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ABSTRACT

Software crashes are nearly impossible to avoid. The reported
crashes often contain useful information assisting developers in
finding the root cause of the crash. However, crash reports may
carry sensitive and private information about the users and their
systems, which may be used by an attacker who has compromised
the crash reporting system to violate the user’s privacy and
security. Besides, a single bug may trigger loads of identical reports
which excessively consumes system resources and overwhelms
application developers.

In this paper, we introduce CREPE, a security-concerned crash
reporting solution, that effectively reduces the number of submitted
crash reports to mitigate the security and privacy risk associated

with the current implementation of the crash reporting system.

Similar to the currently deployed systems, CREPE aggregates
and categorizes the crashes based on their root cause. On top
of that, the server marks the crash categories in which sufficient
reports have been received as “saturated” and informs the clients
periodically through software updates. On the client, CREPE
engages the reporting application in categorizing each crash to only
submit reports belonging to non-saturated categories. We evaluate
CREPE using one year of data from Mozilla crash reporting system
containing 38,834,383 reports of Firefox crashes. Our analysis
suggests that we can significantly reduce the number of submitted
reports by bucketing 100 most frequent crash signatures at the
client. This helps to preserve the security and the privacy of a
significant portion of users whose data has not been shared with
the server due to the redundancy of their crash data with previously
submitted reports.

CCS CONCEPTS

« Security and privacy — Systems security; Browser
security; Software and application security.
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1 INTRODUCTION

Many software companies have switched to the prevalent industrial
practice of Rapid Release Process which accelerates time to market.
However, this agile process leaves less time for the quality testing,
limiting it to only error-prone areas, and therefore, leads to more
reliance on the Automatic Crash Reporting System (ACRS) to collect
crash information from the clients and recognize errors that have
not been noticed in the development stage.

However, such an approach will not be free of cost for the users.
The collection of crash reports leaves a privacy burden on the users’
shoulder by inevitably collecting user’s data. While the collected
crash information contains valuable data to detect the cause of the
errors, it also contains users’ private and sensitive information. It is
a well-known fact that the memory dump (that is submitted as part
of the crash reports to the servers) contains applications sensitive
information such as usernames, passwords, and encryption keys.
Several types of attacks, as well as forensic investigation methods,
have been introduced in the past to extract the hidden information
laid in the memory [29, 51, 54]. Apart from the memory dump, the
collected runtime information about the users’ system at the time
of the crash (e.g., IP address, visited URL, and os version) can be
used to reveal the identity of users and therefore compromise the
users’ privacy [25, 30]. The study presented by Satvat and Saxena
[55] examined a dataset of browser crash reports and revealed
numerous instances of leaked private data, jeopardizing users’
privacy and security. The study reported a significant number
of IP addresses, visited URLs, and other identifying information
including the presence of over 20,000 access tokens and session ids,
600 passwords, 9,000 email addresses, and a vast number of contact
information. Such information could be used by an attacker who
gets access to the crash data to harm user’s security and violate
their privacy.

In addition, the majority of reports are redundant reports
flooding the ACRS with a volume of data which practically is
infeasible to be processed in a timely manner, devouring the system
resources and requires a considerable amount of human effort
to analyze crashes [28, 53]. In a majority of cases, a bug can be
fixed with a few instances of a crash, and remaining reports are
redundant data, generated due to the recurrence of the same bug on
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different machines. Therefore, the redundant crashes, which form a
considerable portion of reports, are superfluous of user’s personal
information. Firefox, for instance, collects around 2.5 million crash
reports per week [4], while they are able to process only 10% of
these reports and the remaining 90% are tagged as “duplicates” or
“not critical,” by fuzzy techniques or manually by the QA team
[4, 6, 28].

Limited works that studied the privacy and security of crash
reporting system [35, 36, 39], suffer from the potential impact on
the service quality, including additional overhead and possible
readability impact on the crash report (discussed in Sections 3 and
7). Therefore, despite all the efforts, crash reporting infrastructures
are still extensively swamped with redundant reports that contain
sensitive information, undermining user’s privacy and security. A
practical approach to address these concerns is to follow the notion
of sharing the least but the most relevant information [52, 59]. The
philosophy behind this practice is for the clients to avoid sharing the
(highly likely sensitive) data that is not being processed at the server,
due to the redundancy with the previously submitted reports. This
mitigates privacy and security concerns and preserves a significant
portion of users’ privacy and security, minimizing the severity of the
potential harm to the users if the system gets compromised or data
gets leaked. In this paper, we propose CREPE, a crash reporting
system, that engages the client-side crash reporting application
in categorizing crashes and thereby minimizing the number of
duplicate reports submitted to the server. Reducing the number
of submitted reports benefits both users and software companies:
1) By retaining redundant reports, CREPE preserves the privacy
and security of a significant fraction of users in case the server
gets compromised, or data gets leaked (e.g., as reported [55]). 2)
CREPE reduces storage and network overhead by minimizing the
submission of redundant reports.

Contributions. The detailed contributions are as follows:

o CREPE System Design (Section 4): We propose CREPE in
which the client can categorize each crash using a signature
generation method similar to the one traditionally used by
the server for crash bucketing. In line with the current crash
reporting mechanisms, CREPE server aggregates and categorizes
crashes based on crash signatures. Additionally, CREPE server
marks the categories for which sufficient information has been
received as “saturated” and frequently submits saturated list to
the client.

CREPE client is equipped with a lightweight debugger that
converts the raw stack trace data to a readable memory dump
information to generate signatures from the stack trace frame’s
module name. CREPE client submits the full crash report,
including memory dump and crash descriptive information (i.e.,
user description and URL) to the server only for non-saturated
categories. For sufficiently received crashes (saturated list) the
client only submits the general crash information (e.g., crash id,
signature, crash time, and system runtime information), so that
the server can maintain information about the frequency and
number of crashes. The unsubmitted crash memory dump and
descriptive information can be stored locally on the client for
future recall by the server. To reduce the debugging overhead on
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the client, CREPE may only generate signatures for top frequent
crash categories.

e CREPE Evaluation (Section 6): To analyze the feasibility of
our approach, we run CREPE to generate signatures on the
client and show that by equipping the client with a lightweight
debugger, the client can generate the same signatures like the
ones generated on the server. Since loading all the debugging
information on the client may seem overwhelming, we suggest
generating signatures for only top crash categories. The result
of our analysis on one year’s worth of crash reports submitted
to Mozilla suggests that by only generating signatures for the
100 most frequent crashes, we can achieve a reduction of 43% in
the volume of the reports sent to the server by avoiding transfer
of 50% of duplicate reports, and thereby, significantly improve
the privacy of the users as well as enhancing the utilization
of system resources. This number can further reach as high as
83%, averaged over 27 versions of Firefox, if clients retain 80%
of the redundant reports listed on the top 100 signatures. The
remaining 20%, submitted to the server, is still far higher than
the current volume that is being processed by the developers. We
also demonstrate that the signature generation on the client side
does not impact the performance of the client since the CPU and
memory overhead is insignificant.

Generalizability. Our test is based on the open source Breakpad,
a crash reporting system, which is utilized by many companies,
including Mozilla and Google [1, 9]. However, CREPE can be
integrated with any application as long as it uses the signature or
any other unique identifier for clustering. To show the practicality
of our system, we tested CREPE using real-world Firefox crash
reports published by Mozilla [18], as the only publicly available
source of the real-world crashes. We further expanded our
experiment on Thunderbird to show that our work can be employed
and integrated with other applications (Sections 6 and A).

2 BACKGROUND

Windows [10], Apple [11], Google Chrome [12], and Mozilla [19]
are a some of the major companies which extensively use ACRS to
fix possible application failures and to improve the software quality.
Despite the differences, they all use the same method for creating
a unique signature to identify crashes. We based our design on
Google Breakpad [1, 9], as one of the most dominant ACRS used
by Mozilla products and many other applications.

2.1 Automatic Crash Reporting System (ACRS)

ACRS is comprised of two main components, namely, the client side
crash reporter application, Controller, and the server side crash
processing system, Processor. The two components collaborate
to handle crashes' on a client and aggregate it on the server.
The two can pair with crash analysis and reporting system(s)
to report the crashes to the developers for further analysis and
fixing the corresponding bugs?. Controller collects and store
crashes. Controller communicates with the Processor to send crash
information including the client’s system runtime information
(e.g, OS and browser version), crash descriptive data (i.e., user

1We refer to the failure of software as crash which leads the unexpected termination.
2We refer to the fault in the software as bugs which leads to an application crash.
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Figure 1: Overview of a crash reporting system architecture

description and URL), and the crash minidump. The Processor
receives the crashes and aggregates them for further analysis by
the developers.

2.1.1  Client Side (Collector). At the client side, the collector usually
consists of an interactive interface which runs when the application
terminates its normal execution process. The collector as an
interacting interface between the Processor and clients, asks for
users’ permission to submit the crash report to the central crash
repository or quit without sending the report. Choosing to send
the report, the user still has the option to decide whether to include
her visited website during the crash or not. The user also can share
details of the issue which caused the crash through a description
box. Additionally, there is an option to provide an email address
for future support [2]. Figure 1 gives an overview of ACRS.

2.1.2  Server Side (Processor). Collected reports from the clients
accumulate in a central crash repository for further analysis. The
Processor is responsible for processing, analyzing, generating, and
presenting reports to the developers. Each crash reporting system
has an interface for presenting the collected data. Depending
on ACRS configuration, the interface can be only used for
troubleshooting by developers, or it can be accessible to the public.
An example of the analyzed data that is available for public view is
for the Mozilla crash reporting system [18].

2.2 Crash Bucketing

Field crashes are accumulated in a central repository and depending
on the software can be colossal in number. Processing a huge
number of reports can be a daunting task and can pose a significant
overhead on the system’s resources. As a result, companies need
to have a proper clustering technique to group similar crashes
into the same bucket for further processing. The bucketing helps
the developers to deal with the crash in a more efficient manner.
Bucketing algorithms use various features for clustering, e.g.,
[38, 40, 41]. In Firefox, Socorro clusters similar crash reports into the
same bucket where each bucket is defined with a unique identifier
called the crash signature describing the crash characteristics and
identifying the bucket that each crash belongs to [3]. Signature
generation algorithm is discussed more in Section 4.1.1.

2.3 Inside a Crash Report

Each Report contains a wealth of information about the state of
a failure. While this information may be essential for debugging
errors, it carries users’ private data [15, 24, 36]. Each crash report
generally carries two types of data. First, the minidump which is
a stack trace of the failing thread, and consists of the sequence of
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frames and functions in the memory at the time crash occurred.
Second, the runtime information which includes the user’s system
data such as operating system and browser version, installed add-
ons or plugins, and possible feedback provided by the user about
the crash. In the case of browsers, the URL of the visited website
at the time crash occurred is also collected as runtime information
[24]. Having access to all this information enables the developers to
investigate, replicate, and rectify the crash. Figure 2 is an abstract
presentation of the crash data.

3 MOTIVATION AND RELATED WORK
3.1 Problem Statement

The current implementation of ACRS is a prevalent approach
adopted by numerous software companies. However, this design
has two major issues. The most severe concern with the present
implementation of ACRS is the bulk of private information that
converges from the users’ systems into the crash report [13, 15].
Depending on the crash circumstances, each report contains
sensitive information that jeopardizes users’ security and privacy,
ranging from PII to sensitive information such as username and
password. For instance, the collected minidump, as a sensitive piece
of data, may accommodate user’s sensitive information such as
username, password, and other data which was placed in the same
memory space as the crash occurred [15, 24, 36]. Apart from the
sensitive information that may appear in the minidump, crash
runtime information, including URL of the visited website and users
description, can turn each report into a piece of private data which
can be traced back to a specific user, revealing information such
as location, user’s interests, and system status. Prior studies have
reported on the practicality of such attacks using relatively less
amount of information, compared to the data that currently resides
inside crash runtime information [16, 34, 43]. For instance, URL can
compromise user privacy by revealing the user’s interest. In some
circumstances (e.g., improper use of GET method) the URL may also
carry sensitive information such as username, password, and details
about sessions ids and access tokens. The description provided by
users may also contain sensitive information such as contact details
or other private data. The work of [55] reported many instances
of private data appeared inside crash reports, including username
and password which were shared over the description field, by
non-expert users, aiming to receive further support.

The second drawback discussed in the previous studies [38, 47,
53], is the enormous amount of duplicate data that the current
approach generates. This poses a considerable workload to the
triaging team who at the very end is responsible for clustering
crashes. This overhead, apart from utilizing human resources, can
consume a massive amount of system resources including storage
and network bandwidth. Ahmed et al. [28] mentioned the huge
cost of crash reports and relatively small number of bugs that are
eventually being identified — average 89 bug reports generated out
of 96 million.

3.2 Prior Works

Broadwell et al. [36] and Castro et al. [39], studied ACRS from the
privacy angle. They both tried to safeguard the user’s private data
by removing sensitive information from the dump. The approach
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Figure 2: An abstract illustration of data resided inside a sample crash report

reads and compares the memory dump against a predefined list
of sensitive data and tries to remove them from the dump. This
approach, however, has several drawbacks. 1) Defining the sensitive
list due to the linguistic characteristic of private data and the
limitless ways that the private data can appear in the dump
(e.g., languages and abbreviations) can be extremely complicated.
Therefore, there is no guarantee that the right private data gets
removed from the dump. 2) Transforming dump into a new form
may cause additional overhead for the developers to read and debug
the crash. Also, always there is a chance that removing data from
the dump impacts the readability of the report and turns the dump
into an unusable chunk of data. This probable readability impact
becomes a major hurdle for the adoption of such practices in real-
world scenarios. To the best of our knowledge, none of the suggested
sanitization approaches has been adopted in the real-world ACRS
systems due to this potential readability impact. 3) This approach,
in the real world, can impact users’ experience as it requires to
inspect the memory dump and could take a considerable amount
of time depending on the application structure, dump size, and
order of the frames. This time is up to 100 seconds in [39], and
up to 373% increase over the baseline in [36]. However, in our
approach, generating a signature at the client is almost impalpable
(discussed in Section 6.2). 4) Adoption of such approaches on a
complex and relatively big software can be challenging, as the
presence of an infinite number of constrained and unconstrained
factors such as underlying operating system, associated software,
and add-ons make the detection of sensitive data inside the memory
dump extremely daunting and almost impossible in a feasible time.
5) None of these studies considered the presence of sensitive data
in the crash runtime information, including private data that may
appear in the user description and URL. Unlike these approaches,
CREPE proportionally protects users’ sensitive data present in
the descriptive part of the crash report. Table 1 summarizes the
differences between CREPE and the other approaches.

On the other hand, the studies conducted to enhance the
efficiency of ACRS mainly applied various machine learning
techniques to improve the bucketing and triaging of the crashes
[32, 40, 48, 49]. The main motivation for most of the previous
studies was accelerating and improving the system on the server
side, by reducing the system’s overhead using re-bucketing
and detecting the duplicate crashes algorithms and techniques.
However, these approaches have two main problems. First, applying
these techniques still may pose an extra computational load on the
system. Second, approaching the subject from the server side cannot
result in any improvement in preserving the users’ privacy.

Relatively similar to our approach, Windows Error Reporting
system (WER) utilizes a progressive approach to collect system
errors [26, 46]. However, unlike CREPE which works at the
application layer, WER by having access to the kernel, works at the
OS level. Unlike WER, CREPE is a platform-independent application
tested on both Linux and Windows. Moreover, applications
that utilize WER service are forced to share the users’ private
data with a third party (i.e., Windows). Employing WER also
requires substantial changes in the bucketing methodology which
a company is using.

In contrast to previous studies, we attempt to enhance ACRS
efficiency in two different aspects, user’s privacy, and system
utilization. To this end, unlike the other studies, we mainly focus on
the client side. We employ a clustering mechanism in the client to
reduce the number of crash reports submitted to the server. Using
this proposed system, the server can still follow its same bucketing
approach and a new bucketing feature will be added to the client.
In other words, our system does not require any major changes at
the server side.

4 CREPE DESIGN

System Model. Similar to the current ACRS, we assume the server
to be trusted and sensitive information (e.g., full access to the

Table 1: Comparison between CREPE and prior approaches on enhancing users’ privacy in ACRS. The full-filled circle (@) indicates a system that has the property or feature listed on the
left of the table. The system that lacks a feature or property is signified by O. The half-filled circle () refers to the situation where the approach can only eliminate instances where the data
in minidump matches a predefined list of sensitive data. The half-filled circle © refers to the situation where our approach preserves the privacy of a fraction of users by not submitting

redundant reports.
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Figure 3: High-level architectural view of CREPE

memory dump) to be only accessible to trusted ones with restricted
privileges. Given such a setting, we would like to limit the number
of duplicate crashes submitted to the server to reduce the possible
harms to the users’ security privacy if the crash report data gets
leaked to unauthorized users/attackers (i.e., as previously reported
[55]). Our approach also attempts to use resources more efficiently.
Design Overview. Our system encompasses two main components
as shown in Figure 3: the client side crash reporter application,
CREPE-Client, and the server side crash processing system, CREPE-
Server. CREPE-Client sends crashes to CREPE-Server which
aggregates and processes reports to resolve software failures.
However, unlike the current systems in which only the server
processes and categorizes crashes, in our design, both CREPE-
Client and CREPE-Server can categorize crashes. Bucketing in
CREPE-Client is a primitive clustering mechanism deployed by
generating crash signatures, while equally primitive or more
advanced bucketing techniques (e.g. [41, 49]) may be deployed
at CREPE-Server. CREPE-Server can mark categories for which
sufficient reports have been received as “saturated” and inform the
client accordingly (based on the volume and frequency of crashes,
and developers’ needs for receiving more information on a specific
crash). After categorizing the crash, CREPE-Client decides whether
to include the crash descriptive data and dump with the report
or not by referring to the list of saturated categories. Our crash
reporting design can work on top of the current design (as it will
be shown in Section 6 for Firefox and Mozilla crash reporting) with
slight modification on the server side to mark saturated categories,
and changes on the client side crash reporter to accommodate crash
categorization.

4.1 System Components

4.1.1 CREPE-Client. Figure 4 illustrates the operational diagram
of CREPE. The idea behind our design is for the client to categorize
the crash by generating a crash signature derived from the system
environment and a readable version of the stack trace. Controller,
as the main component of CREPE-Client, receives a crash and sends
the stack trace to Debugger to produce a human-readable dump
from which the signature can be generated. Having the stack trace,
Debugger generates a readable dump with reference to a debugging
symbol file (SYMDB) loaded on CREPE-Client. The readable dump
is then sent back to Controller where it will be aggregated with the
environmental information and sent to the SigGen module. SigGen
generates a signature to identify the bucket that the crash belongs
to and sends it to Controller. This signature matches the one that
is generated on the server. Controller sends a query Q(SIG) to
the local saturated signature database engine (SIGDB) through the
signature comparator component, SigComp, asking whether it is
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necessary to send the dump and runtime information to the server.
SigComp looks up the latest saturated list and responds Controller
whether to send the dump and runtime information to the server
or not. If the queried signature does not exist in the saturated list
this information should be sent to the server. In this case, CREPE-
Client sends the full report to the server and keeps the crash id for
further follow-up. If the queried signature exists in the saturated
list, the client can store the dump and descriptive information in
its internal storage and only submit the general crash information
along with the signature to the server. The detailed design of the
CREPE components is as follows.
Databases. To handle a crash at the client, CREPE-Client requires
to have access to two types of data stored in local lightweight
SQLite databases: 1) the list of saturated signatures, “SIGDB”, and 2)
symbol database, “SYMDB”, containing the top crashes debugging
information needed to create a readable dump from the stack
trace. Both databases receive periodical updates from CREPE-Server
through software updates. Storing the symbol files on the local
machine may seem storage demanding. Considering that certain
libraries and executables are often the main reason for the majority
of crashes [27, 31, 45], loading the popular symbol files into the
client is sufficient to decode the majority of crashes and generate
signatures for top crashes (as will be discussed more in Section 6.1).
Debugger. Generating the signature at the client requires access
to the stack trace and system runtime information. Most of
the signatures are generated based on the stack trace of the
crashing_thread. Others though, can be generated from the
system runtime or the information available in the stack trace
non_crashing_threads. Stack trace frame’s signature is derived
from the function names available in the readable dump. Unlike the
server that has access to the debugging information, the currently
deployed browser builds typically do not carry the debugging
information. To address this, our CREPE-Client includes a debugger
and symbol files (SYMDB). With access to the symbol file, Debugger
creates a readable dump which is fed to the signature generator.
Developing a debugger or integrating it in CREPE-Client is
out of the scope of this paper. A lightweight debugging tool
called minidump_stackwalk has already been developed [8, 13]
for debugging the stack trace. The minidump_dump tool built along
minidump_stackwalk that can print the contents of the minidump.



Session 8: Privacy Il

Other tools such as stackwalk_http [8] are also available that can
fetch the symbol file from Mozilla Symbol Server [21] and print the
stack trace. Similar tools can be integrated into CREPE-Client to
generate the crash signature from the stack trace.

SigGen. In our design CREPE-Client generates SIG based on the
same rules defined and implemented by Mozilla Socorro [20].
Socorro creates the signature based on the stack trace crashing_
threads frame’s function name (i.e., function names). The signature
generator reads the frames of the crashing_threads from the
top of stack applying rules to the normalized frame’s function
name which are then concatenated to form the crashing signatures.
Whether to include or not to include a frame name is decided based
on Skip List rules [5] and Signatures Utilities Lists [22]. Most of the
signatures can be generated in this way except for the following.

e Abort: This signature shows a controlled abort situation. This
signature is created when the AbortMessage field is set in crash
metadata. The signature is the “Abort” concatenated with the
signatures of the other thread frames name following the same
rules as generating normal signatures (i.e., the crashing_thread
is not parsed but the signature is generated same as other
non_crashing_threads).

e IPCError-browser: If the crash happens as a result of an
Inter-Process Communication (IPC) error the generated crash
is categorized as IPCError. If the additional_minidumps field
in the metadata has the value of “browser” the signature is
IPCError-browser concatenated with the value of the ipc_
channel_error field in the metadata.

e shutdownhang: A hang during shutdown is categorized as
shutdownhang. If the name of the top most stack frame
contains RunWatchDog, the signature will be “shutdownhang”
concatenated with signatures of the other thread’s frames
following the same rules as generating normal signatures.

e OOM: Out of memory errors are categorized as OOM
concatenated with a size (i.e., small or large) determined
by OOMAllocationSize field in the metadata. To
detect these errors, the frame signature should be
CrashAtUnhandlableOOM, NS_ABORT_OOM, mozalloc_handle_
oom, or AutoEnterOOMUnsafeRegion.

SigComp. As a comparison function interacts with the SIGDB to
check whether the generated signature already exists in the SIGDB
or not. If the crash exists in the saturated list, SigComp flags the
report as saturated, and informs Collector on this flagged report
to keep the dump and descriptive data and only send the general
crash information to CREPE-Server.

Gateway. This intermediary component interacts between the
CREPE-Server and CREPE-Client. Once the signature is created,
Gateway transfers the crash to CREPE-Server. Gateway also
receives updates including symbol file and saturated signatures.
Controller. As the main component, Controller receives the crash,
interacts with other CREPE-Client components, and prepares the
report to be submitted to the server. Once the crash happens,
CREPE-Client asks for the user’s permission to submit the crash.
If the user agrees to send the crash, Controller can run as a
background process (to minimize any performance overload) while
the browser reboots and the user proceeds to the normal operation.
If the report is flagged as saturated by SigComp, Controller does
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not send the descriptive information and memory dump to CREPE-
Server and instead stores them in local storage. For this type of
crashes, Controller generates and sends a report including crash ID
for tracking, and general crash information (e.g., signature, crash
time, browser version, and system environmental variable) which
would be used for the statistical purposes and future references. For
crashes on the non-saturated category, a full crash report will be
submitted to the server.

4.1.2 CREPE-Server. Similar to the current crash reporting
servers, CREPE-Server aggregates, buckets, and processes reports.
Additionally, CREPE-Server is responsible for marking saturated
categories and updating CREPE-Client databases. Our design is
based on Socorro signature generation scheme, and we expect the
servers to be able to generate the signatures and bucket crashes
in a similar fashion. This approach is one of the simplest forms of
bucketing that considers the crash in isolation and does not require
information about other crashes to generate the signature. Since we
require the client to also bucket the crash this is a feasible approach
on the client side. However, the server may deploy other advanced
techniques for more granular bucketing.

To mark saturated categories, CREPE-Server keeps track of the

volume of crashes received in each category. Apart from the number
of crashes, CREPE-Server considers other factors such as frequency
of a crash, the severity of the bug that caused the crash, and
developer’s comments, to mark a crash category. The saturated
list is shared with CREPE-Client frequently through a new version
release. The main components of CREPE-Server are as follows.
Central repository. CREPE-Server accumulates, buckets, and
analyses the reports in a central repository. It can also provide
statistical reports for developers or public access.
Analyzer. As the main component of CREPE-Server, decides on
the crash categories that should be in the saturated list. Having
access to the threshold, crash frequency, and developer comments
(whether more information for a crash type is needed or not),
Analyzer decides to add or remove a signature from the saturated
list. The result of this decision appears in the updates that CREPE-
Client receives from CREPE-Server. Hence, if Analyzer decides to
add a signature to the saturated list, CREPE-Server informs CREPE-
Client by sending the updates to SYMDB to debug the crash and to
SIGDB to determine if the dump should be sent to CREPE-Server.

To decide which crashes should be on the list, Analyzer can
use a predefined threshold, heuristics algorithms, or the system
administrators can add the crash signature into a saturated list —
which contains signatures that have already reached the sufficient
number of reports to detect and fix a bug. Therefore, any report
received afterward is, perhaps, not required for fixing the bug. The
saturated list can also contain signatures for crashes for which the
root cause have been recognized and more reports is not required.
Package Builder. According to the analyzer outcome and
developers’ comments, CREPE-Server builds an update package for
the client, including updates for SIGDB and SYMDB (retrieved from
a centralized symbol server such as Mozilla Symbol Server [21] or
Microsoft Symbol Server [17]).

Gateway. CREPE-Server receives the crash reports submitted by
CREPE-Client through a communication gateway component and
transfers it to the corresponding modules for processing. The update
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requests.get(
'https://crash-stats.mozilla.com/api/SuperSearch/?product=Firefox&'
'date=%3E%3D2016-09-11T21%3A49%3A00.000Z&'
‘date=%3C2017-09-11T21%3A49%3A00.000Z').json())

"hits™ {

"date": "2017-03-27T10:42:57.901151+00:00",

"product": "Firefox",

"version": "54.0a2",

"uuid": "f5c49c1b-dlec-47dd-bbe0-6ab062170327",

"signature": "IPCError-browser | ShutDownKill"

Query sent to
crash reports
service

Received
AN response

"date": "2017-03-27T10:43:26.483322+00:00",
"product": "Firefox",

"version": "53.0b6",

"uuid": "34e1c2e9-2cc7-4053-9d71-1c1a32170327",
"signature": "@0x1dd4ac90"

3

Figure 5: Query and response sent through Super Search

package can be transferred to the client (for example as a part of the
browser’s update or as a separate crash reporter’s update) through
the communication gateway.

5 CREPE IMPLEMENTATION

To show the feasibility of generating the signature at the client
side, we developed CREPE using python to generate and compare
the signature with the saturated list. We used the Mozilla crash
reporting website [18] through which Mozilla presents crashes
after processing them. Each crash report is assigned a crash ID
and contains information received from the raw crash report and
processed crash report. Most of the crash report fields are visible
except for raw minidump that is available only to those with
minidump access. Crash reports are presented in several tabs on
the Mozilla crash reporting website, including Details, Metadata,
Modules, Raw Dump, Extensions, and Correlations. Signatures can
essentially be generated from the Raw Dump and Metadata field
only corresponding to stack trace and crash information on the
client side. Since we could not replicate all the crashes on the
client side, we used Raw dump and Metadata to generate the crash
signatures on the client side. This experiment serves to prove that
signatures can be generated on the client side given that human-
readable dump and metadata is available, which we already argued
that they would be available on the client side in our design. The
same approach has been taken in other works [38, 41, 56, 58] to
evaluate bucketing schemes.

We developed CREPE in Python to retrieve the crash data from
the Mozilla website, parse the data, generate signatures on the
client side and compare them with the signatures generated on
the website. If the generated signature matches with its pair from
the website, this shows that the same crashes can be generated
on the client and server. Our program uses Mozilla Super Search
API [23] to fetch the data from the website. We send an HTTP
request to the Mozilla crash-stats service, which returns a JSON
document in response. The root of the JSON document contains
hits key. hits key accommodates the crash reports matching the
query and includes uuid (representing Crash ID), date, signature,
product, and version fields. We only use the first two fields (uuid
and signature) in our program. signature serves as the server
side generated signature and uuid is used to retrieve Raw Dump
for each Crash ID. Figure 5 shows a HTTP request and the received
response from the super search.

The JSON document received from the crash-stats does not
contain Raw Dump required for each Crash ID. To receive

301

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

data = {"frames": ["NtWaitForMultipleObjects",
"WaitForMultipleObjectsEx",
"WaitForMultipleObjectsEximplementation”,
"RealMsgWaitForMultipleObjectsEx",
"MsgWaitForMultipleObjects",
"F_1152915508 "1}
req = urllib2.Request('https://crash-signature-service.herokuapp.com/sign?lang=c')
req.add_header('cache-control', 'no-cache')
req.add_header('Content-Type', 'application/json')
response = urllib2.urlopen(req, json.dumps(data))

json.loads(response.read())

{u'notes": [], u'language': u'c', u'signature":
u'WaitForMultipleObjectsEx | MsgWaitForMultipleObjects |
F_1152915508 '}

Signature
Generation Query
Received
response
Figure 6: Signature Generation Service query and response

Raw Dump for a crash ID to create signatures, we scraped
the webpage containing the Raw Dump for each Crash ID
using BeautifulSoup library and extracted “rawdump” section
from the webpage. We loaded this data into a JSON element
and read all the Crashing Thread frames’ function name
(i-e., [“crashing_thread”][“frames”][“function”]). As mentioned
in Section 4.1.1, most of the signatures can be generated by
concatenating frames’ function name and applying Socorro
signature generation rules. To generate the signature based on
the function names, we used and set up Crash Signature Service [7]
on a client. Crash Signature Service [7] as a light weight signature
generator builds the signature based on the stack trace frame’s
signature. We installed the service on a local Linux machine and
updated siglists by loading the latest siglist from Socorro Signature
Utilities Lists [22]. Figure 6 shows a query sent to the Signature
Generation Service and the received response.

For crashes of type OOM, abort, and IPCError-browser the
signature can be generated on the client side from the Metadata
only without access to the crashing threat in the stack trace.
Therefore, it is trivial that the client can generate them locally
even if the crash reporter does not have a debugger. For
crashes of type shutdownhang and hang the signature can be
generated from the Metadata (to define the crash type) and other
non_crashing_threads in the stack trace in the same way that
other crashes are generated (concatenating the frame signatures).
The implemented algorithms at the server and client are represented
by Algorithms 1 and 2 in the Appendix.

6 CREPE EVALUATION

Two central factors needed to be followed for a possible ACRS
solution to be considered as an efficient and practical approach.
The proposed mechanism should not impact the service quality
both in terms of the process of fixing bugs and the users’ experience.
To show that our system does not impact the process of fixing bugs,
we demonstrate that there is a potential for reducing the number
of crashes submitted to the server without causing harm to the
process. To this end, we performed statistical analysis (Section
6.1) on various distributions of Firefox and showed that there is a
significant similarity between crashes in Firefox versions which
can be used to avoid sending further data that is not necessary
for replicating and rectifying a bug.-We build our main analysis
based on Firefox crashes due to the popularity of this application
and the significant number of publicly available crashes that can
help to make the analysis more tangible. We further expanded
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our experiment on Thunderbird (Sections 5 and A) to demonstrate
that such an approach can be adopted by other applications. We
tested CREPE on both Windows and Linux to show that it leaves
no overhead on the clients and has no impact on user’s interaction
with the system (Section 6.2).

6.1 Analyzing Crash Volume Reduction

We study the real-world Firefox crash reports to show the potential
to preserve a significant fraction of users’ privacy and reduce system
overhead by not submitting the redundant reports.

Dataset. In our analysis, we considered crash reports submitted
to Mozilla from September 2016 to September 2017. We analyzed
38,834,383 reports available on Mozilla crash reporting website [18]
for all browser versions and platforms (i.e., Windows, Mac OS X,
Linux, Others) and all process types (i.e., browser, plugin, content,
gnu). We specifically analyzed reports of the 27 recent versions of
Firefox (appears in Figure 8), including stable and beta versions to
demonstrate the possible correlation between different versions.

Reducing the number of reports and generating signatures at
the client may not be free of cost. The client needs to have access
to a database of symbol files and conduct a process to generate the
signature. Considering the huge number of signatures (84K), having
all symbol files in the client can result in disk space issue and system
slow down which in turn can have ominous impacts on system’s
performance. To avoid such a cost, we put forward our hypotheses
based on the fact that some parts of the software are more prone
to produce bugs and errors [27, 31, 45]. Therefore, addressing
these error-prone areas can result in a significant improvement
by reducing the number of duplicates crashes. Therefore, our
hypothesis is that there exists a similarity between application
versions and more specifically successive versions, which helps the
deployment of a system that significantly reduces the number of
redundant crashes. Based on this fact and to confirm our hypothesis,
we analyzed Firefox crash reports to find out if there exist any
similarity between crashes in Firefox versions. We inspected this
data in two different manners:

First, as an initial step, we studied one year data as a whole
to validate our hypothesis and to understand which crashes are
shared across all versions. During this period, we studied 38,834,383,
and we noticed that close to 34% of crashes in all Firefox versions,
including Nightly, stable, and beta are constituted from top 10
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Figure 8: Distribution of the top frequent signatures between 27 versions of Firefox, where
each color presents a signature.
signatures (Figure 7). In contrast, the remaining 66% constituted
from approximately 84K signatures [6]. We further found out that
among all the crashes, 16,578,398 belong to the top 50 frequent
signatures (42.62%). While the obtained result potentially confirms
the basis of our hypotheses (saying that addressing a minority
of errors can result in a significant improvement in reducing the
number of duplicates crashes), we took further steps to prove that
the distribution density of prevalent crashes follows a pattern, and
show that there is a close similarity across different versions.
Second, to prove the presence of similarity and correlation
between different versions, we studied the frequency of the top
50 crashes across 27 versions of Firefox including core and beta
versions. The initial result of our scrutiny has evoked the recurrence
of the same pattern between different and successive versions.
To confirm the presence of this similarity (the pattern can help
developers on defining the saturated list), we performed a Wilcoxon
Signed Rank Test [57] against our dataset. Using the Wilcoxon
Signed Rank Test, we compared different and successive versions.
The result of the test confirmed that in the majority of cases
successive versions share relatively similar signatures. For instance,
the result of Wilcoxon Signed Rank Test was p = 0.964 for two
successive versions of 55.0b.5 and 55.0b.6; although, the differences
exist between prior and later versions of 55.0.1 and 55.0.2 (p=0.000,
p=0.001), due to the change from beta version to the core, yet
they both share p=0.877 similarity in their top 50 crash signatures
(appears in Figure 8). Similarly, although differences exist between
55.0b7 and its prior and later versions, yet it shares significant
similarity with stable versions like 55.0 (p=0.177), 55.0.1 (p=0.391)
and 55.0.2 (p=0.349). Figure 8 demonstrates the pattern and the
correspondence of top 50 signatures between different versions.
The obtained result confirms that similarity exists in the
distribution of crashes across different Firefox versions, and
suggests the potential for lessening the number of crash reports. To
quantify this potential and provide some estimation, we analyzed
the frequency of the top 100 signatures across different versions,
to replicate the server requirement of having sufficient instances
of a crash. We measured the occurrence of each crash across all
versions independently and compared it with the total number of
crashes to infer an estimation on the number of required crashes
which needed to be submitted to the server. Our analysis was
involved in comparing each signature frequency against a threshold
to ensure that enough instances of a crash submitted to the server
for debugging. Our initial assumption was that having access to
20% of the crash instances is sufficient for the process of debugging



Session 8: Privacy Il

100%
Bo
£ 2 80% |- 7
83
Lo cW—e—-—e—e
8o 60% |- ]
£c
(=] o0 —0 00— —0o 0
S E 40% - 7
&5
JE w
o | Threshoid 20/80 —@— | |
%g 20% Threshod 30/70
& = Threshold 40/60 —&—
Threshold 50/50
0% : ! . : ‘
0 20 40 60 80 100

Top signatures

Figure 9: Correlation between the number of signatures generated at the client and
potential reduction in submission of crashes by different thresholds

and fixing a bug. We set this number as a baseline based on the
fact that only less than 10% of crashes are being used and proceed
in the current implementation of ACRS, and the remaining are
tagged as duplicates [4, 6, 28]. This number is still higher than the
current number of instances that are being used to fix the bugs

and is far beyond the developers’ capability of processing crashes.

However, we defined a minimum threshold of 20% to stay safe from
not receiving sufficient instances of a crash. Note that in practice
thresholds are defined by developers and can be set higher or lower
than our assumed threshold.

Besides having the threshold of sending 20% of crashes and
saving the remaining 80% from unessential submission, we
expanded our analysis on the cases where the threshold is set higher,
to send 30%, 40%, and 50% of the top 100 crashes and respectively
save 70%, 60%, and 50% of them from submitting to the server. The
results confirm that CREPE can reduce the number of crashes by
43% in the 50/50 threshold scheme by only processing of top 100
signatures at the client side. This number can further reach as high
as 83% (averaged over 27 versions) in the 20/80 scheme if the client
can categorize the most frequent 100 crashes. Figure 9 shows the
correlation between the number of generated signatures and the
potential reduction in the submission of crashes.

Sensitive Data Protection. Based on the CREPE implementation
and the threshold scheme defined by developers, for each crash
type, only a specific number of reports would be sent to the server
and the remaining reports remain safeguarded at clients. However,
not all crashes are equal in terms of carrying private information
(discussed in Section 2.3). While some may only hold PII, the others
may carry more sensitive data such as users’ credentials. Therefore,
in this section, we show the probability that the records containing
the users’ sensitive information would not be submitted to the
server by CREPE. To this end, we assume that we have a total of
N crash reports of which X contains users’ sensitive data (e.g.,
username, password). CREPE will send only M crash reports to the
server and keeps the remaining (N — M) reports. Here is a set of
assumptions: 1) We assume that each observation falls into just 1 of
2 categories: success (sensitive) and failure (non-sensitive). 2) Since,
CREPE only sends a small portion of crash reports to the server,
removing a few reports has a very small effect on the composition
of the remaining population, so successive observations are very
nearly independent. 3) We assume that all M reports that are being
sent to the server have the same probability of success (sensitive)
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Figure 10: CREPE system utilization in comparison with baseline in both Linux and
Windows platforms. y axis represents the utilization and x axis represents the aggregated
instances of various crashes running on both platforms.

p. The population N contains a proportion p of successes, and we
assumed that the population N is much larger than the sample size
M. Therefore, the count X of successes in the simple random sample
of size M has approximately the binomial distribution B(M, p). The
probability of getting exactly n successes (sensitive records) in M
trials is given by the probability mass function:

Pr(n;M,p) = Pr(X =n) =

n

clpn(1-p)M= = () (%) (- ¥

CMp! (1 - p)M 1+

Cy'pP (- p)M 2

(1 - p)M =+

CUpX (- pM X =
Lo el -pM

Therefore, the sensitive information will be saved from
being submitted to the server by the probability of 1 —
Z;:f Cﬁwpi(l — pYM=1 For instance, assuming that we have a total
number of 40000 reports of a sample signature samplesignature
where 2000 of these reports contain users’ sensitive information.
The probability of appearing 200 sensitive records in 8000 reports
which are being submitted to server is 4.6755e-30. This number
is as low as 1.4050e-83 if developers chose the 30/70 threshold to
receive 12000 reports.

6.2 Performance Analysis

To demonstrate the feasibility of generating reports at the client,
we generated and examined top signatures in various systems to
measure timing and system resource utilization overhead. We tested
both Firefox and Thunderbird on Windows and Linux platforms.
Our Linux system was specifically chosen to represent low-end
devices. Our 64-bit Windows (6.1, Build 7601) platform was run in
8.00 GB (7.87 Usable) RAM, and an Intel(R) core(TM)2quad q9550
@2.83GHz Processor. Our Linux platform was an Ubuntu x86_64
with 3902MiB System memory, and Intel(R) Core(TM)2 Duo CPU,
T9600 @ 2.80GHz processor. We used python timing function
to measure the latency caused by CREPE in computing the top
crashes in the client. The average and the standard deviation of
the delay in computing the signatures was 12.98ms 3 g34ms) for the
Windows platform and 10.864ms 591ms) for the Linux, averaged
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over 1000 iterations of top crashes. Similarly, we measured the
system resources in terms of memory and CPU to examine the
possible impact of running CREPE at the client. We measured
system utilization before, during, and after running CREPE. While
we have not noticed any impact on client memory, the processor
utilization varied between 7% to 11% in Windows platform and
12% to 19% in Ubuntu. The result is promising considering the
system specification and the fact that no optimization performed on
either platform or application level. Figure 10 shows the aggregated
system utilization at the time of generating 50 sample signatures.

7 DISCUSSION

Saturated List. One central and influential factor ib CREPE is
the importance of defining an accurate saturated list. While an
accurately defined list can increase the efficiency, adding a wrong
signature to the list may impact the process of fixing bugs by not
receiving sufficient instances of one crash type. To avert such
a situation, we chose the top crash signatures for our analysis,
since the abundant number of crashes in these categories helps
to avoid crossing borderline of having or not having sufficient
samples of a crash. But, similar to the current process that
developers involvement is required for triaging and prioritizing
bugs [28, 33, 50], our system relies on the developers to manage
the saturated list.
Current Bucketing System. Ideally, the bucketing approach is
expected to cluster crashes caused by the same bug into a distinct
bucket. However, the real world implementation of the bucketing
system is far from perfect [37, 38]. In some scenarios, a crash may
map to more than one bug. A reason behind this is the imperfection
of current signature generation algorithms which are not able to
generate precise and detailed signatures that can perfectly match
with the bug type and cause false mapping and the appearance of
one-to-many and many-to-one relations between crash signatures
and bugs. Having a more accurate and detailed signature generation
scheme with the ability to bucket all similar crashes into the same
exact group can result in saving more information from transferring
and accordingly less effort for further triaging and processing.
Therefore, any improvement in the current bucketing approach
that results in more precise grouping helps improve our system
and reduce the need of transferring data to the remote server.
While this is an orthogonal problem, the issue can be managed to
a great extent for several reasons. First, the saturated list is defined
and maintained by the developers for each version, meaning that
a signature can be added to the list when developers ensure they
have enough instances of that crash. This empowers developers to
avoid adding controversial signatures to avoid the occurrence of
false positive instances. Second, similar to the current push function
which forces new updates prior to launching the application, a pull
function can retrieve the un-submitted yet desired crash reports
in cases where more information about a crash is required. Finally,
such a concern is not applicable for many of crash signatures where
the root cause is apparent. Instances which remain unfixed and
repetitively appears in successive versions due to the unattended
external factors like incompatibility issues of an extension or a
plugin. Moreover, this issue is discussed as an addressable concern
in [46], meaning that incorrectly diagnosing two report types as
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having the same root cause result in the representation of the second
report and dominating future reports after fixing the first error.
Other Defensive Mechanisms. Both server and client side
approaches can be considered to enhance the security and privacy
of users’ information in ACRS. Although the server side approaches
may provide more flexibility for the developers, helping them to
have the best report readability, the user should not be obligated
to trust the developer and the system to send their sensitive data
to the server. Therefore, we focused on the client side approach to
safeguard a significant fraction of the user’s data. Other protective
mechanisms can also be applied or integrated with our solution to
provide additional layers of assurance.

In general, three types of approaches can be employed to secure
data at the client. 1) The first solution is to mask or remove sensitive
data in the report (e.g., work of [36] and [39]). This approach though
protects users’ privacy can impact the readability of the report.
For instance, sanitization can turn the minidump to an unusable
chunk of data or similarly removing data from the descriptive fields
may impact the readability and may cause an additional overhead
for the developers to debug the report. Such an issue is a serious
impediment to employ this type of approach in the wild. 2) The
second solution includes the use of techniques such as natural
language processing or deep learning to build a model and protect
user private data and avoiding the transfer of reports that are tagged
as sensitive. Both approaches, however, are hard to implement since
the probability for the appearance of private data is almost infinite.
For example, username and password can appear in different crash
fields in a variety of formats. This signifies the importance of
labeling which is again hard, as it cannot be done using prevalent
methods as they may jeopardize users’ privacy. Moreover, testing
the result of such approaches requires the manual check which
again can result in violating users’ privacy. 3) Finally, differential
privacy and adding noise as another solution which recently been
adopted in the wild. The method promises that the outcome of
a survey remains the same with or without the attendance of a
specific user [42]. However, such an approach may be hard to deploy
in practice, the limited number of companies that adopted the
technique, including Apple [14] and Google [44] limited their use
to a certain context. For instance, Apple uses differential privacy on
collected data to evaluate used images in a certain context. Google
utilizes differential privacy in maps to collect traffic data in large
cities. However, in the case of ACRS a variety of constrained and
unconstrained factors such as diversity of platforms, versions, and
also the possibility of appearing private data in diverse forms and
various places are infinite.

Limitations and Future Directions. Although it was possible
to generate the human-readable dump using a debugger on the
client, we did not replicate all the crashes on the client machine,
since crashes are highly dependent on parameters such as system
hardware, OS, browser version, installed plugins, and visited URLs,
making it impossible to replicate a crash. Besides, given that the
crash raw data may contain sensitive information, crash datasets are
not publicly available. Therefore, we relied on Mozilla dump data
to generate signatures. Also, in the feasibility study (Section 6.1),
we analyzed the distribution of the top 50 crash signatures between
27 versions of Mozilla Firefox across all platforms (i.e., Windows,
Mac OS X, Linux, Others) and process types (i.e., browser, plugin,
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content, gnu). However, a more detailed study on each platform or
process type may lead to better categorization and therefore provide
a better understanding of the crashes and signatures distribution.
As discussed in Section 1, we focused on Mozilla products
as it offers access to the datasets of publicly available crashes,
providing the ground for a real-world feasibility study. However,
we believe the notion of submitting only the required amount of
information is an intriguing one which could be usefully explored
in further research, including employing such notion in areas
of web and desktop applications. Further studies need to be
carried out on mobile applications as another compelling line of
research to explore the impacts of Android closed architecture and
permissioning on deploying such a system in Android devices.

8 CONCLUSION

Against all defense measures, we are still witnessing an
unprecedented amount of data leakages each year. One possible
approach to address the current trend is to share the least possible
amount of information. In this paper, we used this notion in the
context of ACRS aiming to preserve users’ privacy by reducing the
number of duplicate reports collected from clients. We introduced
CREPE that engages the client in the process of crash reporting.
CREPE by adding a layer of bucketing at the client and utilizing
the server to inform the client of the categories for which sufficient
reports have been received prevents the submission of redundant
reports and in turn preserves the privacy of a significant number
of users. To study the feasibility of our approach, we studied 27
distributions of Firefox and analyzed one year of crash reports.
The results of our analysis suggest that we can significantly
reduce the number of submitted reports by bucketing 100 most
frequent crash signatures at the client. This approach, besides
enhancing users’ privacy, improves the system utilization in terms
of storage, network, and human resources by avoiding the transfer
of redundant reports.
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APPENDIX

Algorithm 1: CREPE-Client algorithm

1 receive (sigList)

N}

@

'S

o

receive (symList)

Crash Occur

try to build sig :

if debug.dmp == true then

build sig
if sig € sigList then

‘ submit report(crashid,sig,env)
else

‘ submit fullreport(crashid,env,dmp,url,description)
end

12 else

o
@

‘ submit fullreport(crashid,env,dmp,url,description)

1 end

Figure 11 demonstrates the distribution of frequent top crashes
in Thunderbird in seven recent distributions. The result of our
inspection shows a similarity pattern and statistically similar
distribution between different versions (Figure 11).
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Algorithm 2: CREPE-Server algorithm

Procedure: ServerProsess

[

)

developer.update(sigList)

w

developer.update(symList)

'S

server.push(updates)

@«

server.receive(report)
if report! = full then
add dmp to repository

N o

®

update stats;

9 else

10 ‘ update stats;

11 end

12 Procedure: Server Pull Prosess

13 if developer.requestextradetails then
server.pull(report.dmp) ;
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Figure 11: Distribution of top frequent signatures in Thunderbird across seven stable
versions where each color represents a signature
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Figure 12: Potential reduction in the number of submitted crashes to the server based on
the number of signatures that can be generated at the client in Thunderbird

A similar potential exists in the reduction of the number of
submitted reports in Mozilla Thunderbird. However, the bug
distribution, crash types, and the number of crashes occur in
this application result in a different pattern in the distribution
of signatures. As it can be seen from the Figure 12, a considerable
portion of crashes belong to the top 10 crash signatures. Figure
12 jllustrates the potential for reducing the number of redundant
crashes in Thunderbird using different thresholds.
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