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ABSTRACT in the audio domain, their unique audio-induced surface vi-

Voice access technologies are widely adopted in mobile de-
vices and voice assistant systems as a convenient way of user
interaction. Recent studies have demonstrated a potentially
serious vulnerability of the existing voice interfaces on these
systems to “hidden voice commands”. This attack uses syn-
thetically rendered adversarial sounds embedded within a
voice command to trick the speech recognition process into
executing malicious commands, without being noticed by
legitimate users.

In this paper, we employ low-cost motion sensors, in a
novel way, to detect these hidden voice commands. In partic-
ular, our proposed system extracts and examines the unique
audio signatures of the issued voice commands in the vi-
bration domain. We show that such signatures of normal
commands vs. synthetic hidden voice commands are distinc-
tive, leading to the detection of the attacks. The proposed
system, which benefits from a speaker-motion sensor setup,
can be easily deployed on smartphones by reusing existing
on-board motion sensors or utilizing a cloud service that pro-
vides the relevant setup environment. The system is based
on the premise that while the crafted audio features of the
hidden voice commands may fool an authentication system
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brations captured by the motion sensor are hard to forge. Our
proposed system creates a harder challenge for the attacker
as now it has to forge the acoustic features in both the audio
and vibration domains, simultaneously. We extract the time
and frequency domain statistical features, and the acoustic
features (e.g., chroma vectors and MFCCs) from the motion
sensor data and use learning-based methods for uniquely
determining both normal commands and hidden voice com-
mands. The results show that our system can detect hidden
voice commands vs. normal commands with 99.9% accuracy
by simply using the low-cost motion sensors that have very
low sampling frequencies.
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1 INTRODUCTION

Voice controllable systems (VCS) have become increasingly
popular in recent years. They provide a convenient way of
meeting a user’s various daily needs through voice com-
mands and taking actions when necessary, such as access
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control, personal schedule/memo inquiry, smart home appli-
ance control, online purchases, etc. Due to their convenience,
these systems have already been integrated into various plat-
forms including mobile phones (e.g., Siri and Google Now),
stand-alone assistants (e.g., Amazon Echo Dot, Google Home
and HomePod), and even smart appliances (e.g., smart TVs
and smart refrigerators). A market research report suggests
that the global voice assistant market is expected to grow at
approximately $7.8 billion by 2023, at 39.27% of Compound
Annual Growth Rate (CAGR) between 2017 and 2023 [3].
With the ever-growing deployment, the VCSs’ security vul-
nerabilities become an increasing public concern.

Due to the open propagation properties of sound, voice
commands as an input solution have some fundamental
vulnerabilities. An emerging class of potentially devastat-
ing attacks against VCSs is known as hidden command at-
tacks [9, 28], which are recognizable to the VCS devices
but are incomprehensible to humans. These hidden voice
commands are generated by iteratively shaping their audio
features to meet the requirements for being understandable
to VCSs, but hard to be perceived by the users [10]. The mali-
cious hidden voice commands could be played covertly by an
adversary, in the vicinity of the victim, to make the victim’s
device inadvertently obey the adversary’s command. For
example, the adversary could play hidden voice commands
(e.g., “browse evil.com”, “call 911”) via a loudspeaker to trig-
ger actions on the victim’s VCS devices to browse phishing
sites or make spam calls to the 911 emergency center. The
hidden voice commands could also be embedded in the audio
tracks of regular media (e.g., Youtube videos, radios or TVs),
potentially controlling many VCS devices exposed to that
media [31].To ensure the successful deployment of VCS, it is
thus paramount to combat the hidden voice command attack.

In this paper, we develop a defense system that could be
integrated with VCSs by utilizing the vibration signatures
of the voice command to uniquely determine if the issued
command is provided by a human user or falls in the cate-
gory of hidden voice commands. We notice that many VCS
devices such as smartphones and standalone voice assistant
systems (e.g., HomePod!) are already equipped with motion
sensors, which could capture vibration signals caused by
voices. It has been shown that the features of speech, cap-
tured in the vibration domain, have enough information to
perform speaker identification [22]. However, Anand et al.
[5] showed that live human speech is unable to significantly
impact the on-board motion sensors of a smartphone (es-
pecially accelerometer) via aerial medium, and in order to
have a noticeable impact, the speech generating device need
to share a common solid surface with the motion sensors.

IThe on-board motion sensor is to detect when HomePod is moved to start
its sound quality re-calibration [17].

We thus design two modes for our defense mechanism. First,
we let the user’s own device play back the received voice
command and use the device’s built-in sensors to measure
the vibration signatures for verifying the voice commands,
which is referred as the frontend mode. Alternatively, the
user can also choose to play back the voice commands in the
backend mode via cloud services, when the user’s VCS device
does not have motion sensors or playing back the command
may be disturbing to the user. In this mode, a low-cost device
(e.g., a loudspeaker with an on-board motion sensor) in the
cloud plays back the user’s voice command. Moreover, our
system is able to verify voice commands with partial play-
back (e.g., 0.5 second and even less than a single word) and
is easy to integrate with the VCS without causing additional
delay.

Realizing such a system that seeks to use vibration signals,
measured by the low-sampling-rate and low-fidelity motion
sensors, to discriminate live human vs. hidden voice com-
mands is challenging. To address this problem, our system
derives unique features from the vibration signals to cap-
ture the inherent vibration signatures of voice commands.
In particular, we derive the temporal and frequency statis-
tical features aiming to achieve a higher tolerance of the
errors induced by low-fidelity motion sensors. We further
seek to obtain acoustic features in the low-frequency vibra-
tion domain relying on MFCC and chroma vectors so as to
capture the speech characteristics embedded in the voice
commands. To distinguish hidden voice commands from nor-
mal commands, a feature selection strategy is developed to
find a set of features that are more discriminative to the dif-
ferences between the two types of commands and are also
relatively more independent from various people’s voices
and command contexts. This process is aided by empirically
analyzing a set of pre-collected voice commands that are
mixed with various hidden voice commands. Based on the
selected vibration features, our system could effectively de-
tect the existence of hidden voice commands using machine-
learning-based methods with only limited training efforts.
In addition, motion sensors are affected by ambient vibra-
tion noises (e.g., surface vibrations caused by environmental
noises and people walking around). Our system calibrates
the input motion sensor data by removing the mechanical
noises with a high-pass filter and identifies the data seg-
ment containing the commands by adaptively examining the
energy levels of motion data variance.

Why Vibration? Existing studies usually defend against
these hidden voice command attacks using audio domain
features, such as speech vocal features [12, 25, 30]. Carlini
et al. [9] proposed audio-feature-based classification as a
possible countermeasure to detect the hidden voice com-
mands. However, features in the audio domain have been
shown to be susceptible to duplication by voice synthesis



attacks [23]. An adversary could iteratively modify a voice
command to exhibit all of the required features desired for
recognition by a voice controllable system, while remaining
undetectable to human listeners. This vulnerability of the
audio domain features prompted us to look for the features
in the vibration domain. Different from audio, the vibration
domain features are hard to imitate for the following reasons:
(1) the vibration signatures of an audio captured by the mo-
tion sensor is unique and new, shown in the form of distinct
amplitudes, frequencies and aliased signals, which are hard
to forge or imitate from an audio signal in software (shown in
Section 4). (2) any two sounds having similar audio features
could result in distinct vibration features because the rela-
tionship between audio and vibration is non-linear (shown
in Section 5.2); and (3) the resulting vibration response is
also associated to the physical vibration properties of the
device and the specifications of the motion sensor. Thus, the
vibration domain approach can work in conjunction with the
audio domain approach to more effectively detect the hidden
voice commands. The adversary would have to mimic both
audio features and vibration features to maintain the “hid-
den voice command” characteristics of the generated voice
command.

We summarize our contributions as follows.

e Detection of Hidden Voice Commands using Vibra-
tion Domain Features of Speech: We propose a solution
in the vibration domain to detect the existence of hidden
voice commands that are incomprehensible to a human
listener but recognized by the VCSs. Our method uses
unique speech features, found in the vibration domain
including statistical time/frequency features and acoustic
features, to distinguish normal commands from hidden
voice commands. These vibration features are able to ver-
ify the voice commands with even partial voice commands
(e.g., 0.5 second).

e Design and Implementation of the Proposed De-
fense System: We design a novel classification-based de-
fense system, as the core of our proposed detection ap-
proach for distinguishing between normal commands and
hidden voice commands. We implement the proposed de-
fense system for the scenarios where an attacker may
launch hidden voice commands externally via a loud-
speaker or internally on the victim’s smartphone. We use
the inbuilt accelerometer of the victim’s device (e.g., smart-
phone or stand-alone assistant) or a low-cost device in the
cloud to measure the vibrations generated by these voice
commands, when played back completely or partially via
the speaker in the victim’s device or the cloud device, re-
spectively. We then extract and select highly discriminative
vibration features and perform machine learning-based
classification to detect the hidden voice commands.

e Evaluation of the Proposed Defense: We evaluate the
proposed defense system by classifying normal command
samples and corresponding hidden voice commands. We
perform the experiment under both frontend playback and
backend playback. Our results show that the proposed de-
fense system is able to detect these hidden voice commands
with 99.9% accuracy. These accuracies can be deemed sig-
nificant enough to believe that the proposed defense has
the potential to be successfully deployed against the hid-
den voice commands.

2 RELATED WORK

Security of Voice Controllable Systems. Due to the pop-
ularity of recent VCS services, such as Siri, Cortana, Google
Now and Alexa, many studies have focused on the security
issues of these systems [9, 15, 21, 23, 28, 32]. For instance,
researchers have shown that the intentional electromagnetic
interference on headphone cables can be used to inject com-
mands into voice assistants [21]. The attacker could spoof
the system by using either voice morphing techniques [23]
or the permission bypassing attack method [15]. More re-
cently, DolphinAttack [32] used the non-linearity of micro-
phones to modulate voice commands on ultrasonic carriers
to launch inaudible voice command attacks. Commander-
Song [31] stealthily embedded voice commands into songs
to launch attacks. Additionally, existing work [9, 28] demon-
strates hidden voice commands by using the mangled audio
commands which are incomprehensible to humans but can
be recognized by the VCS to launch attacks. The authors also
proposed an audio-based human/machine classifier to detect
such an attack [9]. However, the voice synthesis attacks are
able to forge the similar audio domain features to pass the
system [23].

Voice Authentication for Virtual Voice Assistants.
To defend against various attacks (e.g., replay and imper-
sonation attacks), most voice authentication schemes mainly
use advanced speaker models (e.g., Gaussian mixture model-
universal background model (GMM-UBM) [4], i-vector mod-
els [18, 19]), and various speech vocal features [12, 25, 30].
However, the aforementioned audio-based approaches are
still vulnerable if an adversary has the full knowledge of
the system’s model as they are solely based on the proper-
ties of speech itself. Thus, a multi-modality authentication
framework to provide enhanced security is highly desirable.
Additionally, VoiceLive [35] and VoiceGesture[34] exploited
the geometrical information and dynamic acoustic charac-
teristics derived from the received sound to perform liveness
detection. 2MA [8] took advantage of the presence of multi-
ple microphones to localize and authenticate the source of a
command. Moreover, Feng et al. [16] developed a user veri-
fication system on wearable devices (e.g., eyeglasses) based



on the collected body-surface vibrations to defend against
various speech attacks. However, these approaches either
require the phone to be held closely to the speaker’s mouth
or require the user to wear eyeglasses while operating the
systems, which largely restricts their application scenarios.

Speech Effect on Motion Sensor. Existing studies have
shown that the MEMS sensor attributes and structures could
be easily interfered by ambient sound and noise [11, 13, 14].
WALNUT [27] modeled the physics of acoustic injection
attacks on MEMS accelerometers, and showed that the out-
puts of sensors are subjected to the acoustic interference.
In addition, researchers showed that embedded MEMS mo-
tion sensors have the possibility of detecting hotwords [33]
or even recognizing speech information [5, 22]. Moreover,
Gyrophone [22] showed that gyroscope can be used to mea-
sure acoustic signals from a loudspeaker to reveal speaker
information (e.g., gender and identity). A more recent work,
Speechless [5] went a step further to evaluate the necessary
conditions and scenarios for the speaker information leakage
problem. It showed that the recorded effect on the motion
sensors is from conductive vibrations through a shared sur-
face between the speaker and sensor.

Since an attacker could easily tamper the human speech
pattern in the audio domain to fool the system, in this paper,
we take a different approach by using the unique speech fea-
tures captured by motion sensors to defend against hidden
voice commands [9, 28]. Particularly, we use the device’s in-
built motion sensor to pick up minute device-body vibrations
to record the unique imprint of acoustic vibrations. Unlike
the features in the audio domain, vibration features of the
user’s speech that are associated with both speech and de-
vice’s airborne structure, are unique and hard to be imitated
or synthesized by a spoofing attack. Our approach can either
work as a stand-alone authentication mechanism or be seam-
lessly integrated with existing voice authentication systems,
forming a two-modality or multi-modality authentication
protocol.

3 APPROACH OVERVIEW
3.1 Background on Hidden Voice
Commands

A typical speech recognition system usually requires four
steps to recognize each voice command: pre-processing,
feature extraction, model-based recognition and post-
processing. Pre-processing contains speech/non-speech seg-
mentation which removes background noise causing inser-
tions of phonemes or words into the recognition result. Fea-
ture extraction extracts acoustic observations, Mel-frequency
cepstral coefficients (MFCC) [20, 29], over time frames of
uniform length. In the model-based recognition phase, the
system uses the acoustic models, such as Hidden Markov

Normal voice Adjusting MFCC Candidate obfuscated

command parameters command
MECS Fgature —> Inverse MFCC
Extraction
Yes No
No .
Recognized by Yes Recognized by .
uman attacker, the system Y
Hidden voice Speech recognition

command system

Figure 1: Workflow of generating hidden voice com-
mand [9] from a normal voice command.

Models (HMM) and recurrent neural networks (RNNs), to
predict a sequence of words that are most likely to match the
extracted acoustic features. In the latter, the system employs
additional sources of information (e.g., grammar rules) to
improve the recognition accuracy.

In order to generate hidden voice commands to spoof voice
recognition system, an adversary could use general acoustic
processing methods to generate obfuscated commands with
acoustic features (e.g., MFCC) that can be correctly recog-
nized by the system [9]. As shown in Figure 1, the adversary
first extracts commonly used acoustic features (i.e., MFCC)
from a normal command, and then performs inverse MFCC
to convert the extracted MFCC features back to an audio
sample. Through this step, the generated audio sample only
contains audio features that are used in the speech recogni-
tion system while disregarding other features that might be
helpful for human’s comprehension.

The MFCC parameters in the MFCC feature extraction
determine the resolution of the extracted feature, which play
an important role on the generated audio sample’s capability
of being recognized by a human/machine. The parameters
include the number of cepstral coefficients, the number of
warped spectral bands, the length and stride of the sliding
window. The higher dimension of the MFCC features could
make the generated audio sample to have a higher probability
of being recognized, while lower feature dimension could
make the generated audio file more obfuscated. To use the
perception gap between human and machine to create hidden
voice commands, the adversary needs to iteratively adjust
these MFCC parameters to check whether the generated
commands could be recognized by the system but hardly
recognized by the victim. Through such an iterative testing,
the adversary could find an optimal set of parameters to
make the generated command recognizable by machines
while remaining incomprehensible to humans.



3.2 Attack Model

We target the defense against hidden voice commands. We
assume the adversary does not have the capability to com-
promise the voice assistant systems and can only use hidden
voice commands to access the system. The hidden voice
commands can be embedded in the audio tracks of regular
media (e.g., Youtube videos and Podcast) and played by the
target device’s built-in speaker to deliver the hidden voice
command (internal attack). Moreover, the hidden voice com-
mands can also be played by an adversary via a loudspeaker
near the target device to launch the attack (external attack).

In the first scenario, the attacker tricks the victim into
playing the audio with hidden voice commands on their own
device (e.g., smartphone and standalone assistant). We term
this scenario as internal attack because the targeted device
itself plays the hidden voice commands (in contrast to an ex-
ternal loudspeaker). This scenario requires the attacker into
either fooling the victim into playing the audio containing
hidden voice commands or by using a malicious application
that can play the audio with hidden voice commands, while
being inconspicuous to the victim. To fool the victim into
playing the audio, the attacker could send an audio or a
video file to the victim under the pretense of a benign mes-
sage. A malicious website could embed auto-playing videos
on their web page that could play (unprompted) the hid-
den voice commands while navigating the web page by the
victim. Similarly, a malicious application could play audio
with hidden voice commands under the disguise of a gam-
ing application. Diao et al. [15] designed an attack termed
“GVS-Attack” against Google Voice Assistant, that launched
the voice assistant (using VoicEmployer malware) and then
played standard voice commands. These voice commands
were then faithfully executed by the voice assistant.

The other scenario, where the attacker uses an external
loudspeaker to propagate these hidden voice commands can
be termed as external attack where the attacker has the capa-
bility to exploit any nearby loudspeaker that is in the vicinity
of a single or multiple targeted devices. For example, an un-
suspecting victim could be sitting with their smartphone,
in a coffee shop where music is being played through loud-
speakers. The attacker could connect to the audio system of
the coffee shop to play his own curated music that has mali-
cious voice commands embedded in it. The attacker could
also be in physical proximity of the user and play an audio
with hidden voice commands through his own loudspeaker
device.

3.3 System Overview

The basic idea of our system is to analyze the speech features
that are captured in the vibration domain to detect hidden

voice commands. Unlike audio-based voice command au-
thentication techniques, vibration domain features are much
harder to forge as the vibrations captured by the device’s
motion sensors are nonlinear responses to the sound and are
affected not only by the played back voice commands but also
by the physical vibration properties of the device itself. Such
vibration domain features can be used as a stand-alone com-
mand authentication mechanism as well as multi-modality
authentication protocol in conjunction with audio-based at-
tack defense. Particularly, our system is triggered by the
“wake word” received by the microphone of the VCS device
(e.g., a smartphone or a standalone voice assistant device).
Then the received voice command (either from an external
loudspeaker or the built-in speaker) that follows after the
wake word could be played back through two alternative
ways based on the user’s preference. In the frontend playback,
the system directly plays back the received voice commands
using the user’s own device, and the built-in motion sensors
(i.e., in a smartphone) or the on-board motion sensors (i.e.,
on a standalone VCS device) record the sound vibrations.
From the user’s view, this playback is the confirmation of
their voice command, while from our design perspective, this
is an assurance of the VCS security in coping with hidden
voice commands. In the backend palyback, an alternative
option for the user, our system plays back the received voice
command through a remote loudspeaker in the cloud service,
and the on-board motion sensors of the cloud loudspeaker to
record the resulted sound vibrations. The recorded motion
sensor data is fed as input to the system to detect the hidden
voice commands. The entire process is simultaneous with the
command context processing, which is 2 seconds for Google
and 4 seconds for Siri service, for instance [6]. Thus, there
would be no additional delay required by our system.

The flow of our proposed system is shown in Figure 2. Par-
ticularly, our system first performs Vibration Data Calibration
including vibration noise removal and voice command seg-
mentation to remove the noises caused by the mechanical
vibrations and obtain the precise vibration data segment of
the voice command. Based on the calibrated voice command
segment, Vibration Feature Derivation derives the unique
vibration features including the time and frequency statisti-
cal features (e.g., mean, standard deviation, energy) and the
speech features (e.g., MFCCs and chroma vectors). We found
these vibration features are effective to capture the unique
statistical traits and acoustic characteristics in the low fre-
quency range of the motion sensor data (e.g., 200Hz). The
system further performs Vibration Feature Selection through
feature normalization and statistical analysis to identify a
subset of features. The selected features exhibit more discrim-
inative patterns between the normal commands and hidden
voice commands and are relatively independent from the
various people’s voices and command contexts.
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Figure 2: Overview of the proposed system.

Hidden Voice Command Detection component then lever-
ages either a supervised learning-based classifier or an unsu-
pervised learning-based classifier to detect the hidden voice
command based on their unique vibration features. In partic-
ular, the supervised learning-based classifier, such as Simple
Logistic, Sequential Minimal Optimization (SMO), Random
Forest and Random Tree can effectively distinguish the two
types of sounds based on the acoustic profile trained with
labeled voice command samples. In comparison, the unsu-
pervised learning methods such as K-means and K-medoid
do not require much training effort and directly divide the
two types of the sound into two clusters based on their in-
herent speech characteristics shown in the vibration domain
without any labeled inputs. When verifying the input voice
command, the unsupervised learning model calculates the
Euclidean distance of a vibration feature vector to the nor-
mal command cluster centroid and applies a threshold-based
methods to make the decision. The hidden voice command
is identified if the Euclidean distance is greater than the
threshold.

4 PREMISE & FEASIBILITY ANALYSIS
4.1 Capturing Voice Using Motion Sensors

Motion sensors are typically used to measure the movement
of an object in a given direction (accelerometer) or its rota-
tion around an axis (gyroscope). Many commodity devices
(e.g., smartphones) are equipped with a miniaturized version
of these motion sensors (i.e., MEMS motion sensors). An au-
dio signal can be considered as a vibration of air molecules
with a vibrating frequency that lies within the human audi-
ble range (20 Hz - 20 kHz). Anand et al. [5] showed that the
vibrating air molecules, forming the human speech, were

unable to affect the MEMS motion sensors, especially the
accelerometer, of a smartphone. The human speech can how-
ever invoke a response in the MEMS motion sensors, if it is
replayed via a loudspeaker in the vicinity of the smartphone,
when they share a solid surface with it [5, 22]. This is because
the vibrations of the inbuilt diaphragm of a loudspeaker prop-
agate along the shared surface towards the motion sensors
to which they transfer their vibrations. However, the motion
sensors on these devices are limited to a very low sampling
rate (e.g., approximately 200 Hz) and can only capture lim-
ited speech information. Since the fundamental frequency of
a male voice lies between 85 to 180 Hz and that of a female
voice lies between 165 to 255 Hz (7, 26], these low sampling
rate motion sensors are still able to capture some features of
the fundamental frequency contained in the speech signal.
Recent studies [22, 33] have shown that the fundamental
frequency information captured by the gyroscope and the
accelerometer on smartphones could be further used to per-
form speaker classification and hot-word detection with a
sufficiently high degree of accuracy. In this work, we lever-
age the speech vibrations that can be captured by the motion
sensors to distinguish hidden voice commands from nor-
mal commands. We find that the mobile devices’ built-in
motion sensors and the standalone VCS devices’ on-board
motion sensors can both capture the speech vibrations of
their played back speech.

4.2 Nonlinear Vibration Responses

When using the MEMS motion sensors of the VCS devices to
capture speech vibrations of an audio, their low sampling rate
(e.g., 200Hz) could lead to aliased vibration signals. The signal
aliasing is a phenomenon when different frequencies of an
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Figure 4: Spectrogram comparison between the ac-
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data (illustrated with the command “show face-
book.com™).

original signal are overlapped after sampling (e.g., by motion
sensors). In particular, the relationship between the vibration
data frequency f;;4s and its original audio frequency f can
be expressed as

falias: |f_Nf;‘|’NEZ» (1)
where f; is the sampling rate of the motion sensor. This
equation indicates that the vibration responses of an au-
dio are a nonlinear transformation of the audio. Moreover,
such transformation from audio to vibration is irreversible.
To illustrate the signal aliasing in the vibration responses,
we conduct an experiment by using a loudspeaker to play
a dual-frequency sound (i.e., 420Hz and 320Hz) for three
times and an on-board motion sensor with a sampling rate of
100Hz to pick up the sound vibrations. As shown in Figure 3,
the two frequency components of the audio only generate
a single frequency response (around 20Hz) on the motion
sensors, which complies with the nonlinear relationship of
Equation 1.

4.3 Distinct Vibration Domain

It is important to note that knowing the nonlinear relation-
ship (as Equation 1) between the vibration readings and the

PDV-100 Laser Vibrometer

PN Laser beam pointed at the
o surface of the smartphone

Figure 5: The experimental setup for surface vibration
measurement using laser vibrometer.

original sound does not mean that one could forge or simu-
late the vibration responses by down-sampling the audio for
generating an aliased signal. This is because besides signal
aliasing, the accelerometer also generates distinct responses
to the sound in the form of unique amplitudes and frequen-
cies. As shown in Figure 4, the microphone data of the voice
command “show facebook.com” is down-sampled to com-
pare with the accelerometer data under the same sampling
rate. It is clear that the descriptions of the voice command
in the two domains are distinct. In particular, for the same
frequency point, the two sensing modalities show very dif-
ferent amplitudes. Thus, we believe the accelerometer, as a
different sensing modality, brings in new descriptions about
the voice command, which could work with the traditional
audio domain to describe the voice command’s signatures in
two domains. Moreover, it would become much harder for
an adversary to forge the signatures of the voice command
as they would need to cheat two different domains simulta-
neously. This subject is further explained in more detail in
Section 5.2.

4.4 Observing Speech Vibrations

To further confirm the presence of the speech vibrations
caused by the VCS device’s speaker and their differences
between the hidden voice commands and normal commands,
we use a powerful laser vibrometer to capture the speech
vibrations in high frequency. In particular, we use a PDV-100
Portable Digital Laser Vibrometer [1] to measure the speech
vibrations generated in the body of a smartphone (Samsung
Galaxy S6), as shown in Figure 5, during the playback of
the voice commands by the smartphone’s loudspeakers. The
PDV-100 vibrometer points to the screen of the phone and
can measure the vibration’s frequencies up to 22 kHz with a
high vibrational velocity resolution of 0.02um/s. In Figure 6,
we compare the power spectrum of the vibrations generated
in the smartphone’s surface, when a normal command and a
corresponding hidden voice command are played through its
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Figure 6: The power spectrum of the surface vibrations of normal commands and the corresponding hidden voice
commands, as measured by a laser vibrometer pointed at the smartphone.

loudspeakers. The high sampling rate of the laser vibrometer
allows us to identify the differences between the features
of the normal commands and the hidden voice commands
that will later help in distinguishing them. When we com-
pare the power spectrum of Figure 6(a) and (b), we notice
that the human voice spectrum’s shape is not preserved in
the corresponding hidden voice command even though it
is successful at preserving individual word boundaries and
approximating the frequency distribution. Similar behavior
is observed for a different voice command in Figure 6(c) and
(d). This observation supports that hidden voice commands
fail to carry over the speech features in the vibration domain,
when they attempt to mimic the speech features of a normal
command in the audio domain.

5 SYSTEM DESIGN
5.1 Vibration Data Calibration

As introduced in Section 4, the accelerometer is capable of
capturing a large portion of human voice frequencies, but
they show the responses in a low frequency range due to
their low sampling rate (e.g., 200Hz). In order to extract more
precise vibration responses to the voice commands using the
limited motion sensor information, we need to remove the
vibration noises that come from the surrounding environ-
ment, such as the mechanical vibrations. In particular, we
apply a high-pass filter with a cutoff frequency of 20Hz to
process the accelerometer data, which removes most of the
background mechanical vibrations. Moreover, before extract-
ing the unique vibration features, we need to identify the
precise segment containing the voice command. We apply a
sliding window-based variance analysis method to find the
starting point and ending point of the voice command to pre-
cisely segment it from the accelerometer reading. We further
normalize the sound amplitudes to remove the differences
caused by various sound volumes. We next extract unique

vibration features based on the calibrated vibration data to
analyze the hidden voice commands and normal commands
in vibration domain.

5.2 Extracting Unique Vibration Features
from Voice Commands

In this work, we derive the statistical features of captured vi-
brations in both the time and frequency domains and extract
the acoustic features such as MFCCs and chroma vectors.

Statistical Features in Time and Frequency Do-
mains. As the accelerometer data is usually used for an-
alyzing people’s various activities such as walking, running
and sitting, we start by examining the activity related fea-
tures as the candidate features, which have been shown to
be highly correlated with the human behaviors [24]. More-
over, the accelerometer records the vibrations in three axes,
which further provides the spatial information to describe the
received acoustic signals by considering the vibration direc-
tions. We thus derive the features for each axis respectively.
In particular, in the time domain, we derive the maximum,
minimum, variance, standard deviation, range, skewness, first
quantile, second quantile, third quantile and kurtosis. More-
over, we derive absolute area (i.e., the area under the absolute
values of the accelerometer readings), mean crossing rate (i.e.,
the ratio of the number of times the signal crosses the mean
value over the command segment length), signal dispersion
(i.e., distance between the third quantile and the first quan-
tile) and absolute area sum and signal magnitude sum over
the three axes. In the frequency domain, we calculate the
energy, entropy and the ratio of the highest magnitude FFT
coefficient over the FFT coefficient sum.

Deriving Acoustic Features from Motion Sensor
Data. Besides extracting the statistical features, we also
derive the acoustic features from the accelerometer data. In
particular, we derive the Mel-Frequency Cepstral Coefficient



-

% Audio HVC Aioration Dot
ibration HVC |
- o +
— O Vibration Human| 4+
® 0.6
@ |
Q0.4 o™ g
[Tl Vibration Domain -~ g
/ hve o
= 0.2 1\\ O/ :\* \v4
ol \\\Audio Domair},x'/
0 1 -
\\ -
05 —— 0.5 1
0 .
MFCC Coef 7 MFCC Coef 2

Figure 7: Nonlinear relationship between audio fea-
tures and vibration features. (Illustrated with the com-
mand “Show facebook.com”)

(MFCC), which is widely used to describe the short-term
power spectrum of acoustic signals and can reflect both the
linear and nonlinear properties of the speech signal’s dy-
namic features. While the MFCCs are able to distinguish
people’s voice differences in the audio domain, we find that
they also capture the vibration characteristics. Moreover, we
calculate the chroma vector, which describes twelve different
pitch classes, and the spectral centroid and spectral entropy.
Unique and Hard to Forge Vibration Features. As in-
troduced in Section 4.2, the vibration signals are nonlinear
and are aliased responses of the audio signal. Such nonlin-
earity means that similar audio domain features may result
in very different vibration features. Figure 7 illustrates three
normalized MFCC coefficients in the audio and the vibration
domain, when the normal commands and the hidden voice
commands of “Show facebook.com” are replayed 10 times
respectively. We observe that while the audio features could
not differentiate the two types of voice commands, they are
easily distinguished in the vibration domain in two separate
clusters. Thus, audio feature modification does not aid in
replicating the vibration features as the vibration features
reflect an additional signature of the voice commands. To
further illustrate how the vibration features can describe
the physical characteristics of hidden voice commands and
normal commands, we asked three participants (i.e., two
male and one female) to speak multiple commands, and their
audio clips were utilized to generate the hidden voice com-
mands using the method introduced in Section 3.1. Figure 8
illustrates an example of using three features to differentiate
the two types of voice commands. We find that the features
“kurtosis” on the Z axis, “entropy” derived from the accelera-
tions on the Z axis and “mean crossing rate” on the Y axis can
distinguish the two types of voice commands in two well sep-
arated clusters. Moreover, the normal commands of different
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Figure 8: Illustration of the vibration features to dis-
tinguish hidden voice commands and normal com-
mands.

human speakers exhibit similar vibration features in a much
smaller cluster indicating that a voice command, if mapped
away from this cluster, may not be a normal command.

5.3 Feature Selection Based on Statistical
Analysis

Based on our experiments, we observe that not all of the
extracted statistical features and acoustic features are unique
enough to distinguish the hidden voice commands and nor-
mal commands. We resort to statistical analysis to identify a
subset of features from the above candidate features, which
are discriminative for the different types of voice commands
and maintain relatively independent to various command
contexts and people’s different voices. In particular, we first
normalize the values of the features between 0 and 1 and
then calculate the score s of a feature based on Equation 2.

Fhid - Fhum
VEFria)—Fria?  VEFrum)—Frum)®
( - , - )

(2)

max

where Fp;q(;y and Fpym(;) represent the feature value of each
hidden voice command sample i and normal command sam-
ple j and F is the mean of the feature value. The calculated
score reflects how well the two types of voice commands are
separated regarding their distribution. By using a small set
of the hidden voice command and normal command sam-
ples, we calculated the score for all of the candidate features
and selected the more distinguishable features based on a
threshold. Figure 10 illustrates the distributions of the se-
lected features by our method when using a Samsung Note
4’s built-in speaker to play and its motion sensor to record
the voice commands, including different command words
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Figure 9: Euclidean-distances of the voice command
samples to the human speaker sound cluster centroid
based on vibration features.

and multiple people’s voices. We find that all of the identified
vibration features such as mean crossing rate, entropy and
MFCCs show very different distributions of the two types of
voice commands. Thus, we leverage the selected vibration
features, which are more discriminative to the two types of
voices commands, to defend against the hidden voice com-
mands.

5.4 Supervised Learning-based Method

Based on the unique vibration features, we apply learning-
based binary classifiers to determine the voice command
types, i.e., from the human speakers or the hidden voice
command adversary. In particular, several machine learning
algorithms like Simple Logistic, Support Vector Machine,
Random Forest and Random Tree can be used. Simple Lo-
gistic is a logistic regression-based classifier which predicts
the types of voice commands from the vibration features
using a logistic function. Support Vector Machine relies on a
hyperplane to divide the input command sample space into
two categories. The hyperplane is determined during the
training phase with the labeled voice commands from both
types. We apply Sequential Minimal Optimization (SMO) as
the optimization algorithm in SVM. Random Tree and Ran-
dom Forest are classifiers based on decision tree. Random
Forest further corrects the over-fitting issue that exists in
decision-tree based classifiers.

5.5 Unsupervised Learning-based Method

While the supervised learning-based methods are relatively
more complex and require large training data sets to build the
model, we utilized the unsupervised learning-based meth-
ods, which are able to learn the inherent physical differ-
ences between the hidden voice commands and normal com-
mands, without using explicitly-provided labels. Particularly,
we used the k-means based and k-medoids based methods.

Table 1: List of voice commands being used.

Call 911.

Open youtube.com.
Show facebook.com.
Open the door please.
Ok Google.

What’s my current location?
Open Bank of America.

Turn on airplane mode.
Play country music.
What’s my schedule today? 10

O3]

G| W DN =

During the training phase, the proposed methods map the
voice command samples (including both hidden voice com-
mands and normal commands) into two clusters in the multi-
dimensional feature space. Only the cluster centroid of the
normal commands is calculated. We then compute the Eu-
clidean distance of the training voice command samples to
the cluster centroid. As shown in Figure 9, the normal com-
mand samples show small Euclidean distances to the normal
command cluster centroid, while the hidden voice commands
are far from this cluster and thus can be distinguished. A
threshold is determined based on these Euclidean distances
calculated from the training voice commands.

During the testing phase, an input voice command’s vibra-
tion features are utilized to compute the Euclidean distance
to the normal command cluster centroid and is rejected if
the distance is larger than the threshold. We believe that all
human voices show similar physical characteristics in the
vibration domain, while the hidden voice commands exhibit
different feature patterns and hence can be distinguished. As
we will show in Section 6, our unsupervised learning-based
method does not require much training effort and is ade-
quate to differentiate between the hidden voice commands
generated with unseen command words and voices.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup

6.1.1 Devices and Experimental Setup. We evaluate our sys-
tem in both frontend and backend setups. In the frontend
setup, we conduct our experiments using four different smart-
phone models in a university office with ambient noise (e.g.,
heating, ventilation and air conditioning noise). Particularly,
Samsung Note 4, LG G3, Motorola Nexus 6 and Samsung
Galaxy S6 are used due to their different physical body de-
signs, which may result in slightly different structure-borne
propagations. Moreover, the sensor specs of the four devices
are different. LG G3’s motion sensor works at 120Hz while
the other three work at 250Hz. Figure 11 (a) shows the fron-
tend setup with a smartphone placed on a table. The voice
commands are played by the smartphone’s built-in speaker
in maximum volume and recorded by its own motion sen-
sor. We also conduct experiments in the frontend setup with
the smartphone held by hand or placed on the soft surface,
which are presented in Section 6.2.4.
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Figure 10: Distribution of the selected features (illustrated with the Note 4 placed on the table).
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Figure 11: Frontend playback setups.

In the backend setup, we utilize Raspberry Pi (Model 3B
plus) to build a prototype of the cloud service device as
shown in Figure 12(a). The device has a three-axis accelerom-
eter, SunFounder Digital ADXL345, attached to the top of a
common loudspeaker (Logitech S120). This accelerometer’s
sampling rate is set to 200Hz. The voice commands received
by the user’s VCS device would be sent to this cloud ser-
vice device to play back, and the on-board motion sensor
records the corresponding vibration signatures to detect the
hidden voice commands. Furthermore, we also imitate the
cloud service device by placing four types of smartphones on
a Marshall Stanmore loudspeaker, and the phone’s motion
sensor is used to imitate the on-board motion sensor of the
cloud service speaker. Note that this setup can also imitate
the frontend playback on the standalone VCS device, which
has an onboard motion sensor.

6.1.2 Data Collection. We used a typical Text To Speech
(TTS) service [2] with 5 speaker models (i.e., 3 females and
2 males) to generate a set of benign commonly used voice
commands as shown in Table 1. The sampling rate for the au-
dio samples is 16kHz. In order to best generate hidden voice
commands, we discussed with the authors of the work [9, 28].
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Figure 12: Backend playback setups.

Particularly, we gradually adjust the MFCC parameters and
try to convert the low resolution MFCC features into the
obfuscated commands. To ensure that they can be correctly
recognized by Google Now, we use Google’s Cloud Speech-
to-Text service to test all of the generated hidden voice com-
mands. For each mobile device in each setup, each benign
voice command and hidden voice command are repeatedly
played ten times. In total we collected 13, 000 motion sensor
data traces (i.e., 6, 500 from benign commands and 6, 500 from
hidden voice commands) for our experimental evaluation.

6.2 Performance of Recognizing Hidden
Voice Commands

6.2.1 Supervised-learning. We first examine the perfor-
mance of our system using supervised learning-based meth-
ods. Table 2 shows the accuracy of the binary classification
(10-fold cross validation) of the voice commands in the fron-
tend setup on four different smartphones placed on a table.
We observe that all four supervised learning-based meth-
ods can efficiently differentiate the hidden voice commands
and the normal commands on all the four mobile devices.



Table 2: Performance of supervised learning in the
frontend setup (Device on a table).

Note 4 G3 Nexus 6 S6
SimpleLogistic | 100% | 99.8% | 100% | 88.3%
SMO 100% | 99.9% 99.9% 85.4%
Random Forest | 100% | 99.5% 100% | 93.1%
Random Tree 99.9% | 98.1% 100% 87.4%

Table 3: Performance of supervised learning in the
backend setup.

Note4 | G3 | Nexus 6 S6
SimpleLogistic | 99.9% | 99.8% | 99.8% | 95.3%
SMO 99.9% | 99.9% 99.3% 95.0%
Random Forest | 99.9% | 100% 99.8% | 95.3%
Random Tree 99.9% | 98.9% | 97.9% | 89.7%

In particular, Samsung Note 4, LG G3 and Nexus 6 achieve
up to 100% accuracy by using the four supervised learning
classifiers. Samsung S6 has the lowest accuracy, which still
reaches 93.1% when using Random Forest as the classifier.
Table 3 presents the 10-fold cross-validation performance of
our system in the backup playback setup with all the four mo-
bile devices used to imitate a cloud device’s on-board motion
sensor. We find that the Samsung Note 4, LG G3 and Nexus
6 show similar performance which is over 99.9% when us-
ing Simple Logistic and Random Forest. Samsung Galaxy S6
shows a lower accuracy of 95.3% when using Random Forest.
Moreover, the performances of our system for frontend and
backend playback setups are similar, which indicates that
our system is flexible and deployable in both setups with dif-
ferent on-board motion sensor. We also test our Raspberry Pi
prototype with the four supervised-learning methods, which
achieve over 88% accuracy.

We further evaluate the system’s performance to recog-
nize the hidden voice commands when the command words
and the human voices are not included in the training model.
We train the supervised learning model with two speakers’
voices and five command words. Table 4 and Table 5 presents
the system performances in both frontend setups and back-
end setups. We find that our system recognizes the hidden
voice commands from the unknown command words and
unknown speaker voice with high accuracy in both the fron-
tend and backend playback setups. In particular, Samsung
Note 4 and Nexus 6 achieve over 99.6% for both setups. The
LG G3’s performed well in the frontend setup with 99.7%
when using Simple Logistic. Its accuracy is 92.4% in the back-
end setup when using Random Forest. The results indicate
that the training size has a small influence on our supervised
learning methods in identifying hidden voice commands.

Table 4: Performance of supervised learning in fron-
tend setup (trained with 5/10 words and 2/5 partici-
pants).

Note4 | G3 | Nexus 6 S6
SimpleLogistic | 100% | 99.7% | 100% | 87.3%
SMO 100% | 99.4% 100% 86.4%
Random Forest | 100% | 97.9% 100% 90.6%
Random Tree 100% | 94.4% | 99.6% | 87.8%

Table 5: Performance of supervised learning in back-
end speaker setup (trained with 5/10 words and 2/5
participants).

Note 4 G3 Nexus 6 S6
SimpleLogistic | 100% | 86.4% | 99.6% | 89.7%
SMO 100% | 86.6% 99.2% 90.0%
Random Forest | 100% | 92.4% | 98.8% | 84.8%
Random Tree 99.4% | 85.8% | 98.1% | 78.7%

6.2.2 Unsupervised-learning. We now present the results
of using our unsupervised learning-based methods to dis-
tinguish between the hidden voice commands and normal
commands, which capture the inherent physical differences
between the normal commands and the hidden voice com-
mands, without requiring much training effort. Figure 13
shows the performance of our k-means and k-medoids based
methods when using four different mobile devices in the
frontend and backend setups. We observe that both K-means
and K-medoids based methods accurately identify the hidden
voice commands for both setups. Moreover, both unsuper-
vised methods perform with similar accuracy among the four
devices. In particular, Samsung Note 4, LG G3 and Nexus 6
achieve over 99.2% in the frontend playback setup using the
K-means method. The accuracies are 100%, 98% and 93% for
the three devices in the backend playback setup. Samsung
S6 obtains 85.7% and 79% in both the frontend and back-
end setups. The results are comparable with our supervised
learning-based methods. We also evaluate our Raspberry
Pi cloud device prototype with the unsupervised learning
methods, which achieves 82% accuracy.

We further evaluate the influence of the training data size
to the performance of our unsupervised learning-based meth-
ods, especially when an adversary plays the hidden voice
commands using words and a speaker voice that are not in
the unsupervised training model. We only train the k-means
and k-medoids model with two speakers’ five voice command
words and evaluate our system’s capability of identifying
hidden voice commands. Figure 14 shows the performance
of our system under the limited training set. We find that
our system still identifies hidden voice commands with very
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Figure 14: Performance of unsupervised learning
methods trained with 5/10 words and 2/5 participants.

high accuracy in both setups. In particular, Samsung Note
4, LG G3 and Nexus 6 obtain 99.9%, 95.1% and 99.9% in the
frontend setup with the K-means method and that for the
backend setup obtained 99.9%, 94% and 93.7%. Moreover, by
comparing Figure 14 with Figure 13, we observe that the per-
formances obtained based on the different training data sizes
are similar. This is because our unsupervised learning-based
methods differentiate between the hidden voice command
and normal commands by capturing their inherent physical
differences in the vibration domain. As a result, the hidden
command sounds are mapped far away from the normal
command cluster based on the vibration features, even if the
hidden voice commands are generated from unseen words
and voices to the system.

6.2.3  Partial Playback to Reduce Delay. We further evaluate
the performance our system with playback of partial voice
commands rather than the complete commands to speed
up the playback process and reduce the delay. In particular,
we set the system to playback only 1 second or 0.5 second
of the recorded voice commands (around one word) and
apply the unsupervised learning method K-means on the
collected accelerometer readings to detect the hidden voice
command. The performances of such partial replay in the
frontend setup and the backend setup are shown in Table 6

Table 6: Performance of partial replay (i.e., 1s and
0.5s) in frontend speaker setup using the unsuper-
vised learning method K-means.

Note 4 G3 Nexus 6 S6
Replay all 100% | 99.10% 100% 85.70%
Replay 1s 100% | 89.10% | 99.90% | 85.60%
Replay 0.5s | 99.90% | 85.20% | 95.90% 85%

Table 7: Performance of partial replay (i.e., 1s and
0.5s) in backend speaker setup using the unsupervised
learning method K-means.

Note 4 G3 Nexus 6 S6
Replay all 99.90% | 97.90% | 93.40% 76%
Replay 1s 92.9 99.10% | 92.40% | 75.90%
Replay 0.5s 88.5 90.20% | 90.50% | 73.80%

Table 8: Performance of frontend setup with various
smartphone usage scenarios (unsupervised).

Table Held | Placed | 80%vol. | 2x speed

in hand | on sofa | on table | on table
Kmed | 100% | 87.30% 100% 100% 88.30%
Kmea | 100% | 87.30% 100% 100% 85.20%

and 7. We observe that our system can achieve similar per-
formance in both the frontend mode and the backend mode
with the partial playback, compared to the complete voice
command playback. In particular, our system can achieve
up to 99.9% accuracy for both 1-second and 0.5-second play-
back for the frontend mode. For the backend mode, we can
achieve up to 99.1% for the 1-second playback and 90.5% for
the 0.5-second playback. This is because our unique vibration
features capture the inherent signatures of the user’s voice
that is dependent from the length of voice commands. We
also find the K-medoid performance is similar to K-means
and the supervised learning methods perform slightly better.
The results are promising, which facilitate deploying our
system without causing additional delay.

6.2.4  Various Mobile Device Usage Scenarios. We next evalu-
ate the frontend setup with various practical mobile devices
usage scenarios. We only report the unsupervised learning
method results because the supervised learning performs
better. Table 8 shows the comparison of our system under
different scenarios, when the mobile device is on the table,
held by hand, and placed on a soft surface such as a sofa. We
also evaluate our system with lower volume (e.g., 80%) and
fast forwarding (e.g.,x2 speed). We find our system achieves
100% accuracy of distinguishing hidden voice commands



and normal commands when the mobile device is on the
hard table surface or soft sofa surface. When being held by
hand, the accuracy degrades to 87.3%, because the hand sup-
presses the speech vibrations on the mobile device. When
replaying with 80% volume, our system still achieves 100%
accuracy, which indicates the robustness of our system to
capture the speech vibration differences of the two types
of voice commands under different playback volumes. In
addition, in the fast forwarding scenario with X2 speed, the
accuracy degrades to 88.3% and 85.2% for K-medoids and
K-means methods. This is because fast forwarding causes
some distortions and information loss to the playback sound,
compared to the original audio.

7 CONCLUSION & DISCUSSION

In this work, we show that hidden voice commands that
mimic the voice features of normal commands, while re-
maining incomprehensible to humans, can be detected by
comparing their speech features in the vibration domain. We
showed that by using the vibration features, including the
statistical features in the time and frequency domains and
speech features (e.g., MFCCs, chroma vector), it is possible to
distinguish hidden voice commands (created as per [9]) from
normal commands with a sufficient degree of accuracy. Our
supervised and unsupervised learning classification results
from observing speech vibration on multiple smartphones,
indicate that the idea of using the on-board accelerometer
(found universally on all smartphones) to log these speech
vibrations, can help the voice assistant technology of these
smartphones to detect hidden voice commands. In conclu-
sion, we believe that the ability of the vibration domain
features to detect hidden voice commands, as discussed in
this work, opens up a new discussion to secure the voice
assistants on current smartphones, in the context of syn-
thesized voice commands. Their capability as a standalone
mechanism or in conjunction with audio domain features
offers additional exciting defense approaches in the domain
of voice security.

We recognize that the playback process of our system
may cause some playback delay and the intrusion of fron-
tend mode. However, we show that our system can achieve
high accuracies with the partial command playback and n-
times speed playback, which speed up the playback process
(e.g., to 0.5 second). Moreover, the existing VCSs usually take
several seconds to process the audio for understanding the
command context (e.g., 2 seconds for Google Now and 4 sec-
onds for Siri [6]), and our system is designed in a manner
that works simultaneously with this process to avoid caus-
ing additional delay. Furthermore, such short time playback
incur less intrusion to the users, who can still choose the

backend mode of our system to defend against the hidden
command attacks.

In our future work, we will study modulating the fron-
tend playback sound to an inaudible frequency (e.g., greater
than 16KHz) to achieve zero intrusion. Meanwhile, a more
practical backend playback setup consisting of a tiny low-
cost device that is equipped with an on-board speaker and
motion sensors will be explored. Moreover, it is potential
to extend our unsupervised learning-based method to also
defend other attacks, such as ultrasound attacks, without
requiring much training effort. It is also worth exploring
whether the replay sounds could be distinguished from the
live human voice in the vibration domain.
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