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Abstract—In this paper, we consider the problem of transpar-
ently authenticating a user to a local terminal (e.g., a desktop
computer) as she approaches towards the terminal. Given its
appealing usability, such zero-effort authentication has already
been deployed in the real-world where a computer terminal
or a vehicle can be unlocked by the mere proximity of an
authentication token (e.g., a smartphone). However, existing
systems based on a single authentication factor contains one
major security weakness — unauthorized physical access to the
token, e.g., during lunch-time or upon theft, allows the attacker
to have unfettered access to the terminal.

We introduce ZEMFA, a zero-effort multi-factor authentication
system based on multiple authentication tokens and multi-modal
behavioral biometrics. Specifically, ZEMFA utilizes two types
of authentication tokens, a smartphone and a smartwatch (or
a bracelet) and two types of gait patterns captured by these
tokens, mid/lower body movements measured by the phone and
wrist/arm movements captured by the watch. Since a user’s
walking or gait pattern is believed to be unique, only that user
(no impostor) would be able to gain access to the terminal even
when the impostor is given access to both of the authentication
tokens. We present the design and implementation of ZEMFA.
We demonstrate that ZEMFA offers a high degree of detection
accuracy, based on multi-sensor and multi-device fusion. We also
show that ZEMFA can resist active attacks that attempt to mimic
a user’s walking pattern, especially when multiple devices are
used.

Index Terms—Authentication, Biometrics, Walking-pattern,
Phone, Wearables, Sensors, Context.

I. INTRODUCTION

Balancing the security and usability of user authentication

is an important challenge facing the security community. One

classical problem pertains to transparently authenticating a

user to a local terminal (e.g., a desktop computer) as she

approaches towards the terminal. Such Zero-effort authen-
tication (ZEA) [8] represents a rapidly emerging paradigm,

in which a verifier device authenticates a prover device in

physical proximity of the verifier while requiring no extra
effort by the user of the prover device. The user, carrying the

prover, usually just walks towards the verifier and the verifier

gets unlocked automatically. In this approach, the prover and

verifier devices pre-share a security association, and simply

execute a challenge-response based protocol for the verifier to

authenticate the prover.

The zero-effort requirement is intended to improve the

usability of the authentication process, which may increase

the chances of adoption. Indeed, ZEA systems are already

getting deployed in many real-world application scenarios. For

example, BlueProximity [2] allows a user to unlock the idle

screen lock in her computer merely by physically approaching

the computer while in possession of a mobile phone, without

having to perform any other action, such as typing in a

password. Other ZEA systems include: “Passive keyless entry

and start” systems like “Keyless-Go” [33], PhoneAuth [10],

and access control systems based on wearable devices [49].

Android also allows automatic unlocking of a smartphone

using “Trusted devices” [16]. A Bluetooth watch, fitness

tracker, or car speaker system can be used as a trusted device

to unlock the phone.

However, the zero-effort nature of existing single-factor ZEA
systems opens up a fundamental vulnerability — unauthorized

physical access to the prover device, e.g., during lunch-time

or upon theft, would allow an attacker to have unfettered

access to the verifier device. Since the prover device does not

require any authorization from the user prior to responding

to the verifier device in a ZEA authentication session, mere

possession of a lost or stolen prover device is sufficient to

gain access to the verifier device. Since users’ personal devices

and items (e.g., smartphones or car keys) are prone to loss or

theft, this issue makes the ZEA systems inherently weak and

insecure. Speaking about statistics, digital trends [35] reports

that Americans lost $30 billion worth of mobile phones in

2011. Moreover, the trend has been increasing as reported

by Lookout [29] that 3.1 million Americans consumers were

victims of smartphone theft which is double the number

reported in 2012 by Consumer Reports [48].

This raises an important research challenge: how to protect
the ZEA systems in the face of loss or theft of prover devices,
while still keeping the authentication process transparent and
zero-effort for the user? In this paper, we aim to address

this challenge with ZEMFA, a zero-effort multi-factor authen-
tication system based on multiple prover devices and multi-

modal behavioral biometrics. Specifically, ZEMFA utilizes two

types of prover devices, a smartphone and a smartwatch (or

a bracelet) and two types of gait patterns captured by these

tokens, mid/lower body movements measured by the phone

and wrist/arm movements captured by the watch. Since a

user’s walking pattern is believed to be unique, only that

user (no impostor) would be able to gain access to the
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verifier device in a ZEA session, even when the impostor has

access to both of the prover devices. Since the user has to

nevertheless walk towards the verifier device as part of the ZEA
authentication process, no additional effort is imposed on the

user, thereby preserving the zero-effort and user-transparency

requirement.

While walking-based biometrics schemes have been studied

in prior literature for other application settings (as reviewed in

Section III), our main novelty lies in three important aspects:

1) The specific application domain of our work which uses

walking biometrics to transparently enhance the security

of zero-effort authentication.

2) The use of multiple sensors available on the current

breed of devices (e.g., accelerometer, gyroscope and

magnetometer).

3) The use of multiple devices carried by the user, in

particular, an “in-pocket” smartphone and a “wrist-worn”

smartwatch. Each of these devices capture unique physio-

logical and behavioral facets of the user’s walking pattern

(e.g., phone captures hip movement and watch captures

hand movement).

Such a use of multi-factor authentication improves both the

robustness against accidental errors as well as malicious imper-

sonation attempts. The attacker against our scheme has to steal

both the devices as well as mimic the user’s walking patterns

with respect to both devices (i.e., arm and hip movements).

Our Contributions: The primary contributions of this paper

are three-fold:

1) Design of a Multi-Factor ZEA System: We introduce,

design and implement ZEMFA, a multi-modal walking

biometrics approach tailored to enhance the security of

ZEA systems against stolen prover devices (still with zero-
effort). Our ZEMFA system uses an Android smartphone

and/or an Android smartwatch to extract walking biomet-

rics to authorize a ZEA authentication session. ZEMFA
works with a total of 336 features derived from 8 sensors

of each of the 2 devices. Our system can also support

authentication just based on one of the devices (phone or

watch) and the gait pattern captured by that device.

2) Evaluation under Benign Settings and Passive Attacks:

We demonstrate that ZEMFA offers a high degree of

detection accuracy, based on multi-sensor and multi-

device fusion. Our results show that walking biometrics

can be extracted with a high overall accuracy when using

one of the devices (phone or watch), and became almost

error-free when both devices were used together (i.e.,

0.2% false negatives and 0.3% false positives on average).

This suggests that ZEMFA can be highly accurate in

detecting a valid user as well as an unauthorized entity

who (accidentally or deliberately) walks towards the

authentication terminal.

3) Evaluation under Active Imitation Attacks: We show that

ZEMFA can resist active attacks that deliberately attempt

to mimic a user’s walking pattern, including a state-

of-the-art treadmill-based attack [24]. In particular, our

results suggest that, especially when using both devices

(phone and watch), such attacks would become very

difficult in practice (4.55% false positives on average)

even when the attacker capabilities are very high.

II. BACKGROUND

In this section, we define and present the existing threat

model for a Zero-effort authentication (ZEA) system. Then,

we enumerate the design goals of our proposed system.

A. Zero-Effort Authentication

A ZEA system relies upon the authentication factor “some-

thing you have”. A ZEA scheme involves a user who carries a

prover device (P) and needs to validate her identity to a veri-

fier device (V). P and V typically communicate over a short-

range wireless communication channel such as Bluetooth. P
and V share a prior security association (shared key K) and

the messages between them are encrypted and authenticated.

In particular, a ZEA authentication session runs a challenge-

response authentication protocol that authenticates P to V .

That is, V sends a random challenge C to P , and P returns

back a response R which is an authenticated encryption of

C, in order to prove the possession of the shared key K. The

user does not need to perform any explicit action or gestures in

the authentication process. Simply walking towards V , while

carrying P , establishes the authentication.

B. Threat Model

In ZEA threat model, P and V are assumed to be honest

(i.e., uncompromised and non-malicious). The communication

channel between P and V is protected with encryption and

authentication tools. Further, we assume that the attacker

cannot manipulate P’s hardware and that the sensor data is

trustworthy. Trusted Platform Module [37] technique can be

used to assure the integrity of a device.

In a realistic threat model, an attacker should be assumed to

be in possession of the P devices. The attacker may obtain the

P devices either by stealing it or via a lunchtime attack [11].

In this model, existing ZEA systems are completely broken

since the attacker can just access V by using the P devices.

ZEA systems are known to be vulnerable to relay attacks.

This is because the user usually carries P and gets verified

when she simply comes near to V over radio-frequency

(RF) signals. A relay attacker’s goal is to relay these RF

signals from P to V such that the attacker is authenticated

without possessing P . Security researchers have proposed

various techniques to defend against relay attacks such as

using distance time bounding [3], [19], [42] or using context

information from the environment [17], [45], [50]. As such, the

threat model assumes that a relay attack prevention technique

has already been deployed and preventing relay attacks is

an orthogonal problem. However, such a technique can not

defend against the theft or loss of the P device (this is the

vulnerability we aim to address in this paper).
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C. Design Goals and Metrics

For a ZEA scheme that remains secure even under the event

of loss or theft of the P device, like the one proposed in this

paper, following design criteria must be considered:

1) Lightweight: The scheme should be lightweight in terms

of the various resources available on the device, such as

memory computation and battery power.

2) Efficient: The approach should not incur perceptible de-

lay. Users should not be required to wait for a long period

to get authenticated.

3) Robust: The scheme should be robust to errors and at-

tacks. The system must authenticate with high probability

when an authorized user with P is authenticating to V
while the unauthorized users must be denied access to

V . It must also be robust towards the active attackers

who may intentionally attempt to bypass the system

(e.g., mimic the user’s walking pattern on our proposed

scheme).

4) Transparent & Zero-Effort: Since the approach is zero-

effort, the authentication should be transparent to the

users. The users should not be required to perform ad-

ditional tasks (such as typing passwords/pins) or explicit

gestures. These actions may degrade the usability of the

system, and reduce chances of adoption.

III. RELATED WORK

The field of gait biometrics has been well-studied in re-

search literature. Compared to the existing work, our novelty

lies in the use of gait biometrics for the ZEA systems, and in

the way we extract the gait patterns, i.e., using multiple com-

modity devices and multiple sensors therein. In this section,

we review the existing literature on gait biometrics.

Many researches have explored the use of accelerometer to

authenticate the users based on their walking pattern. These

work mostly use electronic motion recording (MR) devices

such as MR100 wearable sensor [34], ZSTAR [34], [47],

ADXL202JQ accelerometers [30], MMA7260 [43], etc. These

work analyze the accelerometer reading by attaching such MR

sensors at different location of the body such as waist [1],

[30], [34], [43] (device wore in a belt), lower leg [13], [46],

shoe [7], [20], [36], [55], pockets (chest/hip) [14], [54], upper

limb/forearm [14], gloves [23], [40], [44], and so on. In most

of these work, the MR device was tied to the specific body

parts as most of these devices were not wearable.

Vildjiounaite et al. [54] used accelerometer module (MR

sensor) and placed it in chest pocket, hip pocket and hand

to authenticate users based on their walking pattern. To per-

form their experiment, they made mock-ups of “clothes with

pockets” from pieces of textile which the users put on over

their normal clothes. Gafurov et al. [14], [15] also used a

“Motion Recording Sensors” (MRS) to collect accelerometer

data. In their work [15], they tried to spoof the user’s walking

pattern by performing the experiment in two rounds. First, the

targeted user walked in front of the attacker twice. Then, the

attacker walked alone twice mimicking the user. They showed

that such minimal effort impersonation attack on gait pattern

does not increase the chances of impostors being accepted

significantly. In our work, the attacker watched the victim’s

walking pattern in person, recorded the pattern in video, and

got feedback from his colleagues during training. Further they

used MRS attached to the belt while we used commercial

devices such as smartphone and smartwatch.

Stang et al. [47] also explored the gait based authentication

approach using ZSTAR accelerometer sensor and analyzed if

the impostors could imitate the walking pattern. They recruited

13 participants to imitate users. Each participant was given 15

attempts on each template to attack. The impostors did not see

the original walking but they were given a simple description

of the gait. The participants were provided with the visual

feedback such that they could see the template gait graph and

their gait graph continuously plotted on a big screen. After

each attempt a match score between 0 and 100 was displayed

based on correlation such that 100 is a perfect match. They

reported 3 persons exceeded the correlation threshold once,

2 persons exceeded the threshold twice, 1 person exceeded it

three times and 1 person managed to exceed as much as 9

times in 15 attempts. Therefore, they concluded that it is easy

to walk like another person.

Another attempt to mimic walking pattern was made by

Mjaaland et al. [34]. They trained seven impostors to imitate

a specific victim. They used two wearable sensors: the Motion

Recording 100 (MR100), and the Freescale ZSTAR sensor

to record the accelerometer sensor values. They attached

these sensors on belt and asked the participants to wear the

belt which could be mounted to any person’s hip such that

the device would always have the same-orientation. They

conducted short-term hostile scenario and long-term hostile

scenario. In the former scenario, they trained six participants

for two weeks, five hours every day while in the latter

scenario, they trained the seventh participants for six weeks.

In both scenarios, the impostors were not able to imitate

the victim’s walking pattern. They concluded that there is a

physiologically predetermined boundary to every individual’s

mimicking performance such that if one successfully adopted

gait characteristics improved an attacker’s performance, other

characteristics worsen in a chain-like effect.

Muaaz and Mayrhofer evaluated the security of the gait

based authentication system using smartphone [38], [39]. They

developed an Android application which used smartphone

accelerometer to capture gait data. They used acceleration

magnitude to estimate gait cycle length and detect gait cycle.

Finally, they used Dynamic Time Warping (DTW) distance

metric to identify the users and the attackers. They tested

the performance of the system with 35 participants with gait

data recorded in two different sessions with an average gap of

25 days. Then, they hired five professional actors, specialized

in mimicking body movements, to impersonate victims and

perform attacks. They observed zero false positive with the

impersonation attacks. Similar to Mjaaland et al. [34], they

claimed that during impersonation attack, the attackers lost

regularity between their steps which made impersonation even
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harder for attackers.
Similar to our work, Kumar et al. [24] also used an

Android smartphone with an app to record sensor data as

described in Section VII-B. They only used features extracted

from accelerometer sensors while we used features from

eight different sensors. From the 47 features extracted from

accelerometer sensor only, they ranked their features based on

information gain based attribute evaluator [18] and selected 17

top ranked features only. In our work, we explored the best

result for the combination of all 336 feature subset. Since

they were using features extracted from accelerometer sensor

only, the features might be highly correlated and reported that

that their system’s FAR increased from 5.8% to 43.66%. In our

work, the best feature subset consists of the eight uncorrelated

features with correlation less than ±0.1. An attacker would

need more sophisticated device than a treadmill to control

more gait characteristics (defined in Section VII-B).
Researchers have also explored accelerometer and/or gy-

roscope sensors available on current smartwatches for the

purpose of gait detection. Arki wristband by Zikto can authen-

ticate users by their arm swing size, average tempo, rotation

angle, frequency and many other features [41]. Lamiche et

al. [26] used accelerometer to continuously authenticate user

based on gait patterns and key stroke dynamics. Johnston

et al. [21] used the accelerometer sensor embedded in the

smartwatch, while Kumar et al. [25] used the accelerometer

and the gyroscope sensor. In contrast to us, Kumar et al. only

used the sensors from smartwatch and did not consider the

use of multiple devices (both phone and watch). The authors

only extracted a total of 76 features (32 features from the

accelerometer readings and 44 features from the gyroscope

readings), while we work with a total of 336 features, resulting

in much lower FNR and FPR. Also, unlike our work, Kumar

et al. did not study active attacks and only reported the

performance under the zero-effort or random attack. Moreover,

the targeted applications for the two works are different (ZEA
vs. continuous authentication).

TABLE I
SENSORS UTILIZED FOR WALK BIOMETRICS.

Sensor Name
Sensor

Type
Description

Accelerometer (A) Motion
The acceleration force

including gravity

Gyroscope (Gy) Motion The rate of rotation

Linear Acceleration

(LA)
Motion

The acceleration force

excluding gravity

Rotation Vector (R) Motion The orientation of a device

Gravity (G) Motion The gravity force on the device

Game Rotation (GRV) Position Uncalibrated rotation vector

Magnetic Field (M) Position The ambient magnetic field

Orientation (O) Position The device orientation

IV. OUR APPROACH: MULTI-FACTOR WALK-UNLOCK

ZEA

To protect the unlocking of V in the face of loss or theft

of P in a ZEA scheme, we propose to authenticate the

user based on a gait-based authentication system. In other

words, we propose to authenticate the user with her unique

walking pattern. Different categories of sensors are embedded

nowadays into smartphones and smartwatches such as motion,

position and environment sensors. Android OS, one of the

most popular smart device operating systems, provides APIs to

support different categories of these sensors. We leverage these

sensors, especially motion and position sensors, to identify

that the P device is undergoing a particular activity, in a

specific motion and orientation, as if the prover device is being

carried/worn by the legitimate user. This activity detected by

the P device is transparent to the user since it is performed

implicitly while the user walks towards V .

While many types of P devices may be used to detect the

user’s walking activity prior to authorizing a ZEA session, in

this paper, we capture the walking biometrics using an “in-

pocket” device and/or a “wrist-worn” device, both devices

having multiple on-board sensors. Specifically, in such a walk-

unlock ZEA (ZEMFA) scheme, we aim to authenticate the

user in a robust manner using machine learning classifiers

based on data drawn from multiple sensors from multiple

devices such as smartphone (in-pocket) and smartwatch (wrist-

worn). There are other applications which support ZEA and

provide multi-factor authentication besides proximity of the

device such as ZEBRA [31] and Sound-Proof [22]. How-

ever, these applications have different application scenarios.

ZEBRA [31] uses correlation between keystroke events and

wrist movements, geared towards authentication to terminals

in shared workspace. Sound-Proof [22] verifies the proximity

of devices based on ambient audio as second factor, geared

for authentication to remote websites.

In our ZEMFA system, we use multiple devices, i.e., a

smartphone and a smartwatch, to authenticate the user. How-

ever, to analyze the efficiency and robustness of our system

systematically, we show walking pattern extraction:

1) using the in-pocket smartphone,

2) using the wrist-worn smartwatch, and

3) using combination of the above two.

The second setting is suitable for situations where the user

may leave her phone on the desk space or the car dashboard,

and will need to be logged in just by using her watch.

Although currently most of the smartwatches work along with

companion devices (smartphones), we believe that in the future

such devices would be usable as stand-alone devices.

The threat model of ZEMFA is in line with that of ZEA
(Section II-B), except that the former aims to be secure even

under the adversarial possession of P . Since in the proposed

scheme, P can be either a smartphone or a smartwatch or both,

the attacker may therefore possess only one of the devices

or both devices. After the attacker possesses P (one or both

devices), it will try to unlock V . Further, a ZEMFA attacker
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may be active in the sense that it may try to authenticate itself

as the valid user by mimicking the walking pattern of the

user as measured by P device(s). We allow such an attacker

to observe (and record) the user in an attempt to imitate the

user’s walking habits.

In the ZEMFA system, we assume that a relay attack

prevention technique has already been deployed (like in a ZEA
system). That is, no relay attacks are possible between P and

V . Similarly, we assume that no relay attacks are possible

between the P devices (phone and watch). Also, we assume

that the two P devices are securely paired with each other and

that all communication between them has been protected with

traditional cryptographic mechanisms.

Given this threat model, in the following sections, we will

show that the ZEMFA system satisfies all of our design goals

(Section II-C), i.e., being lightweight, efficient, robust and

transparent.

V. DATA COLLECTION: DESIGN AND PROCEDURES

To develop and evaluate our system for authenticating the

users based on their walking pattern, we need to collect the

sensors data from the users’ smartphones and smartwatches

while they are walking. We developed a framework that

encompasses two Android apps and a web app. The web app

utilizes Google Cloud Messaging (GCM) to send commands

to the smartwatch. One of the Android apps is installed on the

smartphone and the other is installed on the smartwatch.

1) Web App: We used GCM to send start/stop commands to

the smartphone, which upon receiving start/stop recording

the sensors data and send start/stop recording trigger to

the smartwatch. We created a simple HTML page with a

text box to record the user information, a start recording

button, and a stop recording button. The experimenter

first inputs the user information in the text box and hits

the start recording button when the user starts walking

towards V . When the user touches V , the experimenter

hits the stop recording button. We used GCM for the pur-

pose of data collection only (in real-life implementation,

GCM is not needed).

2) Smartphone App: The app on the smartphone waits for

the GCM commands. As soon as it receives the GCM

start command, it sends a start recording trigger to the

smartwatch and starts recording the sensors value. As

soon as it receives the GCM stop command, it sends

a stop recording trigger to the smartwatch and stops

recording the sensors value.

3) Smartwatch App: The app on the smartwatch waits for the

smartphone’s triggers. Once it receives a start recording

trigger, it starts recording the sensors values and keeps on

recording until it receives a stop recording trigger. The

recorded sensor values are stored in the smartwatch.

The sensors utilized in our implementation, from both the

smartphone and the smartwatch, are listed in Table I.

For data collection, we recruited 18 students in our Uni-

versity through word of mouth. Among these participants, 15

were male while 3 were female. To avoid any kind of incon-

sistency, we used only one smartphone (LG Nexus 5 (D820)

[51]) and one smartwatch (LG G watch R (W110) [52]). Both

devices have Android OS version 6.0.1.

We conducted the experiment following the University’s

IRB guideline. The participants were clearly informed about

the experiment such as the data being collected, the purpose

of the experiment, and that they can refuse to participate

in the middle of the experiment or even request to delete

their collected data during or after the experiment has been

conducted. Our University’s IRB approved the project.

After the participants were detailed about the experiment,

we asked these volunteers to wear the smartwatch on their

(left/right) hand where they normally wear their watch and put

the smartphone in their (left/right) pocket where they normally

put it during walking. We asked each volunteer to walk from

a door to the computer in a lab setting as if they are trying

to log in. The experimenter sent the GCM command to the

smartphone to start the sensors recording when the user started

walking. As soon as the user touches the keyboard as if the

user is trying to log into the computer, the experimenter sent

another GCM command to stop the sensors recording. We

noticed that some users log into the machine standing while

others sit on a chair before they touch the keyboard. One

participant even placed his phone on the desk before he logged

into the machine.

We collected the data from these volunteers for a period of

time ranging from 30 to 60 days based on their availability.

We asked each user to walk from the door to the computer in

our lab for five times each day. We collected the data from

each user for 10 days resulting in 50 samples of walking data

from each user.

VI. GAIT BIOMETRICS DETECTION: DESIGN AND

EVALUATION

In order to evaluate the performance of the proposed gait

biometrics as an authentication scheme, we utilized the ma-

chine learning approach based on the underlying readings of

the motion sensors, and the position sensors from both of the

phone and the watch.
A. Preliminaries

Classifier: In our analysis, we utilized the Random Forest

classifier. Random Forest is an ensemble approach based on

the generation of many classification trees, where each tree is

constructed using a separate bootstrap sample of the data. To

classify a new input, the new input is run down on all the trees

and the result is determined based on majority voting. Random

Forest is efficient, can estimate the importance of the features,

and is robust against noise [32]. Random Forest outperforms

other classifiers including support vector machines which are

considered to be the best classifier currently available [6], [28],

[32].

Features: For each of the used sensor instances, we calculated

the mean, the standard deviation and the range of each of

the axis (X,Y, Z), the square of each axis (X2, Y 2, Z2) and

the square root of the sum of squares for that instance’s axes
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components (X,Y, Z) of all the instances in the sample that

corresponds to a single walk instance. Twenty one features are

extracted from each of the used sensors, which give us a total

of 336 features.

The 336 features or subset of them were used as input to

train the classifier to differentiate a user from other users. In

the classification task, the positive class corresponds to the

gait of the legitimate user and the negative class corresponds

to impersonator (other user). Therefore, true positive (TP)

represents the number of times the legitimate user is granted

access, true negative (TN) represents the number of times

the impersonator is rejected, false positive (FP) represents the

number of times the impersonator is granted access and false

negative (FN) represents the number of times the correct user

is rejected.

As performance measures for our classifiers, we used false

positive, false negative, precision, recall and F-measure (F1

score), as shown in Equations (1) to (2). FP/precision measures

the security of the proposed system, i.e., the accuracy of

the system in rejecting impersonators. FN/recall measures the

usability of the proposed system as high FN leads to high

rejection rate of the legitimate users. F-measure considers both

the usability and the security of the system. To make our

system both usable and secure, ideally, we would like to have

FP and FN as close as 0 and recall, precision and F-measure

as close as 1.

precision =
TP

TP + FP
; recall =

TP

TP + FN
(1)

F -measure = 2 ∗ precision ∗ recall
precision+ recall

(2)

In order to build a classifier to authenticate the user based

on her gait biometrics, we used leave-one-out cross validation.

We hold out one subject as an impostor to be tested, and use

the other 16 impostors for training. We then repeat the process

17 times for each specific subject and report the average of the

results. Using this methodology, the actual impostor data used

for testing does not contaminate the training data. For training,

we randomly selected data samples from the 16 impostors

dataset. We limited the number of samples selected from 16

imposter dataset to equal to the number of samples from the

user under consideration so that their is no biasness in the

training model.

B. Classification Results

As mentioned in Section V, we collected data from 18 users.

From each user, we collected 50 samples of walking data. In

order to build a classifier to authenticate a user based on her

gait biometrics, We divided the collected data into 18 sets

based on the users’ identities (ids).

The classification results are obtained after running a leave-

one-out cross validation as specified in Section VI-A and

are summarized in Table II. The first part of Table II (“All

Sensors”) shows the results of using all the features extracted

using sensors from the phone, the watch and both devices.

We found that combining the features from the phone and the

watch sensors decreases the false negative rate from 5% in

case of only watch to 4.3% and decreases the false positive

from 13% in case of only phone, 15.5% in case of using only

watch to 10.2%.

The second part of Table II (“Overall Best”) shows the

results obtained by finding the sensor subset that provides

the best overall average. We found that utilizing only ac-

celerometer, gravity, gyroscope, magnetometer and rotation

vector sensors from phone rather than using all phone sensors

decreases the false negative and the false positive by around

1%. Similarly, using only accelerometer, gravity, gyroscope

and magnetometer sensors from watch instead of using all

watch sensors decreases the false negative rate from 5%

to 4.3% and the false positive rate from 15.5% to 15.0%.

Furthermore, we found utilizing only phone accelerometer,

phone gyroscope, phone magnetometer, watch accelerometer

and watch magnetometer sensors improves the classification

accuracy (i.e., decrease both the false negative and the false

positive rates by 3.3% and 1.4%, respectively). These features

subset also contained the subset of features which were

not correlated to each other. We leverage these uncorrelated

features to prevent our ZEMFA system against a sophisticated

form of active impersonation attack [24], as we will describe

in Section VII-B.

Finally, we checked the classification accuracy by selecting

for each user the subset of sensors that provides the best

results. The results of this model are shown in the last

three rows of Table II (“Individual”). We found out that the

classifier performance improved over the previous two models.

Moreover, both the average false positive and the average false

negative rates dropped to around 2.5% when we used the best

subset from both of the devices.

In summary, the results obtained from the classification

models show that the gait biometrics can be detected in a

robust manner and thus will serve as an effective method for

authenticating the users. The results show that the fusion of

the phone and the watch sensors significantly enhances the

performance of detecting the gait biometrics. This is reflected

in very low false positives and false negatives. We noticed that

phone magnetometer and phone gyroscope sensors were the

most dominating sensors to identify users as they occurred in

most of the best sensor subset for each individual. These two

sensors were followed by phone accelerometer sensor. Among

the sensors from watch, the watch accelerometer was found

most frequently in the best sensor subset. The list of sensors

ranked according to their occurrence in best sensor subset is

shown in Appendix Table IV.

VII. RESISTANCE TO ACTIVE ATTACKS

A. Human Impostor Attack

In a human-based impostor attack, the adversary tries to

manually mimic a victim’s walking pattern so that it can

fool the ZEMFA system. Our model assumes that the attacker

already has the physical possession of the P devices (phone

and/or watch). Such kinds of attacks have been explored in the

literature by few researchers [15], [34], [47]. However, most of
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TABLE II
PERFORMANCE FOR THE CLASSIFIER FOR THREE DIFFERENT CATEGORIES. THE FIRST THREE ROWS SHOW THE PERFORMANCE OF THE CLASSIFIER

USING ALL THE SENSORS. THE NEXT THREE ROWS SHOW THE RESULTS OF USING THE SENSORS SUBSET THAT PROVIDES THE BEST AVERAGE RESULTS.
THE LAST THREE ROWS SHOW THE RESULT OF USING THE BEST SENSORS SUBSET FOR EACH USER. HIGHLIGHTED CELLS EMPHASIZE THE MOST

INTERESTING RESULTS.

FNR FPR F-Measure recall precision

Avg (std. dev.)

A
ll

Se
ns

or
s Phone Only 0.028 (0.018) 0.130 (0.068) 0.913 (0.067) 0.890 (0.094) 0.852 (0.047)

Watch Only 0.050 (0.020) 0.155 (0.065) 0.884 (0.067) 0.862 (0.097) 0.829 (0.046)

Both 0.043 (0.012) 0.102 (0.055) 0.934 (0.042) 0.957 (0.058) 0.924 (0.039)

O
ve

ra
ll

B
es

t

Phone Only 0.019 (0.012) 0.116 (0.064) 0.929 (0.052) 0.907 (0.064) 0.862 (0.044)

Watch Only 0.043 (0.024) 0.150 (0.062) 0.892 (0.063) 0.872 (0.091) 0.831 (0.046)

Both 0.010 (0.003) 0.088 (0.043) 0.953 (0.023) 0.929 (0.025) 0.880 (0.032)

In
di

vi
du

al Phone Only 0.027 (0.019) 0.101 (0.057) 0.948 (0.036) 0.929 (0.028) 0.874 (0.038)

Watch Only 0.058 (0.029) 0.138 (0.058) 0.923 (0.040) 0.915 (0.041) 0.841 (0.042)

Both 0.025 (0.012) 0.052 (0.036) 0.976 (0.016) 0.944 (0.001) 0.905 (0.027)

TABLE III
PERFORMANCE FOR THE IMPOSTOR ATTACK ON TWO DIFFERENT VICTIM USERS FOR THE CLASSIFIER TRAINED WITH THE BEST SUBSET FOR THE

INDIVIDUAL VICTIM USER. HIGHLIGHTED CELLS EMPHASIZE THE MOST INTERESTING RESULTS.

Victim V1 Attacker Victim V2 Attacker

F-measure FPR FPR F-Measure FPR FPR

In
di

vi
du

al Phone Only 0.970 0.040 0.182 0.968 0.060 0.917

Watch Only 0.960 0.060 0.000 0.968 0.060 0.000

Both 1.000 0.000 0.091 1.000 0.000 0.000

these works use accelerometer devices (e.g., MR100 wearable

sensor) (not a phone or a watch used in our scheme), and these

devices are worn on the waist tied to the belt [15], [34] or on

the limbs near the shoes [47]. Therefore, we analyze how our

system will perform when an attacker with similar physical

characteristics attempts to learn and imitate an individual’s

walking pattern.

During the walking biometrics data collection, we recorded

videos of eight different users. The attacker (a researcher,

serving the role of an expert attacker) chose two of the users as

victims (we call them V1 and V2) who exhibited the simplest

walking pattern or distinctive visible characteristics, upon

careful visual inspection. These victims also have a similar

physical build to that of the attacker. Hence, we claim this

as the “best case attack”. If the attacker can not succeed in

attacking such simplistic walking patterns with similar built,

then it would be harder for the attacker to succeed in attacking

more complex walking patterns.

In our experiment, the attacker watched the video several

times so as to learn the feet and the hand movement pattern of

the user. While practicing, the attacker also tried to match the

time duration from the start to the end of the victim’s walk,

using the video. After the attacker felt comfortable with the

timing and the walking pattern, we collected the data for the

attacker with P walking towards V . The attacker was provided

the visual feedback while imitating the walk pattern.

To measure the performance of the impostor in mimicking

the victim, we first trained a random forest classifier with the

victim’s data using 10-fold cross validation. We analyzed the

classifier’s accuracy with features from the phone only, the

watch only and both devices. We trained our classifiers with

the subset of features that provided the best performance for

the individual user (victim). Then, we tested these classifiers

against the impostor attacker’s data to determine the success

rate of the attacker. The results are shown in Table III.

With the classifier models built with individual best sub-

set features, the attacker could not imitate the hand motion

resulting low attack success rate when both devices’ features

were used. In other words, ZEMFA could resist the impostors

to a high degree when the best subset of features from both

devices were used for each individual user.

In summary, these results show that the ZEMFA system that

leverages both phone and watch, and employs individualized

classifiers can be highly resistant to walking imitation attacks.

This is a significant security advantage of a multi-device

ZEMFA scheme.

B. Treadmill Attack

To perform a more powerful attack on the victim’s walking

pattern so as to successfully fool the ZEMFA system, we

followed the work by Kumar et al. [24]. This research rep-

resents the state-of-the-art attack against gait biometrics and
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is therefore an ideal platform to evaluate our system against.

In this attack, the attacker already has the sample of a victim’s

gait pattern. First, the authors extract different features from

the accelerometer sensor of the smartphone to authenticate

users based on their walking pattern to create a baseline model

called Gait Based Authentication System (GBAS). Then,

they attack on the GBAS system using a treadmill. In this

attack, instead of imitating the victim’s walking pattern, the

attacker uses treadmill to control different gait characteristics

(GCAT) such as speed, step length, step width and thigh lift

to match the features extracted from the victim’s walking

pattern. To setup this attack, the attacker first analyzes the

feature subsets that dominates the decision making process of

the machine-learning classifiers [24]. Among these dominant

features subset, the attacker then analyzes how these features

are correlated with each other. From this analysis, the attacker

tries to manipulate only one feature among the correlated

features set. Now the attacker has final set of five features

which it needs to manipulate to fool the classifier. Correlation

analysis of the features is the foundation for this attack. The

experimenter creates an imitator profile based on these final

five features mapped to the four GCAT. This mapping is also

created using correlation between GCAT and the dominating

feature set. For example, if speed is directly correlated with

the mean of X-axis of the accelerometer (ACCX M ) then

to increase or decrease the ACCX M , the imitator needs to

increase or decrease the walking speed, respectively.

We did not recreate a treadmill attack as discussed above.

However, to thwart such attacks using treadmill to control

different gait characteristics, we calculated the correlation

values among each pair of features using Pearson’s Correlation

Coefficient [27]. We observe that the features from the phone

are more correlated with the features from the phone while the

features from the watch are more correlated with the features

from the watch. This means that the attacker cannot use one

device to alter the feature of the other device, however, it may

be able to alter the features from a single device if it knows

the correlation among the features from the same device.

We next analyzed how the features from a single device are

correlated with the other features from the same device. From

our correlation analysis, we see that the features extracted from

a single sensor were more correlated to each other than the

features extracted from different sensors. For example, mean,

standard deviation and range of the accelerometer sensor were

more correlated with each other, compared to those taken from

gyroscope or magnetometer. Using the correlation analysis,

we derived the best feature subset such that each feature is

correlated to each other in a given feature subset by less

than ±0.1 (i.e., the subset of uncorrelated features). It will

be harder for an attacker to correlate/match all the features

with different gait characteristics if the number of uncorrelated

features becomes too big [24]. Further, manipulating one gait

characteristic may influence more than one feature vector

which do not have any correlation, increasing the difficulty

of the treadmill attack.

To increase the performance of the classifier in defending

the treadmill attack, we analyzed to find out the super set of the

subset containing maximum number of uncorrelated features

set. The best feature subset for the overall best classifier in Sec-

tion VI that is trained with features from both devices consists

of eight uncorrelated features. This increased the accuracy of

the classifier during the benign case while still being robust to

the treadmill attackers. Furthermore, the treadmill attackers

may use more sophisticated devices to provide better gait

characteristics that may alter different features. We can defend

this by increasing the correlation threshold (currently set to

0.1) for finding uncorrelated feature set. This will provide

larger number of features that are correlated to each other

by that threshold value. Note that the correlation of 0 to 0.1

is considered near-zero correlation while that between 0.1 and

0.3 is considered weak correlation [5], [12]. Hence, using the

correlation threshold of 0.3 will still give the feature subset

with weak correlation that attacker may not be able to attack

using the treadmill technique.

VIII. DISCUSSION

Adherence to Design Criteria: Our ZEMFA system is com-

pliant with the design goals established in Section II-C. First,

ZEMFA is triggered and sensor data is polled only when V
sends a challenge to P in a challenge-response authentication

protocol. After P has authenticated the user, the system

deactivates the sensors. The classifier model is to be built

offline during the training phase. The sensor data is collected

for no more than 10 seconds and the decision making process

by the classifier is pretty simple (random forest classification).

Hence, ZEMFA will have minimal influence on the power

consumption and time delay satisfying our design goals of

being lightweight and efficient.

From our results in Table II, ZEMFA yields very high F-

measure with very low FNR and FPR during the benign case.

The results from Table III shows that ZEMFA is resistant

to impostor attacks. Further, the use of uncorrelated sensor

features makes ZEMFA tolerant to treadmill attacks. This

makes ZEMFA very robust to errors and attacks.

Finally ZEMFA works in the background while the user

walks towards V . Hence, ZEMFA preserves the transparency

of ZEA even though it adds another layer of strong security

to the system.

ZEA & Bluetooth: ZEA systems are dependent on Bluetooth,

and so is ZEMFA. ZEA and ZEMFA systems will fail if

Bluetooth of either P or V is turned off. If Bluetooth is turned

on, P can authenticate to V , even when V is on sleep mode.

This is similar to computer getting awake by a Bluetooth

mouse or keyboard.

Fallback Scenarios: We showed that our system is very

effective with very low FNR. However, a user may be injured,

stressed, sick, or carrying the phone in a purse or backpack,

which may significantly alter the user’s walking behavior. Such

situations can lead to false negatives, as the legitimate user will

be denied access to the system. In such cases, we can fallback

to traditional password/key based approach for authentication.
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Effect of Changing Apparel or Footwear: A user’s walking

pattern may get affected with the use of varying apparel or

footwear. Our data collection experiment was conducted in

lab for a period ranging from 30 to 60 days. Even though

our participants must have worn changing apparel and shoes

during the data collection process, our classification accuracies

are still quite high. This suggests that our classification model

may be robust to changes in walking patterns arising from

changing clothing and footwear.

Limitations: We recruited 18 volunteers to participate in

the experiment. Although a larger sample is preferred for

biometrics study, the number of subjects in our study is

comparable to that in the earlier study on biometric authen-

tication [34], [47]. In our experiment, all of our participants

followed same route from a door to a computer with distance

around 6m. This process usually took them less than 10

seconds. In real world, the distance between V and P can

be different when the authentication protocol is triggered by

V . In our experiment, we manually triggered the authentication

protocol. Our application did not implement the automatic

data collection. In real world, the authentication protocol must

implement automatic data collection and may be triggered

when P and V are within less than a certain threshold distance.

The distance may be calculated using the RSSI (Received

Signal Strength Indicator) value. Also, time taken for a user

to reach V can also be different due to different obstacles

in between the user’s route to V . Further, a user may be

holding the phone in her hand or carrying it in her bag as

the study of [9] shows, instead of keeping it in a pocket

or holding some object restricting her arm movement. Also,

calls or notifications may cause devices to vibrate while the

authentication scheme is recording the sensor values. These

are some scenarios which may affect the sensor data and the

features extracted may be significantly different resulting in

false negatives denying access to a legitimate user. For such

false negative scenarios when a legitimate user is denied,

we can fallback to the traditional password or key based

system. In our experiment, we also did not consider people

with disabilities (for example a person on a wheelchair or a

crutches). Our proposed system will not work in such cases.

Either different behavioral biometric authentication scheme

needs to be implemented or we can fallback to the traditional

password or key based system.

Implementing ZEMFA on Car Keys: The core idea of

ZEMFA is not just limited to smartphones. Smart keys were

introduced as early as 1998 by Mercedes-Benz under the name

“Key-less Go” [33]. The car keys have evolved from physical

keys to Remote Keyless Entry (RKE) which then led to Passive

Keyless Entry (PKE) systems [53]. These keys operate via RF

signals and modern key systems claim that they use encryption

to prevent car thieves from decoding the RF signal [53]. In

2008, BMW and NXP Semiconductors announced the first

multi-functional car key which is compatible with EMV (Eu-

ropay, MasterCard, VISA) electronic payment standard. Such

keys contained a dedicated cryptographic coprocessor. Bu-

sold et al. [4] introduced smartphone-based NFC-enabled car

immobilizers. ZEMFA can be implemented on such systems

where the key (either physical, RKE or PKE) has embedded

sensors, processor and RF capability.

IX. CONCLUSION AND FUTURE WORK

We proposed a multiple factor zero-effort authentication

system geared for local terminals to protect traditionally-

deployed single factor zero-effort authentication systems in

the event of loss or theft of authentication tokens. Our system

transparently authenticates the user to her authentication termi-

nal as she walks towards the authentication terminal in order

to unlock it. It leverages a smartphone and/or a smartwatch,

and multiple embedded sensors therein, to reliably detect the

unique multi-modal walking pattern of the user. Our results

suggest that when using both devices together, the system

offers almost error-free detection and makes it very difficult

for even a powerful attacker to imitate a user’s walking habit.

Consequently, we believe that our approach can significantly

enhance the security of current ZEA systems without degrading

their usability.

Future work may explore other types of wearable devices

(such as glasses or shoes, which may capture head or feet

movements, respectively) to further extend our approach, study

the implementation of similar techniques on car keys in keyless

entry systems, and conduct broader data collection campaigns

with larger and diverse population samples.
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APPENDIX

A. Best Sensors
The sensors list according to number of times each sensor

appeared on the best sensor subset for each individual is

shown in Table IV. We noticed that phone magnetometer

sensor appeared most often followed by phone Gyroscope and

accelerometer, respectively. Hence, it seems position sensors

such as magnetometer and gyroscope are more important in

authenticating users via phone gait biometrics than motion

sensors such as accelerometer. Among the sensors from watch,

we noticed the watch accelerometer to be the most frequent

in the best sensor subset.

TABLE IV
TOP 10 SENSORS RANKED ACCORDING TO NUMBER OF TIMES THEY

APPEARED IN THE BEST SENSOR SUBSET FOR DIFFERENT INDIVIDUAL.

Sensors Count

phoneMagnetometer 28

phoneGyroscope 26

phoneAccelerometer 25

watchAccelerometer 24

phoneGravity 18

watchMagnetometer 18

phoneRotVector 15

watchGRV 13

watchGyroscope 13

watchGravity 10
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