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Voice assistant systems are convenient, but attackers can mimic users’ voices to access them and steal 
private information. We develop an authentication system that defends against acoustic attacks by using 
unique characteristics captured by the accelerometers in wearable devices. 

A dvanced speech recognition technologies have 
enabled intelligent voice assistant (VA) systems 

(e.g., Google Home and Amazon Alexa) in our lives. 
Users can speak naturally to VAs and have them perform 
simple tasks, such as playing music, managing calendar 
events, shopping online, and controlling smart appliances. 
More people are beginning to use VAs to complete sensi-
tive tasks, such as unlocking the front door of a house or 
calling a bank to conduct transactions. While enjoying the 
convenience, users may not realize that their conversations 
with VAs often contain critical personal information (e.g., 
credit card numbers, passwords, and payments), which 
has driven adversaries to attack the systems, threatening 
people’s privacy and property. For example, an adversary 
could get a user’s credentials to access personal devices1

by asking Google’s VA, “OK, Google, what is my pass-
word?” A bad actor could also use a VA to make a signifi-
cant purchase2 by telling Amazon’s system “Alexa, order a 
MacBook from Prime Now.” Recently, adversaries learned 

to hack low-cost smart appliances (e.g., smart TVs) and 
use them to give voice commands to security-critical VAs1

to, for instance, disarm smart locks.
Moreover, VAs have acquired abilities that are suitable 

for the workplace. However, their open nature makes 
sensitive business information vulnerable to hackers, 
who could obtain, e.g., meeting schedules and employee 
contact information by asking for it. This is more dan-
gerous when VAs are deployed in high-security environ-
ments (e.g., nuclear power stations, stock exchanges, and 
data centers), where all voice commands are critical and 
must be authenticated around the clock.

Vulnerability of Voice Assistance
To ensure the successful large-scale deployment of VA sys-
tems, we need to address their inherent vulnerabilities and 
make them trustworthy to users. In this work, we con-
sider an adversary to be a malicious user who aims to 
obtain sensitive information or undertake unpermitted 
actions through voice commands to VAs. We assume 
that an adversary cannot physically break a VA, take con-
trol of the system’s cloud service, or get possession of a 

Digital Object Identifier 10.1109/MSEC.2021.3077205
Date of current version: 24 May 2021

Authorized licensed use limited to: IUPUI. Downloaded on January 18,2022 at 01:02:53 UTC from IEEE Xplore.  Restrictions apply. 



84 IEEE Security & Privacy November/December 2021

ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE

user’s wearable device. Depending on whether a mali-
cious party launches attacks in users’ presence, we sum-
marize potential attacks according to two categories.

Attacks in Users’ Absence
When a user is away from a VA, an attacker can approach 
the device to launch the following:

1. Random attacks: In these, an attacker does not know 
what a user’s voice sounds like. Therefore, he or she 
can try only to fool a VA with his or her own voice, 
giving commands to provide sensitive information, 
such as credentials and personal schedules. While 
this sounds naive, it succeeds around 3.5% of the 
time, due to the imperfect voice verification mecha-
nisms in current VAs.3

2. Impersonation attacks: When an attacker has heard 
a user’s voice, he or she can try to mimic it, e.g., in 
the pitch and tone. A bad actor can also use speech 
synthesis techniques to deliver commands in what 
sounds like a user’s voice.

3. Replay attacks:  An attacker inconspicuously 
records voice commands when a user interacts 
with a VA, later replaying them to trick the sys-
tem. These attacks are easy to launch since smart-
phones can record audio without attracting any 
attention. Replay attacks have drawn great pub-
lic awareness because they can spoof most cur-
rent voice verification mechanisms with high 
success rates.

Attacks in Users’ Presence
When a user is close to a VA, an attacker can take no 
overt action. However, a bad actor can attack the system 
by using imperceptible and inaudible commands, as in 
the following:

1. Hidden voice command attacks:4 A malicious party 
can attack a VA by using obfuscated voice com-
mands (e.g., voice commands that are similar to 
ambient noises), which the system can understand 
but the user cannot. These are referred to as hid-
den voice commands. They are usually realized by 
converting voice commands into sound signals that 
are meaningful to the speech recognition models 
used by VA systems. An attacker can even embed 
voice commands into background music and 
video stream audio channels to remotely target VAs 
through home and auto media systems. Research5 
has demonstrated that VAs are vulnerable to these 
assaults. Users’ private information could leak 
(e.g., posting locations on social media), people 
could experience denials of service (e.g., by hack-
ers activating airplane mode), and attackers could 

perform unauthorized operations (e.g., visiting 
malicious websites).

2. Ultrasound attacks:6 Bad actors can launch com-
pletely inaudible attacks by mapping users’ voice 
commands into ultrasound frequency bands that 
human ears cannot hear (i.e., higher than 20 kHz). 
Due to their nonlinearity, VA microphones can ren-
der commands in ultrasound frequency bands into 
normal frequency bands, enabling hackers to fool 
systems without being noticed. Since it is hard to 
detect ultrasound attacks, they are perfect for spy-
ing (e.g., making a VA initiate outgoing phone calls) 
and injecting false information (e.g., publishing fake 
online posts).

Because all these attacks pose severe security and 
privacy concerns, a practical scheme is highly desired 
for verif ying voice commands’ authenticity and 
enabling users to freely access VAs. Traditional voice 
authentication methods mainly rely on acoustic fea-
tures (e.g., voice timbre and vocal tract resonances) 
extracted from microphone data to identify users.7–8 
Given their dependence on microphones, they, too, 
are vulnerable to acoustic attacks. Recent research has 
explored liveness detection techniques, such as detect-
ing dynamic acoustic characteristics of human voices, 
to defend against acoustic attacks.9–10 However, these 
solutions are designed for smartphones, whose micro-
phone must be placed close to a user’s mouth. Thus, 
they are not applicable to VAs that take commands from 
a distance. To add another layer of defense, some VAs 
exploit a second factor to secure voice commands,11 
such as asking challenge questions via text messages, 
phone calls, and virtual buttons on a mobile device.12 
This requires significant effort since users must confirm 
every voice command they give. Second factors could 
be undermined by users who are careless about their 
confirmations and might accept attempted attacks with-
out paying attention.

Our Approach
In this work, we design and develop a user authentica-
tion framework for VA systems. In particular, we exploit 
a user’s wearable device to capture unique human 
voice characteristics in the vibration domain and har-
ness them to verify commands when a VA is triggered. 
The major advantage of our approach is that it does not 
require extra user effort (e.g., answering challenge ques-
tions and replying to messages/calls) and additional 
training with privacy-sensitive voice samples. In addi-
tion, our solution works on commercial off-the-shelf 
wearable devices that have been widely accepted, making 
it scalable under real-world scenarios without requiring 
specialized infrastructure.

Authorized licensed use limited to: IUPUI. Downloaded on January 18,2022 at 01:02:53 UTC from IEEE Xplore.  Restrictions apply. 



www.computer.org/security 85

To address the security vulnerabilities of VA sys-
tems, we propose a voice authentication system, WearID, 
that leverages speech similarity between the vibration 
domain and the audio domain to provide enhanced 
security to the ever-growing deployment of voice com-
mand devices. The insight is that when a user gives a 
command to a VA, his or her voice creates similar char-
acteristics in both aerial speech vibration and audio. 
By leveraging wearable devices as a personal identity 
token, our solution captures users’ voice character-
istics in the aerial speech vibration through a wear-
able’s accelerometer and compares them with the voice 
characteristics in the audio speech captured by a VA 
device’s microphone. When a legitimate user gives a 
command, the similarity between the voice characteris-
tics obtained from the vibration domain and the audio 
domain should have high similarity. Otherwise, the 
command is from an adversary.

The idea of WearID is illustrated in Figure 1. Upon 
detecting a wake word, WearID exploits a wearable’s 
accelerometer and a VA device’s microphone to simul-
taneously capture commands in the vibration domain 
and the audio domain, respectively. The accelerometer 
data can be sent to the VA system’s cloud along with 
the recorded voice commands for user authentica-
tion. To realize the similarity comparison, we develop 
a training-free algorithm that converts high-fidelity 
microphone data into a low-fidelity aliasing form and 
correlates the time–frequency characteristics of the 
speech signals in the vibration and audio domains to 
verify a voice command. Our system involves minimum 

hardware modification. To enable WearID in practice, a 
customized plug-in of a VA system’s app, such as “skills” 
on Amazon Alexa, helps to establish an agreement 
between a wearable device and a VA system. By accept-
ing the agreement in the VA’s app, a user associates his 
wearable device with the VA system. After the initial 
association, the user’s wearable and the VA are con-
nected to a cloud server. They simultaneously record a 
voice command upon detecting a wake word and per-
form user authentication in the cloud.

Wearable-Assisted User Authentication

Advantages of Using Wearables
Using wearable devices in our solution has  natural causes. 
The number of wearable device users has reached half a 
billion worldwide,13 and the total continues to quickly 
grow. Since wearable devices are rarely left unattended, 
it is natural for us to leverage them as trusted tokens to 
facilitate voice command authentication. In fact, wear-
able devices have been widely used as personal tokens 
in many applications. For example, smartwatches and 
smart wristbands have been explored as replacements 
for student ID cards because they are hard to forget to 
carry.14 As another example, smartwatches have been 
accepted as a convenient and valid security token for 
contactless payment, such as through Google Pay 
and Apple Wallet. Furthermore, most commercial wear-
able devices have integrated various types of sensors 
(e.g., accelerometers, gyroscopes, and microphones) 
that can facilitate many mobile sensing applications. By 
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Figure 1. The use of human voice vibration domain representation to defend against audio-based VA attacks. 
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using wearable devices, our solution avoids additional 
user expense.

In particular, we propose to utilize accelerometers in 
wearable devices to capture users’ voice commands for 
authentication. Instead of employing a second micro-
phone, we choose to use the accelerometer, as it is sensi-
tive only to sounds within a short distance. Such a short 
sensing distance can ensure that the accelerometer cap-
tures only the voice of the wearable user. It also shields 
VAs from various acoustic attacks, which are normally 
launched from afar to avoid being noticed. Further-
more, compared to a second microphone, our design 
reveals more inherent acoustic characteristics of a voice 
command, making speech in the vibration domain dif-
ficult to forge. As a result, our solution is invulnerable to 
acoustic attacks, including audible and inaudible attacks.

System Challenges
Recent research studies have shown that it is possible to 
use accelerometers on smartphones to capture speech 
signals.12 However, harnessing weak aerial speech 
vibrations captured with wearables’ accelerometers to 
authenticate users’ voice commands remains challeng-
ing. We summarize the major challenges to implement 
our system as follows:

 ■ Weak response to human speech: Because wearables’ 
accelerometers are designed to measure movement, 
they have low sensitivity to aerial vibration caused by 
speech. In addition, people’s movements during daily 
activities, such as walking and raising their arms, can 
create unpredictable accelerations, which are consid-
ered to be noise. Noisy readings make it difficult to 
detect and segment speech in accelerometer data.

 ■ Complex relationship between audio and vibration 
domains: Due to different wearables’ microphone and 
accelerometer designs, a voice recorded by the micro-
phone and the aerial vibration captured by the accel-
erometer present distinct patterns. Therefore, it is 
impractical to directly compare commands recorded 
by the accelerometer and the microphone. Moreover, 
the microphones’ minimum sampling rate is usually 
8,000 Hz, while the accelerometers’ maximum sam-
pling rate is generally 200 Hz. Such a huge difference 
makes any direct comparison between vibration sig-
nals and audio signals impossible.

 ■ Unsynchronized sensing devices: Since we use a micro-
phone and an accelerometer from separate hardware 
(i.e., a VA and a wearable) to capture a voice com-
mand, it is hard to guarantee that the devices can 
trigger the data collection at the same time. With-
out an appropriate signal alignment, the acoustic 
and vibration data of the same voice command can-
not have a one-to-one comparison, leading to false 

authentication. While it is possible to use a local area 
network to synchronize the data collection by trigger-
ing the devices with one message, doing so can intro-
duce unpredictable delays, as local area networks are 
prone to network congestion.

System Overview
We realize our wearable-assisted user authentication 
system with three components: voice data synchro-
nization, acoustic and vibration data processing, and 
voice characteristic comparison. The flow of our sys-
tem is provided in Figure 2. Upon detecting a wake 
word, WearID performs synchronization to simultane-
ously trigger the data collection processes on a wearable 
device and a VA. We synchronize the data collection 
processes with two alternative approaches based on 
network conditions. When there is little delay and the 
network is stable, we exploit Wi-Fi to send a message 
to the wearable device to begin data collection. When 
there is considerable delay or the network is unstable, 
WearID detects a wake word via the accelerometer, trig-
gering data collection in parallel with a VA. The voice 
command following the wake word is recorded by both 
devices for user authentication.

Next, WearID extracts meaningful features from the 
accelerometer and microphone data. It first denoises 
the accelerometer data by removing the impacts of 
human motions and determines the data segments cor-
responding to speech. We derive the time–frequency 
representations of the accelerometer data and use them 
as vibration domain features. WearID also denoises 
the microphone data by removing the effects of envi-
ronmental noise. To fill the large sampling rate gap 
and enable direct comparison between features in the 
vibration and acoustic domains, we develop a method 
to convert the time–frequency representations of the 
microphone data to the low-frequency band through 
signal aliasing. The converted time–frequency repre-
sentations are considered acoustic domain features.

Finally, WearID examines the similarity between the 
vibration domain features and acoustic domain features 
to determine whether the received voice command is 
from a user or an attacker. To further accommodate the 
residual synchronization errors in the sensing data, we 
derive several similarity scores by comparing the vibra-
tion domain features and acoustic domain features 
within a sliding window. A threshold-based method is 
applied to the maximum similarity score to determine 
the authenticity of the voice command. WearID can 
also be deployed on a shared VA device and verify voice 
commands from multiple users, such as colleagues and 
family members. In such scenarios, each user needs to 
associate his or her account and wearable device with 
the VA system.
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Capturing Voice Commands Through 
Wearables’ Accelerometers

Similarities and Differences of  
Microphones and Accelerometers
Microphones and accelerometers are microelectronic 
sensors, but their design is significantly different. Micro-
phones are widely used in various sound recording 
devices, including smartphones and VAs. They have a 
membrane and a complementary perforated black plate, 
which are used to sense sound waves. When the sound 
of a voice passes through the holes in the black plate and 
hits the membrane, a microphone captures the sound 
waves by recording analog capacity change signals. The 
analog signals are amplified and fed to a low-pass filter, 
which removes audio signals that are beyond half the 
sampling rate. An analog-to-digital converter (ADC) 
converts the analog signals into digital ones. The ADC 
sampling rate determines the maximum frequency of 
the recorded sounds, although the analog signals may 
capture sounds with higher frequencies. The accel-
erometers used in most mobile and wearable devices 
measure sound as subtle inertial mass movements 
caused by changing sound wave pressures. An acceler-
ometer does not contain a low-pass filter between its 
amplifier and ADC, and thus it can capture vibrations 

approaching its sensing limit (e.g., up to 4 kHz), mak-
ing it able to sense human voices, which mainly reside 
at lower frequencies.

Aliasing Effects in the Vibration Domain
Although accelerometers can capture high-frequency 
vibration signals, wearables’ operating systems limit 
accelerometers’ sampling rate to a much lower fre-
quency of around 100 Hz to reduce power consump-
tion. When we use a wearable’s accelerometer to 
capture the aerial speech vibrations of voice commands, 
the accelerometer data shows distinctive aliased voice 
patterns when compared to the original sound. Signal 
aliasing is an effect that makes different frequency sig-
nals indistinguishable when they are undersampled. 
According to the Nyquist theorem, any frequency sig-
nal sampled at a frequency that is less than half its fre-
quency is indistinguishable from a lower-frequency 
signal within the half-sampling frequency. For illustra-
tion, in Figure 3, we show the energy of a chirp signal 
(i.e., a signal sweeping through 500~1,000 Hz) sampled 
at a frequency of 100 Hz. We can find a “zigzag” curve in 
the energy heat map, where the frequency signal at 720 
and 780 Hz is mapped to 20 Hz after sampling. Such 
an aliasing effect enables a wearable accelerometer to 
record vibrations beyond the ADC sampling frequency. 

Wake Word Detection

Denoising and Segmentation Denoising and Segmentation

Feature Extraction Feature Extraction and Domain
Conversion

Similarity
Comparison

User Authentication Result

Data Collection With
Wearable Device

Data Collection
With VA Device

Acoustic and Vibration Data Processing

Voice Data Synchronization

Figure 2. The user authentication system’s flow.
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Note that aliasing effects are usually removed in micro-
phones by the low-pass filter, which is not included in 
an accelerometer.

Unique Response to Aerial Speech Vibrations
Due to different hardware designs, accelerometer and 
microphone data show distinctive human speech pat-
terns. Instead of directly capturing a sound wave, an 
accelerometer measures wearable device vibrations trig-
gered by speech. Such a mechanism produces a unique 
response to speech in terms of magnitude and frequency 
characteristics. To understand these patterns, we examine 
accelerometer data from a wearable (i.e., an LG Urbane 
W150) and microphone data from a smartphone (i.e., a 
Nexus 6) when playing a chirp signal of 0~22 kHz from 
a loudspeaker. We find that the accelerometer shows 
only high magnitudes between 400 and ~3,400Hz, while 
the microphone readings have high magnitudes across 
a much wider frequency range of 80 Hz~15 kHz. By 

analyzing the accelerometer data time–frequency pat-
terns, we find that the device has a distinctive energy 
distribution across frequencies when compared to the 
microphone. Such unique accelerometer characteristics 
make it impossible for attackers to reproduce a user’s 
voice command. However, a malicious party may suc-
ceed at faking a voice command on microphones.

Recording Live Speech Through Wearables
To show that using a wearable accelerometer to capture 
live human speech is possible, we conduct an experiment 
using a smartwatch (i.e., a Huawei Watch 2 Sport). We 
ask a volunteer to speak a word (“calendar”) at the sound 
pressure levels (SPLs) of 60, 70, 80, 90, and 100 dB. 
The volunteer wears the smartwatch on her left hand 
and speaks to the watch at a distance of 10 cm. Figure  4 
shows the accelerometer data. We observe that the wear-
able can capture speech with an SPL higher than 70 dB 
and that the magnitude grows with the SPL. When the 
SPL reaches 80 dB (presentation-level volume), the 
accelerometer can clearly reveal the speech. We also 
test the ability of the wearable’s accelerometer to cap-
ture a human voice under various subject-to-wearable 
distances of 5–35 cm (with a 5-cm gap). The subject 
gives commands to the smartwatch at an average SPL 
of 80 dB. We find that when the distance increases to 
30 cm, speech patterns can barely be observed. Such a 
short response distance can help WearID prevent many 
acoustic attacks.

Voice Characteristic Comparison for 
Audio and Vibration Signals

Voice Data Synchronization
To enable reliable voice characteristic comparison, Wea-
rID needs to simultaneously collect accelerometer and 
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audio recordings from a wearable device. We develop 
two voice data synchronization approaches that depend 
on network delay. WearID uses Wi-Fi to synchronize 
the data collection if there is little delay. If the wearable 
is equipped with a Wi-Fi module, the VA, upon detect-
ing a wake word, sends a message to the device to trigger 
data collection. If the wearable is not equipped with a 
Wi-Fi module, the VA can send the message to a smart-
phone paired with the device. As an alternative, when 
there is significant network delay, the wearable device 
can use its accelerometer to detect a wake word and trig-
ger data collection with the VA. Our study shows that a 
machine learning approach can accurately detect wake 
words based on the time–frequency features of acceler-
ator data. Given that wearables’ accelerometers usually 
run in the background around the clock, our approach 
does not introduce additional energy consumption.

Data Denoising and Segmentation
An accelerometer captures noise caused by human 
motions along with aerial speech vibrations. The noise 
is unpredictable and can significantly distort speech 
vibration patterns in accelerometer data. Since the impacts 
of human motion usually reside at low frequencies, 
we apply a high-pass filter to remove the effects of 
low-frequency motions and enhance speech vibra-
tions. After data denoising, we develop a segmentation 
method to extract accelerometer data containing voice 
commands that is based on variation. Intuitively, the 
accelerometer data experiences high variations in the 
presence of speech vibrations. Therefore, we calculate 
the accelerometer data variance within short frames and 
use a threshold on the variance to segment speech.

Time–Frequency Feature Extraction
We apply time–frequency analysis15 to extract effective 
features from accelerometer and microphone data for 

user authentication. Time–frequency analysis has shown 
great success in speech and speaker recognition tasks. In 
particular, we exploit a short-time Fourier transform, 
which calculates energy distributions across frequencies 
of short frames sampled with a sliding window to extract 
time–frequency features. As discussed, we need to miti-
gate the impacts of signal aliasing in the accelerometer 
data. We develop a transformation method to convert 
microphone data time–frequency features to an aliasing 
form that is comparable with the time–frequency fea-
tures of accelerometer data. Our method mimics signal 
aliasing effects by calculating the aliasing components 
based on microphone data time–frequency features. If 
multiple aliasing components are found to overlap at the 
same frequency, we accumulate their values during the 
transformation. Figure 5(b) presents time–frequency 
features converted from a microphone recording “Alexa” 
through the proposed method. We find that the con-
verted features have a form that is “equivalent” to the 
motion sensor features, as given in Figure 5(a).

Voice Characteristics Comparison
We find that the scales of the time–frequency features 
of the accelerometer and microphone data may vary 
a lot due to different operating systems. To address 
this, we develop a scheme to normalize the feature val-
ues across frequencies. This process is applied to the 
time–frequency features in the vibration and audio 
domains. We also notice that while the accelerome-
ter and microphone data are coarsely synchronized, a 
minor residual delay may still exist, introducing uncer-
tainty into the authentication results. We develop an 
algorithm that finds the maximum correlation (i.e., 
referring to the similarity score) between the time–
frequency features in the vibration and audio domains 
to address this. In particular, we fix the time–fre-
quency features from the microphone data and shift 
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the time–frequency features from the accelerometer 
data within a small time window to calculate a set of 
similarity scores. Finally, a threshold-based method is 
applied to the maximum similarity score to authenti-
cate a user’s voice command if the score is higher than 
an empirical threshold.

System Performance Evaluation
We evaluate WearID by using two smartwatches, a Hua-
wei Watch 2 Sport and an LG W150. The LG W150 is 
equipped with Invensense M6515 accelerometer that 
supports sampling frequencies within 4∼4,000 Hz.  
The maximum acceleration that can be measured 
with this accelerometer is ±16 g. The Huawei Watch 
2 Sport has the same measurement range but sup-
ports lower sampling frequencies up to 1,600 Hz.  
Although the accelerometers can capture vibrations of 
1.6∼4 kHz, the vendors constrain the sampling rates 
to lower power consumption. We investigate the per-
formance of WearID in a typical office environment 
with dynamic ambient noises, such as those from air 
conditioners and ventilation systems, people walking, 
and conversations. A volunteer wears a smartwatch and 
gives commands to a VA that is 1 m away. He or she 
speaks at a presentation-level volume, which is reason-
able since most users subconsciously talk louder when 
using VAs from a distance.

We involve 10 volunteers in a situation where there 
is no attacker. The study was approved by the Institu-
tional Review Board at Rutgers University, and the ref-
erence number is Pro2018001234. The volunteers are 
asked to speak 20 commands. We compare the com-
mands recorded by the VA against the wearables’ accel-
erometer data to simulate legitimate users. In addition, 
we record 20 samples of ambient noise by using the 
smartwatch’s accelerometer to test WearID in daily sce-
narios, where friendly users (e.g., family members and 
colleagues) may mistakenly trigger WearID and the 
wearable device records only ambient noise. As shown 

in Table 1, WearID shows a more than 99% true posi-
tive rate (TPR), meaning that almost all legitimate com-
mand samples are correctly authenticated. We also find 
that WearID has a 0% false positive rate (FPR) on both 
smartwatches, indicating that voice commands from 
friendly users will be blocked.

To evaluate WearID during random attacks, we con-
sider one volunteer as a legitimate user and the remaining 
participants as adversaries. We compare the adversaries’ 
commands recorded by the VA against the accelerom-
eter data of the legitimate user. We find that WearID 
can verify voice commands with a more than 94% TPR, 
given a low FPR of 5%, for both smartwatches. For more 
sophisticated impersonation and replay attacks, Wea-
rID achieves higher than 91% TPRs for the two smart-
watches, given an FPR of 10%. These results show that 
WearID is effective at defending against random attacks 
and impersonation/replay attacks.

We also evaluate WearID during hidden voice com-
mand attacks. We collect 100 samples of 10 hidden voice 
commands replayed by a loudspeaker and compute the 
similarity between the microphone and accelerometer 
recordings. The results show that the similarities are 
approximately zero for the hidden voice commands, 
meaning that the commands can be well differentiated 
from the similarity scores of the legitimate users (i.e., 
around 0.5 for the Huawei Watch 2 Sport and 0.4 for 
the LG W150). We test the ability of WearID to defend 
against ultrasound attacks by replaying a signal sweep-
ing across 15 ~25 kHz from a tweeter speaker. In the 
experiment, we do not observe any sound signals in the 
recorded accelerometer readings, which confirms that 
WearID is not vulnerable to ultrasound attacks.

An interesting finding is that the accelerometer can 
capture unique characteristics in human voices that can 
be used to determine users’ identity. In practical scenar-
ios, multiple users (e.g., colleagues and family members) 
may use WearID on the same VA. In such cases, WearID 
can identify them by comparing the accelerometer data 
of the voice command against the profiled audio data 
of multiple users. The voice command is determined to 
belong to a user with the highest similarity. Our experi-
ment results show that WearID can identify 10 users 
with a 96.5% accuracy when using the Huawei Watch 2 
Sport and 91.3% when using the LG W150. This shows 
that WearID can correctly identify users.

WearID requires little power from a wearable device 
since computationally intensive tasks (i.e., feature 
extraction and cross-domain comparison) are per-
formed in the VA system’s cloud. A wearable needs only 
to collect accelerometer data and forward the informa-
tion to the VA. Since accelerometers have a lower power 
profile and because voice commands usually last a few 
seconds, the WearID energy consumption is very low: 

Table 1. The WearID performance during 
normal situations, random attacks, and 
impersonation attacks.

Normal 
situations

Random 
attacks

Replay 
attacks

True 
positive 
rate

99% 94% 91%

False 
positive 
rate

0% 5% 10%
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our empirical calculation shows that it is less than 0.21 
J for one voice command. In addition, traditional VAs 
need to send voice command data to the cloud for data 
processing; the communication delay thus dominates 
the system delay. WearID does not introduce additional 
delays to a VA.

W e presented WearID, a wearable-assisted user 
authentication system that provides enhanced 

security for VAs, especially for critical voice commands 
(e.g., big purchases and important phone calls). WearID 
authenticates users by comparing the similarity between 
voice commands captured by a wearable device’s accel-
erometer and a VA microphone. This enables Wea-
rID to verify commands without building a user profile 
based on privacy-sensitive recordings. We developed a 
feature conversion method that models complex rela-
tionships between voice commands recorded with two 
sensors and designed a method to compare character-
istics. Since an accelerometer captures voices within 
only a short distance (e.g., less than 30 cm), WearID can 
shield a VA against various acoustic attacks. 
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