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An Offensive and Defensive Exposition of Wearable

Computing

PRAKASH SHRESTHA and NITESH SAXENA, University of Alabama at Birmingham, USA

Wearable computing is rapidly getting deployed in many—commercial, medical, and personal—domains of
day-to-day life. Wearable devices appear in various forms, shapes, and sizes and facilitate a wide variety
of applications in many domains of life. However, wearables raise unique security and privacy concerns.
Wearables also hold the promise to help enhance the existing security, privacy, and safety paradigms in
unique ways while preserving the system’s usability.

The contribution of this research literature survey is threefold. First, as a background, we identify a wide
range of existing as well as upcoming wearable devices and investigate their broad applications. Second, we
provide an exposition of the security and privacy of wearable computing, studying dual aspects, that is, both
attacks and defenses. Third, we provide a comprehensive study of the potential security, privacy, and safety
enhancements to existing systems based on the emergence of wearable technology. Although several research
works have emerged exploring different offensive and defensive uses of wearables, there is a lack of a broad
and precise literature review systematizing all those security and privacy aspects and the underlying threat
models. This research survey also analyzes current and emerging research trends and provides directions for
future research.
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1 INTRODUCTION

“Wearables,” “wearable devices,” “wearable technology,” and “wearable computing” all refer to the
emerging computing paradigm that is incorporated into items of clothing and accessories that can
be comfortably worn by the users. Wearable devices are being intensively developed in various
forms, shapes, and sizes, including those that are “head worn” (e.g., glasses and headsets), “eye
worn” (e.g., contact lenses), “wrist worn” (e.g., watches, bracelets, and wristbands), “feet worn”
(e.g., shoes), and “body worn” (e.g., e-textiles and smart fabrics). Smartwatches; fitness trackers
like those produced by Fitbit; Google Glass, an augmented reality gadget; and Emotiv headset, a
wearable brain-computer interface based on electroencephalography (EEG) technology are some
of the examples of already ubiquitous wearable devices. Beyond these, there are upcoming new
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wearables blooming in the market, such as Google’s smart contact lens;1 Studio Roosegaarde In-
timacy 2.0,2 a smart dress that senses the closeness of a wearer with a bystander; Netatmo JUNE,3

a device that measures the real-time UV exposure; and GPS Pet Tracker, a wearable for a pet to
track its location.

Wearable devices clearly bring immense benefits to society and boast improved quality of life
for wearers ranging from virtual interaction in augmented reality (AR) to “fitness data”-inspired
healthier lifestyles [92]. However, these devices are not without drawbacks. Being almost con-
stantly attached to the body of the wearer, in contrast to traditional devices, wearables raise unique
security and privacy vulnerabilities. One inherent threat is privacy leakage due to the “always on”
nature of these devices. For example, many businesses ban Google Glass4 due to privacy issues as
the wearer could potentially be recording video all the time with the device’s front-mounted cam-
era, which may compromise the privacy of bystanders. Similarly, wearable devices record different
types of data (e.g., sensor readings) that are frequently outsourced elsewhere (mainly to online
servers) for real-time analysis. Such data can then be abused by malicious actors and may leak
sensitive information regarding the wearer itself. For instance, the sexual activity of some of the
Fitbit’s users had been exposed due to Fitbit’s default settings in the recent past.5 Another threat
pertains to the (typically) unguarded access to wearable devices due to their interface-constrained
nature. If a wearable device is lost or misplaced, anyone has access to the information stored on
the device, since wearable devices generally store data locally without encryption, PIN protection,
or user authentication. Finally, an additional threat raised by wearable devices is their exploitation
for illegitimate use due to their inconspicuous nature. For example, wearables may be effectively
exploited by students for plagiarism purposes, in both traditional and online settings [105].

While wearables introduce the potential for offensive uses, they also hold the promise to help
enhance the existing security, privacy, and safety paradigms in unique ways while preserving the
system’s usability. One of the innovative enhancements can be seen in the context of authentica-
tion. Authenticating users based on their thought, particularly brainwave signal, has now become
possible due to technological advancement in wearable headsets equipped with EEG sensors [10,
33]. Similarly, an important de-authentication step, which has been overlooked by common au-
thentication schemes, can be addressed by the use of a wearable bracelet, embedded with motion
sensors. With such a wearable bracelet, the user can be continuously yet transparently authen-
ticated to a terminal (or even a website) based on motion sensors’ readings [101]. Another en-
hancement lies in pedestrian safety schemes. For instance, the use of a wearable shoe, embedded
with inertial sensors, can enable the detection of the sidewalk-to-street transitions, thereby en-
abling people to identify the pedestrian risks when they step into the street [76]. In this research
survey, we provide a comprehensive study of such wearables’ driven security, privacy, and safety
enhancements to the existing system.

Survey Contribution: The contribution provided by this research survey is threefold (Figure 1
provides a high-level view):

(1) We identify a wide range of existing as well as upcoming wearable devices and investigate
their general applications in various domains, such as medical, sports and fitness, and
business operations (Section 2).

1Google’s Smart Contact Lens – https://goo.gl/AbPJYS.
2Studio Roosegaarde Intimacy 2.0 – https://goo.gl/kMG6U0.
3Netatmo JUNE – https://goo.gl/9Ah7fH.
4Although Google Glass is no longer offered by Google, there are other similar smartglasses, such as Sony SmartEyeGlass,
Epson Moverio BT-300, and Vuzix M300, which would suffer from similar issues as the Google Glass.
5Fitbit Moves Quickly After Users’ Sex Stats Exposed – https://goo.gl/BFzME6.
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Fig. 1. A high-level overview of the research survey.

(2) We provide an exposition of the security and privacy of wearable computing, studying
dual aspects, that is, both attacks as well as defenses (Section 3).

(3) We pursue a comprehensive study of the potential security, privacy, and safety enhance-
ments to existing computing systems based on the emergence of wearable technology
(Section 4).

Although several research works have emerged exploring different offensive-defensive uses of
wearables, there is still a lack of a broad and precise literature review systematizing all those
security and privacy aspects. This research survey analyzes current and emerging research trends
and provides directions for future research.

2 WEARABLES AND APPLICATIONS

Wearables enable a number of applications in various domains of life, ranging from personal and
medical to business operations.6 In this section, we explore a variety of wearable devices and
provide a brief review of different applications.

(1) Medical: In the medical sector, several wearable devices have been introduced to assist
medical personnel in monitoring the patient’s physiology. Wearables offer simultaneous
recording of vital signs, including heart rate, blood pressure, respiration, and body tem-
perature, which contributes to producing a health summary of a patient and an alert
message when emergency service is needed. Some wearables, such as QardioCore7 and
Neurosky,8 also offer remote and continuous monitoring of electrocardiograms (ECG)
and EEGs to improve detection and management of cardiac and mental conditions of
patients. There exist other wearables that enable clinicians/patients to manage chronic

6Wearable Technology Application Chart – http://www.beechamresearch.com/article.aspx?id=20.
7QardioCore – https://goo.gl/JWxKM1.
8NeuroSky – http://neurosky.com/.
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diseases, such as Abbott Diabetes Care,9 iTBra,10 and ADAMM.11 Other wearables, such
as eSight,12Horus,13OrCam,14dbGLOVE,15 and Lechal Shoes or Insoles,16 are designed to en-
hance the vision capability of visually impaired individuals. Some wearables also enhance
the hearing capability of a person. Hearing aids from ReSound17 and Audicus18 are some
such examples.

(2) Wellness: Wearables are being widely used in consumer healthcare with a goal to provide a
healthy lifestyle and general well-being. Wearables offer physiological monitoring; emo-
tion monitoring; gait/posture correction; eye and skin care by monitoring UV exposure,
humidity, and temperature; identification and assessment of harmful running style; mas-
sage and sleep monitoring; and training feedback. LUMOBack,19Netatmo JUNE,20Violet,21

and CliMate22 are some such examples.
(3) Sports and Fitness: Wearable products offer various applications in the sports and fitness

sector, like fitness monitoring, measuring body movement, vibration-based muscle ther-
apy, virtual coaching, and sports performance monitoring and evaluation. Some examples
are activity tracker bands (e.g., Runsense23), fitness sports shoes (e.g., StretchSense24), and
MYOVOLT.25

(4) Communications: Wearable technology features applications related to interaction among
people, including text, voice and email, group interaction through social media, and phys-
ical expressions such as touch and hugs. Smartwatches, wristbands, smartrings,26smart
T-shirt,27 and smart undergarments (e.g., Fundawear28) are some examples of such wear-
able products.

(5) Glamor: One of the several domains where wearable technology is deployed is the glamor
sector, where the general goal is to make a positive impact on appearance and to create
fascinating fashion pieces, including decorative displays, light adornments, and tracking
displays of emotions on clothing items. Such fashion-centered wearables include light-
sensitive dresses, motion-sensitive dresses, stretch-sensitive dresses from Rainbow Win-
ters,29 and intimacy dresses from Studio Roosegaarde.30

9Abott – https://www.abbottdiabetescare.com/.
10Cyrcadia Health – http://cyrcadiahealth.com/.
11ADAMM – http://www.healthcareoriginals.com.
12eSight – http://www.esighteyewear.com/.
13Horus – http://horus.tech/en/horus.php.
14OrCam – http://www.orcam.com/.
15dbGLOVE – http://www.dbglove.com.
16Lechal – http://lechal.com.
17ReSound – http://www.resound.com.
18Audicus – https://audicus.com/.
19Lumo Back – http://www.lumobodytech.com/lumo-back/.
20JUNE – https://www.junebynetatmo.com/en-US/site.
21Ultra Violet – http://www.liveultrahealthy.com.
22CliMate – https://www.rootilabs.com/products/climate.
23Runsense – https://goo.gl/5R9g1u.
24StretchSense – http://stretchsense.com/.
25MYOVOLT – http://www.myovolt.com/.
26DOI SmartRing – https://www.mota.com/doi-smart-ring/.
27CUTECIRCUITS – http://cutecircuit.com/tshirtos/.
28Fundawear – http://goo.gl/7qxKxJ.
29Rainbow Winters – http://www.rainbowwinters.com.
30Studio Roosegaarde – https://goo.gl/qqjCGd.
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(6) Business Operations: The hands-free and location-independent operations of wearables
create a number of business applications. A wrist-mounted mini-PC with built-in GPS
provides high-tech mobility and connectivity to emergency personnel, search-and-rescue
teams, warehouse workers, or anyone on the move [49]. Further, wearables such as Nymi
band,31NFC Ring,32Digital Dreams wristbands,33 and MagicBands34 offer delivery of better
customer service, improved operational efficiency, and access control.

3 SECURITY AND PRIVACY OF WEARABLES

In this section, we first present the security and privacy requirements that need to be considered
while designing a wearable computing system. Then, we present a set of security and privacy
threats against or of using wearable technologies, in particular an exposition of the state-of-the-
art attacks, and potential defenses against those attacks based on the existing research literature.

3.1 Security and Privacy Requirements

There are several security and privacy properties that need to be considered while designing wear-
able devices and applications. When considering security and privacy properties, usability should
also be taken into account. These security, privacy, and usability requirements vis-a-vis wearable
computing are listed next.

3.1.1 Security Requirements.

• Confidentiality: Only the authorized parties (i.e., an authorized user; an authorized com-
panion device, like a smartphone or PC; or an authorized online server, if any) should be
able to access the data recorded by the wearables, the information transferred to/from the
wearables, and the system structures of the wearables. These authorized parties should be
verifiable (i.e., the identity of the wearer or the companion devices communicating with
wearables or online server should be authenticated). Specifically, data should remain confi-
dential all along the way from wearables themselves and companion devices to the online
services (if any).

• Integrity: An unauthorized party should not be able to modify the data recorded by the
wearables, the information transferred to/from the wearables, and the system structures
of wearables. An adversary should not be able to inject false data or modify or delete the
recorded or wearable-relevant information. Further, the adversary should not be able to
modify or replace a hardware/software component of the wearable device.

• Availability: An authorized party should be able to access the data recorded by the wear-
ables, the information transferred to/from the wearables, and the system structures of wear-
ables when requested. In other words, wearable devices should be resistant against any
form of denial-of-service (DoS) attacks. For example, they should be invulnerable against
battery-draining attacks, storage-overflowing attacks, or jamming attacks on communica-
tion channels.

• Authentication: The authenticity of the wearer should be verified using a viable authentica-
tion scheme. Only a legitimate owner of the device should be allowed to access the device.

31Nymi – https://nymi.com/.
32NFC Ring – http://nfcring.com.
33Digital Dreams wristbands – http://goo.gl/jsQSAo.
34MagicBands – https://goo.gl/kLrPF4.
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• Access Control: The use of data/information recorded/stored on the wearables should be con-
trolled using access policies. Only a valid user having valid access rights should be allowed
to access a particular piece of information associated with a wearable device.

• Nonrepudiation: It should be ensured that the wearables cannot deny being the origin of the
data that they generated.

3.1.2 Privacy Requirements.

• Device ID Privacy: Wearable devices should not be trackable by any unauthorized party.
Use of a persistent identifier, such as RFID identifier [79], Bluetooth [77] device address,
and 802.11 media access control (MAC) address [63], in clear text can compromise an indi-
vidual’s location. Wearable device IDs should therefore be kept private.

• Device Log or Measurement Privacy: The measurements and access log information stored
on the device should not be accessible to any unauthorized parties. The malicious entity
should not be able to extract any information about the sensitive activity, such as entering
a PIN in any POS terminal, a password, or text input on the PC.

• Wearer Privacy: An unauthorized party should not be able to exploit the wearable devices
to identify the wearer or to learn sensitive information about the wearer. The information
may include the name, address, location, audio and video of bearers, and the medical history
or detailed diagnosis, in case of a medical device.

• Bystander Privacy: A malicious entity should not be able to exploit the wearable devices to
identify the bystander or capture/derive sensitive information about the person nearby and
in close surroundings. Capturing information about the users’ surroundings raises privacy
issues toward the social environment as bystanders may not be aware of or compliant with
ongoing recordings.

3.1.3 Usability Requirements. Wearables should be able to offer the following fundamental us-
ability features: (1) easy to put on—there should not be any tedious steps to set up and install a
wearable device on the wearer’s body; (2) easy to keep in position—once installed/worn, the wear-
able should remain in its position without any discomfort to the user; and (3) easy to use—though
limited in physical area for input/output, users should be able to interact with the wearable device
easily and comfortably. When considering security and privacy requirements of wearable com-
puting, user experience, particularly the usability features mentioned previously, should also be
carefully considered and evaluated. While covering security and privacy requirements of wear-
ables, it may often create a confusing and cumbersome design that causes the user to lose his
or her interest and motivation toward wearables. Such a design should be evaluated and avoided
if possible. Due to their resource-constrained nature, though designing security and privacy-rich
wearable devices creates unique challenges, usability aspects should also be given consideration.

3.2 Threats and Potential Defenses

There are various security and privacy threats against wearable technologies, which are surveyed
and systematized next, along with their potential defenses based on existing research literature
(Table 1 provides a summary).

3.2.1 Privacy Threats of Wearable Cameras. The wearable “life-logging” cameras (e.g., Google
Glass, Autographer, and Narrative Clip) allow users to automatically “life-log” daily activities
from the “first person” perspective for various purposes, such as treating memory loss [69];
enhancing public safety, security, and accountability [37] or enjoyment. These cameras capture
a large number of images every day, which may include pictures with embarrassing moments or
sensitive information (e.g., pictures of computer screens containing private emails or bank account

ACM Computing Surveys, Vol. 50, No. 6, Article 92. Publication date: November 2017.



An Offensive and Defensive Exposition of Wearable Computing 92:7

Table 1. Summary of the Security and Privacy Threats Against or of Using Wearable Technologies,
Along with Their Potential Defenses Based on Existing Literature

Threats Defenses

Privacy Threats of
Wearable Cameras · Design and implementation of Privacy-Enhancing Technologies (PETs)

Unfettered Access
· Design and implementation of on-board secure authentication system

leveraging available physiological and motion sensors

Input Inference and
Side-Channel Attacks

· Permission restriction to on-board sensors
· Privacy-enhancing keyboard
· Mitigating acoustic emanations
· Mitigating visual leakage of input/output devices
· Access control to bio-sensors

Hidden Plagiarisms
· Prohibit the use of wearables in special environments, such as examination scenario
· Software-based restriction that prohibits the full usage of device features

Accidental Leakage
to Online Services

· Designing wearables capable of working fully offline utilizing hand-held devices
· Should give clear and precise information about the data to the user
· Minimal personal identification information collection and storage
· Encryption of data while storing (“zero knowledge” service)

Hijacking Communication
Link · Use of secure communication protocols

Safety Risks
· Establish clear legal guidelines and policies
· Implement software-based mechanisms that automatically identify the risks

Fig. 2. Some instances depicting privacy threats of wearable cameras.

information) about the wearers and others in the environment that wearers/bystanders may not
want to be recorded. Given the massive collection of images captured by the cameras, controlling
access to these images becomes a labor-intensive task. Captured images may contain subtle private
information. For example, the account information on the captured image may be noticeable only
after it is zoomed in. This may cause people to inadvertently share private information, referred
to as a “misclosure” [26]. To help people store and share captured images, many wearable devices
feature automatic uploading of images to the cloud, which further amplifies privacy concerns.
Furthermore, a malicious remote entity can fool the users into installing a visual malware (on their
life-logging wearables) that collects the captured images and constructs three-dimensional models
of wearers’ indoor environments [144]. The malicious entity can then investigate the constructed
virtual environment model carefully and steal various virtual objects such as users’ whereabouts,
personally identifiable information (e.g., SSN), financial documents (e.g., bank account informa-
tion), and information on computer monitors (e.g., private emails). Such real-time life-logging tools
and activities raise a variety of privacy concerns regarding both the bystanders and the wearers.

The hands-free nature and inconspicuous recording abilities of wearable cameras have made
capturing and recording images/videos easier than ever. Unlike mobile phones, wearable comput-
ers embedded with cameras remain attached to the wearer’s body almost all the time. Moreover,
these devices are evolving, shrinking in size, and offering low detectability. Unfortunately, these
features enable a malicious entity to record the video surreptitiously to get sensitive information
about the person or the places of interest. The advancement in computer vision technology has

ACM Computing Surveys, Vol. 50, No. 6, Article 92. Publication date: November 2017.
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further enhanced the capability of malicious actors. For instance, a malicious agent can apply var-
ious computer vision techniques on a video consisting of a user tapping on the touchscreen to
automatically locate the touch points on the screen. Later, by mapping the estimated touch points
to a reference image of a standard soft keyboard or number pad of that particular touch-enabled
device, the malicious agent can infer the touchstrokes provided by the user [139, 161].

Consequently, life-logging cameras have highlighted the risks of and challenges to the privacy
of the bystanders along with that of the wearers. People are interested in being asked permission
before being recorded, and wearers are also concerned about the privacy of the bystanders [43,
72, 92]. A few years ago, it was reported in the media that Google Glass users were attacked in
public.35 These media reports underscore the high demand for the design and the implementation
of privacy-enhancing policies and techniques geared toward wearable cameras [89].

Potential Defenses: To address the privacy threats pertaining to the use of wearable cameras,
a handful of privacy-enhancing policies and techniques, in particular “Privacy-Enhancing Tech-
nologies (PETs),” have been proposed in the scientific literature. Some are based on colocation
of the camera and its bystanders, while some are based on face recognition. Others require the
user to carry some visual markers or perform certain gestures. Table 2 presents a systematization
and comparison of different PETs considered in this survey based on the usability, deployability,
and security criteria (described briefly in Appendix Table 5) as described in [89]. All these PET
approaches can be classified into the following five categories:

(1) Visual Marker Based: Visual-marker-based approaches, such as the ones used by Privacy
Makeup [65], Respectful Cameras [130], Picture Privacy Policy Framework (P3F) [39], Of-
flineTags [113], and PrivateEye and WaveOff [121], track the visual markers using statisti-
cal learning and then use various classification techniques to execute respective privacy
policies. Privacy Makeup and the hairstyle-based approach presented in [65] create sig-
nificantly invasive distortions with camouflage makeup to prevent the feature response
of face detection algorithms. Respectful Cameras uses colored hats or vests as the visual
marker, while Offlinetags uses four different symbols, No photos, Blur me, Upload me, and
Tag me, which are printable on a piece of paper and readable by the open-source Offlinetags
software. P3F uses similar approaches as Respectful Cameras, but the privacy policies used
in this scheme are more complex and fine-grained. In addition to dedicated accessories,
P3F offers a database of fashionable clothing patterns that are used as visual markers.
Unlike all these schemes, PrivateEye and WaveOff require the user to mark sensitive re-
gions explicitly using a predefined marker or a phone application. PrivateEye, intended
for privacy of the 2D regions, requires marking of the sensitive region with predefined
marker (e.g., dotted rectangle inside the solid rectangle), while WaveOff, intended for the
privacy of 3D objects, requires marking the sensitive object using the WaveOff phone
application. The WaveOff application then extracts and stores the visual features of the
sensitive regions in the database to be used later for privacy policy enforcement.

Thus, the visual-marker-based approach requires the user to wear or carry one or mul-
tiple visual markers (e.g., colored vest or hat) to initiate the privacy policy in wearable
cameras. Certainly, these visual markers are visible to the bystanders and therefore in-
stantly disclose the users’ privacy preferences. Some users may want to reveal their pri-
vacy preferences toward recording, while others may not want to do so.

(2) Location Based: The privacy preferences of a user can be mediated by certain spaces or
locations [43]. For instance, a location such as locker rooms or theaters may require some

35Google Glass targeted as symbol by antitech crowd – http://goo.gl/gLikQi.
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Table 2. Systematization of PETs Indicating if Certain PETs Satisfy a Given Usability,
Deployability, and Security Property

special treatment. As many of the wearable computing devices incorporate GPS sensors,
location-based approaches such as SnapMe privacy watchdog [68] and BlindSpot [115]
are feasible to mediate privacy preferences. These approaches are based on the correla-
tion between the location information of the camera and that of the bystanders on the
captured images. In addition to location reference, SnapMe integrates facial recognition
to identify individuals in the pictures. Unlike SnapMe, the BlindSpot approach first de-
tects the presence of the camera and then directs a pulsing light at the lens of the cam-
era, thereby distorting any imagery that the camera records. Specifically, BlindSpot is in-
tended for the fixed camera (e.g., CCTV-like surveillance systems), and thus its area of
operation is limited to a specific location. Another prominent location-based approach is
PlaceAvoider [143], which intends to protect the privacy of bystanders as well as that of the
wearer of a wearable camera. Similar to SnapMe, PlaceAvoider features the blacklisting of
privacy-sensitive locations like bathrooms, bedrooms, and meeting rooms. PED Cloak [22],

ACM Computing Surveys, Vol. 50, No. 6, Article 92. Publication date: November 2017.
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on the other hand, periodically captures and timestamps the users’ location coordinates
through a PED device (may be a phone) and stores them in the clearinghouse. The clear-
inghouse also receives the user’s preferences toward recording through the PED device.
The surveiller or video owner, before publishing the video or image, queries and retrieves
the privacy preferences of the person on the video or images from the clearinghouse and
executes them accordingly.

The location dependency or location tracking may be a limiting factor of this approach
because most users may wish that their devices do not keep track of their locations. The
privacy approach should work regardless of specific locations. Moreover, it requires the
transmission of location information to the third-party server or nearby device (although
over a secure channel), which may create an additional privacy challenge.

(3) Face Recognition Based: Face detection and face recognition technology can itself be used
creatively to enhance privacy policies. Several schemes, such as SnapMe [68], FaceBlock
[162], Cardea [138], and I-Pic [2], use this approach, where a user shares privacy prefer-
ences along with his or her identity to identify his or her photo in the image captured
by a nearby wearable camera. When the wearable camera takes a picture, the system de-
tects and recognizes the faces presented in the picture, checks the policies it has received,
and obscures the faces as necessary. All these systems provide a mobile app where the
user can configure privacy settings. In addition to facial features, SnapMe and Cardea also
employ location information of the user in the picture to identify the context during a
photo shoot. However, this approach also requires the transmission of privacy-sensitive
data (user identity and facial image) to the third-party service and therefore creates the
additional challenges to preserve the user’s privacy.

(4) Gesture Based: Gesture is another feasible approach to mediate privacy preferences to-
ward the wearable camera. In Privacy Gesture [16], the authors proposed a gesture-based
approach that requires a user to perform some predefined gesture to mediate the privacy
preferences. However, this approach is limited to the videos containing multiple image
frames because it is hard to perform gesture recognition based on a single image frame.
Moreover, this approach requires the user to be aware of being recorded, which may not
be feasible with most wearable cameras that are usually inconspicuous and undetectable.

(5) Signal Emission Based: Specialized devices generating a certain spectrum of light that is
transparent to the user but can jam the camera capture could be used in a PET scheme. The
work of Yamada et al. [158] proposed Privacy Visor, a face-worn device embedded with an
infrared light source that obscures the image captured by most of the camera sensors by
emitting the infrared signal. Unlike Privacy Visor, Do not share [11] leverages the infrared
signal to transmit the privacy preferences of the user in the form of IR bits to the camera
taking a photo or video. The algorithm implemented in the camera or smartphone decodes
the received IR signal and executes the preferences as needed. Though the infrared signal
is invisible to the human eye and makes it a suitable option for regulating privacy policies,
the notion of using it as a medium is expensive as it requires a dedicated device. Another
disadvantage of this approach is that the user needs to carry a specialized device all the
time, which may not be feasible in all scenarios (e.g., at a beach).

(6) Sensor Based: A multitude of sensors, including an accelerometer, gyroscope, or light sen-
sor, available in ubiquitous devices, such as smartphones and smartwatches, can be used
to detect the sensitive environment around the user. With the sensitivity of the environ-
ment derived from the sensors’ data, privacy preferences of the user can be regulated
on wearable cameras. The work in PriFir [154] has shown that the low-power sensors on
smart devices can be used to generate the fingerprint of sensitive scenarios, such as typing,
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visiting the restroom, or indoor versus outdoor, and later utilized to mediate the privacy
preferences of the user.

(7) QR-Code Based: Privacy preferences of the user can be encoded in the form of the QR-code.
Whenever such QR-code is detected on an image/video, the privacy policy as obtained by
decoding such QR-code can be executed accordingly. TagMeNot [27] leverages a similar
approach; that is, the user carries a QR-code corresponding to his or her privacy prefer-
ences, and the image/video recording application on the wearable device decodes it and
executes the appropriate privacy policy.

Beyond the privacy issues with images/videos captured by wearable cameras, these devices have
recently raised another privacy issue: display leakage on transparent near-eye displays. Transparent
displays, in contrast to a normal wearable camera, allow the device’s user to see the information
shown on the display as well as the outside of the display (i.e., see the world) simultaneously.
However, recent research at Microsoft Research [85] has found display leakage in multiple near-
eye displays: Google Glass, Silicon Micro Display ST-1080, Meta One, and Lumus. By observing a user
wearing the transparent near-eye display, an adversary can recreate the display contents from the
light leaked through the “outward-facing” unit of the display. The key reason behind this leakage
is the design flaw in the display system, specifically due to “the transparent and symmetrical nature
of the display system” [85].

The use of “Polarization” and “Narrowband Illumination” can be potential defenses against such
near-eye display leakage [85]. Ambient light and display light have different polarization and can
be separated by polarization. Through the use of an appropriate polarizer, the display light of
one polarization can be restrained within the display. Another defense is through the use of nar-
rowband (i.e., laser) illumination of a Liquid Crystal on Silicon (LCoS) microdisplay. The use of a
narrowband filter would prevent the display light from being seen or reflected.

3.2.2 Unfettered Access. In practice, most of the wearable devices generally do not offer the au-
thentication functionality, and even if the wearables offer a built-in authentication scheme, it is not
convenient, and therefore users would be hesitant to use it. Often, such authentication is not es-
tablished directly between the user and the wearable, but rather indirectly through the companion
smartphone or PC. The lack of methods to authenticate the wearables is partly perhaps because
these devices became widely available recently, and also because such devices have a small form
factor and are typically constrained in terms of input/output interfaces, battery power, and com-
putational and storage capabilities. As a result, traditional authentication schemes designed for
resource-rich devices (e.g., smartphones or PCs) cannot be directly applied in the context of wear-
ables. Wearables, many being personal devices, contain sensitive and personal information about
the wearer. For instance, wearable devices may contain login information of social media or bank
account information. Due to the absence of an authentication mechanism, authorized access to the
data recorded by the wearables is therefore not guaranteed, raising the serious potential for abuse
by a malicious agent.

Potential Defenses: A simple approach to defending against unfettered access to wearable de-
vices is to implement an on-board secure authentication mechanism. However, as these devices
usually do not possess a keyboard or sometimes even a touchscreen, they introduce challenges in
implementing traditional password-based authentication schemes on such devices. These devices
also create new opportunities to implement secure authentication schemes as they usually embed
a variety of physiological and motion sensors. For instance, wearable devices are emerging with
various bio-sensors, like those capturing heart signals (ECG), muscle signals (EMG), and brain
signals (EEG), and motion sensors, like accelerometers and gyroscopes. By utilizing the signals
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Fig. 3. High-level overview of input inference and side-channel attacks. Malicious app/entity can utilize the
image, audio, or motion signals captured through the wearable device (smartglass, or smartwatch) to launch
a side-channel input inference attack.

captured by these sensors, various authentication schemes can be designed that are both secure
and usable.

Several authentication mechanisms have been proposed for authenticating a user to wearable
glasses, such as the Google Glass. “Bulletproof” is the first and oldest authentication scheme, which
was released in April 2013 [44]. “Screen Lock” is another authentication scheme developed by
Google [62]. Both of these schemes are gesture-based authentication schemes that unlock the
device based on a user’s gesture pattern on the glass touchpad. Later, Yadav et al. Yadav et al.
[157] proposed two novel PIN-based authentication schemes: “Touch-based PIN (TBP)” and “Voice-
based PIN (VBP),” where the user enters or utters a cipher PIN derived from the actual PIN in a
wearable headset. Chan et al. [29] proposed “Glass OTP,” a One-Time-Password (OTP)-based au-
thentication scheme. In Glass OTP, a glass camera is used to scan a QR code (encoding one-time
password), which is displayed on the user’s phone. Schneegass et al. Schneegass et al. [132] pro-
posed a novel biometric authentication scheme, “SkullConductm,” that uses frequency character-
istics of the audio signal as it travels through the head of the user. The research conducted in [127]
proposed an in-air hand-gesture-based authentication scheme, “VSig.” We discuss and evaluate all
these authentication approaches (in terms of their usability, deployability, and security) later in
Section 4.1.

The approaches mentioned may not be feasible for implementation on wearable devices other
than the head-worn devices. So, for such devices, new authentication schemes should be explored.
For example, the Nymi wristband [108] uses heart rhythm or fingerprint biometrics to authenticate
the wearers to the device. A similar approach can be applied to other wearable devices that come
with fingerprint scanners or heart rate sensors. Voice biometrics is another possibility that can
be a potential mechanism for authenticating a user to a wearable device [5]. As a speaker can be
readily available on wrist-worn devices, such as smartwatches, voice-based authentication may be
feasible. Further, in the near future, various other bio-sensors may get incorporated into wearable
devices that can be employed cleverly to design a secure and usable authentication scheme on
these devices.

3.2.3 Input Inference and Side-Channel Attacks. A large variety of sensors are available in the
current generation of wearable devices including audio-visual sensors (e.g., microphone and cam-
era), motion-position sensors (e.g., accelerometer and gyroscope), and biosensors (e.g., ECG, EMG,
and EEG). These sensors feature several applications including audio/video recording applications
and voice/gesture-based applications. However, they can also be used by a malicious agent to
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Table 3. Smartwatch Motion-Sensor-Based Input Inference Attacks Against Various Input Devices,
Techniques Used, and Their Results

Compromised Input
Devices

Techniques Used

Sensor(s) Used Keystroke Detection Keystroke Inference Results

Physical
keyboard
(e.g., standard
QWERTY
keyboard)

Accele-
rometer,
gyroscope
z-axis
analysis

Z-axis
analysis of
accelerometer

Word inference by
using Point Cloud
Fitting with
Bayesian Model

Can shortlist a
median of 24 words
containing typed
word-for-word
length >6, the
shortlist drops to a
median of 10 words

Microphone,
linear
acceleration

Signal
processing
on audio
signal

Motion profiling
with English
words

Significant accuracy
improvement in
finding the text as
compared to prior
dictionary attacks

Physical number
pad (e.g., POS)

Linear
acceleration

Movement
modeling with
k-Nearest
Neighbor (k-NN)

Probability of
finding banking
PINs in top 3
candidate is 65%

Soft number
pad (e.g.,
smartphone)

Linear
acceleration

Based on ground
truth derived
from actual key-
pressed events

Set of three
classifiers: Simple
Linear
Regression(SLR),
Random Forest
(RF), and k-Nearest
Neighbor (k-NN)

Key inference
accuracy is >90%
with SLR and k-NN,
while it is >80% with
RF

steal the sensitive input information provided by the user through various input devices and to
launch other side-channel attacks. General input devices include standard QWERTY keyboards on
a normal desktop PC or any touch-enabled devices and physical number pads (e.g., POS terminal,
ATM) or soft number pads on any touch-enabled devices. Several researchers have already shown
that these sensors embedded within smartphones can be abused by a malicious player to steal
sensitive input information [13, 110, 156] and sensitive spoken information [131]. Moreover, re-
searchers have recently shown that the interference on the WiFi signals due to users’ hand/finger
movements while providing input can also be utilized to infer the sensitive input information [6,
94].

As wearable devices almost remain constantly attached to the body of the wearer, it makes them
even more vulnerable to such attacks. Such input inference attacks and other side-channel attacks
are described here:

• Motion-Based Input Inference: Very recently, several researchers demonstrated that input
inference attacks could be launched with a reasonably high inference accuracy on vari-
ous input devices, such as physical number pads on POS terminals [97], soft number pads
on touchscreens [99], and even a desktop QWERTY keyboard [97, 149]. All these research
works have leveraged motion sensors embedded on a smartwatch, one of the widely de-
ployed wearable devices. Table 3 summarizes the different motion-based input inference
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attacks on various input devices against smartwatches, the techniques used for the attacks,
and their results.

The general approach of input inference attack consists of two steps: keystroke detection
and keystroke inference. Keystroke detection estimates the start and the end of the keystroke
event, while keystroke inference predicts the keys being pressed. Each of these steps extracts
and learns the patterns of keystrokes from the motion sensors reading. Utilizing learned
keystroke patterns, they detect and infer the keystrokes [97, 149]. Keystroke detection can
also be performed by utilizing the audio signal [97] recorded by the microphone available
on the smartwatch. Instead of inferring individual keys separately, some schemes infer the
entire sequence of keys based on motion signals [97]. Input inference in numeric keypad can
be performed using one of the state-of-the-art machine-learning algorithms, for example,
k-Nearest Neighbor (k-NN), Simple Linear Regression (SLR), or Random Forest (RF) [97, 99].
However, the input inference attack on a standard QWERTY keyboard is a bit tricky and
complex as motion signals captured by the smartwatch (worn only on one hand) can only
reveal the information of the keystrokes residing on one half of the keyboard regions (either
left or right). Though motion signals reveal only partial information about the input typed
by the user, motion profiling of dictionary words [97] or Point Cloud Fitting combined with
Bayesian Model [149] can be utilized to infer the word/text entered by the victim.

• Video-Based Input Inference: Video sensors available on the wearable devices, such as Google
Glass, narrative clips, and autographer, can also be employed to infer the users’ input on
various input devices. Such built-in video sensors on wearables enable surreptitious video
recordings while the user is providing some sensitive information to another device. With
careful human analysis of such recorded video, there is a high probability that it can dis-
close the text typed by the user. This process of analyzing the video for disclosing the input
provided by the user can also be automated by combining the various computer vision tech-
niques, which can further enhance the capability of the attacker [15]. Moreover, computer
vision techniques enable an attacker to infer the sensitive input provided by the user from
a video containing the user tapping on the touch-enabled devices [139, 161].

• Audio-Based Input Inference: Similar to video-based input inference attacks, surreptitiously
recorded audio from the wearable devices can also be analyzed utilizing the various sig-
nal processing techniques to infer the text typed by the user on a nearby terminal. Several
research works [12, 64, 164] have employed traditional PC microphones to surreptitiously
record the audio while the user types on a keyboard nearby, and later used the recorded au-
dio to infer the typed text. In presented scenarios, the PC microphone remains at a distance
from the keyboard. However, wrist-worn wearable devices, in particular a smartwatch, re-
main in very close proximity to the input devices while performing the input operation,
and therefore the use of a microphone from such devices can be even more devastating
than using a traditional PC microphone for such attacks. Here, an additional attacker task
is to fool the user into installing a malicious application that surreptitiously records audio
and pushes the recorded audio to the attacker. The same malicious application can also be
used to steal the user’s and bystander’s spoken information, violating the wearer’s as well
as bystander’s privacy properties underlying the wearable device.

• Bio-Sensor-Based Inference: Sensor that can capture brainwave signals, particularly EEG sen-
sors, are gaining popularity in the field of gaming and entertainment. This sensor features
a wide range of applications, including video games and hands-free keyboards. However,
the EEG signal captured by this sensor can be abused by a malicious agent to turn it against
the privacy of its user as demonstrated in [102]. A user can be easily fooled to play a clev-
erly designed classification game made with different images (i.e., stimuli) while wearing
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an EEG-based device. A malicious entity can analyze the captured EEG signal to determine
which of the presented images are associated with the user and hence can infer various pri-
vate and secret information about a user, such as bank account information, PIN numbers,
living area, and a person known to the user [102].

Potential Defenses.

• Permission Restriction to On-Board Sensors: Current mobile OSs, in particular the Android
OS, do not require any permissions to access on-board motion sensors (e.g., accelerome-
ter, gyroscope, gravity sensor). Therefore, any application can capture such sensor signals
without any restrictions. These on-board motion sensors should be considered sensitive to
users’ privacy, and hence, a permission model should be designed that entails the security
permission in order to access such sensors [106, 110]. Additionally, dynamic permission
management based on the context can also be employed, such as limiting the access to the
sensors when sensitive input operations (e.g., typing a PIN or password) are being per-
formed by the user [97].

• Privacy -Enhancing Keyboard: The input inference attack on a touch-enabled device can be
mitigated by randomizing the keyboard layout, that is, changing the position of the keys
on the keyboard in every sensitive input session [141]. Randomizing the keyboard layout
conceals the layout information, and hence makes it difficult for the attacker to determine
the actual key being pressed even if the attacker learns the correct key-pressed position.
However, this approach seems to compromise the usability of the system significantly [126]
and may not be a practical defense that users would like to use. Further, this approach is only
applicable to touch-enabled devices where randomizing the keyboard layout is possible, but
not to physical keyboards and physical number pads.

• Mitigating Acoustic Emanations: The simplest approach to defeating input inference based
on acoustic emanations can be to minimize the sound generated by the input devices (e.g.,
physical keyboards) while providing sensitive information by making the input devices as
silent as possible [12]. Another approach could be to use homophonic keyboards, where
each key produces the same sound upon being pressed [12]. However, this approach would
require a specialized keyboard hardware. Obfuscating the audio signal generated while typ-
ing by deliberately injecting audio noises (e.g., white noise, sounds of fake keystrokes, or a
combination of various noises) can be another approach to defeat such acoustic-emanation-
based input inference attacks [7, 8, 164]. This approach may have an impact on the usability
of the system as it can distract the user of the device or other people in the surroundings.

• Mitigating Visual Leakage of Input/Output Devices: Computer vision techniques can be em-
ployed to detect and discard the images containing input/output devices that can potentially
reveal the sensitive information from a video recorded by the recording devices [87]. This
approach can mitigate the sensitive information leakage due to surreptitious recording of
image/video by video recording wearable devices, such as the Google Glass.

• Access Control to Bio-Sensors: To defend against bio-sensor-based, in particular EEG-based,
side-channel attacks, one approach may be to prevent the exposition of raw EEG data from
EEG devices to third-party applications [102]. This approach requires EEG vendors to create
a restricted API that would allow a third-party application to access only certain features of
the EEG signal (e.g., allowing only movement-related signals). This approach demands the
wearables to have high computation power and also limits the development of a third-party
application for such devices.
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3.2.4 Hidden Plagiarisms. Due to their small form factor and inconspicuous nature, wearable
devices have created several possibilities for students to use this emerging technology for the pur-
pose of cheating or plagiarizing during the exams. One possibility is the use of a smartglass, or
a wearable tiny video camera attached to the glass, to transmit questions wirelessly to a person
outside the test room, who then relays the correct answers via a small earpiece.36 Another pos-
sibility is the use of a smartwatch with texting capabilities to send/receive messages (could be
questions/answers) surreptitiously during the exam.37 Some smartwatches also feature the ability
to read text or PDF files. Such ability can be employed by the students to store and use the cheat-
sheet during the exams.38 The wearable devices would be even more inconspicuous in a remote
exam proctoring session (e.g., ProctorU and KRYPTERION Online Proctoring) where the proctors
are not physically present for watching over the test takers during the test. In such scenarios, the
proctor monitors the test remotely over the Internet (usually using a webcam). As wearables are
becoming inconspicuous, the remote presence of proctors would make it even harder for them to
detect test takers cheating through wearables.

The test takers can also work collaboratively utilizing wearable devices using the cloud-based
features. For example, the recent work of [105] has designed ConTest, a cloud-based smartwatch
application, that enables dishonest students to cooperate on multiple-choice exams in real time
stealthily. ConTest consists of three components: smartwatch app, smartphone app, and cloud server.
Smartwatch app enables an individual to submit his or her response and view the collaboratively
decided answer. Smartphone app relays the data between a smartwatch and a central cloud service.
Cloud server, a cloud-based central service, collects and aggregates the responses provided by in-
dividual students. For each question, the cloud application determines the most common response
and circulates it to each individual as necessary through smartwatch. To make it difficult for the
proctor to notice the ongoing plagiarism activity, the correct date and time are displayed on the
watch’s screen. It also shows the inverted small groups of noncritical pixels on the watch’s face that
indicate the question and the corresponding answer. Beyond exam settings, such an application
may also be adapted to gain underhanded benefits in other scenarios like gambling.

Potential Defenses. Banning high-tech wearables from exam rooms could be a potential solu-
tion to prevent dishonest students from cheating using wearable devices. Since wearables like
smartwatches are becoming common and difficult to spot, it may not be questionable to ban such
high-tech devices. Instead, replacements, such as wall clocks for watches, can be provided in the
examination centers. The Graduate Record Examination (GRE) has adopted a policy that prohibits
the use of all types of watches, including digital and smartwatches, in its testing room.39 However,
the policy to ban such high-tech devices could be annoying for wearers as they may not wish to
give their belongings away to others during the exams, raising a privacy concern.

Another simple solution could be implementing a software-based restriction that restricts the
usage of wearable devices in a specialized environment [105]. For example, an “Exam Mode” on
the devices can be activated by the external signal from the examiner, or when the device senses
being in a special environment, that restrains the wearer from using restricted features available
on the device. However, such an approach has only been discussed in the research literature and
has not been designed and evaluated. Future work is needed to determine whether it is feasible to
design a wearable device with flexible, safe, and guarantee-able restriction policies.

36High-tech cheaters pose test – http://goo.gl/9QoRMt.
37Thai exam cheating triggers phone-watch ban – http://goo.gl/A2nFup.
38Student disciplined for cheating on exam with smartwatch – http://goo.gl/czU9NC.
39Graduate Record Examination (GRE) – http://goo.gl/EDe6kq.
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Since wearable devices are gaining popularity and are evolving with decreasing size and de-
tectability and increasing computational power and connectivity, the aforementioned high-tech
cheating may become more widespread in the near future. Therefore, research work is highly
needed to design policies or software-based mechanisms to restrict the use of wearable devices to
prevent the wearer from gaining such underhanded benefits through the use of wearables.

3.2.5 Accidental Leakage to Online Services. With a multitude of built-in sensors, wearable de-
vices continuously collect information about the user and his or her surroundings and often out-
source the collected information to cloud storage and third-party services, or some even automat-
ically synchronize with online social media. Many of the wearable devices (e.g., health monitoring
devices) require them to be online in order to operate fully. In other words, the user can utilize the
device properly only after agreeing to the service privacy policies [116]. Sometimes, users forget
that they have granted the data access permission to the applications on the wearables, which
continuously synchronize the data to third-party/cloud services. The information collected by the
wearables may contain some information that is private to the users that they may not wish to
share with anyone. The properties of wearables to automatically synchronize with online/cloud
services and social media may threaten the privacy of the user. For instance, the sexual activity of
some of the Fitbit’s users had been exposed to online services due to Fitbit’s default settings in the
past.40

Potential Defenses. Creating an ideal platform where wearables are fully capable of operating
offline would be one possible defensive approach to prevent accidental leakage of the sensitive
information to online services and social media. This approach could be achieved by utilizing the
increasing computational and storage capacities of mobile devices. That is, a wearable platform
can be built that stores and analyzes the data locally on a user’s smartphone, which alleviates the
concerns regarding third parties holding and processing the data. In situations where cloud-based
services are needed, clear and precise information about the data processing, retention, and sharing
policies should be given to the user and the user’s consent should be sought. Also, to minimize the
risk of user privacy violations, as little personal identification information as possible should be
requested and stored [116].

It should also be ensured that all the data collected and stored by the service provider is not
exposed to others. One approach to ensure this is to preprocess and encrypt all the data on the
user’s end before transmitting it to the provider. Another approach could be to transmit only
necessary data or features required to provide proper functionality to wearables. Such approaches
are commonly referred to as privacy-preserving approaches. In such a scenario, providers have
to perform all the necessary computation over the encrypted data, commonly known as privacy-
preserving querying and computation. Several works have been done in this direction, including
those on machine-learning algorithms for computation over encrypted data [3, 20, 46, 146, 153,
160], encrypted query processing [18, 75, 117, 118, 135, 140], privacy-preserving image search and
retrieval [1, 32, 51, 73, 98, 155], and so forth. However, as these techniques require cryptographic
operations that may be computationally expensive, only a few of these schemes (e.g., [1, 135]) are
tailored for resource-constrained devices like wearables. Further research is needed in this context
to explore and design optimized privacy-preserving querying and computation schemes that are
applicable for such devices.

For a statistical dataset, instead of encrypting the whole dataset and applying queries over en-
crypted data, differential privacy [47] can be applied to ensure the privacy of an arbitrary individ-
ual involved in the dataset. Differential privacy provides aggregate statistical information about

40The activity tracked by Fitbit shows up in Google search results – http://goo.gl/84lWDa.
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the dataset without compromising the privacy of the individuals. Such privacy on the statistical
dataset can be achieved through (1) query restriction (e.g., restricting size of query results, sup-
pression of values to smaller size [38, 42]) and/or (2) data perturbation (e.g., adding noise to the
values of the dataset or to the result of a query, attribute swapping, data resampling by imputation
[3, 50]). We believe that differential privacy techniques are appropriate to preserve the privacy of
the individuals in a statistical dataset in the context of wearables.

A runtime permission model can be employed to address the issue of users forgetting that they
granted permission to the application.41,42 The runtime permission model asks the user for re-
quired permissions as they become necessary during application use, not when a user installs the
application. However, asking the user for required permission every time an application accesses
resources may be annoying to the user. A more usable and less annoying permission model may
be the one that displays a notification about agreed-upon permissions on the wearables whenever
the application tries to utilize them. Displaying the notification may serve as a reminder about the
permissions granted to a specific application.

3.2.6 Hijacking Communication Links. Most of the wearables are usually linked wirelessly with
either a companion mobile device (smartphone) or a personal computer to offer full functionality.
This wireless communication link is also one of the attack vectors that an adversary can utilize to
harm the users. Carelessly designed communication protocols may allow an adversary to perform
various malicious activities including eavesdropping over all the communication between wear-
ables and the connected devices, data tampering, malicious data injection, and denial-of-service
attacks. For example, a poorly designed Fitbit communication link during its early stage allowed
an adversary to discover any Fitbit tracker device in range and the associated fitness information
stored on the device as demonstrated in [120]. An attacker who has learned certain information
about the format of the memory bank and opcode instructions can even modify any real-time fit-
ness data stored in neighboring trackers [120]. This attack can further be extended to launch a
form of denial-of-service attack by modifying the real-time statistics of the user, which prevent
the user from accessing the original statistics. Moreover, by continuously querying the trackers,
batteries can be made to drain out at a faster rate.

The authors of [120] also designed “FitLock,” a scheme to prevent the vulnerabilities mentioned
earlier associated with Fitbit. However, the research presented in [163] discovered that the proto-
cols composing FitLock still suffer from vulnerabilities. Specifically, it fails to encrypt the identity
of a Fitbit tracker through which an adversary can track the device, and thereby a person wearing
it. The attacker can send the tracker’s identity to the web server repeatedly and retrieve a set of
responses. By relaying these responses to the tracker, the attacker can impersonate the web server.
Fitlock protocols also lack mutual authentication between the web server and the tracker device,
due to which anyone in possession of the tracker device can register it to the web account by just
sending its identifier.

Potential Defenses. During the entire session of the communication, sensitive and identifying
information should not be sent in clear-text—some form of encryption mechanism should be em-
ployed. To defend against impersonation attacks, mutual authentication mechanisms should be
implemented. Overall, secure communication protocols should be implemented to prevent an at-
tacker from eavesdropping and hijacking the communication link. Several secure device pairing
protocols exist, such as the manual authentication protocol [58], the ephemeral pairing proto-
col [70, 107], the “Diffie-Hellman with Visual Comparison of Short Strings” protocol [25], and the

41Run Time Permissions, Android – https://goo.gl/9FTnEL.
42Requesting Permission, iOS – https://goo.gl/W4A59o.
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Fig. 4. Safety risk instances of wearable usage. A pedestrian while crossing the street or a driver while driving
gets distracted from the notifications on the smartwatch/smartglass, leading to safety risks.

“SAS-Based Authenticated Key Agreement” protocol [148], that can and should be used for estab-
lishing a secure communication channel between the wearable and the companion device. The use
of these protocols can prevent the aforementioned vulnerabilities. However, many of these pro-
tocols require user involvement to establish secure sessions, and thus the security and usability
implications of such user involvement should be investigated further in the context of wearable
devices.

3.2.7 Device Integrity. Earlier in this section, we presented several threats against or of using
wearable devices and discussed corresponding potential mitigation strategies against them. These
mitigation strategies hold true only when the integrity of the device is assured. Without device
integrity, none of these strategies would be reliable in the real world. For instance, defenses pre-
sented to mitigate the privacy threat of wearable cameras work only if the device has not been
compromised (i.e., the internal firmware of the device has not been modified or replaced). So, de-
vice integrity assurance (checking and verification) is a fundamental requirement of the wearable
devices before the implementation of any security schemes on the devices. Device integrity is at-
tained through remote attestation, a technique that ascertains the current state of the computing
device. Various remote attestation techniques have been proposed in the literature: some are hard-
ware based [88, 114, 133], some are software based [9, 81, 96, 134], and some are hybrid techniques
[21, 48, 52, 84, 86] that combine hardware and software. They differ from each other greatly in
terms of security, adversarial models, communication, and device feature assumptions.

Hardware-based techniques can be secure and effective, and applicable to the devices that can
accommodate additional monetary cost and power consumption. Due to the resource-constrained
nature of wearables, such hardware techniques may not work well on such devices. Software-
based techniques, on the other hand, require no additional hardware and involve minimal over-
all costs that seem to be appealing for wearable devices. However, they offer only limited (of-
ten uncertain) security guarantees and are sometimes restricted to some specific settings. Hybrid
techniques lie in between these two approaches that involve hardware-software codesign and of-
fer better security than software-based approaches. Some of the software-based and hybrid ap-
proaches may be reasonable to ensure device integrity on wearables. However, wearables bring
forth several challenges toward remote attestation because of their resource-constrained and het-
erogeneous nature and small form factors. First, the attestation schemes should be lightweight
and applicable for resource-constrained devices. Second, the scheme should be scalable to multiple
numbers of wearable devices. Third, the scheme should support heterogeneous devices including
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head-worn, eye-worn, and wrist-worn devices. Being resource-constrained devices, implemen-
tation of such attestation schemes may not be well secured and can be exploited, for example,
through verifier impersonation or denial-of-service attacks against honest provers. So one chal-
lenge is to design a well-secured remote attestation scheme. Rigorous research work is needed to
design a lightweight and secure device integrity checking and verification mechanism for wearable
devices.

3.2.8 Safety Risks. Beyond raising security and privacy vulnerabilities, the wearable devices
also introduce the risks to wearers’ safety. In some instances, a wearable device can introduce a
higher degree of risk than a nonwearable device. As wearable devices remain attached to the body
of the wearer, they place the potential source of harm (e.g., a distracting notification) near the
wearer. For example, the use of a smartwatch or a wearable glass while driving has the potential
to distract the wearer and can create a safety concern.

Several studies [23, 24, 45] have already shown that the use of mobile phones while driving
has negative consequences on driving behavior and hence the use of mobile phones has been
prohibited while driving in most places. Recently, a series of work [59, 60] performed a driving
simulator study to investigate the comparative degree of distraction with smartwatches and smart-
phones in terms of engagement time with the devices, drivers’ glance patterns, and brake response
time when there is a notification on the device. The key findings from these studies are listed as
follows:

• The wearer gets engaged faster with the smartwatch as compared with the smartphone but
takes a longer time to read the smartwatch notification.

• The duration of individual glances as well as the number of glances while driving using the
smartwatch is greater than that while using a smartphone.

• The percentage of time the eyes are off-road is higher when receiving notification on the
smartwatch compared to receiving notification on the smartphone.

• The brake response times before a braking event from a lead vehicle are longer when receiv-
ing notifications on the smartwatch compared to receiving no notifications and compared
to receiving notifications on the smartphone.

These findings indicate that the use of a smartwatch increases the degree of drivers’ distraction
when compared to the use of a smartphone. This result is attributed to the limited-size display
screen on the smartwatch. The limited screen on a smartwatch requires multiple views across
multiple windows, and hence more manual interactions to go through each window. While driving,
the user is already occupied with the driving task both physically and visually, and this additional
burden due to the limited screen display may create safety risks. The same situation may arise
while crossing a street where the pedestrian may get distracted with a smartwatch notification to
a higher degree.

A smartglass, like the Google Glass, features a hands-free interface (i.e., voice based) for text
messaging and near-eye display for viewing the messages. Due to these features, the wearable
glass might seem to offer a distraction-free driving scenario. However, several simulated driving
studies [66, 67, 129] have demonstrated that though they serve to moderate, they do not eliminate
the distraction in terms of speed, lane changing, and brake response time. Wearable glasses with
speech-based interfaces impair less compared to hand-held texting, as they allow a hands-free in-
teraction. However, they still significantly affect driving performance in terms of larger deviations
in speed, lane positioning, and brake response time [66, 129]. Further, the use of near-eye display
can hinder visual abilities, which may distract the drivers since the driver needs to pay attention si-
multaneously to the display and to the road. Such displays can also impair the visual processing of
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a driver by overlapping the visual information while driving. The study of [67] demonstrated such
a visual impairment due to the use of near-eye display while driving in terms of larger variation
in lane keeping.

Potential Defenses. As wearable devices such as smartwatches, wristbands, and augmented re-
ality glasses have gained popularity recently, legal policies and rules on the use of such devices
while driving are not yet clear. For instance, many state laws in the United States prohibit the
use of “hand-held devices” while driving. However, such laws do not cover wrist-worn smart
devices (e.g., smartwatches) explicitly because they are neither hand-held nor hands-free. Simi-
larly, wearable glasses are not hand-held, but they are found to create significant distractions to
drivers through their use. In this light, clear guidelines and policies should be designed and im-
plemented regarding the use of wearable technologies in the driving context. There are wearables
other than smartwatches and wearable glasses, and many new wearables with new features and
functionalities are forthcoming. Legal guidelines on the use of such devices should be crafted by
law enforcement before these devices become widespread and endanger traffic safety. Beyond driv-
ing safety, another concern is pedestrian safety while using wearable devices. No studies to our
knowledge, however, have been reported in the context of pedestrian distractions with the use of
wearable devices. Further work is needed in this direction.

Besides the legal dimension, software-based mechanisms may also be designed such that they
can avoid the distraction while performing a critical task on the road or otherwise. For example,
an application could be designed that can automatically sense if the user is performing a critical
task (e.g., crossing the street or driving) and then delay the distracting notifications on the device
until the critical task has been completed. Further work is warranted to design and evaluate such
“distraction prevention” apps for wearable devices.

4 SECURITY, PRIVACY, AND SAFETY ENHANCEMENTS IN EXISTING SYSTEMS

While wearables open up the potential for abuse and offensive usage, they may also facilitate the
enhancement of existing security, privacy, and safety paradigms in unique ways while increasing,
or at least preserving, the system’s usability. One such enhancement pertains to the problem of
user authentication. Wearable devices could be used to build brainwave authentication (authenti-
cation based on human thoughts) and zero-effort (de)authentication (promptly and transparently
recognizing when to deauthenticate a previously authenticated user). They can also be used to
improve the usability and/or security of traditional password authentication and that of two-factor
authentication. These enhancements have become possible due to the increasing availability of
physiological and motion-position sensors in wearable computing. Another defensive applica-
tion of wearable computing relates to the wearer safety schemes, including pedestrian risk iden-
tification and driver drowsiness detection. In this section, we discuss such enhancements brought
forth by the emergence of wearable computing to the context of authentication and user safety
paradigms.

4.1 Authentication

User authentication is a process to determine whether a user is indeed who he or she claims to
be. Various types of discriminating characteristics are used to authenticate the user. Based on
the use of these characteristics, authentication approaches can be categorized into three classes
[104]: (1) “Knowledge-Based Authentication,” which relies on something that the user knows (e.g.,
password, PIN, pattern); (2)“Possession-Based Authentication,” which relies on something that the
user has (e.g., hardware tokens such as phone, wristband, smartcard token, or software tokens
such as an application installed on a cell phone); and (3) “Biometric-Based Authentication,” which

ACM Computing Surveys, Vol. 50, No. 6, Article 92. Publication date: November 2017.



92:22 P. Shrestha and N. Saxena

Fig. 5. Classification tree of wearable authentication approaches. The leaf nodes (green colored) show the
examples of each approach.

is based on something that the user is or does (e.g., fingerprint, retina, voice, face, voice, keystroke
dynamics, gait patterns, hand gestures). Our study of wearable authentication is also structured
according to this established classification scheme as presented in Figure 5.

Table 4 systematizes the wearable authentication schemes considered in this literature survey
with respect to usability, deployability, and security criteria as described in “The Quest to Replace
Password” [19]. “Server Compatible” and “Browser Compatible” properties under deployability cri-
teria are not applicable in our comparison since wearable authentication schemes considered are
not web-based authentication schemes; rather, they are either completely client-side authentica-
tion schemes (i.e., authentication for wearables) or the schemes that employ wearables as a token
to authenticate the user to external systems or services. One exception is “Sound-Proof,” which
is a web-based authentication system. Sound-Proof authors envisioned the usage of a smartwatch
instead of a smartphone for authentication purposes. Sound-Proof is both Server Compatible and
Browser Compatible as it does not require any changes to the browser or the server side. It only re-
quires the ability to communicate with the server and the implementation of a correlation engine
on the smartwatch.

4.1.1 Wearable Knowledge-Based Authentication. Textual passwords are a widely used
knowledge-based authentication approach. They are widely accepted because of their intangible
nature; that is, they can be easily and simply issued, changed, shared, and revoked [17]. However,
researchers [83, 123, 152, 157] have demonstrated that the passwords have several well-known
limitations: passwords, especially random ones, are often difficult to memorize; memorable pass-
words typically have low entropy in practice, which makes them susceptible to dictionary attacks;
and passwords are vulnerable to “shoulder surfing” and observation attacks. Wearable devices
have the potential to address these limitations by providing the input strategies that improve
usability and the remembrance or recall of passwords and are also resistant to shoulder surfing.

For example, wearable devices can be used as a second factor in the traditional two-factor au-
thentication scheme (in which a verification code is sent to a smartphone) that may offer improved
usability during the authentication process. When using a smartwatch, as opposed to a smart-
phone, as the second factor, it would be much easier for the user to view and copy the code to
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Table 4. Comparing Wearable Authentication Schemes with Usability, Deployability, and Security Criteria
as Used in “The Quest to Replace Passwords” [19]

the terminal. Consequently, the use of a smartwatch or other wearables in traditional two-factor
authentication may help increase the adoption of such schemes in practice. Wearable devices can
also be used to design an input strategy that can conceal the input from the observer, improving
the security of the scheme. “WatchMe” [147], for example, is an approach of providing input for
smartwatches. In particular, WatchMe utilizes the camera on the smartwatch and advance image-
processing techniques to enable a user to provide input by drawing on everyday objects (e.g.,
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writing on a piece of paper using a pen, writing on a wall using a finger or laser pointer). The
authors have envisioned the use of this technique for authentication—the user providing secret
input using the finger or laser pointer. As finger/laser pointer movement is discrete in nature, the
authors argued that the entered data will be concealed from observers.

Augmented reality glasses such as Google Glass that guarantee a fully private personal display
are the best fit for designing authentication systems that are resistant to shoulder-surfing attacks.
Utilizing the private display property of wearable glass, Yadav et al. Yadav et al. [157] proposed
“Touch-Based PIN (TBP)” and “Voice-Based PIN (VBP)” authentication schemes, which are resistant
to shoulder-surfing attacks. In their schemes, a keypad with random mapping of input digits is
shown in the private display of the glass. In order to authenticate the user, the scheme requires
the user to tap or utter the cipher PIN corresponding to the actual PIN in the headset. As attackers
cannot observe the mapping of digits, information about the actual PIN remains concealed during
the PIN entry process. Both TBP and VBP seem to surpass the built-in screen-lock scheme, as they
achieved a success rate (successful log-in attempts) of more than 80% with TBP or VBP and only a
68% success rate with the built-in scheme. Bailey et al. Bailey et al. [14] presented a similar voice-
based authentication scheme on smartglass. In their system, instead of a randomly mapped input
grid, a randomly chosen simple mathematical operation (e.g., addition, subtraction) is displayed
on the private display. The user applies this operation to his or her PIN digits and utters the result.
As the attacker is unable to observe the operation that was applied, he or she cannot derive any
information about the PIN even after listening to the spoken input.

Private display of the smartglass can also be utilized to design a shoulder-surfing-resistant au-
thentication system for external devices, such as a smartphone, an ATM, or point-of-sale terminals.
For example, “Glass Unlock” [152] is an authentication scheme that utilizes the private display of
the glass to unlock the smartphone. The authentication mechanisms that have already been de-
ployed in the smartphone, such as PIN and unlock patterns, are vulnerable to various real-world
attacks: smudge attacks [13] and shoulder-surfing attacks [41]. To prevent such attacks, Glass Un-
lock leverages the private display of a smartglass to unlock the phone’s lock screen. Glass Unlock
hides the lock information (e.g., PIN digits) on the phone and instead shows it on the glasses’
display. The input screen (say, numeric pad) on the phone shows an empty button while the ran-
domized layout of buttons would be visible on the glasses. Randomizing the input layout and hid-
ing the input screen layout makes Glass Unlock resistant to observation attacks, such as shoulder
surfing, camera-based eavesdropping attacks, and smudge attacks. Similar to Glass Unlock, SEPIA
[82] also uses a smartglass for PIN-based authentication at an ATM or at a point-of-sale terminal
in a way that is secure against shoulder-surfing and observation attacks. SEPIA is claimed to be a
“secure obfuscated PIN authentication protocol.” SEPIA requires a user to prove its colocation with
the terminal to the cloud service by scanning the QR code using smartglass. The cloud service
then sends a PIN template to smartglass for point-of-sale authentication. Obfuscating the PIN by
generating a new PIN template on the glass for every session while accessing the point of sale may
make SEPIA secure against shoulder-surfing and camera-based eavesdropping attacks. However, it
may make it harder for the users to input their PINs, which may lower the usability of PIN-based
authentication.

Cameras in smartglasses can also be utilized by One-Time-Password (OTP) schemes for unlock-
ing wearable devices. For instance, “Glass OTP” [29] is an OTP-based authentication scheme that
utilizes a glass camera to unlock the device. In Glass OTP, a companion application installed on
the user’s phone generates a time-based OTP using a private key shared with the glass and embeds
it in a QR code. The lock screen application on the glass then scans the QR code using its camera,
verifies the OTP, and unlocks the glass.

ACM Computing Surveys, Vol. 50, No. 6, Article 92. Publication date: November 2017.



An Offensive and Defensive Exposition of Wearable Computing 92:25

A new emerging class of wearable knowledge-based authentication schemes leverages the
thought of the user as passwords. Several research studies [100, 111, 112, 119, 145] have demon-
strated the feasibility of authenticating a user based on the user’s thought, in particular brainwave
signals, employing clinical-grade multichannel EEG sensors. Two recent studies by Ashby et al.
[10] and Chuang et al. [33] have demonstrated the feasibility of authentication based on brainwave
signals with a high accuracy level (greater than 97%) using a consumer-grade single-/multichannel
EEG headset (e.g., Neurosky or Emotive headsets). The authentication techniques require the user
to perform a single step of executing a mental task while wearing a brainwave-sensing headset. The
mental task includes choosing a secret, for example, imagining certain motor movements, mentally
singing a previously selected song, or counting the objects of a particular color. Such thought as
a password-based authentication system may be vulnerable to impersonation attacks. However,
the study in [78] shows that brainwave authentication is robust against impersonation attacks
(impostor acceptance rate is fairly low at 4.5%). There are other benefits to the brain authentica-
tion techniques. They could avoid the shoulder-surfing problem associated with most “something
you know” schemes. Moreover, they do not seem to possess the same vulnerabilities as other bio-
metric authentication systems. For instance, fingerprint-based authentication can be defeated by
cleverly using putty and gelatin moldings or advanced imaging and printing technologies [30].
Brainwave authentication, in contrast, seems secure against such strategies since stealing a user’s
brain signals might be very difficult.

These examples highlight the potential of using various characteristics, such as built-in sensors
(e.g., camera and EEG sensor) and private display of eyeglasses, of wearable devices to conceal the
passwords from bystanders while at the same time improving the usability and the remembrance
of passwords or PINs.

4.1.2 Wearable Biometric-Based Authentication. This class of authentication scheme relies on
what the user is. Specifically, it is based on the certainty that some set of physiological and behav-
ioral features of the users are unique to individuals and can be used to distinguish one person from
another reliably. As a wide range of sensor modules are available in today’s wearable devices that
can extract various physiological and behavioral features of the user, they make wearables suitable
for a variety of authentication schemes, including an explicit authentication scheme that requires
a dedicated user action, an implicit authentication scheme that doesn’t require any dedicated user
action (they are often continuous in nature), and a hybrid authentication scheme that combines
both explicit and implicit authentication features.

(1) Explicit Authentication: This type of authentication scheme is conceptually simple and
widely popular. It requires a dedicated user action to measure the bodily characteristics.
Researchers have explored a wide variety of mediums to design explicit authentication.
For instance, the recent development of smart eyeglasses has stimulated research work on
iris recognition systems [91]. Iris recognition systems have been deployed in many con-
texts other than authenticating the user to wearables such as UAE’s IRIS border control
system [40]. However, the underlying technology still faces many practical challenges for
wearable devices, and research has been focusing on addressing these issues. For exam-
ple, Lee et al. [91] presented a method to eliminate distortions from the radial lenses used
in head-mounted cameras, thereby improving the accuracy and reliability. To ensure ro-
bustness against fake iris or imitation attacks as demonstrated in [125], Wang et al. [150]
combined a pupil size consistency check with an iris recognition system, thereby making
it more secure and robust.

Several research works have used touch and movement (finger, hand, or head move-
ment) as a channel to design minimal-effort explicit authentication systems. For example,
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“Bulletproof” [44] and “screen lock” [62] are gesture-based authentication schemes that
unlock the eyeglasses based on a user’s gesture pattern on the glass touchpad. Gesture
pattern in screen lock is a combination of four touch gestures derived from a pool of 10
predefined gestures. The pool of gestures contains tap or swipe gestures, which can be
created using either one or two fingers. In the case of a forgotten pattern, a user can reset
the glass lock screen using a QR code that can be obtained by logging into the glass website.
This technique is highly usable because it only requires a free hand and a sense of touch.
However, it is susceptible to shoulder surfing as the finger movement during the gesture
pattern input is highly visible to others. “Headbanger” [95] is another behavioral authen-
tication scheme based on unique head movement patterns of the user wearing the headset
in response to an external audio stimulus. “MotionAuth” [159] uses a set of hand gestures
to authenticate the user wearing a wrist-worn smart device. Through the wrist-worn de-
vice, MotionAuth collects movement data during gesture performance and uses it to verify
the user identity with a high level of accuracy (2.6% error rate). “Pingu” [127] and “VSig”
[122] are in-air hand-gesture-based authentication schemes that require a user to make a
virtual 3D signature in the air. Pingu collects temporal patterns during the making of a 3D
signature through the ring equipped with a set of sensors and identifies/recognizes the
user with a high level of accuracy (100% with 24 users). On the other hand, VSig records
the video during in-air 3D signature creation, tracks the fingertip to reconstruct the sig-
nature, compares it with prestored signatures of the individual, and grants access to the
user.

(2) Implicit Authentication: Motion sensors have frequently been used as a channel to design
implicit authentication schemes. Movements of a different part of the body while doing
regular activities can be monitored by attaching motion sensors to various parts of the
body. The viability of extracting different movement signals and using them for authen-
tication purposes has been investigated in various research works: arm-mounted sensors
to capture the arm swing [57], ankle-mounted sensors to capture foot movement [53], and
sensors mounted at the lower leg [54], hip [55], and head [95] to capture the gait. The stud-
ies cited have demonstrated that the movement signals can be utilized to distinguish one
person from another with a reasonable level of accuracy. The user recognition accuracy
based on movement signals presented in the literature cited previously relies on different
test scenarios and ranges from 68% to 98%. Wearable cameras have also been used to de-
vise an implicit authentication mechanism by extracting gait patterns from a video stream
[136, 137]. Researchers reported that a video-based approach for authentication has the
high recognition accuracy: a 5.6% equal error rate with a pool of 39 participants. How-
ever, as the techniques rely on observable bodily movements, gait-based authentication is
vulnerable to impersonation/spoofing attacks [56].

Touch and movement have also been employed to design an implicit and unobtrusive
continuous authentication scheme for smart eyeglasses. For instance, Chauhan et al. [31]
presented a continuous authentication scheme based on touch gestures on the built-in
touchpad on the side of Google Glass. They demonstrated that continuous authentica-
tion on glasses based on touch gesture is both computationally and accuracy-wise fea-
sible. Wearable devices have also been employed to achieve continuous authentication
(or de-authentication) for external devices. “ZEBRA” [101], for instance, continuously yet
transparently reauthenticates the user to the terminal. ZEBRA requires a user to wear a
bracelet equipped with sensors on his or her mouse-holding hand as a token for contin-
uous authentication. The bracelet is wirelessly connected to the terminal that compares
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the sequence of events it observes (e.g., typing, scrolling, and hand movement between
mouse and keyboard) with the sequence of events inferred using the bracelet sensor’s
measurements. When these two sequences do not match, the terminal de-authenticates
the logged-in user. Though these continuous authentication schemes appear to be
compelling because of their transparent and unobtrusive nature, as the underlying tech-
niques rely on observable hand movements, they are also vulnerable to impersonation
attacks. For example, recent work in [74] has devised an effective attack strategy—a hu-
man attacker observes a victim at the nearby terminal and opportunistically mimics only a
subset of the victim’s activities (e.g., keyboard events) at the authenticating terminal—that
can defeat the ZEBRA scheme. With this strategy, the authors have demonstrated that the
opportunistic attacker has a high probability of breaking the scheme. These studies show
that though zero-effort continuous authentication is a compelling notion, it is susceptible
to observation attacks and correctly designing such schemes is highly challenging.

Addressing the threat of impersonation attacks against the observable bodily-
movement-based authentication scheme, researchers have also considered the use of un-
observable bodily characteristics, such as electric profile and the frequency response of a
user’s skull in response to an audio signal, in designing implicit authentication schemes.
For example, “Bioamp” [71] is a watch prototype that leverages the electric profile of a user
through the wrist-worn device to authenticate the user. Bioamp extracts the impedance
from the user’s wrist, encodes it as an electrical signal, and transmits it to touch-enabled
devices through the user’s body. The studies in [128] and [34] also presented the simi-
lar techniques. This electric profile transmitted during each touch to the device can be
utilized to design a continuous and implicit authentication system that can differentiate
one person from another with a high level of accuracy. Researchers have envisioned some
application use cases for continuous authentication, such as personalizing applications to
users in real time and displaying confidential data only when legitimate users are touching
the surface. “SkullConduct” [132] is another example that leverages frequency character-
istics of the audio signal as it travels through the head of the user. As the bone conduction
speaker (that enables the audio signal to travel through the head) and microphone are
readily available in wearable glasses such as Google Glass, the speaker can be used to
create a sound that travels through the user’s head, while the microphone can be used to
record the audio signal. The changes in the recorded audio indicate the unique features of
the user’s head that are used to authenticate the user. Although seemingly viable, further
work might be needed to evaluate the security and usability of this approach.

(3) Hybrid Authentication: Techniques underlying the hybrid authentication schemes com-
bine widely used explicit authentication that establishes an initial identity (e.g., when
the device is turned on) and implicit authentication that promptly and transparently de-
authenticates the user by performing continuous reauthentication. For instance, Ojala
et al. [109] presented a hybrid authentication system utilizing physiological sensors em-
bedded in a wristband. Initial authentication is established through explicit fingerprint en-
try and the user is continuously authenticated through monitoring a set of vital signs (skin
temperature, heart rate, skin capacitance, and motion) through a wrist-worn device. Thus,
it combines the strength of an explicit biometric method with an unobtrusive and implicit
continuous authentication method. Similarly, Nymi has developed a (∼$150) wristband
that offers hybrid authentication [108]. The Nymi Band requires the user to first create a
biometric template that is stored locally for future instances of authentication. Thereafter,
the user needs to authenticate to the Nymi Band only once to put it into an active state,
using the secure explicit biometric modality (Nymi’s HeartID, Apple’s Touch ID, or other
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modalities). Once authenticated, the Nymi Band will securely and continuously relay the
device’s authenticated credentials to provisioned terminals or services wirelessly using a
secure Bluetooth or NFC connection. Thus, the users will remain authenticated as long as
wristbands remain on the user’s wrist or are not deactivated. Moreover, the provisioned
services will not recognize a Nymi Band unless it is in an authenticated state or in an
active state.

4.1.3 Wearable Possession-Based Authentication. This class of authentication scheme is also re-
ferred as token-based authentication, which is based on what the user has, such as memory cards
or smart card tokens. Though the underlying techniques of token-based authentication can be so-
phisticated, it demands minimal user interaction, and only the user who possesses the token can
open the associated locks. Wearable Security Service [4] conceptually resembles the physical to-
kens. The scheme requires the user to wear a smartwatch containing a certificate (key) issued and
signed by a trusted Certificate Authority to authenticate against external devices/services (lock).
The user places the watch against the authenticating terminal, and the watch transmits the cer-
tificate to the terminal through an IR link. The terminal examines the certificate to authenticate
the user. “Sound-Proof” [80] is another token-based authentication system that does not require
any interaction between the user and the authentication token (implemented on the phone). The
scheme is based on the audio proximity between the user’s phone and the terminal, which is de-
termined by correlating the ambient sound recorded by the phone and the terminal. Instead of a
phone, Sound-Proof can be implemented with a smartwatch as the second factor. Since the smart-
watch is attached to the wrist of the user, the smartwatch and the terminal will be in very close
proximity, which may help improve the efficiency and accuracy of the Sound-Proof system. In these
schemes, frequent accesses to the terminal require frequent authentications, which in turn require
frequent transmission and examination of certificate or audio pairs—a laborious task that reduces
the usability and deployability of the system.

To address this issue, Corner and Nobel [35, 36] proposed “Zero-Interaction Authentication
(ZIA),” a continuous authentication scheme, where a user wears a small authentication token (e.g.,
wristwatch) containing user credentials (key). The token can communicate with an authentica-
tion terminal through a short-range wireless link. Initially, the token is bound securely with the
laptop through PIN authentication. After that, the terminal autonomously pulls a decryption key
from the token whenever necessary without any user participation. Later, researchers presented
a more effective and optimized variation of this approach. Sun et al. Sun et al. [142] proposed an
optimized version of ZIA that incorporates careful key management and prudent communication
schemes, while preserving the same security characteristics. Cha et al. [28] anticipated a secure
two-factor authentication system using the combination of a smartwatch and mobile phone. In
their authentication system, the user is authenticated for an online transaction on the phone as
long as an NFC-enabled smartwatch remained nearby and coupled with the mobile phone.

With the same underlying notion (ZIA), researchers have also been exploring various other
channels for secure device pairing, user identification, and data transmission. For instance, “Wear-
able Key” [103] is based on the transmission of signals through a user’s body. Wearable Key con-
sists of a key to be worn by the user for storing the user’s credentials. Wearable Key broadcasts
the user ID and credentials through the user’s body using near-field technology, TouchNet, to the
keyhole (receiver) that the user must touch. The system recognizes and authenticates the user
based on received digital information. Roth et al. [124] presented a simple and continuous au-
thentication system to authenticate a user to a multi-touch-enabled device based on the infrared-
emitting ring. When a user wearing the ring touches the devices, the identity of the user is auto-
matically transmitted in the form of infrared signals to the device and the user is identified and
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authenticated. Laput et al. Laput et al. [90] proposed “EMSense,” a recognition system for electrical
and electromechanical systems, built on the wrist-worn device. EMSense relies on the fact that the
electrical system continuously emits low-magnitude electromagnetic noise. When the user touches
the electrical system, EMSense senses emitted EM noise and can identify the unique signal from a
set of pretrained objects. The authors envisioned an authentication system based on simply touch-
ing their devices employing a similar approach. The “Loud and Clear” (L&C) system proposed in
[61] uses an audio channel to securely pair two devices. Thus, researchers have employed various
channels including the user’s body; infrared, electromagnetic noise; and audio to achieve a secure
device pairing and user authentication.

4.2 User Safety

Today’s wearable devices are incorporated with a wide range of sensors including physiological,
inertial, and audio-visual sensors. By leveraging the signals captured by such sensors, various
user safety schemes can be designed. For instance, motion sensors can be leveraged to design a
pedestrian risk identification system [76]. An efficient driver drowsiness detection system can also
be designed by leveraging various physiological sensors [93, 151].

4.2.1 Pedestrian Risk Identification System. The work of Jain et al. [76] reported a pedestrian
safety scheme based on embedded inertial sensors, in particular an accelerometer, on a wearable
shoe that alerts pedestrians before crossing the street. Monitoring the user’s walking pattern based
on the signals from inertial sensors, the application can accurately determine transitions between
sidewalks and streets. It can also identify the pedestrian risks and generate an alert message to
users when they step into the street. The presented application is not just limited to pedestrian
safety; rather, it can also be employed in various other safety applications. For instance, it can
be used in a driver-pedestrian awareness system, where each of the vehicles in the network an-
nounces its position to the other nearby vehicles and pedestrian applications. When a pedestrian
is on the verge of stepping into the street, the application can alert either the vehicle’s driver or
the pedestrian for safety purposes. Also, if it is detected that the pedestrian is crossing the street,
the application can delay the most distracting notifications on the phone, such as an SMS message
or other notifications, for pedestrian safety. Further, by analyzing the historical walking patterns,
it can guide pedestrians to follow good crossing or walking habits.

4.2.2 Driver Drowsiness Detection System. With the release of recent wireless wearables with
bio-sensors, it is now possible to design reliable, efficient, and nonintrusive driver drowsiness
detection systems. Due to drowsy driving, more than 100,000 crashes occur annually. Such sys-
tems can prevent or reduce such accidents. The work presented in [93] proposed a driver’s safety
scheme, in particular a driver drowsiness detection system, that detects the level of drowsiness and
warns the driver before a mishap may happen. This safety scheme leverages the bio-sensors in-
corporated in the Bluetooth-enabled EEG headband for logging drivers’ EEG signal and the smart-
watch for analyzing the EEG signal, and creates alerts for drivers as per detection of the level of
drowsiness. Leveraging a bio-sensor BioHarness 3 from Zephyr Technology, another preliminary
work [151] has shown that drivers’ breathing rate and heart rate can also be applied to detect the
drowsiness level. In general, this application of wearable technology can lead to the development
of products that can save many lives and avoid many accidents on the road. Beyond the driving
scenario, these schemes can be applied to any critical situation where people should not fall asleep
while executing a task (e.g., in mission-critical fields such as battlefields, machine operation, or
mining).
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4.2.3 Other Safety and Monitoring Applications. Beyond the two aforementioned applications,
wearables can also be employed for personal safety purposes. Walking alone in unfamiliar, poten-
tially unsafe places or in the middle of the night can be dangerous and scary, especially for women.
Wearables like Safelet43 can make users feel as if they are accompanied by someone all the time.
These wearables might not prevent a potential attack per se but could notify friends, family, and
law enforcement officials when the user might be in a dangerous situation. Wearables can also
be used to keep an eye on pets by tracking the pets’ location in real time using Whistle GPS Pet
Tracker.44

5 CONCLUSIONS AND FUTURE DIRECTIONS

Wearable computing has been getting deployed in many personal, medical, and commercial do-
mains. The availability of a wide range of sensors on wearable devices, such as physiological sen-
sors, motion-position sensors, and audio-visual sensors, has facilitated numerous exciting appli-
cations in various aspects of life. However, as most of the wearables remain almost constantly
attached to the body of the wearer, they have also raised unique security and privacy vulner-
abilities. Wearables pose various security and privacy threats, such as unfettered access, sensor
sniffing and side-channel attacks, wearers’ and bystanders’ privacy risks, and information leakage
through social media and other channels. These threats have raised the demand for the design
and implementation of appropriate defense mechanisms on wearable devices to mitigate, if not
eliminate, the risks due to the existence of such threats. While wearables introduce new secu-
rity and privacy vulnerabilities, they also promise to improve the existing security, privacy, and
safety paradigms in unique ways while preserving the system’s usability, especially in the context
of authentication and user safety. In this research survey, we provided a detailed three-pronged
investigation of the security and privacy of wearable computing, including a study of the pri-
mary threats and the associated defenses proposed in the research literature, as well as an explo-
ration of the use of wearable computing to advance the security and privacy of other computing
systems.

Our work identifies several future research directions focusing on the security and privacy of
wearable devices. Major future research directions can be categorized as follows:

• Lightweight usable authentication: Due to the lack of a convenient authentication system
on wearable devices, unauthorized entities can easily retrieve sensitive information cap-
tured by, and stored on, the device. Increasing use of such devices, therefore, motivates
high demand for a lightweight and efficient authentication and identification mechanism
for wearables. As these devices incorporate a wide range of sensors, these sensors can be
leveraged for authentication and identification purposes. For instance, biometric authenti-
cation based on brainwave signals if EEG sensors are available, heart rhythm if heart rate
sensors are available, and fingerprints or gestures and combinations thereof can be em-
ployed on the wearables. However, as these devices are typically resource constrained, they
introduce challenges in designing efficient and effective authentication algorithms. Conse-
quently, a study of the design and implementation of such authentication techniques and
evaluation of their efficiency and usability in different types of wearable environments are
highly needed in future work.

• Zero-effort (de)authentication: The availability of a wide range of sensors on wearables has
also made it possible to design “zero effort” authentication/de-authentication systems. The

43Safelet – http://www.safelet.com/.
44Whistle GPS Pet Tracker for dogs and cats – http://www.pettracker.com/.
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demand of such (de)authentication has been raised due to a widespread use of comput-
ing devices in day-to-day life. An attempt has been made to design such a system using a
bracelet embedded with motion sensors [101], but a recent study [74] has shown that this
scheme contains a design flaw that makes it vulnerable to a viable attack. Thus, though
zero-effort (de)authentication is a compelling paradigm, the design and evaluation of such
systems is a challenging task and need to be pursued with utmost care. Further research is
necessary to explore this direction.

• Defenses against side-channel attacks: Motion-position sensors, such as accelerometers and
gyroscopes, are considered nonsensitive resources by the current mobile operating sys-
tems, especially Android. By leveraging such sensors on a smartphone, malicious apps can
surreptitiously infer the sensitive touch input, such as PIN, password, or credit card in-
formation, provided by the users. Being attached to the wearer’s body, wearables, such as
smartwatches, seem even more vulnerable to such motion-based side-channel attacks, as
shown in recent research. How to defend against such attacks while preserving the usabil-
ity offered by wearable devices is an interesting problem for future work.

• Privacy -preserving schemes for cloud-services: Several wearables often upload or synchro-
nize their data to the online (cloud) service providers for their proper functionality or several
other benefits. Since this data may contain sensitive information about the users and their
surroundings, data should be stored securely by the providers in encrypted form. Though
several privacy-preserving querying and computing schemes have been presented, only a
few are designed for resource-constrained devices like wearables. So, designing optimized
privacy-preserving schemes over encrypted data considering resource-constrained devices
is a challenging task, and a further study is needed in this direction.

• Safety risks, threats, underhanded benefits: Many safety applications can also be built lever-
aging the sensors available on wearable devices, such as those geared for driver drowsiness
detection, pedestrian safety, and UV exposure protection. However, the use of such devices
can also introduce safety risks to the wearer in various scenarios such as while driving or
crossing streets. Further, since many of the wearable devices are connected directly to so-
cial media or to cloud services, they also pose a threat of inadvertent sharing of sensitive
information collected by the devices. Moreover, in many environments, wearables have a
great potential to offer underhanded benefits to the wearer, such as in exams or casinos.
Thorough studies are therefore needed to investigate the impact of wearable devices in all
of these settings. Rigorous future investigation is required to design, implement, and eval-
uate the legal policies or software-based mechanisms to minimize the safety risks, threats,
or underhanded benefits associated with wearable devices.

• Secure and lightweight remote attestation: Device integrity is a crucial security requirement
of wearable devices. None of the security schemes implemented on the wearables would
function properly without the assurance of the integrity of the device. Though several
remote attestation mechanisms have been proposed in the literature for device integrity
checking and verification, only a few are tailored toward resource-constrained devices like
wearables. Therefore, future work is needed to design a secure and lightweight device in-
tegrity checking and verification mechanism geared for wearables.
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APPENDIX

Table 5. Brief Description of Each of the Usability, Deployability, and Security Parameters
as Used in [89] for Comparing PET Schemes

Properties Brief Description

U
sa

b
il

it
y

User-Initiated PETs require user to perform a certain action to mediate privacy preferences.

Smartphone-Used PETs leverage smartphone to relay privacy preferences.

Dedicated-Device-Required PETs require the user to carry a dedicated device.

Physical-Artifact-Required PETs require a user to carry or wear one-to-many physical artifact.

Behavioral-Impact PETs have a significant impact on user behavior.

D
e
p

lo
y

a
b

il
it

y Negligible-Cost-per-User
Total cost per user including the costs at bystander’s end and the cost at wearer’s end

while deploying a PET scheme is negligible.

Accessibility PETs function properly regardless of physical or mental disabilities.

Requires-Device-to-Comply
Wearable cameras need to be updated accordingly (in terms of hardware and/or

software) to deploy a PET scheme.

Internet-Connection-Required PETs need Internet connection tooperate properly.

S
e
cu

ri
ty

Third-Party-Service-Required
PETs rely on a third-party service to operate, which is assumed to be completely

trustworthy.

Anonymity User’s identity is not revealed during the operation of PET scheme.

Visibility
Privacy preferences of the user get revealed as a result of PET requirement

for the user to carry a dedicated device or wear physical artifact.
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