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Abstract—This work enables mobile user authentication via finger inputs on ubiquitous surfaces leveraging low-cost physical vibration.

The system we proposed extends finger-input authentication beyond touch screens to any solid surface for IoT devices (e.g., smart

access systems and IoT appliances). Unlike passcode or biometrics-based solutions, it integrates passcode, behavioral and

physiological characteristics, and surface dependency together to provide a low-cost, tangible and enhanced security solution. The

proposed system builds upon a touch sensing technique with vibration signals that can operate on surfaces constructed from a broad

range of materials. New algorithms are developed to discriminate fine-grained finger inputs and supports three independent passcode

secrets including PIN number, lock pattern, and simple gestures by extracting unique features in the frequency domain to capture both

behavioral and physiological characteristics including contacting area, touching force, and etc. The system is implemented using a

single pair of low-cost portable vibration motor and receiver that can be easily attached to any surface (e.g., a door panel, a stovetop or

an appliance). Extensive experiments demonstrate that our system can authenticate users with high accuracy (e.g., over 97% within

two trials), low false positive rate (e.g., less 2%) and is robust to various types of attacks.

Index Terms—User authentication; finger-input; physical vibration; ubiquitous surfaces

✦

1 INTRODUCTION

THE process of authentication verifies a user’s identity
and is frequently deployed at almost every corner of

our daily lives. Recently, the flourishing mobile IoT facil-
itates wide deployment of smart access systems, which are
defined as those used for keyless controlling access to cor-
porate facilities/apartment buildings/hotel rooms/smart
homes/vehicle doors, require the authentication process to
play a broader role in numerous daily activities beyond
the common form authentication on touch screen devices,
such as mobile phones. A market report shows that the
deployment of smart security access systems is expected to
grow rapidly at an annual rate of 7.49% and will reach a
market value of $9.8 billion by the year of 2022 [1].

Traditional authentication solutions in smart security
access systems are based on passwords (i.e., texts and
graphical patterns) [2], [3], [4], [5], [6] and physiological
biometrics (e.g., fingerprints, iris patterns, and face) [7],
[8], [9], [10]. However, these approaches either suffer from
password theft or shoulder surfing, or require installation
of expensive equipment and stir privacy concerns of the
users. Other solutions supported by intercom, camera, card,
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or fingerprint, however, involve expensive equipment, com-
plex hardware installation, and diverse maintenance needs.
The trend of employing low-cost low-power tangible user
interfaces (TUI) to support user authentication in smart IoT
and mobile systems has gained industry attentions recently.
For example, token devices (e.g., smart ring, glove or pen)
could be utilized for associating identities of their touch
interactions [11], [12], and an ultra-thin sensing pad can
be deployed in automobiles to perform driver authentica-
tion [13]. Moreover, isometric buttons appearing on new
models of smart microwave ovens and stove tops and
rotary inputs (e.g., used by iPod) can replace the regular
physical buttons to provide better functionality and flex-
ibility [14]. These new approaches appear promising of
conducting mobile user authentication and operating ap-
pliances/devices in smart IoT systems leveraging capacitive
sensing. However, these techniques require that the touched
surface possesses electric conductivity and an electric field
that produces/stores electrical energy, which largely limits
the wide deployment of such solutions.

Along this direction, we start a new search in developing
a low-cost and portable general user authentication ap-
proach, which can be easily integrated into mobile and IoT
devices and has the capability to work with any solid sur-
face for smart IoT access control systems. The convenience
of executing mobile user authentication via touching any
surface is enticing. For instance, with the rapid development
of IoT and connected vehicles, a user can just place his
palm against the driver side window to unlock and access
the vehicle. This has already been visualized in the pop-
ular movie “Mission Impossible 5”, in which the featured
BMW muscle car can be unlocked instantly when the lead
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(a) Finger touching on a vibrating surface
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(b) Three types of secrets

Fig. 1. Illustration of a finger touching on a solid surface under physical
vibration, and three independent types of secrets for pervasive user
authentication.

actor pressed his palm against the side window. Moreover,
many appliances in smart homes require access control for
advanced safety, such as prohibiting children and seniors
from operating risky appliances (e.g., stovetop, oven, and
dryer). Additionally, various IoT devices, such as smart
TV, air conditioner, and smart speaker, have a growing
need for providing customized services, including adjusting
room temperature/lighting conditions and recommending
TV content. A low-cost solution of tangible user authentica-
tion enabled on any solid surface could eliminate the need
of installing touch screens on such electronic devices and
make the customized services easy to deploy.

In this work, we introduce a new authentication system
grounded on low-cost, low-power tangible user interface,
which has the flexibility and mobility to be deployed on
ubiquitous surfaces. Our system leverages physical vibra-
tion to support authentication for emerging IoT devices and
smart access security systems and is portable to be deployed
on various mobile applications. Builds upon a touch sensing
technique using vibrations, the proposed system is robust
to environmental noise and can operate on a broad range of
surface materials. As shown in Figure 1(a), when a vibration
motor actively excites a surface resulting in the alteration of
the shockwave propagation, the presence of the object or
finger in contact with the surface can thus be sensed by
analyzing the vibrations received by the sensor. By relying
on a single low-cost sensor that generates vibration signals
in a relatively high frequency band (i.e., over 16kHz), the
system is hardly audible or distracting to the user, and is
less susceptible to environmental interference from acoustic
(i.e., mainly within a lower frequency band [15]) or radio-
frequency noise. More importantly, vibration propagation is
highly dependent on the surface material and shape in spe-
cific scenarios. Thus the designed system provides enhanced
security by integrating location/surface uniqueness through
such low-cost and tangible vibration-based user-interface.
The user-specific identity information is embedded in both
the behavioral biometrics as well as the surface being
touched, making the system hard to be forged by attackers.
The proposed system provides users to choose from three
different forms of secrets including PIN, lock pattern, and
gesture to gain secure access as shown in Figure 1(b).

In our conference paper [16], we developed a prelimi-
nary system that achieves reasonable authentication perfor-
mance on a 3×3 simple grid layout with 9 grid points using
Support Vector Machine (SVM). In this work, we design and
implement a more comprehensive system with enhanced
authentication capability to support 4 × 4 advanced grid
layout with 16 grid points. The enhanced system could fa-
cilitate various practical applications. For instance, a virtual
PIN pad with standard T9 layout can be deployed on any
solid surface, with 10 grid points reserved for digits and
the rest for “star”, “pound”, “delete” and “confirm”; palm
recognition and handwriting authentication could also be
achieved thanks to the enhanced sensing resolution. In addi-
tion, our preliminary work uses SVM-based classifier which
shows low scalability to authenticate users on the advanced
grid layout. This is because SVM converts multi-class clas-
sification to multiple binary classification tasks, making
it difficult and slow to optimize the model [17]. Toward
this end, we develop a novel deep neural network (DNN)
that intrinsically supports identifying enormous classes and
outperforms SVM on complicated tasks [18], [19]. Through
integrating the developed deep learning model, extensive
experiments are performed to further validate the authenti-
cation performance and versatility of the proposed system.
We implemented two prototypes that could adapt to diverse
scenarios by exploiting the SVM or DNN accordingly: 1)
We provide a lightweight prototype based on SVM for
deployment on resource-constrained mobile devices and IoT
systems with simple grid layout; 2) A more comprehensive
prototype based on DNN offers more accurate user authen-
tication on the advanced grid layout for accuracy-sensitive
applications with more computing resources.

The authentication process can be enabled on any solid
surface beyond touch screens and without the constraint
of limited screen size. The proposed system is compact
and portable, making it ideal to be deployed on smart IoT
and mobile devices, such as smart appliances, apartment
entrance, and automobiles. It is resilient to side-channel
attacks and various adversarial activities even when the
adversaries are aware of the passcode secret. It can authen-
ticate the legitimate user and reject attacks well because of
the following insights: 1) our study shows that vibration
signals have the capability to perform cm-level location
discrimination; and 2) unique features are embedded in
a user’s finger pressing at different locations on a solid
surface. Such unique features reflect the characteristics of
the user’s finger touching on the medium (e.g., a door panel
or a desk surface) including locations of touching, contact-
ing area, touching force, and etc., making them capable to
discriminate different touching locations of the same user
and different users when touching on the same location.
Thus, the system enables users to finger-input (i.e., touch
or write) on solid surface and is robust to passcode theft or
passcode cracking by integrating 1) passcode, 2) behavioral
and physiological characteristics (e.g., touching force and
contacting area), and 3) surface dependency (e.g., house
door or office desk) together to provide enhanced security.
We summarize our main contributions as follows:
• We develop the first real-time vibration-signal-based

finger-input authentication system, which can be de-
ployed on any solid surface for mobile applications and
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IoT access control systems.
• Our system captures intrinsic human physical characteris-

tics presenting at specific location/surface for authentica-
tion through extracting unique features (e.g., frequency re-
sponse and cepstral coefficient) in the frequency domain.

• The system is flexible to support three types of secrets
(i.e., PIN, lock pattern, and gesture) and works with
different grid layouts and surfaces to meet diverse ap-
plication requirements by developing novel techniques of
virtual grid point derivation, feature-based dynamic time
warping (DTW), and earth mover’s distance (EMD)-based
distribution analysis.

• We implement portable system prototypes with a single
pair of low-cost vibration motor and receiver that involve
minimum installation and maintenance cost, together
with an Android app that enables real-time profiling and
verification.

• Extensive experiments show that our SVM-based proto-
type can effectively verify legitimate users on a simple
grid layout with over 95% accuracy within two trials
and less than 3% false positive rate. The new prototype
enhanced by DNN achieves over 97% accuracy and less
than 2% false positive rate on an advanced grid layout.

Our preliminary work has been published in ACM CCS
2017 [16]. In this journal paper, we have made revision with
comprehensive additions to the design, implementation,
and evaluation of the approach. Specifically, we proposed a
vibration profile extraction mechanism based on deep learn-
ing. This mechanism aims to enhance the authentication
performance when using either PIN number or lock pattern.
Moreover, we implemented an end-to-end prototype of the
real-time user authentication system by using a pair of low-
cost piezoelectric sensors and developed an Android app.
In addition to the 3 × 3 small grid layout presented in the
conference paper, we further evaluated our system on a
larger 4 × 4 grid layout with more virtual grid points to
validate the system’s scalability. Furthermore, we extended
our study to investigate the authentication performance on
various surface sizes and different material types in addition
to the wooden table and door panel originally reported in
the conference paper.

2 RELATED WORK

User authentication becomes a critical step under the grow-
ing privacy concerns. Traditional user authentications uti-
lize text-based passwords [2]. To ensure that a user’s pass-
word cannot be easily guessed, the user has to memo-
rize long strings of random characters, making it incon-
venient [4]. Graphical passwords are proposed to ease the
memory burden by letting users choose their pre-selected
images from random choices of pictures [3], [4], [6] or Cued
Clicked Points (CCP) in a sequence of images [20]. Addi-
tionally, grid lock pattern based approaches [5], [21] have
been widely adopted to keep the user’s mobile devices pro-
tected. Recent graphical authentication methods can resist
shoulder surfing attacks by utilizing the Convex Hull Click
Scheme [22] or the eye-gaze version of CCP [23]. However,
these strategies eventually perform the authentication based
on the knowledge of the passwords (e.g., text-based, image-
based and lock pattern-based) and cannot tell whether the
password is entered by the legitimate user.

















(a) Vibration signal propagation char-
acteristics















 



(b) Vibration model under
finger touch

Fig. 2. Illustration of the propagation characteristics of vibration signals
on a solid surface.

To ensure that the secret inputs used for authentica-
tion are physically from the legitimate user, biometrics-
based schemes (e.g., fingerprints [8], iris patterns [7], retina
patterns [9], and face [10]) have been drawn considerable
attention recently. However, physiological biometrics are
sensitive personal information, which may involve privacy
concerns, thus are not widely accepted. To reduce the pri-
vacy concerns, a compromised approach is to authenticate
users based on their behavioral characteristics, including
unique keystroke dynamic [24], mouse movements [25], and
gait patterns [26]. Although these approaches are less sen-
sitive in terms of privacy, they are designed for continuous
user verification during the period that the user operates
the keyboard, moves a mouse or takes a walk, rather than
one-time authentication.

To provide authentication to the emerging smart access
systems needed by corporate facilities, apartment buildings,
hotel rooms, and smart homes, techniques involving inter-
com [27], camera [28], access card [29] and fingerprint [8]
have been explored. For example, KinWrite [28] uses Kinect,
a vision-based platform, to capture the user’s 3D handwrit-
ing patterns for authentication. These approaches usually
involve expensive hardware, complex installation process,
and diverse maintenance efforts. Recent studies successfully
combine 2D handwriting and behavior features such as
corresponding writing pressure, writing speed, and corre-
lation between multiple fingers on touch screens to provide
enhanced security [30], [31], [32]. The limitation is that the
authentication relies on touch screens, which may suffer
from smudge attacks [33] and are not always available
in smart access systems. Toward this end, we propose to
extend the authentication process beyond touch screens to
any solid surface leveraging vibration signals. Our proposed
system will have the authentication capability in a broad
array of applications including entry access (e.g., smart
building, car doors) and supporting customized services in
appliances and devices at smart homes. The authentication
process combines password and human physical traits, and
supports three types of secret including PIN, lock pattern,
and gesture input for emerging smart access systems.

3 PHYSICAL VIBRATION PROPAGATION

Physical vibration transfers the initial energy through a
medium by a mechanical wave. It experiences attenua-
tion along the propagation path and reflection/diffraction
when the signal hits the boundary of two different me-
dia. Figure 2(a) illustrates the reflection and diffraction of
a vibration signal propagating in a solid surface when a
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 with SVM/DNN

Fig. 3. Overview of the system architecture.

finger touches the area in between the vibration motor and
receiver. As described in our conference paper [16], the vi-
bration signal is affected by the finger touching location and
traverses different paths before reaching the vibration re-
ceiver. Thus, the touching location information is embedded
in the various interference effects captured by the receiver.
Specifically, we consider a spring-mass-damper system, as
shown in Figure 2(b), to model the vibration effect on
the object under an external force caused by the finger
touch. We leave the detailed analysis of the model in our
conference paper [16]. This model shows the displacement
of medium is dependent on the external force. Therefore,
the finger touching force could be captured by analyzing
the received vibration signals and utilized as a biometric-
associated feature in our system.

In addition, Dong et al. [34] experimentally demonstrate
that the vibration energy absorbed into the human finger-
hand-arm system is different under different vibration fre-
quencies. In our empirical study we find that the frequency
response of the same user finger-press presents higher corre-
lation than that of different users when they touch the same
location on a surface. This important observation suggests
that the vibration propagation properties are strongly influ-
enced by unique human physical traits such as contacting
area, touching force and etc., which can assist ubiquitous
user authentication together with passcode on any surface
beyond touch screens.

4 APPROACH OVERVIEW

4.1 System Overview

As illustrated in Figure 3, when the vibration motor gen-
erates low annoyance vibrations, the system starts taking
inputs of vibration signals from the vibration receiver. The
system first performs Data Calibration (Section 5.2) including
data synchronization and clock drift effect mitigation to
synchronize the received vibration signals and eliminate
the clock drift effects caused by the inconsistent sampling
frequency.

The system then extracts and selects vibration features
(Section 5) in the frequency domain from the synchronized
vibration signals within a sliding window. We find that







































Fig. 4. Example of generated
vibrations between 16kHz and
22kHz.
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Fig. 5. Illustration of clock drift ef-
fect mitigation.

Spectral Point-based Feature (i.e., frequency amplitude of
each spectral point) and MFCC-based Feature (Mel-frequency
cepstral coefficient [35]) reflect the intrinsic physical traits
embedded in the user’s finger inputs. The system further
performs feature selection based on the Fisher Score [36] on
top of the Spectral Point-based and MFCC-based features by
selecting a subset of features exhibiting more discriminative
power among different touching locations as well as main-
taining feature consistency within each touching location.

The extracted vibration features are used by two phases
in the system: profiling and authentication. In the profiling
phase, the features are extracted and captured while a user
first enrolls in the system and presses his finger at different
grid points on the touching surface. These features are
labeled and saved to build the user’s profile in Grid Profile
Construction.

During the authentication phase, the received vibration
signals are utilized to extract vibration features. The ex-
tracted features then serve as inputs to Grid Point Index
Trace Derivation via a classifier based on Supporting Vector
Machine (SVM) for a simple grid layout or deep neural
network (DNN) for an advanced grid layout trained by the
grid profiles. The classifier compares the extracted features
with the stored ones in the profile. The derived grid point
trace would then be put into Grid Point Index Filtering
(Section 6.3) to eliminate the incorrectly classified grid point
indices and obtain the ones corresponding to the finger
presses in the grid point index trace. Next, the filtered grid
point trace would be recovered to the PIN sequence/lock
pattern via PIN Sequence Derivation or Lock Pattern Deriva-
tion (Section 6.4). The recovered PIN number/lock pattern
is then compared with the local stored PIN/lock pattern
information for the final authentication.

Independently, the proposed system also enables the
user to perform simple gestures (e.g., drawing a circle
on the surface) for authentication without the restrictions
of pressing/passing the grid points on the authentication
surface. Different from the fixed grids in PIN/lock pattern
based authentication, using gestures provides more flexi-
bility. However, even for the same user, the finger gesture
could be inconsistent at different times. Thus our system
needs to tolerate the inconsistency while preserving indi-
vidual diversity.

In particular, during the gesture-based authentication,
the system first identifies the signal segment containing the
gesture operation via Gesture Segmentation. In the profiling
phase, the extracted feature sequence (i.e., Spectral Point-
based and MFCC-based features) from the gesture segments
are saved to build the user’s profile. To measure the simi-
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(b) Distinguishable spectral points
when a finger presses 4 different
locations

Fig. 6. Illustration of the frequency response of the received vibrations in
a 0.2s time window. And the frequency response is depicted at spectral
points when a finger presses 4 different locations of a desk.

larity of generated features in the authentication phase to
the gesture profiles, we address the gesture inconsistency
problem by considering both time warped feature sequences
and the distribution of the features. This is achieved by
calculating both MD-DTW (Multi-Dimensional Dynamic
Time Warping) Distance [37] and EMD (Earth Mover Dis-
tance) [38] of the extracted feature sequences. The weighted
distance combination in Weighted Distance Matching obtains
the combined distance from both techniques. Finally, the
system makes decision as user authenticated or access de-
nied by checking a threshold to the calculated distances
between input gestures and the stored profiles.

5 VIBRATION SIGNAL DESIGN AND FEATURE EX-

TRACTION & SELECTION

5.1 Vibration Signal Design

To facilitate finger-input based user authentication via phys-
ical vibration, the vibration signals used in our system
need to contain a broad range of frequencies to increase
the diversity of vibration features in the frequency domain.
Specifically, we generate repeated chirp vibration signals to
linearly sweep frequency within the range from 16kHz to
22kHz, which are hardly audible to most human ears [39].
Figure 4 illustrates an example of the generated vibra-
tion signal and its corresponding spectrogram. In partic-
ular, there is a short pseudo-noise (PN) sequence pream-
ble played before the repeated chirp vibrations, which is
used for the signal synchronization. We leave the details
in Section 5.2. After transmitting PN pilot, with a 50ms
pause, the vibration motor repeatedly transmits the chirp
vibration signal to keep its continuous sensing capability
while performing authentication. The length of each chirp
vibration signal is set to T=10ms, which provides high time
resolution to enable continuously finger-input sensing.

5.2 Vibration Signal Calibration

Vibration Signal Synchronization. The timing of the sys-
tem’s vibration motor and receiver needs to be synchronized
so that each sliding window used for vibration feature ex-
traction contains the same part of the chirp signals without
time delay. We address this issue by leveraging the ideal
autocorrelation properties of adding a pseudo-noise (PN)
sequence preamble (i.e., 2400 samples) [40] at the begin-
ning of the generated chirp vibration signals as Figure 4
shows. We then synchronize the received vibrations using
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Fig. 7. Fisher score of the feature candidates (a) spectral point based
and (b) MFCC based.

cross-correlation between the PN sequence of the received
vibration signals and the known generated PN sequence.

Clock Drift Effect Mitigation. The Analog to Digital
Converter (ADC) is usually configured to convert the ana-
log voltage signals produced by the sensor into digitized
signals at a fixed sampling frequency driven by different
application requirements. However, we experimentally find
the sampling rate may not be a fixed value over time due
to the imperfect clock, and a small gap exists between the
actual sampling rate and the configured sampling rate. To
eliminate the clock drift effect, we estimate the sampling
rate offset during a short calibration phase at the beginning.
Specifically, the vibration motor periodically sends a short
vibration chirp with a fixed time interval (e.g., 2s). The time
intervals between these chirps should be a fixed value as
well if there is no clock drift. We use cross-correlation to
measure the sample delays of the received vibration chirps
over time as illustrated in Figure 5. We observe that the
number of delayed samples increases linearly over time,
indicating the actual sampling rate is slightly larger than
the configured value but remains relatively fixed. We then
use a least-squares based approach to fit a quadratic curve
to the measured delayed samples, and obtain the slop k to
shift the starting point Sp of each received vibration chirp
to Sp = Sp − ⌊kt⌋, where t is the time interval between the
current vibration chirp and the first received vibration chirp.

5.3 Spectral Point-based Feature Extraction

In order to extract unique vibration features from the
received vibrations to discriminate the finger touches on
different surface locations and distinguish different users
touching a same surface location, we first analyze the re-
ceived vibration signals in the frequency domain using a
200ms sliding window. Figure 6(a) presents an example of
the Fast Fourier Transform (FFT) of a time series of the
received vibration signals, ranging from 16kHz to 22kHz,
in a sliding window. The transmitted chirp vibration signal
has fundamental frequencies that are all multiples of the
frequency 1/T Hz, where T is the time duration of each
chirp vibration signal (e.g., T = 0.01s in this work). We find
that the amplitudes of some designated frequency compo-
nents in the signals (i.e., peak values in Figure 6(a)), called
spectral points, are most sensitive to the minute changes
caused by finger touching or swiping. These spectral points
are more sensitive to the finger touches and could be utilized
to differentiate different surface locations finger presses or
finger moving along. For example, in our preliminary ex-
periments, the vibration signals are collected when a user’s
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(a) User presses a PIN se-
quence “1267” and swipes a
lock pattern “1− 2− 5− 9” on
a 3× 3 grid
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(b) Estimated finger position trace
in terms of grid point index when
the user enters the PIN sequence
“1267”
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(c) Estimated finger position trace
in terms of grid point index when
the user swipes the lock pattern
“1− 2− 5− 9”
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(d) Example of an attacker enter-
ing the legitimate user’s PIN se-
quence “1267” on the same grid of
the same desk surface

Fig. 8. Example of PIN sequence/lock pattern derivation in sliding windows when entering a PIN sequence/lock pattern on a solid surface.

finger presses at four different locations of a solid surface
(i.e., wooden table) equipped with our vibration motor and
receiver. We observe obvious distinguishable patterns of
the frequency amplitude at these 60 spectral points (i.e.,
22000−16000

100
= 60) between different locations, which are

shown in Figure 6(b). Furthermore, the spectral points in the
frequency domain may not be exactly spaced at 100Hz due
to imperfect sampling module. We thus design a threshold-
based strategy (i.e., minimum distance between two neigh-
boring peaks and minimum height of each detected peak) to
find peaks of the frequency response to extract each spectral
point feature.

5.4 MFCC-based Feature Extraction

The Mel-frequency cepstral coefficient (MFCC) is widely
used to represent the short-term power spectrum of acoustic
or vibration signals [35] and can represent the dynamic
features of the signals with both linear and nonlinear prop-
erties. While the MFCCs are able to distinguish people’s
sound differences in speech and voice recognition, we find
that they can also characterize the vibration signals trans-
mitting via the medium of a solid surface on which the
user’s finger touches, because the user’s behavioral and
physiological characteristics (e.g., touch area and pressure)
and the touching position can cause different changes to
the vibration propagation. We thus extract the MFCC-based
features to characterize the different vibration signatures
when the user touches or writes at different positions on
the surface. In particular, we calculate the MFCCs of the
received vibration signals in each sliding window. The
number of filterbank channels is set to 32, and 16-th order
cepstral coefficients are computed in each 20ms Hanning
window, shifting 2ms each time. We leave the details of
correlation-based effectiveness verification for the MFCC-
based feature in our conference paper [16].

5.5 Feature Selection based on Fisher Score

From our experiments, we observe that not all extracted fea-
tures including both spectral points and MFCC are unique
enough to discriminate different touching locations and
distinguish different users touching the same location. The
discrimination power is dependent on the extracted features
at specific frequencies or Mel-frequency bands. We therefore
propose to select features based on Fisher Score [36] to find
a subset of features which are more distinct between classes
(i.e., touching locations per user) and consistent within a

class. The fisher score of the r-th feature candidate is defined
as follows:

Fr =

∑c

i=1
ni(µi − µ)2∑c

i=1
niδ2i

, (1)

where ni is the number of instances in class i. And µi and
δ2i denote the mean and variance of class i, i = 1, ..., c,
corresponding to the r-th feature candidate. µ denotes the
mean of r-th feature candidates in the whole data sets.

To analyze the feature difference between different fre-
quency bands, we consider each spectral point or MFCCs
at each frequency band as an individual feature candidate.
Figure 7 shows the normalized fisher scores of both the
spectral point based and MFCC based features that we use
to perform user authentication. In this work, we empirically
choose top 30 spectral point based features, and top 8
MFCC based features which are more sensitive to the finger
pressing and swiping.

By applying the feature selection method based on Fisher
Score, we could enhance the performance of the SVM-based
grid point index derivation method introduced in Section 6
via eliminating features that are less distinguishable to the
touching locations and user identities. Moreover, for the
DNN-based grid point index derivation that can automat-
ically adjust the weights of features, feature selection can
reduce the size of the spectral point and MFCC based
features to accelerate the model profiling and grid point
index derivation processes. Therefore, the Fisher Score-
based feature selection could generate compact and effective
features to satisfy both the SVM and DNN based grid point
index derivation methods and enable efficient computation
on mobile IoT devices.

6 AUTHENTICATION USING PIN NUMBERS AND

LOCK PATTERNS

6.1 Deriving Grid Point Index Traces Based on SVM

The system takes the received vibration signals as input
when the user enters PIN sequence/lock pattern. In par-
ticular, we apply a sliding window to the vibration signals
and derive vibration features (e.g., spectrum-based feature
and MFCC-based feature) in every sliding window. We then
apply a machine learning-based grid point classifier based
on the Support Vector Machine (SVM) using LIBSVM [41]
to estimate the finger-press positions by leveraging the
user’s personal grid profile. The resulted grid point index
trace is actually an estimated finger-press position trace
which reflects the finger position changes among the grid
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Fig. 9. Demonstration of the deep neural network-based classifier.

point indices in the entire PIN sequence/lock pattern input
duration. Note that when we derive grid point index trace, it
involves user’s behavior and physical characteristics. Based
on the derived grid point index trace, we can recognize
the user’s PIN sequence/lock pattern input and verify their
identities. An example of PIN sequence/lock pattern deriva-
tion is given in Figure 8, as explained in our conference
paper [16], where the legitimate user inputs PIN sequence
“1267” and lock pattern “1-2-5-9” as Figure 8(a) shows. Our
system correctly recognizes the user’s PIN sequence as in
Figure 8(b) and lock pattern as in Figure 8(c). The attacker’s
input is mistakenly recognized, thus rejected by the system
as shown in Figure 8(d).

6.2 Deriving Grid Point Index Traces Based on Neural

Network

The SVM-based classifier gives reasonable predictions when
authenticating users on the simple grid layout. However,
many real-world applications such as the virtual PIN pad,
virtual keyboard, and handwriting authentication, bring
eager demands for more authentication grid points. As
we extend the preliminary system on the advanced grid
layout, we observe the authentication accuracy of the SVM-
based system decreases below the threshold to support
the user authentication. This is because SVM gains multi-
class classification capabilities [42], [43], [44] by converting
multi-classification problems into many binary classification
problems [45], [46]. Therefore, the authentication efficiency
decreases as more grid points are added. Toward this end,
we leverage deep learning techniques that intrinsically sup-
port multi-class classification to enhance the authentication
capability of the developed system. Meanwhile, given that
SVM has low computational overhead and is effective for
a lightweight deployment, we preserve the SVM-based sys-
tem as an alternative for lightweight systems with restricted
computational resources on the simple grid layout.

Specifically, we design a four-layer deep neural network
as demonstrated in Figure 9. To find the suitable structure of
the neural network, we start with a basic three-layer DNN
model and gradually adjust the number of neurons and lay-
ers to seek the balance between authentication accuracy and
model complexity. Through many rounds of trials, we find
that a four-layer DNN could achieve high authentication
accuracy and is sufficiently lightweight to fit in mobile IoT
devices. This neural network takes both the spectral point-
based feature and MFCC-based feature as inputs. We then
apply two fully connected hidden layers to extract unique

vibration characteristics. To accommodate both simple and
advanced grid layouts, we empirically deploy 30 neurons in
Hidden Layer 1 and 20 neurons in Hidden Layer 2 for the sim-
ple grid layout; whereas for the advanced grid layout, the
deployed neurons are increased to 120 and 60 respectively.
We use tanh as the activation function for HiddenLayer1
and sigmoid for HiddenLayer2. After that, the softmax
layer outputs the predicted grid point index. We use mean
square error (MSE) as the loss function to estimate the
deviation between the inference results and ground truth for
model optimization. The derived neural network converges
within 200 iterations in the training stage, which only takes
around 5 seconds on a consumer laptop equipped with a
quad-core Intel Core i5 processor.

When deploying the DNN-based authentication system
in real-time, user profiles are usually collected over a limited
time period (i.e., 5 seconds) for better user experiences.
However, DNN requires enormous training samples to
build effective models. Therefore, we need to address the
overfitting issue caused by the limited finger-input samples.
Particularly, an overfitted model requires the user to per-
form highly identical finger input as in the profiling stage.
Although the system security is enhanced by requiring strict
input consistency, as a trade-off, even the legitimate user
can be denied by the system due to the increased false
negative rate. To address the overfitting issue without com-
promising the system integrity, we apply neuron pruning
techniques [47] to properly restrict the fitting capability and
accelerate the inference process. Particularly, we utilize the
magnitude-based weight pruning API provided in Tensor-
Flow [48] to set the values of up to 50% of weights as zeros.
The pruned DNN model holds high sparsity as the compu-
tations related to the zero-weight neurons could be skipped
at the inference stage. As a result, the pruned DNN model
could further accelerate the inference speed and is more
resistant to overfitting due to its simplified structure [49].
Moreover, we add dropout layers that randomly invalidate
20% of neurons and apply early stopping strategy to pre-
vent the model from converging to a local optimum. Our
fine-tuned deep neural network can effectively extract the
user’s grid profiles from the captured finger-input events.
At the inference stage, the continuous vibration signals are
processed based on small sliding windows (i.e., 200ms) to
further reduce the computational cost. We observe that on
regular Android smartphones (e.g., Google Nexus 6), our
pre-trained DNN model could achieve near real-time user
experiences with negligible latency.

6.3 Grid Point Index Filtering

In practice, the derived grid point index traces contain
incorrectly classified grid point indices caused by the vary-
ing finger touching area and force when the finger is just
detaching or pressing on the surface (e.g., the noises in
Figure 8(b)), or the swiping finger is far from any of the
predesigned profiled virtual keys (e.g., the noisy indices
in Figure 8(c)). Therefore, we develop a grid point index
filter to determine the segments that have consecutive same
grid point indices, which could provide more reliable results
for identifying the PIN sequence/lock pattern. The grid
point index filter consists of three steps: 1) calculating the
difference between every two consecutive grid point indices
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Triangle Square Circle
Two Finger 

Swiping

Fig. 10. Illustration of the four pre-defined finger gestures for gesture-
based authentication.

in the trace; 2) searching for the starting and ending points
of the consecutive differential grid point indices (i.e., 0s) to
extract finger-press segment, indicating the finger positions
of the firm finger presses right on or near virtual keys; 3)
removing the grid point indices from the trace that are out
of the finger-press segments. The red dots in Figure 8(b)
and Figure 8(c) are filtered grid point indices for the PIN
sequence and lock pattern derivation, respectively.

6.4 PIN Sequence/Lock-pattern Derivation

Next, we further confirm each finger-press segment based
on their length of time and remove the incorrect finger lo-
cation estimations to derive the PIN sequence/lock pattern.
The intuition is that when users enter their PIN sequences or
draw their lock patterns, the finger pressing process will last
for certain amount of time. The grid point index segments
shorter than this amount of time are highly possible to be
incorrect finger location estimations. We empirically deter-
mine the threshold of minimum finger-press duration (i.e.,
300ms) to remove the finger-press segments with shorter
time duration. Finally, given the length of the user’s PIN
sequence/lock pattern, the system finds the same number
of the longest finger-press segments as the valid finger-press
segments and derives the PIN sequence/lock pattern by
mapping the segments’ grid point indices to virtual keys.

6.5 Grid Profile Construction

Our PIN/Lock-pattern based authentication requires con-
structing the user’s profile corresponding to every grid
point, which enables successful identification of the input
virtual keys during authentication. Specifically, the system
records a short time period (e.g., 1 to 5 seconds per grid
point) of received vibration signals when the user presses at
each grid point. The recorded vibration signals are used to
derive the vibration features in sliding windows. The feature
in each sliding window is labeled with corresponding grid
point index. In addition, we also build a profile when no
finger touches the surface and label it as “E” (i.e.,“empty”)
to discriminate whether a finger presses on the surface.

7 AUTHENTICATION USING GESTURES

7.1 Gesture Segmentation

Our system defines four simple finger gestures as shown
in Figure 10: swiping a single finger along three patterns
including a triangle, square and circle, and swiping two
fingers horizontally. To facilitate the gesture-based authen-
tication, our system needs to first detect the occurrence
of the user’s gesture. Specifically, the system first extracts
vibration features from spectral points and MFCC, then
calculates vibration feature differences between the received
vibration signals and those in the profile when no finger
touches on the surface. When the user inputs a gesture, the
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sponse at a spectral point for two
users swiping a same gesture.

finger swipes on the surface, causing the vibration features
to differ largely from those when there is no finger touching.
Figure 11 shows an example of calculated vibration feature
differences when the user inputs square gestures on the
surface for five times. We observe that the vibration feature
difference rises as the finger swipes on the surface and
drops when the finger releases from the surface. We thus
normalize the vibration feature differences and segment
each gesture via a threshold.

7.2 Distance Calculation of Feature Sequence

User authentication using such simple gestures is much
harder due to lack of unique secrecy to discriminate differ-
ent users. Moreover, the gesture inconsistency (i.e., swiping
speed, duration, and trajectory of the same user’s gestures)
would lead to varying density of locations within the
swiped pattern. To solve this, we resort to two techniques
that complete the authentication process in high accuracy
to cope with the challenges. The Dynamic Time Warping
(DTW) [37] is exploited to deal with gesture inconsistency,
and the earth mover’s distance (EMD) [38] technique is em-
ployed to preserve individual diversity because the feature
distribution of the same user should have a higher similarity
than that from different users.

Specifically, we first derive a time series of vibration
features based on the vibration signals in segmented ges-
tures using a sliding window. The DTW technique stretches
and compresses required parts to allow a proper compar-
ison between two data sequences. Therefore, it is useful
to compare the vibration feature traces extracted from two
segmented gestures. The extracted vibration features report
both frequency amplitude and MFCC coefficients, which
are discussed in Section 5. To perform multidimensional
sequence alignment, our system applies Multi-Dimensional
Dynamic Time Warping (MD-DTW) [37], in which the vector
norm is utilized to calculate the distance matrix according
to:

d(vi, v
′

j) =
P∑

p=1

(vi(p)− v′j(p))
2, (2)

where V = v1, v2, ..., vT and V ′=v′
1
, v′

2
, ..., v′T are two vibra-

tion feature traces for gesture discrimination, and P is the
number of dimensions of the sequence data (i.e., the number
of extracted features within each window). A least cost path
is found through this matrix and the MD-DTW distance is
the sum of the matrix elements along the path.

Besides time warped feature sequence, we find that the
histogram of the spectral point based features preserve
individual diversity and can be used to distinguish different
users when even the same gesture is swiped. Figure 12

Authorized licensed use limited to: Rutgers University. Downloaded on January 16,2022 at 01:51:06 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3057083, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. ?, NO. ?, ? 2020 9

Fig. 13. Four prototypes of our system on the wooden table, door panel,
acrylic, and glass panel.

shows the feasibility study results where two users swipe
their fingers following an exactly same circle gesture pattern
on a desk surface. The histogram of frequency response
(quantized to 10 bins) at a specific spectral point during
their swiping presents distinct distributions that can clearly
distinguish these two users. We thus take the advantage
of the EMD-based distribution difference to preserve the
individual diversity during the gesture-based authentica-
tion. Specifically, we normalize the EMD distance and MD-
DTW distance to be integrated for final authentication. If
the integrated distance to the gesture profiles is larger than
a threshold, our system regards the swiped gesture as an
unknown gesture and fails the authentication. Otherwise,
we consider the swiped gesture is from the user whose
profile results in the minimum integrated MD-DTW and
EMD distance.

7.3 Gesture Profile Construction

Unlike grid point profile construction, the proposed system
does not need to construct profiles for each grid point for the
gesture-based authentication. Instead, when constructing
the gesture profile for a particular user, the system collects
the vibration signals while the user swipes a finger follow-
ing a predefined gesture. In particular, we use the sequence
of the vibration features extracted from the segmented
signals for building individual gesture profile. Though the
profile only contains simple gestures, such profile contains
the user’s unique behavior and physiological characteristics
and is sufficient to perform user authentication. We also
build a profile when there is no finger touching on the
surface to determine the presence of finger touching.

8 PERFORMANCE EVALUATION

8.1 Prototype Implementation

Test Surface. We evaluate the performance of the user
authentication and system scalability using PIN and lock
patterns on both the simple 3 × 3 grid layout and the
advanced 4 × 4 grid layout. The grid is drawn on a solid
surface in a typical office environment. The distance be-
tween the adjacent grid points is 3cm. In practice, the grid
arrangement could be flexibly extended as needed. We build
our prototypes on four different types of surfaces. The
prototype setups are illustrated in Figure 13. We used (1)
wood surfaces, including a wooden table with the testing

(a) Profiling module of the
Android app

(b) Authentication module
of the Android app

Fig. 14. User interface screenshots of the Android app.

region resided below the vibration motor and receiver and
a wood sheet (30.48cm×15.24cm×1.91cm) with the testing
region resided between the vibration sensors; (2) a door
panel with the testing region resided in between the motor
and receiver; (3) acrylic panels (30.48cm×30.48cm×0.32cm
and 30.48cm × 30.48cm × 0.64cm) with the testing re-
gion resided in between the sensors; and (4) a glass panel
(30.48cm × 30.48cm × 0.24cm) with the testing region
resided in between the sensors.

Vibration Generator and Receiver. To further scale
down the size and cost of our system, we replace the
vibration motor and receiver used in our conference paper
(i.e., the linear resonant actuator and bulky piezoelectric
sensor) with a pair of low-cost, highly compact piezoelectric
sensors (9mm diameter). The new pair of sensors could be
easily attached to any solid surface. Moreover, the high fre-
quency of the generated vibrations, i.e., 18-22kHz, and the
ultra-low vibration strength provided by the piezoelectric
sensors make the generated surface vibrations imperceptible
to humans. We use a low-cost Bluetooth pairing device
wired to the vibration motor to capture the designed signals
transmitted from the user’s device. The received signals will
be amplified by a connected low-power amplifier, then con-
verted to physical vibrations via the piezoelectric vibration
motor. Note that our system has the flexibility to be further
integrated into existing environments, and can easily add
on wireless support, such as WiFi, to achieve wireless user
authentication.

Android Authentication App. Our system can be used
either as a standalone system or be integrated into mobile
devices. The system can work with any devices that lack
touchscreens, such as IoT devices or embedded systems,
to enable user authentication. In our implementation, the
Android phone is an emulation of a device on which the sys-
tem could be implemented in the real-world. The developed
Android app allows transceiving vibration signals, con-
structing grid/gesture profiles, and performing real-time
authentication on a single device. Specifically, the Android
app consists of two modules: profiling and authentication. The
user interface of profiling module is shown as Figure 14(a).
To start capturing the grid point profile, the user can follow
the instructions displayed on the screen and tap the grid
point button intended to record, then press the finger on
the corresponding grid point to complete the grid profil-
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DNN.
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Fig. 17. Gesture based authen-
tication of verifying legitimate
users when the testing region
is below the vibration motor and
receiver.

ing. Similarly, the gesture profile could be constructed by
simply clicking the record button then swiping the gesture
through the grid points. After the profiles are constructed,
the user can select the type of secret and perform real-
time verification in the authentication module as shown in
Figure 14(b). The app takes the vibration signals captured by
the piezoelectric receiver through a 3.5mm headphone jack
as the input. The spectral point and MFCC-based features
are then extracted on the user’s Android device. Based on
the deployed grid layout, the selected features are fed into
the SVM/DNN classifier accordingly. We implement the
DNN model based on TensorFlow Lite [48].

Compared to other authentication systems based on
cameras, touchscreens, or biometric readers, we explore
low-cost and compact settings (i.e., piezoelectric sensors) for
the potential of wide-deployment (e.g., apartments, hotel
rooms, office). The estimated cost of building such an end-
to-end authentication system could be maintained around
tens of dollars (e.g., $20 ∼ $50).

8.2 Evaluation Scenarios & Data Collection

8.2.1 Legitimate User Verification

We evaluate the performance of the system under 3 types
of authentication1. Our data is collected across a three-
month period, with 15 participants involved. Before the data
collection, we allow users to input on the authenticating
surface to get familiar with the system. a) For PIN number
based authentication, each user is asked to sequentially
press the 9 grid points for 5 seconds to create his/her grid
profiles. During verification, each user presses 10 random
4-digit PIN sequences as their passcodes. b) For lock pat-
tern based authentication, our system uses the same grid
profiles. During testing, each user swipes a lock pattern
10 times to verify the authentication performance. c) For
gesture based authentication, each user chooses one of the
four gestures shown in Figure 10 as their preferred gestures
and swipes the finger gesture 10 times. In total, we collected
450 genuine inputs (i.e., PIN sequences, lock patterns and
gestures) to evaluate the system. We further collected attack
inputs to evaluate the performance under attack scenarios.

8.2.2 Various Attack Scenarios

We evaluate the robustness of the system under various
types of attack. Specifically, we choose one user as a legiti-
mate user and the rest as attackers to launch the attacks.

1. The study has been approved by our institute IRB.

Blind Attack. The attacker randomly guesses the legiti-
mate user’s PIN number, lock pattern and gesture. Then the
attacker uses his/her finger to press and swipe on the solid
surface for 10 times. In total, we collected 420 blind attack
inputs.

Credential-aware Attack. The attacker knows the legit-
imate user’s passcode (i.e., PIN/lock pattern/gesture) but
has not observed how the legitimate user presses his/her
PIN numbers or swipes his/her lock patterns and gestures
on the authentication surface. The attacker inputs passcode
10 times without knowing the legitimate user’s detailed
behavior. In total, we collected 420 inputs.

Knowledgeable Observer Attack. The attacker both
knows the legitimate user’s passcode and observes how the
legitimate user inputs them on the authentication surface.
Each attacker practices 5 times then inputs the passcode
10 times trying to pass the authentication. 420 inputs are
collected.

Side-channel Attack. In addition, we perform the side-
channel attack by placing additional vibration receivers on
the authentication surface. In particular, two receivers are
employed: one is placed adjacent to the original receiver,
whereas the other is placed at the other side of the surface
opposite to the original receiver.

8.3 Evaluation Metrics

Verification Accuracy/Attack Success Rate of PIN Number-
based Authentication. This metric shows the percentage of
correctly verified PIN numbers entered by the legitimate
user or attacker respectively during the user authentication
process. Specifically, it includes the complete PIN sequence
verification accuracy and the PIN digit verification accuracy.
The complete PIN sequence verification accuracy measures
the rate of the user’s input PINs being completely recog-
nized (i.e., all numbers in the PIN sequence are correctly
recognized), while the PIN digit identification accuracy
shows the rate of correctly recognizing each single PIN digit.

Verification Accuracy/Attack Success Rate of Lock
Pattern-based Authentication. The verification accu-
racy/attack success rate shows the percentage of correctly
verified lock patterns input by the legitimate user or attacker
respectively during the user authentication phase. Similarly,
it includes the complete lock pattern verification accuracy
and lock pattern segment verification accuracy.

ROC Curve of Gesture-based Authentication. The ROC
curve is a plot of the true positive rate (TPR) over the
false positive rate (FPR). The TPR denotes the rate of the
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legitimate users passing the authentication while the FPR
denotes the rate of the attackers successfully passing the
system. Through varying the feature distance threshold in
gesture-based authentication, we can achieve varied TPR
and FPR and further obtain ROC curves to evaluate the
system performance.

8.4 System Performance of Verifying Legitimate Users

PIN Number-based Verification. Figure 15 shows the iden-
tification accuracy of each PIN digit and the complete
PIN sequence of 15 legitimate users based on SVM and
DNN. Our PIN number based authentication achieves a
high verification accuracy for both classifiers. Specifically,
for the SVM-based prototype, users can obtain over 95%
verification accuracy for each PIN digit. The mean veri-
fication accuracy for the complete PIN sequence reaches
90%. For the DNN-based prototype, the accuracy for both
single PIN digit and complete PIN sequence improve to
97% and 92% respectively. Meanwhile, DNN shows less
volatile verification accuracy among different users, with the
baseline accuracy rises from 70% to 80%. Moreover, the veri-
fication accuracy of each PIN digit is higher than that of PIN
sequence because recognizing the complete PIN sequence
requires all the PIN numbers to be correctly identified. The
results show our system is effective in verifying legitimate
users.

Lock Pattern-based Verification. Figure 16(a) shows the
average authentication accuracy of the lock-pattern based
verification with different number of trials using SVM.
Specifically, the average verification accuracy of the com-
plete lock pattern reaches 79% with a single trial, and 95%
with two trials. DNN slightly outperforms SVM as demon-
strated in Figure 16(b). Particularly, for the first trial, the
DNN-based verification accuracy for the segmented indices
achieves over 83%. Within 3 trials, all 15 users are success-
fully authenticated. In addition, the accuracy of lock pattern
verification is slightly lower than that of the PIN number
verification, which indicates swiping a finger continuously
on the surface produces more errors than pressing the finger
on each individual grid point. The high verification accuracy
shows SVM-based system can achieve good performance
to authenticate users via lock patterns, and DNN classifier
can further improve the user experience by more accurate
verification with fewer attempts.

Gesture-based Verification. Figure 17 illustrates the ef-
fectiveness of legitimate user verification in gesture-based
authentication with ROC curves. 15 legitimate users per-
form their preferred simple gestures (i.e., one of four prede-
fined gestures as shown in Figure 10) ten times. With only
one training instance (i.e., one time swiping) for each user,
we observe that given a requirement of a 90% true positive
rate, we can achieve as low as a 5% false positive rate on
average, which indicates only around 5% of gesture trials
have gained unauthorized access. We also observe that the
using both DTW and EMD techniques can provide slightly
better performance than that of only using EMD technique,
since it considers the similarity in both time warped feature
sequences and the features’ distributions. The obtained high
verification accuracy and the low-training efforts demon-
strate that our system is capable to distinguish different
users even though they perform the same simple gesture
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Fig. 18. Performance of PIN num-
ber authentication under knowl-
edgeable observer attacks using
SVM and DNN.
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Fig. 19. Performance of lock pat-
tern authentication under knowl-
edgeable observer attacks using
SVM and DNN.

due to their distinct behavioral biometrics (i.e., finger tip
size and structures).

Multiple Authentication Trials and Fall-back Strategy.
Figure 16 shows the average verification rate under different
number of trials. We observe that both SVM and DNN-
based system can achieve over 99% verification rate for both
the PIN number and lock pattern inputs within three trials.
For the first-time user input, our system can achieve over
89% and 79% accuracy when the user enters PIN number
or lock pattern, respectively. Additionally, our system can
integrate with any fall-back strategy (e.g., a physical key) to
let the legitimate user bypass the system.

8.5 Attacks on Legitimate User’s Credentials

Under blind attacks, both our PIN number and lock pat-
tern based authentications can achieve close to zero attack
success rate. Similarly, for gesture-based authentication, the
TPR in the obtained ROC curve is close to 100% when the
FPR is close to 0%, which shows that the attackers’ random
gestures cannot successfully access the system.

Under credential-aware attacks, our system also achieves
close to 0% attack success rate for all three types of authen-
tications. Since the attackers do not possess the knowledge
of the detailed system settings (e.g., grid size, gesture region
and the authentication surface), the attackers’ finger-inputs
are hard to generate the similar impacts on the vibration
propagation as the legitimate users do. Knowledgeable ob-
server attack is the most extreme attack, where the attacker
is capable of knowing the user’s credentials and observing
the legitimate user’s finger inputs. Additionally, the attacker
has the knowledge of the system’s setting details and can
perform the finger inputs on the same authentication sur-
face. Thus in the rest of this paper, we present the perfor-
mance evaluation results of our system under this more
challenging knowledgeable observer attack.

PIN Number-based Authentication. Figure 18 shows
the performance of our system for PIN number based au-
thentication using SVM and DNN separately under knowl-
edgeable observer attack, where 1 of the 15 users alterna-
tively behaves as victim and other 14 users play as attackers.
We find that our system is very effective in defending
against attackers even though they have the knowledge of
the legitimate user’s PIN and use the same system setting
(e.g., grid size and authentication surface). In particular,
the attackers can only break an average of 7% single PIN
digits using the SVM-based prototype and 10% using the
DNN-based prototype. Notice that a complete PIN sequence
comprises multiple PIN digits. Therefore it is very unlikely
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Fig. 20. Performance for gesture based authentication in different se-
tups.

for the knowledgeable observer to break the proposed sys-
tem. Specifically, we observe the attackers can only achieve
around 2% attack success rate for verifying the complete
PIN sequences on the SVM-based prototype and 1% attack
success rate for the DNN-based prototype. We find that
although the DNN-based prototype shows a slightly higher
attack success rate for single PIN digit, the complete PIN
sequences authentication is less likely to compromise com-
pared to the SVM-based prototype.

Lock Pattern-based Authentication. Similarly, we ask 15
users to alternatively play the roles of one victim and four-
teen attackers. Each attacker swipes 10 lock patterns after
practice based on the knowledgeable observation. Figure 19
shows the attack success rate of lock pattern-based authen-
tication using SVM and DNN respectively. The results show
that the attackers are hard to pass the system even though
they imitate the legitimate user’s behavior to swipe the same
lock pattern on the same grid of the same authentication
surface after practice. Specifically, for user 4, 6-8 and 12-15
using SVM-based prototype, all the fourteen attackers fail to
attack the complete lock patterns in 10 trials. The average
attack success rates of the lock pattern segment and the
complete lock pattern are 5% and 11% respectively. For the
DNN-based prototype, none of the attackers break into the
system in our experiments. Although the attack success rate
for the lock pattern segment slightly increases compared
to SVM-based prototype, it is very difficult for the DNN-
based system to recognize an attacker as the legitimate user,
which requires all the lock pattern segments contained in a
complete lock pattern to be correctly recognized. Moreover,
we find the performance of the lock pattern based authenti-
cation under knowledgeable observer attack is comparably
good to that of the PIN number based authentication.

Gesture-based Authentication. We first evaluate the
system performance of gesture-based authentication on a
wooden setup using simple grid layout to compare the
performance of EMD only and EMD+DTW techniques. The
experiments are performed under the knowledgeable ob-
server attack, where attackers try to mimic the legitimate
user’s gesture input. Besides, we only rely on one training
data for the legitimate user to test the worst case in the
system. The ROC curve in Figure 20(a) shows that we
can achieve 3% average false positive rate with 80% true
positive rate using EMD + DTW. The EMD-only case shows
8% false positive rate and 80% true positive rate on average.
The results show that EMD+DTW technique can provide
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ber based authentication in verify-
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region is on a door panel.

better authentication performance than using EMD-only.
With the prior knowledge that EMD+DTW produces

lower false positives, we next evaluate our system on the
advanced grid layout using EMD+DTW technique. Both
knowledgeable observer attack and credential-aware attack
are evaluated. Figure 20(b) shows that under the knowl-
edgeable observer attack, false positive rate decreases to
around 1%, with the true positives remain at around 80%.
Under the credential-aware attack, the system achieves a
higher false positive rate around 4% with the true positives
unchanged. The results indicate that even for the most chal-
lenging knowledgeable observer attack, our system is still
effective in defending against attackers and can successfully
authenticate legitimate users.

8.6 Side-channel Attacks

Attacks via a Vibration Receiver. One may suspect that
attackers can place hidden receivers on the authentication
surface to recover the vibration signals and obtain the
unique features of the legitimate user. However, we observe
that the received vibration signals have strong relevance
to the placement of the receiving sensor because the cap-
tured vibrations comprise multiple components including
the direct-path vibrations propagated through the medium
surface and the multi-path reflections bounced inside the
medium. Therefore, even the malicious hidden receiver is
placed next to the system receiver, which increases chances
to get exposed, the minor difference in the sensor’s position
still prevents the attack receiver from capturing the same
vibrations as the system receiver. Since sensors cannot be
placed at the exact same location as the system receiver, we
place sensors at different locations where might be chosen
to perform side-channel attack (i.e., adjacent to the original
receiver and the other side of the surface opposite to the
original receiver). We generate vibration signals 20 times
and observe the mean and standard deviation of the Pearson
Correlation coefficients [50] between the signals received
by the original receiver and adversarial sensors. We find
that the correlation coefficients for all adversarial sensors
are very low (i.e., less than 0.2), which indicates that the
vibration signals received by hidden receivers present very
different patterns comparing to those received by the system
receiver. The results reveal that the attack via a hidden
vibration receiver is ineffective.

Attacks via a Nearby Microphone. A nearby micro-
phone can record the acoustic sounds emitted by the vi-
bration motor. However, a different transmission path (i.e.,
the air between the sensor and microphone) can largely
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Fig. 23. Verification accuracy of
PIN number based authentication
with different inter-grid point dis-
tances using DNN.
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Fig. 24. Verification accuracy of
PIN number based authentication
with different touching speed using
DNN.

change the signal patterns, making it also difficult to re-
cover the similar vibration signals received by the vibration
receiver. Additionally, a few new studies demonstrate that
physical vibrations can be recovered to a certain extent by
using wireless signals [51] and high-speed cameras [52].
However, these solutions can only recover relatively low-
quality signals due to the limits of the hardware sensing
ability in both vibration amplitude and frequency. Thus,
they are mainly used for eavesdropping human speech
sounds whose frequency typically falls below 1kHz.

8.7 Impact of Training Data Size

In PIN number/lock pattern-based verification, our system
achieves around 90% accuracy in identifying single PIN
digit/lock-pattern segment with the grid point training time
over 0.4s while the identification accuracy of complete PIN
sequences and lock pattern achieve over 80% with the
training time over 0.6s as shown in Figure 21. Moreover,
the PIN sequence/lock pattern based authentication can
achieve higher and steadier accuracy when the time is over
2s. As for the gesture-based authentication, the result is
different. Figure 17 and Figure 20(a) show that our gesture-
based verification can obtain high authentication accuracy
while training with a single gesture and our gesture-based
authentication system could work with a very small training
data size.

8.8 Impact of Grid Layout and Surface Types

We extend the virtual grid on the authentication surface
from 3×3 simple layout to an advanced 4×4 layout, which
could facilitate tangible applications such as the secure
virtual keyboard and palm authentication. We implement
our prototype for both grid layouts on wooden, acrylic and
glass surfaces with the testing region resided in between
the sensors to evaluate the robustness and scalability of the
proposed system. We recruit 10 volunteers to first construct
their grid profiles, then press at each PIN index for 10 times.
The verification accuracy of SVM and DNN-based prototype
both achieve over 95% on the simple grid layout for all
testing materials. Particularly, the wood sheet shows the
highest average accuracy of 97%, and the acrylic board and
glass panel shows 96% authentication accuracy. Different
surface dimensions of the same material show very limited
impact on the accuracy (less than 2%). The results show that
for the simple grid layout, both SVM and DNN classifier
can effectively identify users and can be deployed on a
broad range of surface types. For the advanced grid layout,
the SVM-based prototype shows around 80% verification
accuracy due to its intrinsic inefficiency for classifying more

grid points. By applying the DNN-enhanced prototype on
the advanced grid layout, the system achieves 96% verifica-
tion accuracy on the wood sheet and the lowest of around
95% on the acrylic and glass panel. Therefore, the devel-
oped system possesses high scalability that can meet the
requirements of different applications through the flexibility
endowed by integrating both SVM and DNN.

8.9 Impact of Inter-Grid Point Distance

The distance between neighboring grid points could be an
important factor affecting the input efficiency and verifica-
tion accuracy of our system. Therefore, in addition to the
3cm inter-grid point distance used in the aforementioned
evaluations, we further adopt 1.5cm and 4.5cm inter-grid
point distances on a wood panel with a 3 × 3 simple grid
layout to study the impact of inter-grid point distance on
the user authentication performance. Particularly, we recruit
5 participants to perform DNN-based PIN authentication
on the prototypes with 1.5cm and 4.5cm inter-grid point
distances. For each inter-grid point distance, every partici-
pant enters a 4-digit PIN sequence 10 times. As shown in
Figure 23, the average accuracy for verifying the complete
PIN sequence achieves 80% and 94% for the setup with
1.5cm and 4.5cm inter-grid point distance, respectively. For
verifying the PIN digits, the average verification accuracy
for the setup with 1.5cm inter-grid point distance is around
95%. For the setup with 4.5cm inter-grid point distance, the
average accuracy achieves close to 99%. The results show
that the verification accuracy decreases when the inter-grid
point distance is small (i.e., around 1.5cm). We find that the
user’s fingertip is more likely to cover the neighboring grid
points when touching on the setup with 1.5cm inter-grid
point distance. Therefore, the captured vibration signals
could contain the patterns from multiple grid points and
producing unreliable results. The verification performance
for a larger 4.5cm inter-grid point distance shows a compa-
rable accuracy to the setup with 3cm inter-grid point dis-
tance. Given that the inter-key distance for text keys should
be less than 5cm to achieve ideal input efficiency [53], the
optimal inter-grid point distance for real-world deployment
could be set as 3cm to 4.5cm for the balance between input
efficiency and verification accuracy.

8.10 Impact of Finger Touching Speed

In the PIN number-based authentication, the finger pressing
speed could also determine the stability of vibration sig-
nals and affect the verification performance. To investigate
the impact of touching speed, we use the same setup as
mentioned in Section 8.9. Specifically, 5 participants first
construct their grid point index profiles at a natural touching
speed (i.e., around 2s for each touch). Next, each participant
types a 4-digit PIN code for 10 times at a fast speed and
a slow speed respectively. For simplicity, we define the
touching events that finish within 1s as the fast speed,
and the touching events that allow the user to naturally
press and settle the finger as slow speed. As illustrated in
Figure 24, the average accuracy for verifying complete PIN
sequence at the fast speed is around 64%, which is lower
than the 86% accuracy at slow speed. For the PIN digit
verification accuracy, the fast speed remains at around 90%
high accuracy, which is only 7% lower than the performance
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of slow speed. We find that pressing the grid point in a fast
manner is more likely to produce the wrong grid point index
and will require more trials to pass the authentication. The
reason is that our system continuously samples the vibration
signals using a 200ms sliding window, hence the captured
samples should be dominated by the stable touching state,
which starts after the finger fully settles on the surface
and ends before the finger lifts. However, for a fast speed
touching, the captured vibrations could be dominated by
the intermediate touching states, where the user’s touching
force is continuously changing. As a result, the vibration
patterns captured during a fast touch are less similar to
the user’s grid point index profiles and could result in
more errors. The results show that our proposed system is
robust to regular finger touching speeds and could keep
90% PIN digit verification accuracy even for the challeng-
ing fast touching speed. It is important to note that our
experiments do not require users to control their touching
force. The users are flexible to perform touching during the
experiments. It is our system’s unique capability to capture
a user’s behavioral and physiological characteristics, which
helps to distinguish the user’s identity.

9 CONCLUSION

In this paper, we propose a system that implements the idea
of low-cost low-power tangible user authentication beyond
touch screens to any solid surface to support smart access
applications (e.g., apartment entrances, vehicle doors, or
smart appliances). Utilizing low-cost physical vibration, our
system performs ubiquitous user authentication via finger-
input by integrating passcode, behavioral and physiological
characteristics, and surface dependency together to provide
enhanced security. The system is built upon a vibration-
based touch sensing technique that enables touching and
writing on any solid surface through analyzing unique vi-
bration signal features (e.g., frequency response and cepstral
coefficient). It is easy to deploy and flexibly provides users
with three independent forms of secrets (including PIN
number, lock pattern, and simple gesture) to gain security
access. We perform extensive experiments with participants
input their passcodes by using three forms of secrets and
also study the robustness under various attacks imperson-
ating the legitimate user or launching side-channel attacks
to hack the system. Our results indicate that our system is
resilient to side-channel attacks. And it can verify legitimate
user with high accuracy under minimum training efforts
while successfully deny the access requests from unautho-
rized users with a low false positive rate.
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