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Abstract—In this paper, we highlight and study the threat
arising from the unattended wearable devices pre-paired with a
smartphone over a wireless communication medium. Most users
may not lock their wearables due to their small form factor,
and may strip themselves off of these devices often, leaving or
forgetting them unattended while away from homes (or shared
office spaces). An “insider” attacker (potentially a disgruntled
friend, roommate, colleague, or even a spouse) can therefore
get hold of the wearable, take it near the user’s phone (i.e.,
within radio communication range) at another location (e.g.,
user’s office), and surreptitiously use it across physical barriers
for various nefarious purposes, including pulling and learning
sensitive information from the phone (such as messages, photos
or emails), and pushing sensitive commands to the phone (such as
making phone calls, sending text messages and taking pictures).
The attacker can then safely restore the wearable, wait for it
to be left unattended again and may repeat the process for
maximum impact, while the victim remains completely oblivious
to the ongoing attack activity. This malicious behavior is in sharp
contrast to the threat of stolen wearables where the victim would
unpair the wearable as soon as the theft is detected. Considering
the severity of this threat, we also respond by building a defense
based on audio proximity, which limits the wearable to interface
with the phone only when it can pick up on an active audio
challenge produced by the phone.

I. INTRODUCTION

Wearable computing is a rapidly emerging paradigm that
is incorporated into items of clothing and accessories which
can be comfortably worn by the users. Smartwatches, fitness
trackers, Google Glass, and Emotiv headset, are some of the
examples of already ubiquitous wearable devices. Wearable
devices bring immense benefits to society and boast improved
quality of life for wearers, ranging from interaction with
virtual objects in an augmented reality world to healthier,
“fitness-data inspired” lifestyles. However, being attached to
the body of the wearer, in contrast to traditional devices,
wearables raise unique security and privacy vulnerabilities, as
shown by some recent studies [1]–[5].

One potentially critical threat pertains to the (typically)
unguarded access to wearable devices due to their small
form factor and interface-constrained nature. In particular, if a
wearable device is stolen, anyone would have access to the in-
formation stored on the device, since wearable devices usually
store data locally without encryption, PIN protection or user-
authentication. Even if the device supports such authentication
functionality, users are not willing to use it (as observed in our
survey results presented in Section VIII-B) perhaps because
they may perceive it as an inconvenient mechanism. This

further emphasizes the seriousness of the threat of unattended
wearables. Unlike wearable devices, smartphones offer various
authentication schemes such as PIN/password, pattern, and
fingerprints that are more widely adopted to secure the access
to contents of the phone.

In this paper, we highlight and investigate a new attack
vector — Home Alone Wearables (HAW) — arising from the
unattended wearable devices pre-paired with a smartphone
over a wireless communication medium (e.g., Bluetooth). As
mentioned above, most users may not lock their wearables,
and may strip themselves off of these devices often, leaving or
forgetting them unattended while away from homes (or shared
office spaces). An “insider” attacker, possibly a disgruntled
friend, roommate, colleague or spouse, can therefore gain
physical access to the wearable once left unattended, take it
near the user’s phone (i.e., within radio communication range)
at another location (e.g., user’s office), and surreptitiously
use the wearable against the phone for various nefarious
purposes across physical barriers and from some distance
away. Specifically, passive attacks can be launched by pulling
and learning sensitive information to the wearable from the
phone, such as messages, photos or emails, and active attacks
can be launched by pushing sensitive voice commands from
the wearable to the phone, such as making phone calls, sending
text messages and taking pictures. Once done, the attacker can
safely restore the wearable exactly where it was left by the
victim, wait for it to be left unattended again and may repeat
the process for maximum damage. The attack can go on for
as long as the attacker desires while the victim would remain
completely unaware of the ongoing attack activity.

The threat posed by insiders is a known concern. In
particular, the study of Muslukhov et al. [6] found that users
are generally concerned about insiders accessing their data on
smartphones, and presented evidence that the insider threat is
a real problem impacting smartphone users. Our work takes
the notion of such insider threats to the realm of wearable
devices, pointing to a novel class of vulnerability not studied
previously. We note that the need for the attacker to hide
behind a physical barrier is an important attribute of our HAW
vulnerability, since the attacker is an entity familiar to the
victim and would not want to expose himself to the victim.

The malicious behavior exhibited in HAW lies in stark
contrast to the traditional threat of stolen wearables. In case
of stolen wearables, the victim would “unpair” the wearable
as soon as the theft is detected, and therefore the stolen
wearable would no longer be able to interface with the phone.
In contrast, HAW will allow the wearable to “work with” the
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phone normally because the victim never unpairs the wearable
as the wearable has not been stolen and the overall attack is
invisible to the victim. Moreover, the threat of stolen wearables
is due to “external” entities (e.g., burglars), likely not familiar
to the victim. Whereas, the HAW attackers are anticipated
to be “internal” entities, i.e., people familiar to the victim,
potentially his/her closed ones, with the hidden intention of
monitoring and stealing sensitive information without getting
detected.

Considering the severity of the proposed threat, we take a
step forward and go on to respond to the threat by building a
defense based on audio proximity, which limits the wearable to
interface with the phone only when it can pick up on an active
audio challenge produced by the phone. Specifically, whenever
the wearable queries to push/pull information to/from the
phone, the phone generates a simple audio sound which will
be recorded by both the phone and the wearable. Only if the
phone deems that the audio sample recorded by itself and the
audio sample recorded by the watch are highly similar to each
other, the phone will respond to the wearable’s queries. HAW
attacker would not succeed since wearable would not be able
to fully pick up on the sound challenge generated by the phone
due to sound dissipation over distance and through physical
barriers using which the attacker hides from the victim.

While the HAW threat/defense may be broadly applicable
to different types of wearables that work in conjunction with a
smartphone, in this paper, we focus our technical exposition on
a smartwatch and a smartglass, given their popularity among
the users, especially that of the smartwatch.

Our Contributions: We believe that our work makes the
following contributions:

• Novel Offense-Defense of Home Alone Wearables: We
introduce a potentially serious vulnerability of unattended
wearables and provide a viable fix based on a simple yet
effective notion of active sound proximity.

• Evaluation of the Threat: We design and test our attack
in different settings involving multiple Android wear-
ables, having varying communication ranges which allow
the attacker to launch the attack across physical barriers
(e.g., walls) while remaining invisible to the victim.

• Design, Implementation and Evaluation of the Defense:
We design, develop and evaluate our defense for the
Android platform based on acoustic proximities using
simple and short active notification sounds generated by
the phone. Our defense may also be executed for only
a randomly selected access attempt, which may reduce
the distraction effect and still curb the chances for the
success of the attacker. Our results show that the defense
can significantly lower the impact of the threat without
preventing the users from accessing their devices in most
benign settings (also confirmed by our survey results)
and without requiring any effort from the users. Also, the
defense can completely block the attack executed across
exterior walls or through building floors.

• Population Statistics Supporting Threat Assumptions:
We confirm the validity of our threat assumptions based
on an online survey with Amazon Mechanical Turk

participants that shows users are indeed prone to leaving
or forgetting their wearables (smart or not) unattended
frequently for long periods of time.

II. THREAT MODEL

In the HAW threat model, we consider that a user has
already paired his wearable device W with his smartphone
which acts as a primary device P . Through this pairing, P
and W have established a security association and follow
a standard cryptographic protocol for authenticating and en-
crypting all messages exchanged between them. We further
assume that the user has not set any form of authentication
in W due to reasons such as many wearable devices do not
provide authentication mechanism by default or users may
not want any authentication on W due to the inconvenience
associated with the constrained user interface. As P device
offers various authentication schemes (e.g., PIN/password,
fingerprint), which are more widely adopted, we assume that
the user has locked the P device using one of these schemes.

We further assume that the user has left his W device
on desk (let’s say for charging) or has forgotten it at home
while the user is in possession of the P device at another
location (let’s say office). An insider attacker (possibly user’s
roommate, spouse, friend or colleague) gains the possession
of the unattended/leftW device. The attacker may either want
to damage the victim’s reputation or just want to sneak upon
the victim out of curiosity. The attacker with W in possession
knows the victim’s whereabouts and attempts to interface W
with P . We also assume that interfacing W with P does
not require any action from the user unless W is explicitly
unpaired by the user. An approach of requiring an action from
the user may be annoying to the user because he has to approve
the pairing even when the wearable is few meters away. Since
we assume that user has not enable authentication in W , the
attacker with W can just be in close proximity (within the
Bluetooth range of P) of the victim with P to pull/push some
information from/to P . The attacker can pursue this process
over multiple rounds, where W device can be stowed back
safely where it was, and the attacker can wait forW to be left
unattended again by its user, and re-iterate.

We also assume that when a user attempts to use W to
access P , both two devices remains in the same room close
to one another (within a few feet), whereas when the attacker
wants to use W to access P , the attacker has to be stealthy
and cannot be in visible range. Hence, the attacker tries to
hide behind a barrier such as a door, a wall or even on
another floor. The attacker within a visible range would most
likely create suspicion to the victim and raises the chances
of getting caught. This fundamental difference between the
benign setting and the attack setting (with barrier) serves as
the main premise for the HAW defense proposed in this paper.

III. ATTACK TAXONOMY AND EXPERIMENTS

A. Attack Taxonomy

We broadly divide HAW attacks into two categories -
Passive attacks, and Active attacks, as described below. Some
of our attack scenarios can be visualized in Figure 1.
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Fig. 1: HAW attack example scenarios. An attacker with an unat-
tended wearable comes in the Bluetooth range of the phone while
being hidden across physical barriers, e.g., (a) wall, and (b) floor.

Passive Attacks: In passive attacks, the attacker will execute
only those commands from W possessed by the attacker that
do not alert the victim user in possession of P . This kind of
attack is stealthy and the possession of the unattended device
may go unnoticed. Reading call logs, emails, SMS, ongoing
notifications, or viewing daily agenda or appointments, are a
few of the examples. Besides executing commands to pas-
sively read sensitive information, the attacker can also quietly
observe the notifications (of call or of SMS) that are pushed by
P to W . Hence, the victim’s privacy would be compromised
easily as a consequence of this attack.

Active Attacks: In active attacks, the attacker will execute
commands from W to trigger some activity on P . When an
attacker possesses W powered with Android Wear [7], it may
execute different voice commands with “Okay Google” [8].
Some W devices provide limited set of commands that can
be executed. However, most of these devices allow to make
calls/send SMS, take pictures, create events/alarms, etc. Some
of the W devices such as Android powered wear or Google
Glass even provide commands to update posts to Facebook.

It is clear that such active attacks could be quite devastat-
ing. One disadvantage is that these attacks may not be very
stealthy, and the possession of the unattended device may be
noticed by the victim as active alteration in the user interface
of the device or creation of alerts may distract the victims.
However, it is important to note that users often leave their
phones unattended or inside pockets or bags [9], and therefore
they may not frequently notice such alerts.

B. Attack Settings and Experiments

As mentioned above, to launch the HAW attacks, an
attacker who hasW needs to be within the Bluetooth range of
P device. Bluetooth provides distance coverage between 1-100
m. The coverage range of Bluetooth depends on many factors
such as communication configuration, surroundings, and radio
performance [10], [11]. We set forth to do an analysis of
Bluetooth range in some of the commonly available P and
W devices. We use LG G3 (G3), Nexus 5 (N5) and Moto G4
(G4) as the P devices while we use LG G Watch R (W110)
smartwatch (GR), Samsung Gear Live (GL) and Google Glass
(GG) as the W devices. We pair N5 with GR, G4 with GL

TABLE I: Bluetooth Range: In between walls/barriers

Barrier Air
(No Wall)

Glass
door

Two Glass
doors

Wooden
door

Interior
Wall

Exterior
Wall

N5 - GR 40m 15m 13m 5m 5m 4m
G4 - GL 40m 15m 13m 12m 8m 4m
G3 - GG 40m 15m 13m 7m 8m 6m

and G3 with GG. Among the P devices, N5 has Bluetooth
v4.0, G3 has Bluetooth LE (Low Energy) v4.0 and G4 has
Bluetooth LE v4.1. Among the W devices, GR has Bluetooth
v4.0, GL has Bluetooth LE v4.0 and GG has Bluetooth v3.0.

We tested the Bluetooth connection when two devices are
separated by different kinds of barriers such as glass wall,
wooden door, interior wall or exterior wall. We report the
farthest distance from which we were able to execute the
command with the barrier in between in the Table I. The
results of our observation are as expected. Depending upon
the type/material of the barrier the Bluetooth range differed.
For example, in our experiment, devices were connected even
up to 40m (1m = 3.28 feet) when there was no barrier while
we could only send commands up to 8m (or even shorter
distance) when the devices were separated by doors or walls.
Moreover, we also observed that depending upon different
kinds of Bluetooth (v4.0, v4.1, or BLE v4.0) embedded on
the device, the Bluetooth signal varies significantly. N5 - GR
pair with normal Bluetooth got disconnected after 5m when
they were separated by wooden door or interior/exterior wall.
However, G4 - GL (both with Bluetooth LE) were connected
even up to 12m when separated by wooden door. In case of
G3 - GG pair (one with Bluetooth LE and another with normal
Bluetooth), they were disconnected at around 7m when they
were separated by an wooden door. The Bluetooth connection
range further decreased when there was an exterior wall in
between the paired devices.

Note that as long as P and W are within the Bluetooth
range (as shown in Tables I), the attacker with the possession
of W can launch any of the active and passive attacks as
mentioned earlier in Section III-A.

IV. LIMITATIONS OF TRADITONAL DEFENSES

Location-based approaches, and distance-bounding proto-
cols may be the potential approaches to address the HAW
threats by estimating the physical proximity, or estimating the
presence of barrier between the devices.

GPS-based Approaches: A location-based approach deter-
mines the physical proximity by comparing the location in-
formation extracted from the two devices at a given time. It
requires both devices to be equipped with GPS. Since the
measurement error of phone GPS lies above 5 meters [12],
use of location-based approach would not be effective way to
estimate the close physical proximity of few feet and cannot be
used to defeat the HAW threat. Further, most of the wearables
today do not come with on-board GPS sensors, e.g., LG G
Watch R, the smartwatch that we use in our experiment and
evaluation. Moreover, GPS sensors usually do not work well in
indoor environment, which is a common use case of wearable
and mobile devices.

Distance-bounding Protocols: A distance bounding protocol
usually uses the received signal strength indicator (RSSI) and
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Fig. 2: Whisker diagram showing the distribution of Round-Trip Time
(RTT) over various distances and across different barriers. The central
rectangle spans the first quartile to the third quartile, and the line
inside it presents the median. The ‘whiskers’ above and below the
box show the minimum and maximum value of RTT within 1.5 IQR.

the Time-of-flight (ToF) for distance estimation between two
devices. RSSI is a measurement of strength of the radio signal
received by the device. It changes over the distance from the
source of signal. However, RSSI is not a reliable and secure
method for distance estimation because signal strength can be
altered by amplifying or attenuating the signal [13].

ToF system estimates the distance by measuring the time
elapsed, in particular round-trip-time (RTT), during a message
exchange. We implemented ToF system with a smartphone
(Samsung Galaxy S6) and a smartwatch (LG G Watch R)
utilizing Bluetooth for message exchange. We recorded RTT
(in milliseconds) values 100 times by placing the watch
and the phone at various distances from 2-10 feet with the
increment of 2 feet on a smooth surface. We also recorded
RTT values by positioning the phone and the watch across the
wooden door and the interior wall as a barrier.

Figure 2 shows the distribution of RTT values for various
distances between the phone and the watch across various
barriers in the form of a ‘whisker diagram’. As can be
seen from the figure, at each distance value, the RTT values
are balanced (centered around the median) at some point
for each type of barriers. All the RTT values seem to be
balanced around 300-400ms for each of the distance value.
This shows that there is no significant variation in the RTT
values while placing a barrier between the devices (attack
case) as compared to no-barrier in between the devices (benign
case). It also shows no significant variation in RTTs across
distance levels in presence of each type of barriers. There may
be variation in RTT values across longer distances, and can be
applied to make a distinction between close distance versus far
distance. However, for estimating the close physical proximity
and the presence of barrier, ToF is not a viable approach, and
cannot be used to address the HAW threat.

V. OUR DEFENSE

The basic idea of our defense mechanism is limiting W
to interface P based on their audio proximity between two
devices, which is determined by the similarity score between
the audio pairs recorded by these two devices. The concrete
steps followed in HAW defense process are as follow. The

user tries to accessW , for example, reading the texts/emails or
sending various commands to P through W . Before granting
user access to the W’s capabilities, W sends the “Trying to
access” command to P , and starts recording the audio. When
P receives the “Trying to access” alert, it picks one of the
sounds from the pool of notification sounds, and plays it back
through its speaker and at the same time starts recording the
audio. As soon as audio playback stops on the P device,
it also stops recording and sends the “STOP” command to
W to stop recording. The recordings from the W device is
encrypted/authenticated and transmitted to P for proximity
analysis. All messages between W and P are exchanged over
the secure channel. The P device then computes the similarity
score between the audio pairs and based on the similarity
score, P decides whether W device access attempt should
be granted.

In the benign case, when the user tries to push/pull
information from P over to W , W would be able to pick
up on the active audio challenge generated by P as long as
W is not too far from P and not shielded by barriers. Our
wearable-phone usage pattern analysis (Section VIII) confirms
that most users use their wearables while the phone is located
near to them (e.g., on desk) with likely no physical barrier in
between. This suggests that our active audio approach would
work well in the benign scenario since W will be able to
capture the sounds produced by P well, which may result in
a high correlation between the corresponding recordings ofW
and P . The active audio generated by P may be distracting to
the users, so our approach uses simple and quick notification
sounds, which people are already used to and may not be
distracting as most of the users keep their phones in ringer
mode at home and while asleep (Section VIII-B).

In contrast, in the HAW attack scenario, the attacker
carrying W would usually be located at some distance from
the victim (P) and, perhaps more importantly, be separated
by a physical barrier from the victim. In this condition, the
audio sounds created by P would be shielded and dissipated
significantly by the time they reach W , which may result in
a low correlation (or even no correlation depending upon the
distance and the type of barrier) between the corresponding
recording of W and P . Therefore, the attack would be
detected, preventing the attacker from pushing/pulling infor-
mation from P .

As an extra layer of security, the use of active audio sounds
in our defense would also serve the purpose of alerting the user
whenever W attempts to access P . Our defense may also be
executed not per access attempt but when a randomly selected
access attempt is made. This may reduce the distraction effect
and still curb the chances for the success of the attacker.

Use of Ultrasound: Nyquist principle states that recorders
should record at a sampling rate greater than 40kHz to
record and process the ultrasound (> 20kHz). However, since
many of wearables, e.g., Sony Smartwatch 3, LG G Watch
R, and Google Glass, have maximum sampling frequency of
22.05kHz, they cannot record and process ultrasound, thereby
making the use of ultrasound in HAW system infeasible cur-
rently. In the near future, wearables may come with powerful
microphone with the ability to process ultrasound that may
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be used to process it transparently, thereby improving the
usability of the system.

Fall-back to Ambient Audio: There may be scenarios where
creating sounds may not be feasible, e.g., in a silent zone such
as a library, hospital, or meeting. It is also possible that the
phone is kept in silent mode or is connected to the earphone.
In such scenarios, the HAW defense by nature will fall back
to proximity detection based on ambient audio sounds. Here,
instead of the audio created by P , the ambient audio captured
by both of the devices would be used for deciding whether
to grant access. As ambient sounds across different locations
within Bluetooth range of P are likely to be similar, which
may lead the defense system to grant illegitimate access to the
adversary. In other words, falling back to the ambient sound
may not be as secure as its original implementation of using
active-sound, but it only needs to be done on occasional basis
when sounds can not be played back by the phone.

Comparison with Prior Audio-based Security Schemes:
There are several works that utilize the audio signal to improve
the usability and security level of existing security schemes,
especially in the context of authentication. Sound-Proof [9]
is one such security scheme, specifically a zero-effort two-
factor authentication scheme, which utilizes ambient audio to
determine the proximity between two devices – the phone and
the login terminal (browser). Our approach of using audio
correlation is similar to that of Sound-Proof, but we make
use of actively generated audio sounds, rather than ambient
sounds. The use of active sounds provides a high level of
security in our scheme as even a nearby attacker may not
be able to hear the sounds across barrier, in contrast to
Sound-Proof which seems vulnerable to a proximity attacker.
Moreover, our application domain is much different from that
of Sound-Proof. Halevi et al. [14] employ ambient audio to
detect the physical proximity between two devices in NFC
transaction scenario. During an NFC transaction, they collect
ambient audio from both the NFC phone and the NFC reader
and validate if both devices are together by correlating the
collected audio samples. Truong et al. [15] also use ambient
audio (along with various Radio Frequency (RF) sensors such
as Wi-Fi, Bluetooth and GPS) to detect the proximity of two
devices. Again, in contrast to these studies, our work makes
use of active sound proximity, not ambient sound proximity
and focuses on a different application domain. SlickLogin
[16], which has recently been acquired by Google, is another
scheme that aims to minimize the user phone interaction
during two-factor authentication. Our proposed HAW defense
is in line with this approach but addresses the threat of
“home alone wearables” not two-factor authentication. Also,
in contrast to SlickLogin, we make use of simple notification
sounds and audio correlation analysis.

VI. DEFENSE DESIGN AND IMPLEMENTATION

Application Design: For our prototype design and implemen-
tation (and later testing) of HAW defense, we use LG Nexus 5
as the smartphone, and LG G watch R as the smartwatch. Both
the smartphone and the smartwatch run Android version 6.0.1.
We use Digital Sound Level Meter to measure the loudness
of sound (dB) generated by the phone. The design of HAW
defense consists of following two applications.

• Phone Application: HAW defense implements an Android
phone app that has a simple button to control the audio
recordings on the phone and on the watch. When the but-
ton is pressed to start recording, the phone sends the “start
recording” trigger to the watch. The phone app picks a
random notification sound (from its repository), and plays
it back. It also starts recording the audio simultaneously
while it is playing the notification sound. As soon as the
phone finishes playing the audio sample, it automatically
stops recording and sends the “stop recording” command
to the watch, thereby stopping the recording on the watch.
The phone stores the recording locally while the watch
transmits the recording to the phone, for the purpose of
our offline analysis as part of our evaluation.

• Watch Application: Our HAW defense implements an-
other Android app as a watch/wear application. Android
wear app remains idle in the background and is automati-
cally activated when a “start recording” signal is received
from the companion smartphone. Once activated, it starts
recording audio, and stops recording as soon as it receives
the “stop recording” signal from the phone.

Audio Correlation Analysis: We implemented correlation
analysis between an audio pair (recorded by watch and phone)
in a similar fashion as that proposed in [9] i.e., one-third octave
band filtering with cross-correlation. One-third octave band is
defined as a frequency band whose upper edge frequency is
equal to its lower edge frequency times cube root of two.
One-third octave band divides the audible frequency range
(roughly 20Hz - 20kHz) into 32 unequal and non-overlapping
bands. One-third octave bands of an audio recording provide
its high resolution frequency information while retaining time-
domain representation. Audio samples are divided into the
bands ranging from 50Hz to 4kHz. As reported in Sound-Proof
[9], these bands provided the best Equal Error Rate (EER).
Hence, only the sixth band (50Hz) to the twenty sixth band
(4kHz) are used, i.e. only twenty bands are considered. To
split the audio sample into these bands, we use twentieth order
Butterworth bandpass filter [17] in MATLAB. To correlate the
audio pair, we use the same system that was implemented
in [14]. To measure the similarity between two time-based
signals Xi and Xj , we first normalize the signals according to
their energy. Then, we calculate the correlation between each
signal and use maximum correlation value. The correlation
between two time-based signals Xi and Xj is computed as:
Corr(i, j) = max(CrossCorr(Xi, Xj))

Similar design of the HAW defense can also be imple-
mented with smartglasses. In the smartglass implementation
of the HAW defense, all underlying techniques and steps will
be same except that there will be a glass application instead
of the watch application.

VII. DEFENSE EXPERIMENTS AND RESULTS

A. Data Collection and Settings

In our data collection experiment, we consider two factors
that have a significant effect in the performance of our HAW
defense: the volume level of the phone as it creates the active
sounds, and the distance between the phone and the wearable.
We also consider two different types of physical barriers
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that can potentially be used by the attacker to hide itself
while executing the attacks, i.e., pull/push information from/to
the phone using the wearable. Our parameter settings are
described below:

Volume Level: As users may have different preferences
towards the volume level of the phone being used, we consider
three different volume levels for our experiment. – Full
Volume, Average Volume, and Low Volume. In Full Volume,
the volume level of the phone is set to 100% (72dB) of the
volume. In Average Volume and Low Volume, the volume level
of the phone is set to 75% (66dB) and 50% (60dB) of the
highest possible volume, respectively.

Distance: We consider two different upper limits of the
distance based on the presence/absence of the physical barrier.
In the absence of the physical barrier, which represents the
benign setting with no attack, we consider 6 different distance
settings starting from 0 feet (i.e., phone and watch being
placed next to each other) to 10 feet, with the increment of
2 feet distance in succession. In the presence of the barrier,
which represents the attack scenario, we collected samples at
3 different distance settings from the barrier starting from 2
to 6 feet, with increment of 2 feet distance in succession. We
consider only up to 6 feet distance in the presence of barrier
because if HAW defense can detect the illegitimate use of the
wearable within this distance limit, it would also be able to
detect the illegitimate use beyond this distance.

Physical Barriers: We chose two physical barriers.

(i) Wooden door: Wooden door is a potentially common
physical barrier that can be utilized by an adversary to hide
itself while executing the attack. To capture this setting, we
selected one of the wooden doors (thickness of 1.5 inch)
located in our lab, typically used in most of the buildings,
to evaluate the performance of our defense.

(ii) Interior wall: Interior wall is another potential physical
barrier that an adversary can use to hide itself while illegit-
imately perpetrating the attack. To evaluate the performance
of our defense scheme in this setting, we chose a dry wall
(thickness of approximately 5 inch) located in our lab, as an
interior wall barrier.

We collected total of 1800 samples of audio recordings
using our prototype implementation of the defense system.
Out of these samples, 900 samples correspond to the setting –
without barrier, while remaining 900 samples correspond to
the setting – with barrier. Each sample consists of two record-
ings, one from the phone and the other from the watch. All the
recordings were collected in a controlled environment, where
there was no significant ambient noise. As the active sounds in
our analysis, we chose 10 popular message notification sounds
used by several popular applications and mobile devices. The
notification sounds of Viber, Skype, Facebook messenger,
Hangout, and default message notification sounds of iPhone,
Samsung, and Sony devices are some of the examples we
chose in our study. Each of these message notification sounds
is less than 2 seconds long. For each notification sound, 5
samples of recordings were collected for each combination
of distance and volume level settings, thereby making a total
of 50 samples of recordings for each setting. In the real
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Fig. 3: Average correlation score between the phone recordings and
the watch recordings for different settings – three different volume
levels and 6 different distances between the watch and the phone.

world implementation, besides the 10 notification sounds we
selected, various other notification sounds can also be used.

B. Results

1) Preliminary Results: As a preliminary experiment, we
tried to gauge the impact of volume level and distance on the
correlation score between the audio pairs recorded by phone
and watch. To this end, we used the recordings which are col-
lected in the setting where phone is placed at several distance
apart from the watch on a smooth surface without any physical
barrier in between, and volume level set to three different
levels. We computed the average correlation score between the
phone and the watch recordings. The results (Figure 3) show
that the correlation between the phone recording and the watch
recording attenuate with the increase in the distance between
the phone and the watch, and the decrease in the volume level.

Based on these initial results, we proceeded with the
analysis of the collected samples to come up with the sys-
tem’s parameters, in particular, the correlation threshold for
each volume level, that leads to the optimal results in terms
of False Rejection Rate (FRR) and False Acceptance Rate
(FAR). A false rejection occurs when the system denies a
legitimate access to the device (benign setting), while a false
acceptance occurs when the system grants a fraudulent access
attempts (attack setting). When an attacker located within the
Bluetooth range of the phone attempts to access the phone
from the watch, phone creates an audio challenge, which is
also recorded by the watch possessed by the attacker. The false
access to the watch is granted if the audio recording from the
watch possessed by the attacker and the one from the phone
have similarity score greater than the threshold used to make
the proximity decisions.

2) Analysis without Barrier – Benign Setting: In the benign
case, the watch would be close to the phone with no physical
barrier in between, and the watch would be able to pick the
active audio created by the phone when the user tries to
push/pull the information to/from the phone. We consider two
distances – 4 feet and 6 feet – between the phone and the watch
as legitimate distance range, and performed the analysis for
each of them. We note that this analysis represents a benign
setting, not the attack setting, since it is done without the
presence of barriers. The results from this analysis, as we
show in the next subsection, will be used to extend to the
attack setting, i.e., in the presence of barriers.

Four feet Distance: We computed FAR and FRR to evaluate
the performance of our defense mechanism using following
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TABLE II: Threshold chosen for different volume level of the phone
considering two different distances between the phone and the watch
as a legitimate distance. Thresholds are chosen such that they offer
very low FRR (highlighted cells) while providing reasonable FAR in
the scenarios without barrier.

Threshold
Chosen FRR FAR

4 feet as a legitimate distance
Full Volume 0.35 0.013 0.387
Average Volume 0.30 0.020 0.570
Low Volume 0.28 0.013 0.527

6 feet as a legitimate distance
Full Volume 0.30 0.050 0.730
Average Volume 0.29 0.069 0.600
Low Volume 0.26 0.060 0.710

strategy. We used the recordings, which are collected in the
settings where the phone is placed at ≤4 feet away from the
watch on a smooth surface, without any physical barrier, to
compute the FRR. To compute FAR, we used the recordings,
which are collected in the settings where the phone is placed
beyond 4 feet from the watch without any physical barrier.
For the full volume setting, we achieved the Equal Error Rate
(EER), defined as equilibrium point between FAR and FPR, of
0.22 when the similarity score is 0.39. Similarly, for average
and low volume setting, we achieved EER (at correlation
score) of 0.24 (0.34) and 0.17 (0.32), respectively.

Six feet Distance: The same strategy, that we used while
evaluating 4 feet distance as the legitimate distance limit, is
used while considering 6 feet as the legitimate distance limit to
compute FAR and FRR. In this case, we achieved the EERs of
0.36, 0.33, and 0.31 when the similarity score were 0.37, 0.33,
and 0.31 for full, average and low volume level, respectively.

From the analysis for 4 feet and 6 feet distances, we
chose a similarity score threshold for each of the volume
level settings that provides very low FRR while providing
reasonable FAR. The need to establish a very low FRR is
important considering the usability of the system as we do
not want to block a legitimate access attempt by a benign
user. The similarity score chosen as a threshold for each of
the volume levels considering each of the legitimate distance
range is as shown in Table II. As we can see, the corresponding
FRRs when 4 feet is considered as a legitimate distance are
≤0.02 while they are <0.07 when 6 feet is considered as a
legitimate distance.

3) Analysis with Barrier – Attack Setting: With the chosen
thresholdization for each of the volume levels in the previous
subsection (benign setting without barriers), we evaluate the
performance of our defense in the presence of physical barri-
ers, i.e., a dry wall and a wooden door, which represents the
attack setting. We assume that the attacker would use some
sort of a barrier to hide itself while performing illegitimate
access attempts. We use FAR as a measure to evaluate the
performance of our defense against the attack setting. To this
end, we considered all the recordings which were collected in
the setting where there was a barrier between the phone and
the watch as the attacker samples. In the real-world attack
scenario, the phone possessed by the victim would be at some
distance (may be more than 2 feet away) from the barrier, in
contrast to the watch possessed by the attacker, which could
be very close to the barrier. So, we consider the distance of

TABLE III: False Acceptance Rate (FAR) of HAW while keeping
the phone at different volume level at a varying distance from the
barrier (wall and wooden door) considering up to 4 feet and 6 feet
as a benign distance limit. Highlighted cells show the average FARs
of corresponding volume level.

FARDistance
(feet) Wall-4 Door-4 Wall-6 Door-6

Full Volume
2 0.020 0.033 0.040 0.333
4 0.000 0.000 0.000 0.080
6 0.000 0.000 0.120 0.180

Average 0.007 0.011 0.053 0.198
Average Volume

2 0.020 0.040 0.039 0.220
4 0.000 0.000 0.020 0.060
6 0.000 0.000 0.040 0.039

Average 0.007 0.013 0.033 0.106
Low Volume

2 0.020 0.060 0.200 0.300
4 0.000 0.040 0.220 0.340
6 0.020 0.060 0.220 0.280

Average 0.013 0.053 0.213 0.307

the phone from the barrier starting from 2 feet to 6 feet in
both legitimate distance consideration.

Table III shows the FAR for our defense in presence of the
barrier (dry wall and wooden door) at different volume level
and distance of the phone from the barrier while considering
4 feet and 6 feet as legitimate distance limit. Note that here
we consider the recordings only from the attack settings, so
no FRRs are shown for this setting. The FAR values are lower
in case of the wall than in case of the door in all volume level
settings and in both legitimate distance considerations (4 feet
and 6 feet). The reasoning behind this may be that the audio
created by the phone attenuates more through the wall than
through the wooden door.

Considering 4 feet of distance between the watch and the
phone as a legitimate access limit, we obtained the average
FAR of 0.007 for full volume setting for wall, and average
FAR of 0.011 for door case. Similarly, for average volume
setting, we got FAR of 0.007 and 0.013 in wall and wooden
door barrier, respectively. For low volume setting, the FAR is
0.013 for the wall and 0.053 for the door as physical barrier.
When considering 6 feet of distance as the legitimate distance,
the FAR values increases, as can be seen in Table III. This may
be because the recordings, which is collected in the setting
where the phone is kept at a distance of 6 feet has similar
audio features as the ones collected in the setting where barrier
is placed in between the phone and the watch.

With this analysis, we found that our defense works better
with keeping legitimate distance limit to 4 feet than with 6 feet.
We believe that the consideration of up to 4 feet of distance
between the phone and the watch is a realistic assumption. In
fact, our survey study (Section VIII-B) shows that when users
are accessing their wearable devices through smartphone, both
devices are usually nearby, either in the room or next to each
other. In such a case, 4 ft of distance as the legitimate access
limit would work well for benign users, while highly resisting
the HAW attackers.

4) Analysis in Other Scenarios: We also performed audio
correlation analysis when the phone is kept in a pocket (benign
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case) as well as with exterior wall scenario (attack case).
As indicated by our survey results, users may often keep
their phones in a pocket while accessing the watch/glass. To
evaluate our defense with respect to this benign scenario, we
performed a simple audio analysis with the samples collected
in such setting. We collected 20 samples of recordings by
placing the phone inside a pocket of the user wearing the
watch. During the experiment, the user was sitting on a chair
and his hand was resting on a desk. We collected the samples
at full and average volume level and computed the FRR
considering 4 feet as legitimate distance limit. We found that
our defense works well in such “phone-in-pocket” settings as
well. The FRR of our approach in this setting is 0.00 for full
volume case and 0.05 for average volume case.

In the exterior wall attack setting, keeping both the phone
and the watch very close to the barrier but in two different
sides of the wall, we collected 20 samples of recording by
setting the volume level of the phone to its fullest. To evaluate
the performance of our defense against such attack setting,
we again consider 4 feet as legitimate distance range and
computed FAR. We found that the FAR of our approach in
such a setting is 0.00. This means that our approach can
successfully detect the illegitimate access through such setting,
since exterior walls may serve to shield the active audio
sounds very well from the watch. We also repeated a similar
experiment across two floors of a building (as in one of our
tested attack in Section III). As expected, the attack was
completely prevented yielding an FAR of 0.00.

VIII. WEARABLE USAGE STATISTICS SUPPORTING OUR
ATTACK AND DEFENSE

Since wearable-smartphone systems seem vulnerable in
case participants intentionally or accidentally leave/forget their
W devices at home or at desk, we conducted a survey to
study the user habits with such wearables and smartphone
by recruiting Amazon Mechanical Turk workers. The study
was approved by our University’s IRB. The participants in the
study were strictly voluntary and they could opt out of the
study at any time. The survey took about 15 minutes for each
participant, for which they were compensated $0.5. In this
section, we discuss the design and results from the survey.

A. Study Design

To better inform the design and execution of our HAW
attacks in the real-world (as well as our defense mechanism),
we asked the participants to answer several questions about
their smartphone and wearable devices usage including their
habits of using normal watch and normal glasses. We believe
that the usage patterns of traditional watches and glasses
may be generally aligned with that of smartwatches and
smartglasses. Below we summarize the set of questions we
posed during the survey.

Demographical Information: We asked the participants about
their gender, age, education, industry or field they belong to,
country of residence, and their general computer knowledge.

Smartphone Habits: We asked participants – how often they
leave/forget their phone at home when they go to work or at
desk for charging; in which mode (silent, vibrate, ring) they

TABLE IV: Phone/Wearables placement when using companion
device. Since user can keep one device at multiple places over
different times while using corresponding companion device, the
summation of percentage of the phone-wearable placements does not
yield to 100%. “Wearable-worn”: smartwatch is worn on the wrist
and smartglass is worn on the head.

Wearable-worn/
Phone-in-pocket

Desk Purse Next to them

Wearables placement
when using phone

Smartwatch 75.0% 18.8% 9.4% 12.5%
Smartglass 23.8% 19.0% 9.5% 23.8%

Phone placement
when using wearable

Smartwatch 59.4% 40.6% 18.8% 12.5%
Smartglass 38.1% 28.6% 23.8% 9.5%

keep their phone while at work, at home and while asleep;
how often they hear notification sounds due to calls/messages
and how often they are distracted by such noises; if they use
some form of authentication to lock/unlock their phone.

(Smart)watch Habits: Since many participants may not have
smartwatch, we first asked participants if they own a smart-
watch and if they do not own a smartwatch, we queried them
for traditional watch habits. We asked them – how often they
take off their watches, forget their watch at home when they
go to work/school; where they normally keep their phone
when they use their watch; and, where they keep their watch
when they access computer and phone. For those who have
smartwatch, we also asked – how often their smartwatches run
out of battery; how often they leave their watch at work/home
for charging or other reasons; from how far they access their
smartwatch from phone or phone from their watch; if they
use some form of authentication on their smartwatch; if they
read their emails/SMS from smartwatch and send commands
to make calls/send SMS from their smartwatch to phone.

(Smart)glass Habits: Alike (smart)watch habits, we asked
participants similar set of questions in the context of
(smart)glass. They were asked about their habits towards
(smart)glass rather than towards (smart)watch.

B. Study Results

Our survey polled a total 110 participants from within
the pool of Amazon Mechanical Turk workers. In the survey,
only participants who use smartphone and wear watch/glasses
(either smart or normal) were considered eligible. Among
the participants, 29.6% own a smartwatch and 19.4% own
a smartglass. For others, we queried about the traditional
watch/glass habits. We present the general placements of
the phone/wearables when the users access corresponding
companion device in Table IV and summarize the different
habits of participants related to smartphone, (smart)watch, and
(smart)glass in Table V.

Demographical Information: The survey participants con-
sisted of 56.9% males and 43.1% females. Most of the
participants fell in the age-groups of 25-34 (46.8%) and 35-
44 (33.0%). The participants were from different industrial
background with most from the Information Technology field.
All the participants ranked their general computer skills to be
either excellent (51.4%), good (37.6%), or average (11.0%).
The demographic information shows that the survey covers a
representative sample of diverse real-world users of devices
central to the focus of our work.
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TABLE V: Summary of how often the survey participants carry/wear,
leave, forget their phones, (smart)watch, or (smart)glasses. The first
column in each row shows the questions asked and the column
headers show options provided. “NA” means the option was not
provided for that question.

Always
Most of
the time

When leaving for
school/work

Once in
a while

Never

Carry phone 70.4% 27.8% 1.9% 0.0% 0.0%
Leave phone unattended 2.8% 8.3% NA 66.7% 22.2%
Forget phone 1.9% 0.9% NA 31.5% 65.7%
Connected
to phone

Smartwatch 28.1% 56.3% NA 12.5% 3.1%
Smartglass 23.8% 23.8% NA 42.9% 9.5%

Leave
smartwatch
unattended

Home 9.4% 18.8% NA 65.6% 6.3%
Work 6.3% 6.3% NA 59.4% 28.1%
Asleep 25.0% 31.3% NA 31.3% 12.5%

Forget
watch

Smart 0.0% 9.4% NA 65.6% 25.0%
Normal 4.8% 14.3% NA 43.8% 37.1%

Leave
smartglass
unattended

Home 0.0% 52.4% NA 38.1% 9.5%
Work 14.3% 19.0% NA 47.6% 19.0%
Asleep 33.3% 38.1% NA 23.8% 4.8%

Forget
glasses

Smart 19.0% 19.0% NA 47.6% 14.3%
Normal 1.9% 6.5% NA 16.7% 75.0%

Summary of Results: From the survey, we notice that most
of the participants keep their phone in ringer mode while
they are at home or while asleep. More precisely, the par-
ticipants keep their phone in vibrate (45.4%), silent (22.2%),
or ringer (32.4%) mode at work while they keep their phone
in vibrate (16.7%), silent (4.6%), or ringer (78.7%) mode at
home and vibrate (24.1%), silent (23.1%), or ringer (52.8%)
mode while asleep. From the survey results, we also observe
that many people often leave their wearable devices such as
smartwatch or smartglass at home or on desk for charging or
other reasons, while they generally keep their smartphone with
them (i.e., “attended”) protected. The smartphones are kept
secured by using various lock screen mechanisms such as PIN
(27.8%), password(16.7%), lock pattern (13%), fingerprint
(17.6%), and others (16.7%). We also see that many users
do not lock their wearable devices which may be due to the
constrained user interface of the devices. We observe 43.8%
of smartwatch users and 62.0% of smartglass users do not
use any form of authentication to protect their smart devices.
This supports our HAW attack assumptions regarding the
wearable devices being left unattended and unlocked often.
The survey results also show that when the users are accessing
their wearable devices through smartphone, or smartphone
through wearable devices, both devices are usually nearby,
either in same room or next to each other. This serves to
support our HAW defense that users are generally accessing
their wearable-smartphone paired devices without any physical
barrier in between them. The results also show that 63.9% of
the participants either hear the notification sounds most of the
time or even more frequently; however, only a few participants
get distracted by such noises either always (3.7%) or most
of the time (7.4%). This indicates that most people do not
seem to be distracted with notification sounds created by their
phones, which affirms the use of notification sound as active
sounds in our defense mechanism.

IX. CONCLUSION

In this paper, we formalized and studied the threat of
“home alone wearables”, which allows an attacker to exploit
an unattended wearable for secretly accessing information

from, or submitting commands to, the companion smartphone
in possession of the victim user. The attack simply works
over the radio communication media and may remain nearly
oblivious to the victim executed from several meters away
through thick physical barriers such as doors, walls or even
building floors. As our response to the threat, we proposed a
new defense mechanism that makes use of audio proximity
detection based on actively generated, yet simple and short
sounds produced by the phone prior to granting access at-
tempts from the wearable. Our evaluation of the defense shows
it to be an effective means to significantly lower the impact of
the vulnerability without imposing extra effort onto the device
users.
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