𝑞𝐷 to
“inifity”, because rouge queries to a corrupt party are free, and observe that with such paremeters the
bound of Case 1 simplifes to the claimed bound AdvTFAA ≤ (𝑞𝐶 + 𝑞𝑆)/2

𝑑.

Case 3: S corruption. Intuitively, the case of server corruption correponds to setting 𝑞𝑆 to “infinity”
in the bound of Case 1, because rouge queries to a corrupt party are free, in which case the bound
simplifies to the claimed bound AdvTFAA ≤ (𝑞′𝐶 + 𝑞𝐷/2𝑡)/2𝑑. However, a corruption of S also leaks
S’s private state 𝜎,𝐾𝑧 , and we must argue that this leakage does not give the adversary any other
advantages over understricted oracle access to the server.

We argue that in the S-corruption case the adversary’s advantage is bounded as AdvTFAA ≤
(𝑞′𝐶 + 𝑞𝐷/2𝑡)/2𝑑 + 𝜖. Since the adversary knows 𝐾𝑧 , it can compute OTK values 𝑍(𝑧𝑖𝑑) ≜
KemD(𝐾𝑧, 𝑧𝑖𝑑) for every 𝑧𝑖𝑑 sent by S or sent to C, so our TFA scheme reduces to the underlying
DE-PAKE as far as the communication between C and S. Still, the only way the adversary can get
D to meaningfully participate in any DE-PAKE instance is to either (1) let C and D establish an
authenticated channel by passing C message MC = (pk, 𝑧𝑖𝑑) to D, or (2) hijack this communication
by (2a) posing as D to C and/or (2b) posing as C to D. Case (1) means that the adversary is forced
to be honest-but-curious on the corresponding C and D DE-PAKE sessions, thus these sessions
do not contribute to the rogue session attacks on the underlying DE-PAKE. Case (2a) is easy, as
adversary can send ciphertext 𝑒′ = Enc(pk, (𝑧,𝐾 ′

𝐶𝐷)) to C using correct 𝑧 = 𝑍(𝑧𝑖𝑑) value and
𝐾 ′

𝐶𝐷 of adversary’s choice. However, case (2b) is as hard as in the no-corruption case, and the same
argument as in Case 1 shows that the security of the SAS-MA authentication scheme implies that the
adversary can hijack any D’s session ΠD

𝑖 with probability at most 2−𝑡. This translates to the expected
number of 𝑞𝐷/2𝑡 rouge D DE-PAKE sessions which the adversary has access to. Summing up,
(𝑞𝑆 , 𝑞𝐷, 𝑞𝐶 , 𝑞

′
𝐶) bounds on rouge activations of resp. S, D, C interfacing with S, and C inferfacing

with D, translate in resp. bounds (𝑞*𝑆 , 𝑞
*
𝐷, 𝑞*𝐶 , 𝑞

′*
𝐶) = (𝑞𝑆 , 𝑞𝐷/2𝑡, 𝑞𝐶 , 𝑞

′
𝐶) on activations of these

parties in the underlying DE-PAKE scheme. Since the DE-PAKE advantage bound in the case of
S-corruption is 𝜖DEPAKE ≤ (𝑞′*𝐶 + 𝑞*𝐷)/2𝑑 + 𝜖, by the same linearity argument as used in the final
game in Case 1 above, it follows that AdvTFAA ≤ (𝑞′𝐶 + 𝑞𝐷/2𝑡)/2𝑑 + 𝜖, as claimed.

Case 4: C corruption. In the case of client compromise the attacker learns the user’s password pwd,
which corresponds to setting parameter 𝑑 := 0 (i.e. considering a dictionary of size 1). The main
bound from Case 1 must still apply, and in this case it simplifies to AdvTFAA ≤ min{𝑞𝐶 + 𝑞𝑆/2

𝑡, 𝑞′𝐶 +
𝑞𝐷/2𝑡}. Note that if C is compromised then in our model all client sessions are declared “not fresh”
(see Section 2). Still, it does not automatically follow that 𝑞𝐶 and 𝑞′𝐶 can be set to 0, because the

18

presence of client sessions could still help in the attack against the server, and if min{𝑞𝐶 , 𝑞′𝐶} ≥ 1

then the above bound on AdvTFAA is not meaningful. However, note that if the client password leaks
then the final reduction to DE-PAKE security (as in Case 1 above) can emulate all client sessions ΠC

𝑖

without access to the DE-PAKE client sessions (rogue or otherwise). Thus the DE-PAKE reduction
uses only (𝑞*𝑆 , 𝑞

*
𝐷) = (𝑞𝑆/2

𝑡, 𝑞𝐷/2𝑡) expected rogue activations of S and D and (𝑞*𝐶 , 𝑞
′*
𝐶) = (0, 0)

activations of C in the underlying DE-PAKE scheme. Consequently, the corresponding argument as
in Case 1 above shows that bound 𝜖DEPAKE ≤ min(𝑞*𝐶 + 𝑞*𝑆 , 𝑞

′*
𝐶 + 𝑞*𝐷)/2𝑑 + 𝜖 on DE-PAKE security

implies in this case bound AdvTFAA ≤ min(𝑞𝑆 , 𝑞𝐷)/2𝑡 + 𝜖 on TFA security.

Case 5: D and S corruption. Finally, when both D and S (but not C) are corrupted one gets the same
security as plain DE-PAKE. This is because the KEM key 𝐾𝑧 leaks, so the KEM layer no longer
provides any added security, and since device D is corrupted then the SAS-MA client-to-device
authentication mechanism also becomes meaningless (exactly as in Case 2 above). Protocol GenTFA
can thus be simplified to its DE-PAKE core, but the security of DE-PAKE implies that if both D
and S are corrupted then AdvTFAA ≤ min{𝑞𝑆 , 𝑞𝐷}/2𝑑 where 𝑞𝑆 and 𝑞𝐷 count A’s offline operations
performed based on resp. S’s and D’s state. The same claim thus pertains to the TFA scheme.7

6 SYSTEM DEVELOPMENT & PERFORMANCE EVALUATION
Here we report on an experimental prototype of protocol OpTFA from Figure 2 on page 10 and
present novel designs for the SAS channel implementation. We experiment with OpTFA using two
different instantiations of the password protocol between C and S. One is PKI-based that runs OpTFA
over a server-authenticated TLS connection; in particular, it uses this connection in lieu of the uKE
in step I and implements step III by simply transmitting the concatenation of password rwd and the
value 𝑧 under the TLS authenticated encryption. The second protocol we experimented with is a
PKI-free asymmetric PAKE borrowed from [29, 44, 47]. Roughly, it runs the same PTR protocol as
described in Section 3 but this time between C and S. C’s input is rwd and the result 𝐹𝑘(rwd) serves
as a user’s private key for the execution of an authenticated key-exchange between C and S. We
implement the latter with HMQV [54] (as an optimization, the DH exchange used to implement uKE
in step I of OpTFA is “reused" in HMQV).

In Table 1 we provide execution times for the various protocol components, including times for
the TLS-based protocol and the PKI-free one with some elements borrowed from the implementation
work from [45]. As mentioned in Section 1, the cost of OpTFA is two communication rounds between
D and C, with 4 and 3 exponentiations by C and D, respectively, and a one-round Diffie-Hellman
exchange between C and S.

We build on the following platform. The webserver S is a Virtual Machine running Debian 8.0 with
2 Intel Xeon 3.20GHz and 3.87GB of memory. Client terminal C is a MacBook Air with 1.3GHz
Intel Core i5 and 4GB of memory. Device D is a Samsung Galaxy S5 smartphone running Android
6.0.1. C and D are connected to the same WiFi network with the speed of 100Mbps and S has Internet
connection speed of 1Gbps. The server side code is implemented in HTML5, PHP and JavaScipt.
On the client terminal, the protocol is implemented in JavaScript as an extension for the Chrome
browser and the smartphone app in Java for Android phones.

All DH-based operations (PTR, key exchange and SAS-SMT encryption) use elliptic curve NIST
P-256, and hashing and PRF use HMAC-SHA256. Hashing into the curve is implemented with

7We note that the work of [47] shows that the exact same protocol as the DE-PAKE scheme [45], except that roles of both
device D and server S are played by the server, implements a (universally composable) strong asymmetric PAKE (saPAKE).
Thus the case of simultaneous corruption of D and S in the DE-PAKE scheme of [45] corresponds to server corruption in [47],
and the argument there proves the same lower-bound on adversary’s off-line computation in the UC saPAKE setting.

19

simple iterated hashing till an abscissa x on the curve is found (it will be replaced with a secure
mechanism such as [27]).

Communication between C and S uses a regular internet connection between the browser C and
web server S. Communication between C and D (except for checksum comparison) goes over the
internet using a bidirectional Google Cloud Messaging (GCM) [10], in which D acts as the GCM
server and C acts as the GCM client. GCM involves a registration phase during which GCM client
(here C) registers with the GCM generated client ID to the GCM server (here D), to assure that D
only responds to the registered clients. In case that the PAKE protocol in OpTFA is implemented
with password-over-TLS, [45] specifies the need for D to authenticate the PTR value 𝑏 sent to C (see
Sec. 3). In this case, during the GCM registration we install at C a signature public key of D.

Table 1. Average execution time of OpTFA and its components (10,000 iterations)

Protocol Purpose Parties Average Time
in ms (std. dev.)

SAS (excluding user’s
checksum validation)

Authenticate
C-D Channel

C and D 128.59 (0.48)

PTR Reconstruct rwd C and D 160.46 (3.71)
PKI-free PAKE PAKE C and S 182.27 (3.67)
PKI PAKE (TLS) C-S link encryption C and S 32.54 (1.38)
Overall in PKI-free Model C, D and S 410.77 ms
Overall in PKI Model C, D and S 263.27 ms

7 CHECKSUM VALIDATION DESIGN AND USABILITY STUDY
7.1 Checksum Validation Design
An essential component in our approach and solutions (in particular in protocol OpTFA) is the use
of a SAS channel implemented via the user-assisted equality verification of checksums displayed by
both C and D (denoted hereafter as checksum𝐶 and checksum𝐷, resp.). Here we discuss different
implementations of such user-assisted verification which we have designed and experimented with.

Manual Checksum Validation. In the simplest approach, the human user compares the checksums
displayed on D and C and taps the Confirm button on D in case the two match [70]. Although,
this type of code comparison has recently been deployed in TFA systems, e.g., [16], it carries the
danger of neglectful users pressing the confirm button without comparing the checksum strings.
Another common solution for checksum validation is “Copy-Confirm” [70] where the user types the
checksum displayed on C into D, and only if this matches D’s checksum does D proceeds with the
protocol. We refer to this method as Num-C-D. We implemented this scheme using a 6 digit number.
We stress that in spite of the similarity between this mechanism and PIN copying in traditional TFA
schemes, there is an essential security difference: Stealing the PIN in traditional schemes suffices
to authenticate instead of the user (for an attacker that holds the user’s password) while stealing
the checksum value entered by the user in OpTFA is worthless to the attacker (the checksum is a
validation code, not the OTK value needed for authentication).

The above methods using human visual examination and/or copying limit the SAS channel capacity
(typically to 4-6 digits) and may degrade usability [64]. As an alternative we consider the following
designs (however one may fallback to the manual schemes when the more secure schemes below
cannot be used, e.g., missing camera or noisy environments).

QR Code Checksum Validation. In this checksum validation model, which we refer to as QR-C-D,
we encode the full, 256-bit checksum computed in protocol OpTFA into a hexstring and show it
as a 230 × 230 pixel QR Code on the web-page. We used ZXing library to encode the QR code

20

and display it on the web page and read and decode it on D. To send the checksum to D, the user
opens the app on D and captures the QR code. D decodes the QR code and compares checksums,
and proceeds with the protocol if the match happens. In this setting, the user does not need to enter
the checksum but only needs to hold her phone and capture a picture of the browser’s screen. With
the larger checksum (𝑡 = 256) active attacks on SAS-SMT turn infeasible and the expressions 2−𝑡 in
Definition 2.1) negligible.

Voice-based Checksum Validation. We implement a voice-based checksum validation approach
that assumes a microphone-equipped device (typically a smartphone) where the user speaks a
numerical checksum displayed by the client into the device. We refer to this method as Voice-C-D.
The device D receives this audio, recognizes and transcribes it using a speech recognition tool, and
then compares the result with the checksum computed by D itself. The client side uses a Chrome
extension as in the manual checksum validation case while on the device we developed a transcriber
application using Android.Speech API. The user clicks on a “Speak” button added to the app and
speaks out loud the displayed number (6-digit in our implementation). The transcriber application
in D recognizes the speech and convert it to text that is then compared to D’s checksum. To further
improve the usability of this approach one can incorporate a text-to-speech tool that would speak the
checksum automatically (i.e., replacing the user). The transcription approach would perhaps be easy
for the users to employ compared to the QR-based approach, but would only be suitable if the user
is in an environment that is non-noisy and allows her to speak out-loud. We note that the QR-code
and audio-based approaches do not require a browser plugin or add-on and can be deployed on any
browser with HTML5 support.

The three concrete checksum validation user interaction methods we implemented and tested for
usability are described in Section 7.2.2.

7.2 Usability Study Implementation and Preliminaries
7.2.1 The Study Setup. Overview: To evaluate the usability of different OpTFA checksum
comparison methods and to compare them with PIN-TFA as the baseline, we built a study platform.
In this setup, we designed a webpage to show the instructions, receive the PIN (related to PIN-TFA),
and show the checksums (related to OpTFA). We also developed an Android application to display
the PIN (for the PIN-TFA approach) and to receive the checksum (for OpTFA checksum comparison).
This setup mimics a TFA login experience where the user should input a correct PIN/checksum to
login to an account. Since the password entry procedure could be the same for both PIN-TFA and
OpTFA schemes, we skip the password entry and proceed with PIN/checksum entry. That is, we
assume that the user has already entered the username and password and is navigated to the TFA page
to prove the possession of the secondary device. The participants could open the study webpage from
a client and perform the tasks as instructed on the webpage. In our implementation, the webserver is
a virtual server running Apache HTTP Server. Client is a desktop with 2.38GHz Intel 2 Core Duo
and 8GB of memory. Device is a Samsung Galaxy S5 running Android 6.0.1. The server-side code is
implemented in HTML5, PHP and JavaScript. The smartphone app is developed in Java for Android.
One-Time PIN Generation: We mimic the generation of the PIN/checksum on the server and the
device using a random generation function. In the PIN-TFA approach, the PIN is generated by the
study app on the smartphone using the Random() function in Java and is displayed as a 6-digit
number to the participants. In OpTFA, the checksum is generated using rand() function in PHP and
is displayed to the participants as a 6-digit number for Num-C-D, and Voice-C-D, and is encoded
into QR code for QR-C-D.
Storing Participant Responses: To store the responses provided by the participants (the entered
PIN/checksum) we use a MySQL database. In case of Num-C-D and PIN-D-C, the responses are

21

Enter

Num-C-D

submit

Enter the PIN:

983322

(a) User interaction in Num-C-D

Scan

QR-C-D

(b) User interaction in QR-C-D

Speak

Voice-C-D

(c) User interaction in Voice-C-D

Fig. 5. OpTFA user interaction methods

stored as entered by each participant. In case of QR-C-D the checksum is recorded as captured
and decoded by the QR code decoder, and for Voice-C-D, the checksum is stored as transcribed by
the transcriber. We also keep the displayed PIN/checksum in the same database for further offline
comparison of the displayed and the entered value. The time it takes to complete each task, and
participants’ responses and ratings collected during the course of the study are also stored in the
same database.
Off-line Processing: To verify the correctness of the PIN/checksum entered by the participants, we
process the data stored on the database offline and report on any error committed by the participants
in entering the PIN (PIN-D-C), entering the checksum (Num-C-D), encoding/decoding the checksum
(QR-C-D), and speaking or transcription of the checksum (Voice-C-D). While the number of failed
attempts would have remained the same whether the processing was to be done in real-time or offline,
a real-time analysis could have given feedback to the users and requested them to make another
attempt which might impact the usability score. However, this impact would probably have been the
same on all methods equally.

7.2.2 Implementation of User Interaction methods. We implemented the following user inter-
action methods tested via our study:
Num-C-D: In this manual checksum approach of OpTFA, the checksum is displayed as a 6-digit
number on the webpage on C. We ask the participants to enter the checksum into the smartphone
app. This method is shown in Figure 5a.
QR-C-D: In this OpTFA method, we encode the 6-digit checksum as a 300× 300 pixel QR code on
the webpage using Google Chart API. To send the checksum to D, each participant opens the app on
D and captures the QR code. We used ZXing library [22] to decode the captured checksum on the
app. In this setting, the participant does not need to enter the checksum but only needs to hold her/his
phone and scan the QR code displayed on the browser’s screen as shown in Figure 5b.
Voice-C-D: In the Voice-C-D approach of OpTFA, similar to Num-C-D, we display the checksum
on C. However, rather than entering the checksum on D or capturing the QR code, we ask the
participants to speak the checksum into her/his smartphone as shown in Figure 5c. The smartphone
receives this audio, recognizes and transcribes it using a speech recognition tool based on IBM
Research Speech-to-Text API in our current implementation. The participant clicks on a “Record”

22

Enter

PIN-D-C

PIN
983322 983322

submit

Enter the PIN:

Fig. 6. Traditional PIN-D-C two factor authentication (PIN-TFA)

button we embedded in the app and speaks the 6-digit number. The transcriber application recognizes
the speech and converts it to numbers that can be compared against the locally computed checksum.
PIN-D-C: In the PIN-D-C approach (PIN-TFA), we map the PIN into a 6-digit number. We ask the
participants to press the generate button to display the 6-digit number in textview box on the study
app and to enter it on the webpage, as it is presented in Figure 6.

7.3 Study Design
7.3.1 Study Objectives and Metrics. To analyze the effectiveness of the OpTFA approach from
the point of view of usability and adoption potential, we conducted a formal lab-based study to
quantify the following metrics:

(1) Delay: How long does it take for the participants to perform each user interaction method? The
starting point is the time the PIN/checksum was generated and the ending point is the time each
PIN/checksum was received at the other end. OpTFA is reported to have a negligible delay [46]
and therefore we only time the user interaction.

(2) Error rate: How often do the participants, transcriber, and QR encoder/decoder produce an
error in transferring the checksum? We recorded all PIN/checksum values the participants had
entered and the one displayed to them and compared them with each other to determine the
number/fraction of errors committed in each method.

(3) Usability: How easy or difficult the participants find the system? Can they easily learn how to
use the system? Do they need the support of a technical person? To capture these aspects and to
quantify the usability of the tested methods, we used the standard System Usability Scale (SUS)8.
We also consider users’ perception of Adoptability, Trust, Security, and Efficiency of the system.

7.3.2 Study Protocol. We recruited 30 participants from diverse educational backgrounds from
our university’s campus (students and non-students), by word of mouth. After a brief introduction
about TFA and our study, the participants were navigated by an examiner to a desk and were provided
an Android phone that had the study app installed and a desktop that had the study webpage opened.
The examiner supervised and observed the participants throughout the study. Upon completion of
each task, the participants filled out a survey form. To assure that participants received equal guidance,
all information and instructions were shown on each page. We only aim to compare the usability
of the user interaction model in the TFA process, and therefore, the installation and setup was not
evaluated in our study. Also, since we compare different OpTFA methods with PIN-TFA methods,
and we do not solely evaluate the usability of OpTFA, we do not require to define a primary task for
the users (e.g., checking emails). Hence, performing same set of tasks in multiple trials would be
a sufficient and valid usability design to compare OpTFA with the traditional approach. The study
took about 20 minutes for each participant to complete. The study was approved by our university’s

8SUS is a conventional method to measure the usability of systems on 0-100 scale [31]. SUS has been designed to measure
the usability of a system with respect to learnability, need for support, participants experience, and satisfaction.

23

Q1. Demographics

Q3. SUS

Welcome Thank you

Main Study Phase

Pre-Study Phase Post-Study Phase

Q2. Technical
Background

Q4. TFA Specific

Q5. Open-ended

M1.Num-D-C

M2.QR-C-D M3.Voice-C-D

M4.PIN-C-D

⑩

↻

⑩

⑩ ⑩

Fig. 7. Study protocol

IRB. Participation in the study was voluntary, and standard ethical procedures were fully followed,
(e.g., participants being informed, given choice to discontinue, and not deceived).

The study was composed of three phases: the pre-study, the main study, and the post-study phase.
Analyzing the participants’ answers, error rates, and behavior in the study helped us to: (1) reason
about the usability of each method (or its lack thereof), (2) compare the usability of different methods,
and (3) investigate possible security issues arising from the usability problems.

Pre-Study Phase: The quantitative/qualitative pre-study questions were grouped into two categories:
∙ Q1. Demographics: The participants were asked to fill out a demographic questionnaire. These

questions polled for each participant’s age, gender and education.
∙ Q2. Technical Background: The participants were asked about their general computer and security

skills, and about their familiarity with the subject of the study (two-factor authentication).

Main Study Phase: The main study phase aims to evaluate the average error rate and the delay
related to each of the tested methods. As discussed in Section 7.2, below is the list of the four user
interaction methods that participants were asked to perform. We randomized the ordering of these
four methods to remove any learning biases. We asked the participants to perform the tasks related to
each method ten times. Since inputting the username and password is similar regardless of the two
factor authentication scheme, we did not ask users to perform it to keep the study short and concise.
∙ M1. Num-C-D: In this method, we asked the participants to get the checksum number from the

webpage and enter it into the app.
∙ M2. QR-C-D: In this method, the participants were asked to capture the QR code from the webpage

using the phone.
∙ M3. Voice-C-D: In this method, the participants were asked to get the checksum number from the

webpage and to speak it to the phone app.
∙ M4. PIN-D-C: As the baseline for our study, we asked the participants to enter the PIN number

from the phone to the webpage.

24

0
2
4
6
8

10
12
14
16
18
20

Num-C-D QR-C-D Voice-C-D PIN-D-C

Delay

Fig. 8. Mean (std. dev) of delay in seconds

The task related to each method was shown on a webpage followed by the post-study questions.
After completion of each task and answering the post-study questions related to that specific method,
the participants were instructed to test the next user interaction method.

Post-Study Phase: The post-study phase consists of the following set of questionnaires to evaluate
and compare the usability of the four tested methods.
∙ Q3. System Usability Scale: In the first set of post-study questionnaires, the participants were asked

to fill out the SUS questionnaire for each of the four user interaction methods.
∙ Q4. TFA-Specific Questions: In the second questionnaire, we asked more specific questions about

each of the user interaction methods to figure out how participants felt about the security and
usability of each TFA interaction method. This questionnaire addressed users’ perception of:
Adoptability, Trust, Security, and Efficiency.
∙ Q5. Open-Ended Question: The study concluded with one open-ended question about the system

(i.e., we asked if the participants had additional comments and if they preferred any method).

7.4 Results and Analysis
7.4.1 Pre-Study Analysis. The pre-study demographics questionnaire shows that the 30 partici-
pants were from the age group of 18-24 years (30%), 25-34 (60%), and 35-44 (10%) with an equal
number of undergraduate and graduate students from diverse educational backgrounds, including
education, engineering, healthcare, and science. Only one of the participants was specialized in
computer security. 23% of the participants were female and 77% were male. 77% of the participants
speak English as a second language, and 23% speak English as their mother language. They ranked
their general computer background as Poor (4%), Average (73%), and Excellent (23%), and their
general computer security skills as Poor (3%), Average (83%), and Excellent (14%). Therefore, we
believe that our sample is representative of diverse participants, with only average computer and
security skills.

Table 2. The average error rate for each method

TFA Method Average Error Rate
Num-C-D 4%
QR-C-D 2%
Voice-C-D 5.3%
PIN-D-C 5%

7.4.2 Main Study Analysis. Delay: We estimated the time it takes the participants to transfer the
PIN/checksum in each of the user interaction methods. As mentioned in Section 7.3, in computing
the delay, we considered the starting point to be the time the PIN/checksum was generated and the
ending point to be the time the PIN/checksum was received by the client/device. Figure 8 shows the
average delay of each method.

25

Num-C-D had the highest delay compared to other methods, with the average and standard
deviation of 15.03s (3.62s). This result was expected, as in this method, the user enters the checksum
manually on the phone using the small phone keypad. In contrast, QR-C-D imposes the least amount
of delay compared to the other methods, with an average of 7.96s (2.45s). The average delay for
Voice-C-D was 13.53s (4.23s), and for PIN-D-C was 13.62s (3.29s).

The Friedman test was conducted to compare the delay among different user interaction methods
in PIN-D-C, Num-C-D, Voice-C-D, and QR-C-D and rendered a Chi-square value of 49.375, which
showed a statistically significant difference with a p-value of 0.00. All results of statistical significance
are reported at a 95% confidence level (alpha level of 0.05). Further, Wilcoxon signed-rank test9,
corrected using Bonferroni correction with an adjusted alpha level of 0.0125 per test (0.05/4) showed
a statistically significant difference for the following pairs10: (QR-C-D, PIN-D-C), (QR-C-D, Voice-
C-D), and (QR-C-D, Num-C-D), each with a p-value = 0.00. This confirms that QR-C-D outperforms
all the other tested methods in terms of the delay incurred in the TFA process.

Error Rates: The error rates for all tested methods are presented in Table 2. The table shows the
error rate for the Num-C-D method to be 4%, arising from the incorrect entry of the PIN numbers.
The lowest error rate was reported to be 2% for QR-C-D. In this method, the user captures the QR
code, while the phone makes the comparison by decoding the QR code. Since the QR decoder is
almost error-free, we observe that the cause of the errors was the failure of the users in capturing the
QR code, i.e., in some instances the participants failed to scan the QR Code and moved forward to
the next task. As expected, it seems users have higher error rate in manual checksum entry Num-C-D
compared to QR-C-D.

In the Voice-C-D method, we found the error rate to be 5.3%, which is higher than the other
methods. To compute the error rate, we compare the transcribed audio checksum with the checksum
generated and displayed to the participants. We accepted the transcription errors for zero being
transcribed as “Oh”, two being transcribed as “to”, and four being transcribed as “for”. To understand
the root cause of the errors we manually reviewed several of the audio samples and noticed that
the transcriber made errors in transcribing the spoken checksum in the presence of background
noise. Moreover, the majority of the participants were not native English speakers, which may have
increased the transcription errors since the transcriber we used was designed for native English
speakers. Since we used an off-the-shelf transcriber, we could not set the grammar to only generate
digits. Access to the transcription grammar might improve the accuracy of Voice-C-D method.

As the baseline, PIN-D-C resulted in a 5% error rate, arising from the incorrect input of the PIN
on the client. It seems that users make slightly higher errors compared to Num-C-D and QR-C-D,
however, this traditional TFA method shows a better result compared to Voice-C-D.

We conducted a Friedman test to compare the error rate among multiple methods, which showed a
statistically significant difference and rendered a Chi-square value of 7.847 with a p-value of 0.049.
However, Wilcoxon signed-rank test, conducted using Bonferroni adjusted alpha levels of 0.0125 per
test (0.05/4), did not show statistical significance for any of the pairs. It seems that most methods
have similar error rates, statistically speaking.

7.4.3 Post-Study Analysis. In the post-study questionnaire, users were asked to rate their agree-
ment level with several statements about the usability of each method. (5 – strongly agree, 4 – agree,
3 – neither agree nor disagree, 2 – disagree, 1 – strongly disagree). The results are shown in Figure 9.

9This is a non-parametric statistical hypothesis test used to compare two related samples. This test results in a statistically
significant outcome if the p value for comparison is less than 0.05 for a confidence level of 95%
10In each reported (x, y) pair, the value of y is statistically significantly greater than x.

26

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

Adoptability Trust Security Efficiency

Num-C-D
QR-C-D
V-C-D
PIN-D-C

0
10
20
30
40
50
60
70
80
90
100

SUS

Fig. 9. Mean (std. dev) of user perception ratings

SUS Scores: For QR-C-D, we received the highest SUS score of 76.56 (15.12) compared to other
methods. For Voice-C-D, we had the lowest usability with the SUS score of 68.53 (17.45). The
average SUS for PIN-D-C reported by our study participants was 72.5 (15.96), and for Num-C-D
the SUS score was 70.17 (15.56). Except for Voice-C-D, other methods seem to offer a SUS of
higher than 70, which is generally representative of a system with good usability. We conducted the
Friedman test to compare the SUS scores. The test did not show statistically significant difference.

User Perception Ratings: We analyze the different facets of the user perception ratings below.
∙ Adoptability: Most of the users found the QR-C-D method to be adoptable in practice as reflected

in the adoptability score of 4.59. The Num-C-D method had the second rank in adoptability with
the average score of 4.17, almost similar to PIN-D-C score with the average of 4.11. Compared to
the other methods, users seem to find the Voice-C-D method to be less adoptable reflected in the
average adoptability score of 3.93.
∙ Trust: We found the QR-C-D method to have the highest average trust score of 4.67. PIN-D-C has

the second place with an average score of 4.43. The trust score for Num-C-D method was also
high with the average of 4.03. Voice-C-D has the lowest trust score with the average score of 3.86.
Evidently, the users are more in agreement than disagreement that they can trust the methods.
∙ Security: The motivation of this question is to evaluate the users’ perception of security (and not

to evaluate the theoretical and practical security of each method). Therefore, in this part of the
post-study questionnaire, we asked the users how they felt about each method from the security
point of view. We found that most of the participants ranked QR-C-D to be more secure compared
to the other methods with the average score of 4.70. For PIN-D-C the score was 4.43 and for
Num-C-D this score was 4.00. As was the case for other usability scores, compared to the other
methods, the Voice-C-D method had a lower average security score of 3.83.
∙ Efficiency: At the end of our post-study questionnaire, we asked the users how efficient/fast they

felt each method was. Most of the participants ranked QR-C-D to be the fastest schema with an
average score of 4.74. The score for PIN-D-C was 4.21 standing at the second place and the score
for Num-C-D was 4.07. The average score for Voice-C-D was 3.93 (the least among all). Note
that this result is the perception of the users of the efficiency of the system. The actual delay is as
reported in Section 7.4.2.
The Friedman test was conducted to compare the user’s perception of adoptability, trust, security,

and efficiency of the methods, among different user interaction methods and rendered Chi-square
values of 8.968, 24.377, 18.485, and 11.349, respectively, which showed a statistically significant
difference with p-values of 0.03, 0.00, 0.00, and 0.01, for adoptability, trust, security, and efficiency,
respectively. This shows that users had a significantly different perception of the adoptability, trust,
security, and efficiency of the methods.

Further, Wilcoxon signed-rank test, conducted using the Bonferroni adjusted alpha level of 0.0125
per test (0.05/4), showed statistical significance for adoptability between (Voice-C-D, QR-C-D) pair

27

with a p-value of 0.009. For the level of trust, (Voice-C-D, PIN-D-C) and (Voice-C-D, QR-C-D)
pairs showed statistically significant difference with a p-value of 0.001 for both. Similarly, for the
perception of security between the (Voice-C-D, QR-C-D) pair with a p-value of 0.004 and (Num-C-D,
QR-C-D) pair with a p-value of 0.012 we noticed statistical significance. Finally, for the perception
of the efficiency, the (Voice-C-D, QR-C-D) pair with a p-value of 0.004 and (Num-C-D, QR-C-D)
pair with a p-value of 0.012, a statistically significant result was observed.

Informal Participant Statements. Most of the participants found the QR-C-D method relatively
effortless compared to the other methods. Many of the participants said the QR code is much easier
and faster to use. Comparatively, the participants found the voice method to be less usable among
other methods. Some of the participants expressed that they do not like to speak the checksum values
out loud in public places, and therefore, are not comfortable with the Voice-C-D method. We quote
some of the interesting comments:

∙ “I would not suggest the voice recording because it is insecure in my opinion, also mistakes can
be made easily with voice recording. I suggest using the QR code because it is faster and safer.”
∙ “The first one [Num-C-D] wasn’t easy for me, i needed support to get it done, the last one with QR

codes was fun and easy, i feel maybe more secure to use than others”
∙ “For 2fa, if text input is required, I prefer using my computer to type (or copy) the text into the

authenticating website. The best methods are those that don’t require me to type at all (on computer
or phone) but instead use confirmation links, Approval dialogues, or QR codes.
∙ “I prefer receiving codes via SMS, because I forward text messages to my computer, and can copy

and paste the authentication code into my browser. Duo is my favorite 2FA app because if gives
me a pop up dialogue with an “approve” button, so I can login without typing any codes.
∙ In today’s study, the QR option felt like the fastest option, but in real life it might not be the fastest.

Today, I held the phone up to the screen and scanned one code after another. In real life, I would
have to pull my phone out and open the app each time, so the total time to use the QR code would
be similar to the other options.”

7.4.4 Summary of the Results. After analyzing the 1200 tasks that users performed in our study,
we found out that the QR-C-D method has the lowest error rate, lowest delay, and highest usability
perception ratings among all methods. While Voice-C-D had the lowest SUS score and highest error
rate compared to other methods, the average delay of the Voice-C-D method was in the second
place after QR-C-D. As expected, the two semi-automated user-assisted methods (i.e., QR-C-Dand
Voice-C-D) incurred lower delay compared to the manual PIN/checksum copy-confirm methods.
In contrast, PIN-D-C and Num-C-D showed a relatively higher delay compared to QR-C-D and
Voice-C-D, due to the fully manual copying of the PIN/checksum in Num-C-D and PIN-D-C (one on
the phone and the other on the client). The two tasks show somehow similar error rates (around 5%)
and users’ perception of adoptability, trust, security, efficiency, and usability. However, we observed
that users are more comfortable entering the PIN on the client, than on the smartphone. Even though
the size of the PIN and the checksum were the same in our study, users seemed to prefer using a
full-size keyboard on the client than the smaller-form keypad on the smartphone to enter the numbers.

7.4.5 Limitations. Similar to any other study involving human subjects, our study also had certain
limitations. Some of these limitations stem from the nature of the lab-study and the fact that the
users may feel being controlled and under observance of the examiner. In some of the tasks this may
impact the users’ perception of usability/security. For example, in the lab setup users may not be
familiar with the people around them, hence they may be uncomfortable speaking the checksum
in the Voice-C-D method. In real life they may be in their homes and may not feel this discomfort.

28

Although OpTFA does not require the secrecy of the checksum value, users may think otherwise,
contributing to a lower usability ranking for the Voice-C-D method.

Recall that in OpTFA the user enters the master password on the client and compares the checksum
on the device, and the scheme then computes the hardened password that authenticates the user
to the server. From the user’s perspective, there are two tasks: (1) entering the password, and (2)
comparing the checksum. In the traditional PIN based 2FA scheme, the user’s tasks are: (1) entering
the password, and (2) entering the PIN. Since the first task is the same in both schemes, in our study
we only evaluated the usability of the system with respect to the second task.

We simulated the PIN/checksum entry or comparison, but not the setup and installation. Also we
did not set a primary task for the users (e.g., sending an email). This study design only compared the
PIN/checksum entry method among the new OpTFA and traditional PIN-TFA models. This choice
shortened the study and helped eliminate the fatigue affect while limiting the scope of the study.

In this study, we collected data from 30 participants. Our sample size is commensurate with that
of many prior usability studies of authentication systems (e.g., Karole et al. [51], Chiasson et al.
[33] and Acar et al. [24]). While collecting data from a larger and more diverse sample can be
continued in future, we believe that our study has sufficient statistical power to provide meaningful
results. Our analysis revealed that many of the differences we noted between the tested methods are
statistically significant and could not have occurred by chance, and therefore, can be generalizable
to larger samples. On the other hand, even though our participants’ demographics shows higher
number of male participants, the Mann-Whitney test between the female and the male participants to
compare the two groups did not show statistically significant difference. Moreover, we do not think
our results will be significantly affected based on education, technical background, or age since the
participants need to perform only simple tasks such as copying the PIN, scanning the QR Code, and
reading few digits. In case these factors impact the usability scores, we assume all methods will be
impacted somewhat similar and not just one isolated apprach. Hence, the difference among different
PIN/checksum entry methods will remain the same. Running an experiment with a larger number
of participants from different age groups and technical background could help us to scientifically
examine the impact of age and education on the usability.

8 DISCUSSION OF RELATED WORK
Device-enhanced password-authentication with security against offline dictionary attacks
(ODA). There are several proposals in cryptographic literature for password authentication schemes
that utilize an auxiliary computing component to protect against ODA in case of server compromise.
This was a context of the Password Hardening proposal of Ford-Kaliski [38], which was generalized
as Hidden Credential Retrieval by Boyen [28], and then formalized as (Cloud) Single Password
Authentication (SPA) by Acar et al. [24] and as a Device-Enhanced PAKE (DE-PAKE) by Jarecki
et al. [45]. These schemes are functionally similar to a TFA scheme if the role of the auxiliary
component is played by the user’s device D, but they are insecure in case of password leakage e.g.
via client compromise. We note that the scheme proposed in [24] also shows a Mobile Device SPA,
which provides client-compromise resistance, but it requires the user to type the password onto the
device D, and to copy a low entropy value from D to C, thus increasing the amount of manually
transmitted data. By contrast, OpTFA dispenses entirely with manual transmission of information to
and from D. The threat of an ODA attack on compromise of an authentication server also motivated
the notion of Threshold Password Authenticated Key Exchange (T-PAKE) [58], i.e. a PAKE in which
the password-holding server is replaced by 𝑛 servers so that a corruption of up to 𝑡 < 𝑛 of them leaks
no information about the password. In addition to general T-PAKE’s, several solutions were also
given for the specific case of 𝑛=2 servers tolerating 𝑡=1 corruption, known as 2-PAKE [30, 52],
and every 2-PAKE, with the user’s device D playing the role of the second server, is a password

29

authentication scheme that protects against ODA in case of server compromise. However, as in the
case of [24, 28, 38, 45], if a password is leaked then 2-PAKE offers no security against an active
attacker who engages with a single 2-PAKE session. Isler and Kupcu [75, 76] present generalizations
of the DE-PAKE work [45] (the basis of our work too) by noting that the device in DE-PAKE and the
login servers can be distributed over several machines essentially using Threshold OPRFs. However,
none of these techniques provide second-factor security or security against password compromise. If
the password leaks, the security has already degraded. On the other hand, the ability to distribute
servers and devices applies to our work too but the second factor requires physical possession by the
user, hence it will typically be implemented with one device.
TFA with ODA security. Shirvanian et al. [66] proposed a TFA scheme which extends the security
of traditional PIN-based TFAs against ODA in case of server compromise. However, OpTFA offers
several advantages compared to [66]: First, [66] relies on PKI (the client sends the password and the
one-time key, OTK, to the PKI-authenticated server) while OpTFA has both a PKI-model and a PKI-
free instantiation. Second, [66] assumes full security of the 𝑡-bit D-C channel for OTK transmission
while we reduce this assumption to a 𝑡-bit authenticated channel between C and D. Consequently,
we improve user experience by replacing the read-and-copy action with simpler and easier compare-
and-confirm. On the other hand, [66] can use only the 𝑡-bit secure D-C link while OpTFA requires
transmission of full-entropy values between D and C.
TFA with the 2nd factor as a local cryptographic component. Some Two-Factor Authentication
schemes consider a scenario where the 2nd factor is a device D capable of storing cryptographic keys
and performing cryptographic algorithms, but unlike in our model, D is connected directly to client
C, i.e. it effectively communicates with C over secure links. (However, security must hold assuming
the adversary can stage a lunch-time attack on device D, so D cannot simply hand off its private
keys to C.) The primary example is a USB stick, like YubiKey [21], implementing e.g. the FIDO
U2F authentication protocol [13, 56]. A generalized version of this problem, including biometric
authentication, was formalized by Pointcheval and Zimmer as Multi-Factor Authentication [63], but
the difference between that model and our TFA-KE notion is that we consider device D which has no
pre-set secure channel with client C. Moreover, to the best of our knowledge, all existing MFA/TFA
schemes even in the secure-channel D-C model are still insecure against ODA on server compromise,
except for the aforementioned TFA of Shirvanian et al. [66].
Alternatives to PIN-based TFA with remote auxiliary device. Many TFA schemes improve on
PIN-based TFAs by either reducing user involvement, by not requiring the user to copy a PIN from D
to C, or by improving on its online security, but none of them protect against ODA in case of server
compromise, and their usability and online security properties also have downsides.

PhoneAuth [34] and Authy [19] replace PINs with S-to-D challenge-response communication
channeled by C, but they require a pre-paired Bluetooth connection to secure the C-D channel. A
full-bandwidth secure C-D channel reduces the three-party TFA notion to a two-party setting, where
device D is a local component of client C, but requiring an establishment of such secure connection
between a browser C and a cell phone D makes a TFA scheme harder to use. TFA schemes like
SlickLogin (acquired by Google) [3], Sound-Login [18], and Sound-Proof [50] in essence attempt to
implement such secure C-to-D channel using physical security assumptions on physical media e.g.
near-ultrasounds [3], audible sounds [18], or ambient sounds detecting proximity of D to C [50], but
they are subject to eavesdropping attacks and co-located attackers.

Several TFA proposals, including Google Prompt [16] and Duo [11], follow a one-click approach
to minimize user’s involvement if D is a data-connected device like a smartphone. In [11, 16] S
communicates directly over data-network to D, which prompts the user to approve (or deny) an
authentication session, where the approve action prompts D to respond in an entity authentication
protocol with S, e.g. following the U2F standard [13]. This takes even less user’s involvement than

30

the compare-and-confirm action of our TFA-KE, but it does not establish a strong binding between
the C-S login session and the D-S interaction. E.g., if the adversary knows the user’s password, and
hence the TFA security depends entirely on D-S interaction, a man-in-the-middle adversary who
detects C’s attempt to establish a session with S, and succeeds in establishing a session with S before
C does, will authenticate as that user to S because the honest user’s approval on D’s prompt will
result in S authenticating the adversarial session.
Usability Study of TFA Schemes. Several studies have evaluated the usability of two factor authen-
tication methods (e.g., hardware tokens, SMS, email). In a study published about the usability of one
factor and TFA in phone banking [40], a survey was conducted and users answered questions about
the usability of different phone banking authentication methods. The result indicated that while TFA
is considered to be more secure compared to password-only authentications, it offers lower usability.
In another study about the usability of e-banking authentication tokens [73], usability and efficiency
of different tokens were compared. While the users’ perception of the security and the usability of the
tokens were different, this study once again confirms that users preferred the token with the highest
usability even though their perception of the security of such token was the least among all. In [35],
three popular TFA schemes, i.e., codes generated by security tokens, one-time PINs received via
email or SMS, and dedicated smartphone apps (e.g., Google Authenticator) were studied. This study
shows that smartphone apps offer a higher adoption possibility compared to other methods.

The usability of different checksum/fingerprint verification with respect to the fingerprint exchange
and presentation (e.g., hexstring, numeric, images) has also been studied in the past [36, 67]. Similarly,
there exists several studies that use SAS protocols and different out-of-band channels for the purpose
of device pairing [49, 55] to establish secure connection between two (or more) wireless devices
communicating over a short-range channel, such as WiFi or Bluetooth. Even though these studies
have considered verification on smartphone applications, the user interaction in these schemes is
completely different from the user interaction in OpTFA. In the mentioned studies, the user typically
performs a compare-confirm verification of fingerprints displayed on their devices or verbally recited
to them. In contrast, the type of checksum verification in OpTFA is copy-confirm where the copying
part is performed manually by the user (e.g., Num-C-Dand Voice-C-D) or somewhat automatically
by user’s assistance (e.g., QR-C-D) and the confirmation is performed automatically by the device.

Another communication channel that is being used in many security applications is the QR
code (e.g., TFA setup [11, 14], TFA PIN transfer [66], device pairing [37, 60, 69], and checksum
comparison [17, 20]). While QR codes have been studied in the past, one unique difference between
OpTFA use of QR code from other security protocols could be in the asymmetric nature of the devices
between which the code is transferred (i.e., a full computer terminal and a phone), as opposed to
symmetric devices, such as two phones, in other applications. Besides, in some of these applications
(such as device pairing and checksum comparison), the QR code should be transferred in both
direction and its equality be verified on both parties of the protocol, while OpTFA only requires the
client to be authenticated and therefore the QR code is transferred in only one direction (from the
client to the device). Note that although some security applications such as TFA, transfers the code in
the same direction, their purpose is the initial setup and hence the transfer is a performed only once.

Another line of studies related to the usability of device-based authentication is password manager
apps, in which the user reads the passwords from the password manager apps on the device and
copy it to the web page [59]. Isler et al. [42] studied usability of their mobile and cloud based
single password authentication and compared them with traditional password and 2FA authentication.
Overall, their study with 25 participants shows that SPA could be a more usable alternative compared
to traditional password based and 2FA authentication. A fundamental difference between the usability
of OpTFA and other device-based one factor and two factor authentication solution is the direction
of the user interaction task. While in other device-based authentication solutions the user should

31

copy the authentication token from the device to the client, in OpTFA the checksum is transferred
from the client to the device for verification. Of course, once the channel gets authenticated the PIN
is transferred from the device to the client. However, this PIN transfer is not assisted by the user
(only the checksum comparison is assisted by a human user). Therefore, while our work follows a
similar user study methodology, it is essentially different from other studies.

Another related study is [65] which performed a usability evaluation of the security code verifica-
tion deployed for the purpose of end-to-end encryption in Signal. One main difference between code
verification in protocols such as Signal and OpTFA is that, in our protocol, the checksum comparison
is between two different devices (a phone and a laptop as opposed to two phones) that are in close
proximity and in possession of one single user. Also, the signal protocol results in long security
codes to compare, while we have short codes in OpTFA.

9 CONCLUSION
We designed a TFA system that offers end-to-end security by protecting against a “man-in-the-middle”
attacker that controls the communication channels between all parties, and can compromise any
party. In particular, protection is provided upon server compromise, device compromise, and client
compromise (which implies password leakage). Our system utilizes the “short authenticated strings”
model [71] to add TFA security against attacks on the channel between the TFA device and the client
machine. We formulated a rigorous security model for this setting and presented a protocol that
provably satisfies this security model. We also prototyped an implementation of this system based
on device-to-client channels that require reduced user involvement compared to the TFA systems
deployed today, and we evaluated the usability of the resulting system.

REFERENCES
[1] RSA breach leaks data for hacking securid tokens. http://goo.gl/tcEoS, 2011.
[2] LinkedIn Confirms Account Passwords Hacked, 2012. http://goo.gl/AWB5KC.
[3] Google acquires slicklogin, the sound-based password alternative, 2014. https://goo.gl/V9J8rv.
[4] Russian Hackers Amass Over a Billion Internet Passwords. Available at: http://goo.gl/aXzqj8, 2014.
[5] Hack Brief: Yahoo Breach Hits Half a Billion Users, 2016. https://goo.gl/nz4uJG.
[6] Sim swap fraud, 2016.
[7] Sms-based two-factor authentication, 2016.
[8] Yahoo Says 1 Billion User Accounts Were Hacked, 2016. https://goo.gl/q4WZi9.
[9] Over 560 Million Passwords Discovered in Anonymous Online Database, 2017. https://goo.gl/upDqzt.

[10] Google Cloud Messaging, 2018. https://goo.gl/EFvXt9.
[11] Duo Security Two-Factor Authentication, 2019. https://goo.gl/e38UnB.
[12] Facebook stored hundreds of millions of passwords in plain text, 2019.

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users.
[13] FIDO Universal 2nd Factor (U2F) Overview, 2019. https://bit.ly/2IpPYH8.
[14] Google Authenticator Android app, 2019. https://goo.gl/Q4LU7k.
[15] Google stored some passwords in plain text for fourteen years, 2019.

https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years.
[16] Sign in faster with 2-Step Verification phone prompts, 2019. https://goo.gl/3vjngW.
[17] Signal by Open Whisper Systems, 2019. https://signal.org/.
[18] Sound Login Two Factor Authentication, 2019. https://goo.gl/LJFkvT.
[19] Two-factor authentication - authy, 2019. https://www.authy.com/.
[20] WhatsApp Simple, Secure, Reliable messaging, 2019. https://www.whatsapp.com/.
[21] YubiKeys: Your key to two-factor authentication, 2019. https://goo.gl/LLACvP.
[22] Zxing (“zebra crossing”) barcode scanning library for java, android, 2019. https://github.com/zxing/zxing.
[23] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman Assumptions and an Analysis of

DHIES. In Topics in Cryptology - CT-RSA ’01, volume 2020 of Lecture Notes in Computer Science. Springer, 2001.
[24] Tolga Acar, Mira Belenkiy, and Alptekin Küpçü. Single password authentication. Computer Networks, 57(13), 2013.

32

[25] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against dictionary attacks.
In Advances in Cryptology – Eurocrypt, 2000.

[26] Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: A password-based protocol secure against
dictionary attacks and password file compromise. In ACM CCS, pages 244–250, 1993.

[27] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve points indistinguishable
from uniform random strings. 2013.

[28] Xavier Boyen. Hidden credential retrieval from a reusable password. In Proc. of ASIACCS, 2009.
[29] Xavier Boyen. HPAKE: Password authentication secure against cross-site user impersonation. In Cryptology and

Network Security – CANS 2009, pages 279–298. Springer, 2009.
[30] John Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo. A new two-server approach for authentication with short

secrets. In 12th USENIX Security Symp, pages 201–213, 2003.
[31] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry, 189(194):4–7, 1996.
[32] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure channels. In

International Conference on the Theory and Applications of Cryptographic Techniques, pages 453–474, 2001.
[33] Sonia Chiasson, Paul C van Oorschot, and Robert Biddle. A usability study and critique of two password managers. In

Usenix Security, 2006.
[34] Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan Wallach, and Dirk Balfanz. Strengthening user authentica-

tion through opportunistic cryptographic identity assertions. In Proceedings of ACM conference on Computer and
communications security. ACM, 2012.

[35] Emiliano De Cristofaro, Honglu Du, Julien Freudiger, and Greg Norcie. A comparative usability study of two-factor
authentication, 2013.

[36] Sergej Dechand, Dominik Schürmann, Karoline Busse, Yasemin Acar, Sascha Fahl, and Matthew Smith. An empirical
study of textual key-fingerprint representations. In USENIX Security Symposium, pages 193–208, 2016.

[37] Ben Dodson, Debangsu Sengupta, Dan Boneh, and Monica S Lam. Secure, consumer-friendly web authentication and
payments with a phone. In International Conference on Mobile Computing, Applications, and Services. Springer, 2010.

[38] Warwick Ford and Burton S. Kaliski Jr. Server-assisted generation of a strong secret from a password. In WETICE,
pages 176–180, 2000.

[39] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based key exchange resilient to
server compromise. In Advances in Cryptology. 2006.

[40] Nancie Gunson, Diarmid Marshall, Hazel Morton, and Mervyn Jack. User perceptions of security and usability of
single-factor and two-factor authentication in automated telephone banking. Computers & Security, 30(4), 2011.

[41] Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols. 2(3):230–268, August 1999.
[42] Devriş İşler, Alptekin Küpçü, and Aykut Coskun. User study on single password authentication.
[43] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in the standard model. In

CRYPTO, pages 273–293, 2012. Cryptology ePrint Archive, report 2011/219.
[44] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly Efficient and Composable Password-

Protected Secret Sharing. In 1st IEEE European Symposium on Security and Privacy (EuroS&P). 2015.
[45] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena. Device-enhanced password protocols with

optimal online-offline protection. In ASIACCS, 2016. Full version at Cryptology ePrint Archive, http://ia.cr/2015/1099.
[46] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena. Two-factor authentication with end-to-end

password security. In International Conference on Practice and Theory of Public Key Cryptography (PKC), 2018.
[47] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An Asymmetric PAKE Protocol Secure Against Pre-

Computation Attacks. In Advances in Cryptology–EUROCRYPT 2018. 2018.
[48] Katie Kleemola John Scott-Railton. London calling: Two-factor authentication phishing from iran, 2015.

https://goo.gl/yt12xH.
[49] Ronald Kainda, Ivan Flechais, and Andrew William Roscoe. Usability and Security of Out-Of-Band Channels in Secure

Device Pairing Protocols. In SOUPS: Symposium on Usable Privacy and Security, 2009.
[50] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan Capkun. Sound-proof: usable two-factor authenti-

cation based on ambient sound. In USENIX Security Symposium, 2015.
[51] Ambarish Karole, Nitesh Saxena, and Nicolas Christin. A comparative usability evaluation of traditional password

managers. In Information Security and Cryptology-ICISC. 2011.
[52] Jonathan Katz, Philip D. MacKenzie, Gelareh Taban, and Virgil D. Gligor. Two-server password-only authenticated key

exchange. In ACNS, pages 1–16, 2005.
[53] Swati Khandelwal. Real-world ss7 attack, 2017.
[54] Hugo Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In Annual International Cryptology

Conference, pages 546–566, 2005.

33

[55] Arun Kumar, Nitesh Saxena, Gene Tsudik, and Ersin Uzun. Caveat Emptor: A Comparative Study of Secure Device
Pairing Methods. In International Conference on Pervasive Computing and Communications (PerCom), March 2009.

[56] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath Srinivas. Security keys: Practical cryptographic
second factors for the modern web, 2016.

[57] Chia-Chi Lin, Hongyang Li, Xiao-yong Zhou, and XiaoFeng Wang. Screenmilker: How to milk your android screen for
secrets. In Network & Distributed System Security Symposium, 2014.

[58] Philip MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold password-authenticated key exchange. In
Advances in Cryptology – CRYPTO. 2002.

[59] Daniel McCarney, David Barrera, Jeremy Clark, Sonia Chiasson, and Paul C. van Oorschot. Tapas: design, imple-
mentation, and usability evaluation of a password manager. In Annual Computer Security Applications Conference,
2012.

[60] Jonathan M McCune, Adrian Perrig, and Michael K Reiter. Seeing-is-believing: Using camera phones for human-
verifiable authentication. In Security and privacy, 2005 IEEE symposium on, pages 110–124. IEEE, 2005.

[61] D M’raihi, M Bellare, F Hoornaert, D Naccache, and O Ranen. Hotp: An hmac-based one-time password algorithm.
Technical report, 2005.

[62] David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell. Totp: Time-based one-time password algorithm.
Technical report, 2011.

[63] David Pointcheval and Sébastien Zimmer. Multi-factor authenticated key exchange. In Applied Cryptography and
Network Security, 2008.

[64] Nitesh Saxena, Jan-Erik Ekberg, Kari Kostiainen, and N Asokan. Secure device pairing based on a visual channel. In
Security and Privacy, IEEE Symposium on, 2006.

[65] Svenja Schröder, Markus Huber, David Wind, and Christoph Rottermanner. When signal hits the fan: On the usability
and security of state-of-the-art secure mobile messaging. In EuroUSEC, 2016.

[66] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena, and Naveen Nathan. Two-factor authentication resilient to server
compromise using mix-bandwidth devices. In NDSS, 2014.

[67] Maliheh Shirvanian, Nitesh Saxena, and Jesvin James George. On the pitfalls of end-to-end encrypted communications:
A study of remote key-fingerprint verification. In Proceedings of the 33rd Annual Computer Security Applications
Conference, pages 499–511. ACM, 2017.

[68] Victor Shoup. ISO 18033-2: An emerging standard for public-key encryption, December 2004. Final Committee Draft.
[69] Bradley Neal Suggs. Pairing a device based on a visual code, January 31 2013. US Patent App. 13/194,267.
[70] Ersin Uzun, Kristiina Karvonen, and Nadarajah Asokan. Usability analysis of secure pairing methods. In Financial

Cryptography and Data Security. 2007.
[71] Serge Vaudenay. Secure Communications over Insecure Channels Based on Short Authenticated Strings. In Advances in

Cryptology - CRYPTO 2005, 2005.
[72] Ding Wang and Ping Wang. On the usability of two-factor authentication. In International Conference on Security and

Privacy in Communication Systems, pages 141–150. Springer, 2014.
[73] Catherine S Weir, Gary Douglas, Martin Carruthers, and Mervyn Jack. User perceptions of security, convenience and

usability for ebanking authentication tokens. Computers & Security, 28(1-2):47–62, 2009.
[74] Catherine S Weir, Gary Douglas, Tim Richardson, and Mervyn Jack. Usable security: User preferences for authentication

methods in ebanking and the effects of experience. Interacting with Computers, 22(3):153–164, 2009.
[75] Devriş İşler and Alptekin Küpçü. Distributed single password protocol framework. Cryptology ePrint Archive, Report

2018/976, 2018. https://eprint.iacr.org/2018/976.
[76] Devriş İşler and Alptekin Küpçü. Threshold single password authentication. Cryptology ePrint Archive, Report 2018/977,

2018. https://eprint.iacr.org/2018/977.

10 PROOF OF THEOREM 5.1 (CASE 1): DETAILS OF GAME CHANGES
The proof for Case 1 of Theorem 5.1 included in Section 5 contains only the high-level description
of the game-changes and the related claims. Here we provide the full version of this proof.

GameG1: Let (𝑧𝑖𝑑𝑖, 𝑧𝑖) be the KEM (ciphertext,key) pair generated in Step I.1 by ΠS
𝑖 . Let 𝑍 be

a random function which maps onto 𝜅-bit strings. Let EZcol be the event that any two S sessions
pick the same 𝑧𝑖𝑑 field, i.e. that for any 𝑖1, 𝑖2 in [𝑛𝑆] we have 𝑖1 ̸= 𝑖2 and 𝑧𝑖𝑑𝑖1 = 𝑧𝑖𝑑𝑖2 . Let
A1 = A0 and let game G1 be like G0 except that (1) it aborts if EZcol happens and (2) it sets each 𝑧𝑖
as 𝑧𝑖←𝑍(𝑧𝑖𝑑𝑖). We have that 𝑝1 ≤ 𝑝0 + 2𝜖KEM(𝑛𝑆) because the difference between G0 and G1 can
be upper-bounded by the distringuishing advantage between 𝑛𝑆 KEM instances using resp. real and

34

https://eprint.iacr.org/2018/976
https://eprint.iacr.org/2018/977

random keys, which is 𝜖KEM(𝑛𝑆), plus the probability of 𝑧𝑖𝑑-collision. However, the last probability
can also be upper-bounded by 𝜖KEM(𝑛𝑆) because a 𝑧𝑖𝑑-collision immediately implies an attack on
KEM, since in the real execution 𝑧𝑖𝑑-collision implies a repeat of the key 𝑧, while in the random-key
KEM game each 𝑧 is independently random.

GameG2: Let SIMSAS be the simulator for the SAS-MA scheme. Let A2 = A1, and let G2

be like G1 except that in Step II.1 when instance ΠC
𝑗 of C and instance ΠD

𝑙 of D execute the
SAS-MA sub-protocol, we replace this SAS-MA execution with a simulator SIMSAS interacting
with A1 and the ideal SAS-MA functionality FSAS[t]. Namely, instance ΠC

𝑗 , instead of sending
MC = (pk, 𝑧𝑖𝑑) to A1 and starting a SAS-MA instance to authenticate MC to D, will issue command
[SAS.SEND, sid ,ΠD

𝑙 ,MC] to FSAS[t], which triggers SIMSAS to start simulating to A1 the SAS-MA
protocol between ΠC

𝑗 and ΠD
𝑙 on message MC as an input. Depending on the way A1 responds,

SIMSAS can act in one of the following three ways: (1) If SIMSAS sends [SAS.CONNECT, sid] to
FSAS[t] then FSAS[t] sends [SAS.SEND, sid ,ΠC

𝑗 ,MC] to ΠD
𝑙 and ΠD

𝑙 proceeds to step II.2 using this
received message; (2) If SIMSAS sends [SAS.ABORT, sid] to FSAS[t] then FSAS[t] sends ⊥ to ΠD

𝑙

and ΠD
𝑙 aborts; (3) If SIMSAS sends [SAS.ATTACK, sid ,MC

*] to SIMSAS for some MC
* (w.l.o.g.

MC
* ̸= MC) then FSAS[t] throws a coin 𝜌𝑙 which comes out 1 with probability 2−𝑡 and 0 with

probability 1− 2−𝑡, and if 𝜌 = 0 then FSAS[t] sends fail to SIMSAS and ⊥ to ΠD
𝑙 and ΠD

𝑙 aborts, and
if 𝜌 = 1 then FSAS[t] sends succ to A and [SAS.SEND, sid ,ΠC

𝑗 ,MC
*] to ΠD

𝑙 , and then ΠD
𝑙 proceeds

to step II.2 using message MC
*. Since the SAS-MA protocol realizes the UC functionality FSAS[t]

with at most error 𝜖SAS (per instance), and the simulator SIMSAS executes independently from the
rest of the security game G2, it follows that 𝑝2 ≤ 𝑝1 +min(𝑛𝐶 , 𝑛𝐷) · 𝜖SAS.

GameG3: Note that in the above security game adversary A2 interacts with game G2 which internally
runs interactive algorithms SIMSAS and FSAS[t]. Note also that the SIMSAS algorithm interacts only
with FSAS[t] on one end and A2 on the other. We can, therefore, draw the boundaries between the ad-
versarial algorithm A and the security game G slightly differently: Consider an adversarial algorithm
A3 which executes the steps of A2 and SIMSAS, and a security game G3 which executes the rest of
game G2, including the operation of functionality FSAS[t]. Note that G3 does not execute the SAS-MA
protocol, but interacts with A3 using the FSAS[t] interface to SIMSAS, i.e. G3 sends to A3 messages of
the type [SAS.SEND, sid ,ΠC

𝑗 ,Π
D
𝑙 ,MC], and A3’s response must be one of [SAS.CONNECT, sid],

[SAS.ABORT, sid], and [SAS.ATTACK, sid ,MC
*]. Since we are only re-drawing the boundaries

between the adversarial algorithm and the security game, we have that 𝑝3 = 𝑝2.

GameG4: Let A4 = A3 and let G4 be as G3 except that if G3 sends [SAS.SEND, sid ,ΠC
𝑗 ,Π

D
𝑙 ,MC]

for some (𝑗, 𝑙) pair, and A4 sends [SAS.CONNECT, sid] in response, then we make the following
changes: First, 𝑒𝐷 sent by ΠD

𝑙 is formed as Enc(pk, (0𝜅, 0𝜅)) instead of Enc(pk, (𝑧,𝐾𝐶𝐷)) as in G3,
for pk specified in MC = (pk, 𝑧𝑖𝑑). Second, if A3 passes this 𝑒𝐷 to ΠC

𝑗 then ΠC
𝑗 decrypts it as the

(𝑧,𝐾𝐶𝐷) pair which was generated by ΠD
𝑙 . Otherwise the game does not change, and in particular

if A3 passes some other ciphertext 𝑒*𝐷 ̸= 𝑒𝐷 to ΠC
𝑗 then ΠC

𝑗 decrypts 𝑒*𝐷 in a standard way. By the
reduction to CCA security of PKE (KG,Enc,Dec), it follows that 𝑝4 ≤ 𝑝3 +min(𝑛𝐶 , 𝑛𝐷) · 𝜖PKE.

GameG5: Let EACbreak(CD) be an event that there is some session pair (ΠC
𝑗 ,Π

D
𝑙) s.t. (a) A4 responded

with [SAS.CONNECT, sid] to [SAS.SEND, sid ,ΠC
𝑗 ,Π

D
𝑙 ,MC], and (b) A4 delivered 𝑒𝐷 sent by ΠD

𝑙

to ΠC
𝑗 , and (c) in the DE-PAKE interaction between ΠC

𝑗 and ΠD
𝑙 authenticated by key 𝐾𝐶𝐷 in step

III either party accepts a message either not sent by the counterparty or delivered out of order. Let
A5 = A4 and G5 be as G4 except that G5 aborts if EACbreak(CD) ever happens. Since in game G4,
under conditions (a) and (b), the adversary has no information about key 𝐾𝐶𝐷 used by both ΠC

𝑗 and

35

ΠD
𝑙 , by the security of the authentic channel implementation we have that condition (c) can hold with

probability at most min(𝑛𝐶 , 𝑛𝐷) · 𝜖AC, hence 𝑝5 ≤ 𝑝4 +min(𝑛𝐶 , 𝑛𝐷) · 𝜖AC.

GameG6: Let EACbreak(CD′) be an event that there is some session pair (ΠC
𝑗 ,Π

D
𝑙) s.t. (a) A4 responded

with [SAS.CONNECT, sid] to [SAS.SEND, sid ,ΠC
𝑗 ,Π

D
𝑙 ,MC], (b) A4 did not deliver 𝑒𝐷 sent by ΠD

𝑙

to ΠC
𝑗 , and (c) instance ΠD

𝑙 did not abort in step III. Let A6 = A5 and G6 be as G5 except that G6

aborts if EACbreak(CD′) ever happens. Since in game G5, under conditions (a) and (b), only ΠD
𝑙 has

information on key 𝐾𝐶𝐷, by the security of the authenticated channel implementation we have that
condition (c) can hold with probability at most 𝑞𝐷 · 𝜖AC, hence 𝑝6 ≤ 𝑝5 + 𝑞𝐷 · 𝜖AC.

GameG7: Let A7 = A6 and G7 be as G6 except that for every uKE instance in step I.1 between ΠS
𝑖

and ΠC
𝑗 , if the adversary is an eavesdropper on it then G7 replaces key 𝐾𝐶𝑆 output by ΠS

𝑖 and ΠC
𝑗

with a random key. By uKE security it follows that 𝑝7 ≤ 𝑝6 +min(𝑛𝐶 , 𝑛𝑆) · 𝜖uKE.

GameG8: Let EACbreak(CS) be an event that there is some session pair ΠS
𝑖 ,Π

C
𝑗 s.t. (a) the adversary

is passive on the KE executed in step I.1 and (b) in the DE-PAKE interaction between ΠC
𝑗 and ΠS

𝑖

authenticated by key 𝐾𝐶𝑆 in step III either party accepts a message either not sent by the counterparty
or delivered out of order. Let A8 = A7 and G8 be as G7 except that G8 aborts if EACbreak(CS) ever
happens. Since in game G7 the adversary has no information about 𝐾𝐶𝑆 , by the security of the
authenticated channel implementation we have that 𝑝8 ≤ 𝑝7 +max(𝑛𝐶 , 𝑛𝑆) · 𝜖AC.

Note that at this point the game has the following properties: If A is passive on the C-S key
exchange in step I then A is forced, by game G8, to be passive on the C-S link in the DE-PAKE in
step III. Also, if A does not attack the SAS-MA sub-protocol and delivers D’s ciphertext to C in step
II then A is forced, by game G5, to be passive on the C-D link in the DE-PAKE in step III (and if A
does not deliver D’s ciphertext to C then this D instance will not respond to any further messages,
by game G6). The remaining cases are thus active attacks on the key exchange in step I and when A
either attacks the SAS-MA sub-protocol and gets D to accept MC* ≠ MC or sends 𝑒*𝐷 ̸= 𝑒𝐷 to C.

We will handle these cases next, and the crucial issue will be what the adversary does with the
𝑧𝑖𝑑 values created by S. Consider any S instance ΠS

𝑖 in which the adversary interferes with the key
exchange protocol in step I.1. Without loss of generality assume that the adversary learns key 𝐾𝐶𝑆

output by ΠS
𝑖 in this step. Note that D keeps a variable zidSet in which it stores all 𝑧𝑖𝑑 values it

ever receives, and that D aborts if it sees any 𝑧𝑖𝑑 more than once. Therefore each game execution
defines a 1-1 function 𝐿 : [𝑛𝑆]→ [𝑛𝐷] ∪ {⊥} s.t. if 𝐿(𝑖) ̸=⊥ then 𝐿(𝑖) is the unique index in [𝑛𝐷]
s.t. ΠD

𝐿(𝑖) receives MC = (pk, 𝑧𝑖𝑑𝑖) in step II.1 for some pk, and 𝐿(𝑖) =⊥ if and only if no D session
receives 𝑧𝑖𝑑𝑖. If 𝐿(𝑖) ̸=⊥ then consider two cases: First, if MC = (pk, 𝑧𝑖𝑑𝑖) which contains 𝑧𝑖𝑑𝑖
originates with some session ΠC

𝑗 , and second if MC = (pk, 𝑧𝑖𝑑𝑖) is created by the adversary.

GameG9: Consider first the case of a rogue session ΠS
𝑖 and a rogue session ΠC

𝑗 to which the
adversary sends 𝑧𝑖𝑑𝑖 in step I.2. Consider first the case when the adversary stops ΠC

𝑗 from getting
the corresponding 𝑧𝑖. Namely, let EzidOmit(i) be an event s.t. the adversary (a) either never issues
[SAS.ATTACK, sid ,MC

*] for MC
* containing 𝑧𝑖𝑑𝑖 or it does but the corresponding coin toss comes

out 𝜌 = 0, (b) does not send 𝑧𝑖𝑑𝑖 to any C instance, or it does send it to ΠC
𝑗 for some 𝑗 ∈ [𝑛𝐶], but

either responds with [SAS.ABORT, sid] to [SAS.SEND, sid ,ΠC
𝑗 ,Π

D
𝑙 ,MC] in step II.1 or responds

with [SAS.CONNECT, sid] but does not deliver 𝑒𝐷 sent by ΠD
𝑙 to ΠC

𝑗 in step II.2. Note that by
conditions (a) and (b), and the fact that already in game G4 ciphertext 𝑒𝐷 created in response to
[SAS.CONNECT, sid] does not contain any information about 𝑧𝑖 = 𝑍(𝑧𝑖𝑑𝑖), neither session ΠC

𝑗 nor
the adversary have any information about 𝑧𝑖. Therefore by the security of the authenticated channel
implementation ΠS

𝑖 should reject. Consider A9 = A8 and G9 like G8 except G9 sets ΠS
𝑖 ’s output to ⊥

at the end of step III if EzidOmit(i) happens. By the argument above we have that 𝑝9 ≤ 𝑝8 + 𝑞𝑆 · 𝜖AC.

36

GameG10: Consider the same case of a rogue session ΠS
𝑖 and a rogue session ΠC

𝑗 to which the
adversary sends 𝑧𝑖𝑑𝑖 in step I.2, but now consider the possibility that the adversary lets ΠC

𝑗 get the
corresponding 𝑧𝑖 but does not learn 𝑧𝑖 itself. Namely, let EzidPass(i,j) be an event for some 𝑖 ∈ [𝑛𝑆] and
𝑗 ∈ [𝑛𝐶], (a) ΠC

𝑗 receives 𝑧𝑖𝑑𝑖 in step I.2, (b) the adversary responds with [SAS.CONNECT, sid] to
[SAS.SEND, sid ,ΠC

𝑗 ,Π
D
𝑙 ,MC] in step II.1, (c) the adversary never issues [SAS.ATTACK, sid ,MC

*]

for MC
* containing 𝑧𝑖𝑑𝑖, and (d) the adversary delivers 𝑒𝐷 sent by ΠD

𝑙 to ΠC
𝑗 in step II.2. Consider

A10 = A9 and G10 like G9 except that if EzidPass(i,j) happens and in the DE-PAKE interaction between
ΠC

𝑗 and ΠS
𝑖 (where both parties use 𝑧𝑖 to authenticate this interaction), if the adversary does not

deliver to either ΠS
𝑖 or ΠC

𝑗 the messages of the counterparty in the correct order, G10 makes this
party abort and sets its output to ⊥. (Note that this means that the other party will also abort, unless
the misdelivered message was the last message this party sent.) Note that by conditions (a) and (b)
instance ΠD

𝑙 receives 𝑧𝑖𝑑𝑖 in MC sent by ΠC
𝑗 . By condition (c) this is the first time D receives 𝑧𝑖𝑑𝑖,

hence it will not abort, and by condition (d) ΠC
𝑗 will receive 𝑧𝑖 corresponding to 𝑧𝑖𝑑𝑖. Since the

adversary has no information about 𝑧𝑖, by the security of the authenticated channel implementation it
follows that ΠC

𝑗 and ΠS
𝑖 output 𝐾 ̸=⊥ only (except for the probability of an attack on the authenticated

channel) if the adversary passes the DE-PAKE messages 𝑚′ (authenticated by 𝑧) between these two
rogue instances as a man-in-the-middle. It follows that 𝑝10 ≤ 𝑝9 +min(𝑞𝐶 , 𝑞𝑆) · 𝜖AC.

Note that by the changes done by games G9 and G10, if the adversary interferes with the
KE in step I.1 with session ΠS

𝑖 , sends 𝑧𝑖𝑑𝑖 to some ΠC
𝑗 and does not send it to some ΠD

𝑙 in a
[SAS.ATTACK, sid , (pk*, 𝑧𝑖𝑑𝑖)] message for any 𝑙 then the adversary is forced to be a passive
eavesdropper on the DE-PAKE protocol in step III, or otherwise ΠS

𝑖 will output ⊥. Note that this is
the case when 𝐿(𝑖) = 𝑙 s.t. the game issues [SAS.SEND, sid ,ΠC

𝑗 ,Π
D
𝑙 , (pk, 𝑧𝑖𝑑𝑖)] for some pk, i.e. if

some ΠD
𝑙 receives 𝑧𝑖𝑑𝑖, it receives it as part of a message MC originated by some client session ΠC

𝑗 .

GameG11: Consider now the case when the adversary sends 𝑧𝑖𝑑𝑖 to D by itself, i.e. when 𝐿(𝑖) = 𝑙
s.t. the adversary does sends [SAS.ATTACK, sid ,MC

* = (pk*, 𝑧𝑖𝑑𝑖)] for some pk* in response
to [SAS.SEND, sid ,ΠC

𝑗 ,Π
D
𝑙 ,MC] for some 𝑗 and MC. Let EzFail(i,l) be an event that (a) the above

conditions hold, (b) that the adversary does not send 𝑧𝑖𝑑𝑖 to any client instance in step I.2, and (c)
that 𝜌𝑙 = 0, i.e. that ΠD

𝑙 rejects MC
* and aborts. Consider A11 = A10 and G11 just like G10 except

that G10 makes ΠS
𝑖 abort in step III and sets its output to ⊥ in case of event EzFail(i,l) for any 𝑙 ∈ [𝑛𝐷].

Note that by condition (a) and (b) session 𝑙 = 𝐿(𝑖) of D is the only one which gets 𝑧𝑖𝑑𝑖, hence
if 𝜌𝑙 = 0 then the adversary has no information about 𝑧𝑖 = 𝑍(𝑧𝑖𝑑𝑖), hence by the security of the
authenticated channel it follows that 𝑝11 ≤ 𝑝10 + 𝑞𝑆 · 𝜖AC.

After these game changes, we are finally ready to make a reduction from an attack on underlying
DE-PAKE to an attack on the TFA-KE. Specifically, we will construct an algorithm A* which runs in
time comparable to A, achieves advantage AdvDEPAKE

A* = 2 · (𝑝11 − 1/2) against the underlying DE-
PAKE scheme, and makes 𝑞*𝑆 , 𝑞

*
𝐷, 𝑞𝐶 , 𝑞𝐶 rogue queries respectively to S, D, to C on its connection to

S, and to C on its connection with D, where 𝑞*𝑆 = 𝑞*𝐷 = 𝑞* where 𝑞* is a random variable equal to the
sum of 𝑞 = min(𝑞𝑆 , 𝑞𝐷) coin tosses which come out 1 with probability 2−𝑡 and 0 with probability
1 − 2−𝑡. Recall that AdvTFAA = 2 · (𝑝0 − 1/2) and that by the game changes above we have that
|𝑝11 − 𝑝0| is a negligible quantity, and hence AdvDEPAKE

A* is negligibly close to AdvTFAA .

Reducing DE-PAKE attack to TFA-KE attack. The reduction works by A* internally running algorithm
A and emulating entities S, C, and D to A as in game G11. If A starts up an instance ΠS

𝑖 , ΠC
𝑗 , and ΠD

𝑙 ,
A* starts up its local state for these sessions, which we will denote Π̄S

𝑖 , Π̄C
𝑗 , and Π̄D

𝑙 .
Emulation of Step I of GenTFA to A: When A* starts up Π̄S

𝑖 or Π̄C
𝑗 , it runs the KE on their behalf

in step I.1. Let 𝐾S
𝐶𝑆,𝑖, 𝐾

C
𝐶𝑆,𝑗 be the keys these instances output from the KE step. If A connects

37

Π̄S
𝑖 and Π̄C

𝑗 in HbC fashion, we call this pair HbC-paired, and A* sets 𝐾S
𝐶𝑆,𝑖 = 𝐾C

𝐶𝑆,𝑗 to a random
key, as in G11 (see G7). In Step I.2 for Π̄S

𝑖 , A* picks 𝑧𝑖𝑑𝑖 and sets 𝑧𝑖 = 𝑍(𝑧𝑖𝑑𝑖) as in G11 (see G1),
and sends ACSend(𝐾S

𝐶𝑆,𝑖, 1, 𝑧𝑖𝑑𝑖). Denote this (𝑧𝑖𝑑𝑖, 𝑧𝑖) pair as (𝑧𝑖𝑑S𝑖 , 𝑧
S
𝑖). When Π̄C

𝑗 receives a
message in step I.2, it decodes it as 𝑧𝑖𝑑C𝑗 using ACRec(𝐾C

𝐶𝑆,𝑖, 1, ·). If ACRec fails then Π̄C
𝑗 aborts. If

Π̄S
𝑖 and Π̄C

𝑗 are not HbC-paired but 𝑧𝑖𝑑C𝑗 = 𝑧𝑖𝑑S𝑖 , we call these instances zid-paired.
Emulation of Step II of GenTFA to A: A* picks (sk, pk) as C in step II.1 and sends

[SAS.SEND, sid ,ΠC
𝑗 ,Π

D
𝑙 ,MC] to A for MC = (pk, 𝑧𝑖𝑑) and 𝑧𝑖𝑑 = 𝑧𝑖𝑑C𝑗 , where 𝑙 is an index

in [𝑛𝐷] set by A. If A responds with [SAS.CONNECT, sid] and 𝑧𝑖𝑑 was not sent to D before (oth-
erwise Π̄D

𝑙 aborts), A* generates 𝑒𝐷 as an encryption of two constants, as in G11. If A forwards
this 𝑒𝐷 to Π̄C

𝑗 , A* sets 𝑧C𝑗 = 𝑍(𝑧𝑖𝑑C𝑗), picks a random key 𝐾C
𝐶𝐷,𝑗 , sets 𝐾D

𝐶𝐷,𝑙 = 𝐾C
𝐶𝐷,𝑗 , and

denotes such Π̄C
𝑗 , Π̄

D
𝑙 instances as paired. However, if A responds with [SAS.ATTACK, sid ,MC

*]

for MC* = (pk*, 𝑧𝑖𝑑*) s.t. 𝑧𝑖𝑑* was not sent to D before (otherwise Π̄D
𝑙 aborts), A* picks coin 𝜌𝑙 as

in G11 (see G2) and aborts Π̄D
𝑙 unless 𝜌𝑙 = 1 (which happens with probability 2−𝑡). If Π̄D

𝑙 does not
abort, A* picks a random key 𝐾D

𝐶𝐷,𝑙 and sends out 𝑒𝐷 = Enc(pk*, (𝑍(𝑧𝑖𝑑*),𝐾D
𝐶𝐷,𝑙)). If A didn’t

respond with [SAS.CONNECT, sid] or Π̄C
𝑗 receives 𝑒*𝐷 which differs from 𝑒𝐷 sent by Π̄D

𝑙 , A* sets
(𝑧C𝑗 ,𝐾

C
𝐶𝐷,𝑗)← Dec(sk, 𝑒*𝐷).

As in G11, A* can abort some sessions at this point: (1) A* aborts Π̄D
𝑙 if A responds with

[SAS.CONNECT, sid] above but doesn’t forward 𝑒𝐷 to Π̄C
𝑗 (see G6); (2) A* aborts Π̄S

𝑖 and sets
its output to ⊥ if the conditions of event EzidOmit(i) are satisfied (see G9), i.e. (a) A was not HbC in
the key exchange with Π̄S

𝑖 in step I, (b) A either does not send [SAS.ATTACK, sid , ·] with 𝑧𝑖𝑑S𝑖 or
it does but the corresponding coin-toss 𝜌 comes out 0, (c) A doesn’t sent 𝑧𝑖𝑑S𝑖 to any Π̄C

𝑗 session,
or it does for some 𝑗 but then either does not do [SAS.CONNECT, sid] or does not deliver the
resulting 𝑒𝐷 to Π̄C

𝑗 ; (3) A* aborts Π̄S
𝑖 and sets its output to ⊥ if the conditions of event EzFail(i,l)

are satisfied for some 𝑙 ∈ [𝑛𝐷] (see G11), i.e. A does not send 𝑧𝑖𝑑S𝑖 to any Π̄C
𝑗 instance, sends

[SAS.ATTACK, sid , (pk*, 𝑧𝑖𝑑S𝑖)] to some Π̄D
𝑙 but coin 𝜌𝑙 comes out 0.

Emulation of Step III of GenTFA to A: Finally, A* emulates step III of TFA-KE by using the state
held by Π̄𝑃

𝑖 for any 𝑃 ∈ {S,C,D} and 𝑖 s.t. Π̄𝑃
𝑖 reached step III of GenTFA without aborting. A*

performs this emulation by implementing the Authenticated Channel layer as in step III of GenTFA
using the corresponding state computed above, i.e. 𝐾S

𝐶𝑆,𝑖, 𝑧
S
𝑖 for Π̄S

𝑖 , 𝐾C
𝐶𝑆,𝑗 , 𝑧

C
𝑗 ,𝐾

C
𝐶𝐷,𝑗 for Π̄C

𝑗 , and
𝐾D

𝐶𝐷,𝑙 for Π̄D
𝑙 , and implementing the DE-PAKE messages by initiating and communicating with the

external DE-PAKE parties, resp. ΠS
𝑖 , ΠC

𝑗 , and ΠD
𝑙 . However, if at any point the authenticated channel

receiver ACRec(·, ·, ·) outputs ⊥ for any Π̄𝑃
𝑖 , A* aborts this Π̄𝑃

𝑖 and never communicates with Π𝑃
𝑖

again. Moreover A* aborts whenever (1) event EACbreak(CD) ever happens for paired sessions Π̄C
𝑗 , Π̄

D
𝑙

(see G5), (2) event EACbreak(CS) ever happens for HbC-paired sessions Π̄C
𝑗 , Π̄

S
𝑖 (see G8), (3) if Π̄S

𝑖 and
Π̄C

𝑗 are zid-paired and Π̄C
𝑗 and Π̄D

𝑙 are paired (i.e. if event EzidPass(i,j) occurs), but Π̄S
𝑖 or Π̄C

𝑗 accept
any message except that sent by the counterparty in the corrent order (see 𝐺10).

By the above rules the only ΠS
𝑖 instances on which A* can be rogue are s.t. A was not

passive in the key exchange with Π̄S
𝑖 in step I, and there is a unique 𝑙 ∈ [𝑛𝑆] s.t. A sent

[SAS.ATTACK, sid , (pk*, 𝑧𝑖𝑑S𝑖)] in response to [SAS.SEND, sid ,ΠC
𝑗 ,Π

D
𝑙 , ·], and Π̄D

𝑙 did not
abort which in particular implies that coin 𝜌𝑙 came out 1. Note also that the only ΠD

𝑙 in-
stances on which A* can be rogue are s.t. A sent [SAS.ATTACK, sid , (pk*, 𝑧𝑖𝑑*)] in response
to [SAS.SEND, sid ,ΠC

𝑗 ,Π
D
𝑙 , ·], and Π̄D

𝑙 did not abort, implying again 𝜌𝑙 = 1. Therefore each rogue
session ΠS

𝑖 corresponds to a unique rogue session ΠD
𝑙 , hence w.l.o.g. we can assume a 1-1 relation

between rogue ΠS
𝑖 sessions and rogue ΠD

𝑙 sessions. Since for each such pair of sessions A* aborts
them unless 𝜌𝑙 comes out 1, which happens with probability 2−𝑡, we have that the number of both S

38

and D rogue sessions A* makes is bounded by 𝑞*𝑆 = 𝑞*𝐷 = 𝑞* where 𝑞* is a random variable equal to
the sum of 𝑞 = min(𝑞𝑆 , 𝑞𝐷) coin tosses which come out 1 with probability 2−𝑡 and 0 with probability
1− 2−𝑡. Since the interaction of A* with the DE-PAKE scheme emulates the security experiment G11

to A exactly, it follows that A* advantage in this DE-PAKE attack is AdvDEPAKE
A* = 2 · (𝑝11 − 1/2),

and hence AdvTFAA ≤ AdvDEPAKE
A* + 2(𝑝11 − 𝑝0).

Finally, we consider an attacker A* which makes (𝑞*𝑆 , 𝑞
*
𝐷, 𝑞𝐶 , 𝑞

′
𝐶) rogue queries of respective

type where 𝑞*𝑆 = 𝑞*𝐷 = 𝑞* is a random variable as above to the overall advantage of A*. We will
treat 𝑞𝐶 , 𝑞′𝐶 , 𝑞𝐷, 𝑞𝑆 as constants, we will set 𝑞 = min(𝑞𝑆 , 𝑞𝐷), and we will treat 𝑞* as a random
variable. Note that for every (𝑞𝐶 , 𝑞

′
𝐶 , 𝑞

*
𝑆 , 𝑞

*
𝐷) where 𝑞*𝑆 = 𝑞*𝐷 = 𝑞*, the assumption of DE-PAKE

security implies that AdvDEPAKE
A* is bounded by a linear expression of the type 𝑎 · 𝑞𝐶 + 𝑏 · 𝑞′𝐶 + 𝑐 · 𝑞*.

Since 𝑞* is a random variable whose expectation is 𝑞/2−𝑡 when we measure AdvDEPAKE
A* over all the

randomness in the reduction and the DE-PAKE game, which includes the randomness in 𝑞* (i.e. the
coins 𝜌𝑙 for 𝑙 ∈ [𝑛𝐷]), the overall contribution of term 𝑐 · 𝑞* will be

∑︀𝑞
𝑖=0 Pr[𝑞

* = 𝑖] * (𝑐 · 𝑞*) =
𝑐 · Exp(𝑞*) = 𝑐 · 𝑞/2𝑡.

Hence over all the randomness of A ,A*, and the DE-PAKE security game, AdvDEPAKE
A* is bounded

by 𝑎 · 𝑞𝐶 + 𝑏 · 𝑞′𝐶 + 𝑐 ·min(𝑞𝑆 , 𝑞𝐷)/2𝑡. Consequently, if the DE-PAKE is (𝑇 ′, 𝜖DEPAKE)-secure for
𝑇 ′ ≈ 𝑇 (namely 𝑇 plus the emulation work of A* which takes 𝑂(1) cryptographic ops per each
party instance) then the TFA-KE scheme GenTFA is (𝑇, 𝜖)-secure for 𝜖 ≤ 𝜖DEPAKE + (𝑝11 − 𝑝0) ≤
𝑛 · (𝜖KEM + 𝜖SAS + 𝜖PKE + 𝜖uKE + 6𝜖AC) + 𝑛2/2𝜅 where 𝑛 = 𝑞𝐻𝑏𝐶 +max(𝑞𝑆 , 𝑞𝐷, 𝑞𝐶 , 𝑞

′
𝐶), which

implies the theorem statement for the case where no party is corrupted.

39

	Abstract
	1 Introduction
	2 TFA-KE Security
	3 Building Blocks
	4 OpTFA: A Practical Secure TFA-KE Protocol
	4.1 OpTFA Explained

	5 The Generic GenTFA Protocol
	6 System Development & Performance Evaluation
	7 Checksum Validation Design and Usability Study
	7.1 Checksum Validation Design
	7.2 Usability Study Implementation and Preliminaries
	7.3 Study Design
	7.4 Results and Analysis

	8 Discussion of Related Work
	9 Conclusion
	References
	10 Proof of Theorem 5.1 (Case 1): Details of Game Changes

