
Bypassing Push-based Second Factor and Passwordless
Authentication with Human-Indistinguishable Notifications

Mohammed Jubur
University of Alabama at

Birmingham
mjabour@uab.edu

Prakash Shrestha∗

Equifax Inc.
prakash.shrestha@equifax.com

Nitesh Saxena
University of Alabama at

Birmingham
saxena@uab.edu

Jay Prakash
Singapore University of
Technology and Design

jay_prakash@mymail.sutd.edu.sg

ABSTRACT

Second factor (2FA) or passwordless authentication based on notifi-

cations pushed to a user’s personal device (e.g., a phone) that the

user can simply approve (or deny) has become widely popular due

to its convenience. In this paper, we show that the effortlessness of

this approach gives rise to a fundamental design vulnerability. The

vulnerability stems from the fact that the notification, as shown to

the user, is not uniquely bound to the user’s login session running

through the browser, and thus if two notifications are sent around

the same time (one for the user’s session and one for an attacker’s

session), the user may not be able to distinguish between the two,

likely ending up accepting the notification of the attacker’s session.

Exploiting this vulnerability, we present HIENA1, a simple yet

devastating attack against such “one-push” 2FA or passwordless

schemes, which can allow a malicious actor to login soon after the

victim user attempts to login triggering multiple near-concurrent

notifications that seem indistinguishable to the user. To further

deceive the user into accepting the attacker-triggered notification,

HIENA can optionally spoof/mimic the victim’s client machine

information (e.g., the city from which the victim logs in, by being

in the same city) and even issue other third-party notifications

(e.g., email or social media) for obfuscation purposes. In case of

2FA schemes, we assume that the attacker knows the victim’s pass-

word (e.g., obtained via breached password databases), a standard

methodology to evaluate the security of any 2FA scheme. To eval-

uate the effectiveness of HIENA, we carefully designed and ran a

human factors lab study where we tested benign and adversarial set-

tings mimicking the user interface designs of well-known one-push

2FA and passwordless schemes. Our results show that users are

prone to accepting attacker’s notification in HIENA with high rates,

about 83% overall and about 99% upon using spoofed information,

which is almost similar to the rates of acceptance of benign login

sessions. Even for the non-spoofed sessions (our primary attack),

the attack success rates are about 68%, which go up to about 90-97%

if the attack attempt is repeated 2-3 times. While we did not see a

statistically significant effect of using third-party notifications on

∗Work done at University of Alabama at Birmingham
1HIENA denotes “Human-IndistinguishablE Notification Attack”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3453084

attack success rate, in real-life, the use of such obfuscation can be

quite effective as users may only see one single 2FA notification

(corresponding to attacker’s session) on top of the notifications list

which is most likely to be accepted.

We have verified that many widely deployed one-push 2FA

schemes (e.g., Duo Push, Authy OneTouch, LastPass, Facebook’s and

OpenOTP) seem directly vulnerable to our attack.

ACM Reference Format:

Mohammed Jubur, Prakash Shrestha, Nitesh Saxena, and Jay Prakash. 2021.

Bypassing Push-based Second Factor and Passwordless Authentication with

Human-Indistinguishable Notifications. In Proceedings of the 2021 ACM Asia

Conference on Computer and Communications Security (ASIA CCS ’21), June

7–11, 2021, Virtual Event, Hong Kong. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3433210.3453084

1 INTRODUCTION

Given the rise in the Internet connectivity of mobile devices (such

as smartphones), a new form of second factor authentication (2FA)

has rapidly emerged. In this approach, referred to as One-Push-

2FA or just Push-2FA, the possession of the second factor device

during an authentication attempt to a remote website is verified by

sending a push notification to the device running a pre-installed

2FA app and asking the user to approve (or deny) that they indeed

intend to authenticate by simply tapping a button on the phone. The

notification may also contain the information regarding the client

machine the user is authenticating from (such as IP geolocation)

(Figure 1). If the user does not see the notification, it will timeout

and the authentication attempt is denied by default. This approach

is also being widely deployed in a single factor mode, referred to as

passwordless login, where authentication is solely based on approval

of push notifications, without any need for a password.

Compared to the traditional, one-time PIN (OTP) based approach

(e.g., Google 2SV [16]), Push-2FA provides a significant reduction

in the amount of user effort and cognitive burden since there is

no longer a need to copy a random passcode from the device to

the login terminal in each login attempt. Thanks to this notable

usability enhancement, Push-2FA has seen large scale deployments

at both academic universities2 and commercial online businesses,

some of the current major Push-2FA services being: Duo Push [11],

LastPass Authenticator [17], Authy OneTouch [2], Facebook’s [13],

OpenOTP [32], RSA Secure ID [34] and PingMe [20].3 Duo Push is

perhaps the most widely adopted scheme currently. Indeed, a recent

2For example, CMU, University of Texas (several campuses), UC Berkeley, Penn State,
and University of Iowa, have deployed Duo Push.
3Alongside Push-2FA, most of these services provide the option of one-time passcode
based 2FA.

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

447

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3433210.3453084&domain=pdf&date_stamp=2021-06-04

study of the deployment of Duo Push at CMU [8] noted that users

generally found it to be easy to use, helping them better adopt 2FA.

Besides usability, the Push-2FA approach is generally marketed

and perceived to be highly secure. For example, Duo [11] advertises

that their approach provides “secure access” and is “resilient against

man-in-the-middle attacks that allow attackers to steal your password

and your second factor”. Similarly, LastPass [17] claims that, when

using their instance of Push-2FA, “in the rare event that someone

managed to steal or hack your password, you would still be protected.”

PingMe and Authy suggest that their schemes can be used for

“passwordless login” and “in place of a password”while still claiming

to be “highly secure” and offering “strongest authentication”. Users

of these systems also seem to perceive that they help improve

the security of their accounts [8]. These security-related claims

and perceptions are not unfounded. Indeed, a naive attacker, in

possession of a victim user’s username/password credentials, would

not generally succeed in logging into the user’s account at a random

point of time since the login notification is most likely either going

to be rejected by the user (as the user did not intend to login), or

ignored by the user and rejected by default (as the user may not

attend to that notification due to phone being out of reach, or in

pocket or purse, etc.).

In this paper, we set out to pursue a deeper understanding of

the security of Push-2FA and passwordless schemes. Unfortunately,

we find that the effortlessness underlying this approach comes at a

price as it hides a fundamental design vulnerability, which we refer

to as human-indistinguishable notifications. The vulnerability stems

from the fact that the Push-2FA generated notification, as shown to

the user, is not uniquely bound to the user’s login session, and thus

if two or more notifications are sent around the same time (first

corresponding to the user’s login session and others corresponding

to a session of the attacker attempting to login on behalf of the user),

the user may get “lost”, not being able to tell these notifications

apart and would likely accept the notification corresponding to the

attacker’s session (attacker notifications would appear on top of the

user notification on the interface). Once the attacker notification

has been accepted, the attacker will be able to login and have full

access to the user’s online account. The user may not succeed in

logging in during the process and attribute this to a minor glitch

in the system (where the login somehow did not work) and would

simply re-attempt to login, thereby the attack may remain oblivious

to the user and the web service.

Based on the above vulnerability, we present HIENA (Figure 2),

a potentially devastating attack against Push-2FA (including pass-

wordless login), which can allow a malicious entity to login soon

after the victim user triggering multiple near-concurrent human-

indistinguishable notifications. Our primary attack does not re-

quire any spoofing capabilities. However, optionally, to further fool

the user into accepting the notification corresponding to the at-

tacker’s login session, the attacker can spoof the victim’s client

machine information (e.g., IP address and location), and even gener-

ate other third-party notifications (e.g., email, social media or SMS)

for obfuscation purposes such that the notification corresponding to

the attacker’s session is the only visible Push-2FA notification, most

likely on top of the interface. For spoofing the client information,

the attacker can just be in the same city as the victim since the login

notifications usually show the city information. Moreover, unlike a

typical phishing attack, HIENA does not require the attacker to

impersonate the web service and fool the user into clicking a

link via the phishing email [31].

Overall, the attack works under the standard 2FA threat

model, which is to provide security even when the user-

name/password has been compromised, and without the need

for learning passwords when the system is used in a password-

less manner . It only additionally needs to know roughly when

the user is attempting to login. This information can be readily

obtained in a number of ways, such as by monitoring the user’s

browsing sessions even for the sites that use the SSL/TLS protocol

[3] such as by deploying remote website fingerprinting techniques

[38], using contextual information as to when the users are most

likely to login (e.g., when the University reopens after a break,

peak shopping times during holidays, paper/assignment submis-

sion deadlines, etc.), being in the physical proximity to the victim

user (e.g., a disgruntled colleague or a roommate as the attacker)

to observe when the user logs on to a particular site, or asking the

user into logging in via social engineering trickeries such as tech-

nical support scams [9, 21], just to test if the login works during a

troubleshooting session. While the security of other authentication

schemes (e.g., passwords or one-time passcode based 2FA) does

not breakdown with the attacker knowing the time at which the

user logs in, in light of our attack, the Push-2FA schemes seem to

have a unique weakness. In fact, we believe that the security of

an authentication system should not rely upon hiding such timing

information from the attacker (which is more of a privacy property).

To evaluate the effectiveness of our attack, i.e., to measure the

level of users’ susceptibility to human-indistinguishable notifica-

tions, we carefully designed and ran a human factors lab study

where we tested benign and adversarial settings. Our results con-

firm our hypothesis and demonstrate that HIENA is highly success-

ful in defeating the security of Push-2FA.

Our Contributions: Our work provides the following contribu-

tions to the field of web authentication:

(1) A New Vulnerability based on Human-Indistinguishable

Notifications:We identify a fundamental vulnerability of Push-

2FA and passwordless login systems arising from the human-

indistinguishability of near-simultaneous notifications corre-

sponding to a benign login session triggered by the user and

malicious login sessions triggered by the attacker. It is our un-

derstanding that, to keep the login process near-effortless for

the user, Push-2FA schemes cited above do not provide to the

user a binding between the notification and the actual login

session on the browser, and therefore the user may not be able

to tell if he is accepting his own login session or the attacker’s

login session.

(2) Design of a Concrete Attack Instance: Based on the notion

of human-indistinguishable notifications, we build HIENA, a

concrete Push-2FA attack. HIENA is designed to maximize the

chances of fooling the user into accepting the attacker’s lo-

gin notification amidst the user login notification. To do so, it

can spoof the user’s client machine information (Spoof-Notif)

and trigger other third-party notifications (Other-Notif). The

attacker can generate Other-Notif notifications on the victim

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

448

device in different ways, like sending spam emails or text mes-

sages, or performing specific actions to the victim social media

account (e.g., posting comments, “liking”, “following”, etc.). The

attacker can easily gain this information either through public

profiles in the social media or leaked databases [7, 10, 28].

(3) Evaluation via a Human-Factors Study: We design and

implement a small-scale lab-based user study to evaluate the

effectiveness of our attack. A small scale experiment is sufficient

here since we are assessing attack feasibility, not measuring

usability. Each participant’s task in the study is to perform an

emulated login process to an online account (Gmail) through

our implementation of the Push-2FA service. As part of accom-

plishing this task, they need to respond to the push notifications

generated on the phone, in order to prove the possession of

the second factor device (the phone). Our design of the push

notifications mimicks the ones widely used by deployed Push-

2FA systems. We also incorporate two UI design choices for

the push notification – “Approve” option on the left side of the

notification interface (Left-UI) (Figure 8c), or on the right side

(Right-UI) (Figure 8d). Further, our study carefully integrates

real-time implementation of benign and HIENA’s adversarial

login settings mentioned above.

Summary of Key Results: Our results suggest that users are

highly prone to accepting the notifications triggered by the HIENA

attacker with high rates. Specifically, the average success rate of

the attack is 83% overall, and about 99% with Spoof-Notif , which is

almost similar to the rates of acceptance of benign login sessions

(where no HIENA attack takes place). Even without spoofing,

which is our primary attack, the attack success rates are fairly

high, about 68%, and if this attack is executed twice or thrice,

the attack success rate can reach as high as about 90% or 97%,

respectively, assuming all attack trials are equally likely to succeed.

While we did not observe a statistically significant effect of using

third-party notifications in Other-Notif on the attack success rate,

in real-life, the use of such notifications can be quite effective as

users may only see one single login notification (corresponding to

the attacker’s session) on top of the interface which is more likely to

be accepted by the users. We confirmed that our participants were

not simply clicking-through, but were often responding from the

UI on a large number of occasions and with due diligence (Section

5.3). In real-life, the attack success rates may be even higher since

users are often habituated and rushed to accept the notifications

when they are authenticating without diligently evaluating them.

Some currently deployed services (e.g., LastPass, see below) do not

even provide any login information to the user. Furthermore, a

typical average user of Push-2FA or passwordless login may be

more susceptible to the attack in contrast to our participants who

were generally young, educated and technologically-oriented.

Many widely used Push-2FA schemes we tested (e.g., Duo Push,

Authy OneTouch, LastPass, Facebook and OpenOTP) and any of

their deployments in universities and personal/commercial settings

are directly vulnerable to our attack. We tested our attack against

Android phones, but since the iOS and Microsoft phones do not

have noticeable differences from Android in the UIs of phone apps

of these Push-2FA schemes, users of all of these phones seem vul-

nerable to our attack.

2 BACKGROUND AND MODELS

2.1 System Model

Push-2FA is a system for authenticating the user to a remote web

(or online) service. For simplicity, we use the term service to denote

a remote web service deploying Push-2FA to authenticate the user.

Push-2FA requires the user to install a software app on his smart-

phone. The user links the installed app and his account associated

with service. Multiple accounts with different services can be linked

with a single software app such that the single app can be used

with multiple services. In Push-2FA, the user’s credentials (i.e., his

username and password) serves as the first authentication factor

while the software app installed on the user’s phone serves as the

second factor for authentication. The addition of the second authen-

tication factor should improve the security compared to that of the

password-only authentication as it may seem that the adversary

now needs to compromise the second authentication factor along

with the first factor to hack into the user’s account.

In order to login to a Push-2FA enabled service, the user first

provides his credentials to the service (unless the passwordless

mode is used). The service then sends a login prompt, also called

push notification, to the user’s phone. The purpose of this push

notification is to confirm from the user whether he has tried to

login, or somebody else has tried to login on behalf of the user.

To successfully login to the service, the user needs to approve

the push notification by tapping the ‘Approve’ button. Figure 1

shows the flow diagram of Push-2FA login in the benign setting.

Unlike traditional SMS or mobile passcode based 2FA, Push-2FA

does not require the user to copy the passcode from the phone to

the authentication terminal, mere tapping of a button on the phone

is sufficient to login. This makes the Push-2FA scheme more usable

compared to the traditional passcode based 2FA scheme. In this

study, we investigate if this improved usability has any adverse

effect on the security of the system.

To further improve the security of the Push-2FA system, the push

notification may show various information about the current login

attempt. For instance, the approximate location information (e.g.,

City, State, Country) from where login has been issued, and the IP

address of the machine that is used for login. We refer to such infor-

mation about the login as login information. Before approving the

login prompt, the user can open the push notification to see these

login details. If the login information shown on the notification is

not valid (or seem fraudulent), the user can deny the login attempt

and/or report the incident to the service provider. Push-2FA also

defines a “time-out” period, the duration within which the user

needs to respond to the push notification. If the user fails to do so

for whatever reason, the login attempt is denied by default.

Some of the Push-2FA schemes, e.g., Microsoft Authentica-

tor [30], Identity Automation [19], and Authy [42], do not require

the user to enter passwords, mere approval on the login prompt is

sufficient to login, and is referred as passwordless Push-2FA. Specifi-

cally, in passwordless Push-2FA, the user first provides his username

to the service, which in turn sends a login prompt to the user’s

phone. The user then needs to approve the push notification by

tapping the ‘Approve’ button.

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

449

Figure 1: Normal operation of Push-2FA. At login, the web service sends a
push notification to the user’s phone. The user approves the push notification
and succeeds to login to the web service.

2.2 Adversarial Model

Just like any other two factor authentication scheme, Push-2FA

threat model assumes an adversary who has compromised the vic-

tim user’s first authentication factor, i.e., his credentials (username

and password), and attempts to log into the user’s service. The pri-

mary goal of Push-2FA is to defeat such an adversary. The adversary

can learn the information about victim’s credentials, for example,

via leaked password databases of the web-service, phishing attacks

or other mechanisms [18, 25, 26, 39]. With this information, the

adversary attempts to authenticate to the service on behalf of the

victim. Obviously, to hack a passwordless Push-2FA scheme, the

attacker does not need to learn the user’s password. The adversary

succeeds to hack into the victim’s service if he can prove the pos-

session of the second factor device, which is possible only when

the push notification triggered by the adversary’s login attempt is

approved. Since the adversary-triggered push notification is usu-

ally generated at a random point in time when the user has not

tried to login, it alerts the user that someone has tried to access

his service. In such a situation, the user is likely to either deny

the push notification and/or report the incident to the respective

service provider, thereby preventing the attack (or the login attempt

is denied by default after a time-out). The threat model of Push-

2FA assumes that the adversary has not compromised, or gained

physical access to, the user’s second factor device, i.e., his phone.

If the adversary gains control of the victim’s device, the security

of Push-2FA (including passwordless variant) obviously reduces to

that of the password-only (or the single-factor) authentication .

In our threat model, we assume that the HIENA attacker can

closely approximate the time instance at which the victim user is

logging in. This can be accomplished in a number of ways, some of

which are outlined below:

(1) Traffic Monitoring and Remote Website Fingerprinting:

The attacker can learn about the user logging time by monitor-

ing the user’s browsing session even through SSL/TLS [3]. In

particular, a motivated attacker may use website fingerprinting

approaches to learn when the user visits a given website. The

recently proposed website fingerprinting attack [35] is highly

relevant as the attacker can perform the website fingerprinting

remotely. It is also possible to monitor the incoming traffic at

the user’s end to fingerprint push notifications [29]. Such a tar-

geted attack can be launched, for example, by intelligence and

law enforcement agencies and nation-state attackers. Govern-

ments and ISPs in the oppressive regimes already monitor users’

Internet traffic on a routine basis and may use this approach to

compromise their Push-2FA accounts4.

(2) Utilizing Contextual Information and Login Patterns: The

attacker can launch the attack at a time when most of the users

are most likely to login. For instance, users’ login activity may

be at peak when the organization opens after a break. As a

concrete example, we evaluated the login data, i.e., time of login

across respective dates for a year (August 14, 2019 to August

13, 2020), of 26,144 unique users in a university. Our analysis

corroborates the exploitation of contextual information for es-

timating timeframes which would have high probabilities of

success for our attack. Interestingly, January 13 is the start of

the semester and many students and staff would return to the

campus and login to university mails and services for initiat-

ing academic obligations, registering courses, accessing course

information etc. Appendix Figures 5 reveal this phenomenon.

There is a sudden surge in the number of login attempts in

between January 10-13, while January 13 witnesses a clear peak.

If the attacker launches the proposed attack at peak hours on

January 13, there is a high chance of multiple accounts getting

compromised. In the same vein, when grades are published at

the University (at a known, set time), students are most likely to

login as soon as grades are published to check on their grades.

Similarly, many users are most likely to use and login to online

shopping sites during the peak shopping season when a great

amount of shopping deals are made available, e.g., the Amazon

shopping site is highly used on Cyber Monday [43]. The users

may login to and aremostly active on social media at a particular

time in a day of the week, e.g., the users are mostly active on

the Facebook on Wednesday at 11:00am and 1:00pm [1]. Also,

many users are currently using various video conferencing tools

like Zoom for online classes and virtual meetings, where they

usually login to the service before the event starts at a set time.

The attack can be launched against many users at such a peak

time, with the hope that a large fraction of these users will

indeed login at this time.

(3) Active Social Engineering: The attacker can force the user to

login by launching social engineering tricks, such as password

reset scams, where users are informed that their accounts have

been compromised, or their credentials have been expired, and

asked to reset their passwords by logging into their accounts.

For example, the attacker can employ the approach similar to

that of the tech support scam calls[9, 21], where the attacker

makes the call to victim users claiming to be a customer service

agent in order to address login related issues, such as password

reset, and ask the user to go through the login process while

speaking to the victim in real-time and troubleshoot the login.

The attacker can execute the HIENA attack at the time the user

attempts the login during this scam call.

(4) Compromised End Points: While the threat model of two

factor authentication does not assume that the user’s phone

has been compromised or malicious, there are other entities

4As an example, Chinese government has previously attempted to compromise the
Gmail accounts of Chinese human-rights activists [22]

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

450

that could be compromised or are malicious in this model. For

example, the attacker can compromise the victim user’s login

terminal (laptop or desktop PC) by deploying malware to learn

(the login credentials and) the login time information of the

victim user. Such threat models are already considered effective

in the purview of 2FA schemes [6]. In another scenario, the

website/webserver itself that the user is trying to access could

be malicious or it could be infected with malware. The malware

can be crafted cleverly that at the time of login, it stealthily

extracts (the victim’s credentials and) login time, and send them

to the attacker. Once this information is received, the attacker

can execute the HIENA at nearly the same time. Similarly, a

password manager that employs Push-2FA (e.g., LastPass) for

securing their passwords to web services could be another end

point that is malicious itself or be infected with a malicious

script. It important to note that traditional 2FA schemes (e.g.,

PIN-2FA) in these compromised end-point scenarios may still

remain secure, or at least can not be compromised just by the

added knowledge of the user’s login time instance.

(5) Observation from Physical Proximity: The attacker could

reside in close physical proximity of the user (e.g., a disgruntled

colleague, or a roommate, or a stranger peeping through in a

public cafe) and can learn when the user logs on to a particular

site using Push-2FA via physical observation. We assume that

the attacker is nearby but does not still have physical access to

the user’s phone.

The attacker can optionally utilize IP address and physical ad-

dress information to spoof the user’s machine. Thus, the attacker

would be able to generate push notification(s) that look similar to,

or exact copy of, the one from the legitimate user’s machine. It

may actually not be necessary to spoof the IP addresses, merely

spoofing the general location information shown on the notifica-

tions (e.g., the city) or being in the same city as the victim could be

sufficient to succeed at the attack. Further, users do not pay much

attention to such information (or know the IP addresses of their

machines), so even without any spoofing, the attack could succeed.

The attacker can also use phone numbers and/or email address

information to trigger third-party, text and/or email based notifica-

tions. The attacker can easily gain this information either through

public profiles in the social media or leaked databases [7, 10, 28].

Further, since many users often use the same usernames across

multiple apps, the attacker can use the username information to

trigger notifications using these apps that use the same username.

For example, if a user has the same username in the leaked database

server and on Twitter, the attacker can send a notification (e.g., a

follow request, tweets/retweets) to user’s Twitter account.

3 OUR ATTACK

The threat model of HIENA assumes that the attacker has already

obtained the victim’s password (not needed for passwordless login),

and he knows, ormakes a good estimate of, the timewhen the victim

user would attempt to login. With this knowledge, the attacker tries

to login soon after, or around the same time, the victim tries to

login. To verify the possession of the second factor device (i.e.,

the victim’s phone) for “complete” authentication, the web service

sends two push notifications to the victim’s phone, UN and AN ,

corresponding to the victim’s and the attacker’s login attempts, resp.

Figure 2: HIENA against Push-2FA. The attacker logs in around the same time,
or soon after, the user logs in generating multiple push notifications, UN and
ANs, on the user’s phone. To fool the user into accepting attacker-triggered
push notification, the attacker can spoof the user’s login information (e.g, IP
address and location) and produce other third-party notifications (e.g., email
or social media) for obfuscation purposes. The user remains unaware of the
attack as he can also succeed to login when he approves next push notification
UN, or otherwise retries to logging in.

The victim, being unaware of the ongoing attack, would approve

either AN , UN , or both as he intends to login and thinks that

approving notifications would allow him to login. If the attacker

login attempt is made after the victim login, typically AN would

show up on the top of the notification bar and UN would reside

below it. It is highly likely that the victim would review (or accept)

notifications starting from the most recent one (i.e., following a

top-down order, as also confirmed in our study later). The attacker

succeeds if the victim approves AN . As approving AN does not

help the victim to log into his service, the victim is likely to also

approve the next notification (i.e., UN) that he received, or he may

just ignore the second notification and rather retry logging into the

service. Since approving UN or second login attempt allows the user

to login into his service, he would think that it was a minor glitch

in the system that causes this issue. Thus, the attacker succeeds at

logging into the victim’s service while the victim remains unaware

of the attack. Figure 2 illustrates HIENA.

To further deceive the user into accepting the attacker-triggered

push notification, the attacker can optionally spoof the victim’s

login information. Based on the level of matching of the attacker’s

and the user’s login information, we categorize our attack into two

types:

• Spoof-Notif Attack: Users often login using the same machine(s)

(e.g, personal or particular machine assigned to him) from the

same general location (e.g, home, office, etc.). Given this, the login

information of the user that the attacker has learned and spoofed

is highly likely to match with that of the user. We refer to such an

attack scenario where the spoofed and actual login information

match as Spoof-Notif . In such an attack setting, the user would

get fooled into believing that the multiple push notifications are

triggered due to his own login attempt and approve AN . The

user may think that the multiple push notifications are generated

potentially due to some glitch in the system. Such a glitch is often

accepted by general user population.

• Non-Spoof-Notif Attack: We refer to the attack scenario where

the attacker’s and victim’s login information do not at all match

as Non-Spoof-Notif . However, many of the users do not pay much

attention to the login information shown on the push notifica-

tion during logins (as found in our study presented in Section 5).

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

451

Further, they are habituated to approving such notifications (click-

through behavior and habituation is already well-highlighted in

user-centered security literature, including brain studies, e.g.,

[14, 40, 44]). This may result in the user approving push noti-

fication triggered by the attacker and enables the attacker to

break the Push-2FA system even with a completely different

login information.

Intermediary scenarios also exist whereby the attacker is not

able to fully spoof the victim’s login information, but can success-

fully match up some crucial parameters. For example, spoofing IP

addresses may be harder in some cases, while spoofing a higher

level location information is not that hard (or the attacker can login

from machines located in the same general location or the city).

It may be hard for average users to understand the IP addresses

and to detect whether the IP address shown on the notification is

indeed their own machine’s IP address and therefore if the higher

level location information is matched, it is very likely users would

accept such information. Thus, partial spoofing is very likely to

succeed even if the users were paying attention to the login infor-

mation. Further, some Push-2FA schemes do not show much of the

login information to the user. For instance, LastPass does not show

any login information (Appendix Figure 9f) to the user. To defeat

Push-2FA schemes with such a design, HIENA does not need to

spoof the login information since the notification triggered by the

attacker login looks similar to that triggered by the user login.

The HIENA threat model assumes that the attacker has obtained

information about the user’s accounts associated with different

phone apps. Given this knowledge, the attacker can trigger different

third-party notifications on the user’s phone during the attack. The

notifications triggered by different apps may or may not reach the

targetted device (or on time) while launching the HIENA attack.

Based on this, we divide our attacks into the following two types.
• Other-Notif Attack: In this attack, the attacker utilizes the

user’s different accounts associated with different phone apps to

trigger various notifications on the user’s phone when launching

the attack. These app notifications may obscure the receipt of

multiple push notifications during the attack and further prevent

the potential user suspicion raised from them.

• Login-Notif Attack: In this attack, either the leaked user’s apps

account information is not valid, or the triggered notifications

do not reach the targeted phone device. In such a scenario, only

multiple push notifications are triggered on the user’s phone due

to multiple login attempts to the same user’s account.

Likelihood of Accepting Attacker’s Push Notification: To sum-

marize, with above-mentioned attack settings, when launching

HIENA against Push-2FA, it is highly likely that the victim user

will accept the attacker’s push notification mixed with user notifica-

tion (with varying level of probabilities for each attack setting) for

several reasons. First, the user is intending to authenticate to the

service and the user is likely to believe that the push notification(s)

that he received are generated from his own login attempt. Second,

since attacker’s multiple attempts are made after the victim has

tried to login, the attacker’s notifications would likely reside at the

top of the notification bar and the user is likely to start accepting

from the top notification. Third, Other-Notif can potentially result

in the user seeing only one push notification, likely from the at-

tacker’s attempt, due to the limited screen area. In such an attack

setting, the third-party apps’ notifications would make it harder for

the user to detect the attack simply based on the presence of multi-

ple push notifications. Lastly, the users are generally habituated to

accept security prompts or warnings (e.g., [14, 40]) that may result

in accepting the attacker’s login attempt, especially when they are

made around the time when the user is trying to login and when

using the Spoof-Notif setting (including partial spoofing).

Real-World Push-2FA Systems Vulnerable to HIENA: We

ran an experiment, besides the one in Section 4, to test if widely

deployed Push-2FA systems are vulnerable to HIENA. We cre-

ated a personal account using several Push-2FA systems, Duo-

Push [11], Authy OneTouch [2], LastPass [17], Facebook [13], and

OpenOTP [32], registered a smartphone to service, and observed if

the system allows multiple near-concurrent logins and sends multi-

ple notifications to the smartphone. Specifically, we tried to login

from different browsers (e.g., Mozilla Firefox and Google Chrome)

at a similar time from the same machine. We also logged in from

two different machines around the same time. We observed all these

Push-2FA systems allow near-concurrent login attempts and are

therefore vulnerable to HIENA.

LastPass Authenticator is used to authenticate LastPass users

to the LastPass password management service, which stores users’

passwords to access many of their other online accounts. By com-

promising LastPass Authenticator using HIENA, the attacker would,

therefore, be able to gain access to the user’s all online accounts

locked with LastPass. To make the matters worse, Lastpass push

notifications are very high level and do not contain any information

related to login details, like where the login attempt was generated

from (see Appendix Figure 9f). LastPass Authenticator [27] can also

be used as a Push-2FA service for other online services/applications

to authenticate their users similar to Duo Push. Appendix Figure

9 provides the snapshots of the (phone and browser) UIs of these

schemes from our test runs.

4 ATTACK EVALUATION STUDY DESIGN
4.1 Implementation

We implemented an instance of Push-2FA that emulates many of

the real-world Push-2FA (including passwordless login) systems.

Specifically, we implemented the following two main components

in our Push-2FA implementation:

(1) WebService and Browser Apps: We implemented two apps,

WebService-App and Browser-App, using HTML, JavaScript, CSS,

and PHP. WebService-App runs on a remote web server and

Browser-App runs on a client machine. Browser-App is a simple

web page with two forms – a sign-up form and a login form.

The user can register to our test implementation of Push-2FA

using the sign-up form. To store the user’s account information,

we employed MySQL as the backend database. Similarly, the

user can use the login form to log into his account (created

earlier) with our Push-2FA system. Thus, our implementation

simulates the user registration and authentication processes of

any standard 2FA scheme.

WebService-App verifies the validity of the user’s credentials

and triggers a push notification (embedding the login infor-

mation received from WebService-App) on Phone-App for lo-

gin approval. On receiving the user’s response (“Approve” or

“Deny”), WebService-App forwards it to the Browser-App. If the

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

452

Table 1: Brief description of various terms introduced in our study.

Terms Description

UN User Notification. Push notification triggered by the user login.

AN Attacker Notification. Push notification triggered by the attacker login.

Input-PopUp Input options (Approve/Deny) provided on the notification. User can
also tap the notification to see login information and provide response.

Plain-PopUp Input options not provided on the notification. The user must tap the
notification to see login information from and provide response via UI.

Left-UI Approve button is positioned on the left side of the UI layout.

Right-UI Approve button is positioned on the right side of the UI layout.

Spoof-Notif Attack scenario where login information, i.e., victim’s client machine
information such as IP address and location, is spoofed. ANs and UN
show exact same login information.

Non-Spoof-Notif Attack scenario where login information is not spoofed. ANs and UN
show completely different login information.

Login-Notif Attack scenario where the victim user receives multiple ANs + 1 UN.

Other-Notif Attack scenario where the victim receives attacker triggered third-party
apps’ notifications along with multiple ANs + 1UN.

user approves the login request, Browser-App shows a success

message (“Login Successful!”), and redirects it to a Gmail login

page (to simulate a login attempt to Gmail via our Push-2FA

service). In case the user denies the login request, Browser-App

shows an error message (“Login Denied”) and redirects back to

the login form of our Push-2FA service. We employed Firebase

Cloud Messaging (FCM) to establish a communication channel

between the web-service and Android phone-app.

(2) Phone-App: We developed an Android app for the phone that

remains idle in the background to emulate the Push-2FA app. To

use our Push-2FA system, the user first links his account created

earlier using WebService-App with Phone-App. When the user

attempts to login through Browser-App, Phone-App receives

the login information from WebService-App and generates a

push notification asking the user for login confirmation.

Push Notification Design Choices:We implemented two types

of designs – Input-PopUp and Plain-PopUp, that cover majority of

the push notification designs used by widely deployed Push-2FA

systems. In Input-PopUp, the user is given the option to provide

his response (Approve or Deny) directly from the notification it-

self without looking into the login information, or he can tap on

the notification, verify the login information, and then provide the

confirmation. Various Push-2FA systems, such as Duo Push and

PingMe, employ such design. In Plain-PopUp, the user has to tap

on the notification to see the login information and provide his

response. Unlike Input-PopUp (Appendix Figure 8b), Plain-PopUp

(Appendix Figure 8a) does not feature the option for the user to

provide his response from the notification. Many Push-2FA systems

follow such design, such as OpenOTP and LastPass. Further, we

implemented two different interface layouts of push notification

based on the placement of Approve and Deny buttons, namely

Left-UI (Appendix Figure 8c) and Right-UI (Appendix Figure 8d).

Left-UI has “Approve” button on the left side of the notification

interface and “Deny” button on its right side, while Right-UI has

the Approve-Deny buttons in the reverse order. Push-2FA systems

like Duo Push, Authy, Okta, and Gluu follow Left-UI layout while

RSA, Gemini, PingMe, and Futurae follow Right-UI . Thus, our im-

plementation of Push-2FA is inline with many of the widely used

Push-2FA systems (as noted earlier) in terms of interface, notifi-

cation design, position of approve/deny buttons, etc. This shows

that our experiment simulates the real-world Push-2FA system well.

Table 1 summarizes various terms used in our study.

We note that our study is not designed to evaluate the time-

sensitivity of the attack; rather, we assume that the attacker logs in

soon after the user (maybe within a few seconds, assuming push

notifications themselves introduce some communication delay).

Many scenarios exist where the attacker can successfully login

soon after the user (Section 2.2). In case the attacker’s login time

is significantly off of the user’s login time, the attack may fail but

the user may still ignore the attacker’s notification, and the attack

can always be repeated after a sufficient period (to minimize user

suspicion) and may succeed then.

4.2 Login Sessions

To evaluate the performance of our participants with respect to

our Push-2FA implementation in the benign setting and that of

HIENA in various attack settings (Section 3), we incorporated and

implemented two types of login sessions in our study.

• Benign Session: Our Push-2FA triggers only one push noti-

fication, simulating a real-world login scenario where the user

attempts to login using Push-2FA.

• Attack Session: Attack session in our implementation of Push-

2FA incorporates various attack settings. To simulate Login-Notif

attack scenario, WebService-App triggers 3 push notifications on

the phone (Appendix Figure 8e). In HIENA, as the attacker logs

in after the victim user has logged in, the first notification on the

phone (at the bottom of the notification bar) corresponds to the

victim’s login session while remaining notifications (at the top

of the notification bar) correspond to attacker’s login sessions.

To simulate the Other-Notif attack scenario, 2 third-party apps’

notifications are generated by our Phone-App in addition to 3

push notifications (Appendix Figure 8f). The first app notification

simulates a Twitter notification while the second notification sim-

ulates an email notification (i.e., Gmail notification). Phone-App

positions these simulated app’s notifications in between multi-

ple push notifications. Further, to simulate the Non-Spoof-Notif

attack scenario, we programmed Phone-App to show the actual

login information of the victim triggered push notification and a

random login information (i.e., a valid but completely different

from victim’s IP and location information) corresponding to all

the attacker’s push notifications. To simulate the Spoof-Notif at-

tack scenario, Phone-App was programmed to show the actual

login information of the victim’s machine, simulating the spoofed

attacker’s notifications.

We programmed our Push-2FA system in such a way that each

of our participants received a fixed set of benign and different at-

tack login sessions. Specifically, each participant was subjected to

a total of 32 login sessions, 16 of them were benign sessions and

16 were attack sessions. Out of 16 attack sessions, 8 correspond to

the Non-Spoof-Notif attack setting and 8 correspond to the Spoof-

Notif setting. Each set of these attack sessions further consist of

4 Login-Notif settings and 4 Other-Notif settings. Out of these 4

login sessions, 2 were Input-PopUp (both Left-UI) and 2 Plain-PopUp

(1 Left-UI , and 1 Right-UI). Although all of participants performed

an equal number of login sessions, the order of presentation was

randomized to remove any learning or fatigue biases. Appendix

Figure 6 shows the hierarchical flow of the various types of lo-

gin sessions in our study. Our study therefore carefully integrates

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

453

real-time implementation of benign and HIENA’s adversarial login

sessions mentioned earlier.

4.3 Study Metrics and Hypothesis

We use following metrics to quantify the effectiveness of HIENA

against Push-2FA system.

• Benign Success Rate (BSR): BSR measures how often the user

approves the push notification in benign login sessions in our

study leading to successful logins. We compute BSR as follows.

BSR =
#𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑_𝑏𝑒𝑛𝑖𝑔𝑛_𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠

#𝑏𝑒𝑛𝑖𝑔𝑛_𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠
(1)

• Attack Success Rate (ASR): ASR measures how often the user

approves the push notification triggered by the attacker in an

attack login session leading to successful attack. We compute

ASR as follows.

ASR =
#𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑_𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠

#𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠
(2)

When computing ASR, we do not consider the response of the

user to victim triggered push notification in an attack session as

such response does not lead to the success of the attack. Since

multiple push notifications are generated during HIENA, the user

may respond to (or approve) multiple push notifications with the

intention to successfully log into the system. The attack succeeds

if any of the notifications generated by the attacker is accepted

by the user in a given attack session.

To evaluate the performance of HIENA in each of the attack

settings, we compute ASR for each of these settings separately.

When computing ASR of a particular attack setting, we consider

only the users’ responses to push notifications associated with that

particular attack setting. If our attack were to succeed well against

Push-2FA, which is our founding hypothesis, we would expect the

ASR to be as close as possible to 100%.

To analyze the statistical significance of these results, we used

Wilcoxon Signed-Rank Test (WSRT), at a confidence level of 95%, for

measuring differences in the means of different groups underlying

our analysis (e.g., Login-Notif andOther-Notif ,Non-Spoof-Notif and

Spoof-Notif). Bonferroni correction was used during post analysis

to account for multiple comparisons. The effect size of WSRT was

calculated as 𝑟 = 𝑍/
√
𝑁 , where 𝑍 is the value of the z-statistic and

𝑁 is the number of observations on which 𝑍 is based.

4.4 Study Protocol

We recruited 20 participants from diverse educational backgrounds

(detailed demographic information is presented later in Section 5.4).

One of the researchers serving the role of an examiner navigated

each participant to a study desk where he/she was provided with a

desktop PC and an Android phone. In the desktop PC, the Google

Chrome browser was pointing to our Browser-App, and the Android

phone was installed with our Phone-App for the study purpose.

Participants were asked to consider the study desktop PC as their

personal computer that they use for accessing their online accounts,

and the Android phone as their personal phone where they have

installed the app for 2FA authentication. They were informed that

the login process in our study simulates the real-world login setting.

We explicitly asked them to imagine that they were logging into

their own online service.

Our study consists of three phases . The concrete steps followed

in each phase of the study are outlined below.

Phase I: Study Primer:At the beginning of the study, we provided

a brief introduction and instruction about the study, and then asked

participants to create an account for the study.

• Introduction and Instructions: As participants may not be aware

of 2FA and/or Push-2FA, we explained them about 2FA and Push-

2FA, and their security purpose. In fact, we ensured that the

participants clearly understand what Push-2FA is, its purpose

and security implications. We told them that the purpose of

our study is to test the user’s behavior towards Push-2FA. We

intentionally did not disclose the true purpose of the study (i.e.,

the attack study) as it might affect the user’s behavior during the

study. Participants were told to assume that they were logging

into their own services (e.g., email account) via our proxy service,

and their goal is to complete the login step successfully. We also

informed the participants about the information shown on Push-

2FA notification and advised they should verify it before deciding

to accept or deny login. They were also explicitly told that if they

saw anything wrong during the login process, they can either

“Deny” the push notification or ignore it. Further, participants

were told that they can use any of the two ways of approving

notifications, i.e., via notification or UI.

• Account Creation: We asked participants to create a new account

to register to our Push-2FA system. They were allowed to use any

username and password they like that is not already registered

with our system. We did not use the users’ actual account in our

study, instead we asked the participant to consider the account

they are using for the experiment as their own account (this

is a typical role play setting used in many security/usability

studies[24, 33, 36]). We asked participants to use “remember me”

feature that allows the browser to automatically fill the user’s

credentials when the user visits the samewebsite again.With this,

the user does not have to remember and retype his credentials

repeatedly during the study. This is a common practice often

used by the users for their comfort. The users can also choose not

to use this feature. Nevertheless, either way, it does not affect our

study since its goal was to evaluate the effectiveness of the second

factor authentication, not the first factor. Since they did not have

to input their password for subsequent logins, this setting also

simulates the user experience of passwordless login. Participants

were then asked to link Phone-App on the phone with their

accounts by signing in using the same credentials as they had

used to create the account earlier. Similar to any real-world 2FA

system, this step was performed only once at the beginning of

the study.

Phase II: Main Study: This phase includes a practice session and

the main study tasks as explained below.

• Practice Trials: To familiarize the participants with the Push-2FA

system, they were asked to login at least six times using our

implementation of Push-2FA. In a benign scenario, as one push

notification is sent to the user’s phone for the login approval,

only one notification is sent in each of these practice trials. After

responding to a push notification of a login attempt, we asked

the participants to wait for a few seconds (∼5 seconds) for the
phone’s screen to get automatically locked. During this waiting

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

454

0
10
20
30
40
50
60
70
80
90

100

Benign Attack

BS
R/

AS
R

(%
)

Input-PopUp Right-UI Left-UI

Figure 3: Performance of participants with Push-2FA in benign and attack
sessions. Performance in attack sessions represents HIENA’s performance.

period, Phone-App is also programmed to clear out all the no-

tifications on the phone. The purpose of such auto-screen lock

is to simulate the real-world scenario where the phone’s screen

generally remains locked during the login attempt, and when a

new notification, potentially push notification, arrives, it alerts

the user. All responses from these practice trials were discarded

from our analysis as they were used only to familiarize the par-

ticipants with Push-2FA. During practice trials, the participants

were allowed to ask any queries they had about the study.

• Study Task: Before beginning the main study, we asked the par-

ticipants for any queries they had, and informed that they cannot

ask during the study. Then, they were asked to perform a total of

32 login sessions; each login process took 30 seconds on average.

In total, each participant spent nearly 20 minutes = 32 * (30s login

time) + 31 * (5s wait time). Appendix figure 6 shows the hierarchy

of different login sessions that each participants performed.

Phase III: Post-StudyQuestionnaire: After completing the study,

we asked participants to fill out a survey form about their general

demographics, 2FA related questionnaire (e.g., type and frequency

of 2FA usage), study-specific questionnaire (e.g., if participants

experienced suspicious activity during the study).

The study was approved by our University’s IRB. Participation

in the study was voluntary. Standard ethical procedures were fully

followed. For instance, participants were well informed about the

study, and they were given a choice to discontinue at any point of

time during the study.

5 ANALYSIS AND RESULTS

5.1 The Benign Setting

We use responses from the participants in benign sessions to com-

pute BSR, a metric to measure the login success rates of the par-

ticipant with Push-2FA. The first block of the bar plot in Figure 3

shows the performance of our participants with Push-2FA in differ-

ent design settings of push notification. We achieved overall BSR of

over 98.4%. In the Push-2FA implementation with the Input-PopUp

setting, we achieved a BSR of 99.3%. In case of Right-UI and Left-UI

settings, we achieved BSR of 97.4% for each. These results show

that our participants were pretty good at using our implementa-

tion of the Push-2FA scheme and they were accepting the benign

login sessions with a very high probability irrespective of the push

notification design (left-approve or right-approve).

Preference of Responding to Notifications: To find the par-

ticipants’ preferences towards the way they respond to the push

notification, we use the participants’ responses to the push noti-

fication triggered in the Input-PopUp setting. The reason behind

using responses to Input-PopUp notifications was that the push

notification in the Input-PopUp setting allows the users to respond

(a) Non-Spoof-Notif and Spoof-Notif (b) Login-Notif and Other-Notif

Figure 4: HIENA with different notification settings.

to the notification in two different ways: (1) from the notification

itself, or (2) from the UI. We recorded 165 responses with such

an Input-PopUp setting for the benign sessions. We found that the

participants responded majority of push notifications (60.6%) from

the notification itself while they responded remaining (39.4%) of the

notifications from the UI after viewing the login information for the

benign sessions. Although the majority of users responded from

notification, the WSRT test does not reveal a statistical significant

difference between the responses from notification and UI. This

analysis shows that our study participants were assessing the login

information on a large fraction of the benign sessions and were

engaged in the study diligently.

5.2 Attack Settings

We utilize participants’ responses in the attack sessions to compute

ASR to measure the performance of our HIENA system against

Push-2FA. The overall ASR across all the attack settings was about

82.7%, as shown in the second block of the bar plot in Figure 3.

Below we analyze the ASR for different attack settings:

• Non-Spoof-Notif and Spoof-Notif : Figure 4a shows the perfor-

mance of HIENA with Non-Spoof-Notif and Spoof-Notif settings.

We observed a reasonably high ASR of 68.2% with the Non-Spoof-

Notif setting. With the Spoof-Notif setting, the ASR significantly

increased to 98.7%, which is similar to BSR we obtained in benign

trials. The WSRT test shows a statistically significant difference

(𝑝 = 0.006) onASRs between theNon-Spoof-Notif and Spoof-Notif
settings with a medium-level effect size (𝑟 = 0.44). This result
indicates HIENA with the Spoof-Notif setting is much more suc-

cessful in deceiving the users into accepting attacker triggered

push notifications compared to that with Non-Spoof-Notif setting.

This is an expected result since if the login information embed-

ded in the attacker’s notification matches the one corresponding

to the user’s client machine, the attacker and user notifications

would look the same to the user. Also, the WSRT test shows no

statistically significant difference (𝑝 = 0.285) between ASR of the

Spoof-Notif setting and BSR of the benign setting. Even when

attacker’s notification had a completely different login informa-

tion, majority of the participants could not see the difference

likely because they may have missed or not fully understood the

information. In practice, the attackers might be able to mimic the

user machine’s information partially (e.g., not being able to spoof

the IP address but being able to mimic the location), in which

case the overall ASR will hover between 68-99%, i.e., between the

ASR of the two extreme scenario tested in our study (Spoof-Notif ,

where the attacker fully spoofs, and Non-Spoof-Notif , where the

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

455

attacker does not at all spoof). Moreover, we found that 4/20 par-

ticipants were never fooled while 9/20 participants were always

fooled to accept the attacker’s notification with Non-Spoof-Notif .

• Login-Notif and Other-Notif : Figure 4b shows the perfor-

mance of HIENA with the Login-Notif and Other-Notif settings.

We observed the ASR of 82.8% and 85.1% with the Login-Notif

and Other-Notif settings, respectively. We did not find a statisti-

cally significant difference in ASRs between the Login-Notif and

Other-Notif settings. This suggests that the injection of notifi-

cations triggered by third-party apps might not be helping to

improve the performance of HIENA. However, the addition of

third-party apps notification would have a significant impact in

the real-world attack settings as the user would see only one

notification (potentially from the attacker’s session) and most

likely on the top of UI. This would raise the probability of the user

accepting the attacker’s notification while reducing the user sus-

picion that could have been raised from the presence of multiple

push notifications during the login process.

Preference of Responding to Notifications:We recorded 175

responses with the Input-PopUp setting for the attack sessions. Just

like the benign sessions, participants responded slightly more from

notifications (58.9%) than from UI (41.1%) after viewing the login

information for the attack sessions. Our participants were assessing

the login information on a large fraction of attack sessions.

Summary: In sum, our results show that HIENA can defeat Push-

2FA system with a high success rate. HIENA achieved an ASR of

82.7% on average, and 98.7% with the Spoof-Notif setting. Even

with the Non-Spoof-Notif setting, it resulted in a fairly high ASR of

68.2%. If the Non-Spoof-Notif attack attempt is repeated just twice

or thrice, ASR will be 90% and 97%, respectively. The results also

showed that users were responding after investigating the login

information in the UI on a large number of occasions.

5.3 Response Time and Engagement Analysis

To evaluate the user-engagement in the study, we computed the

time our participants took to complete the authentication process

using our implementation of the Push-2FA system, and is referred as

response time. We considered the starting point of the authentication

process to be the time when the system verify the participant’s first-

factor i.e., user credentials, and the ending point to be the time when

the response to the login notification is received by the system.

We found that the participants took more time to complete the

authentication process in the attack setting compared to that in

the benign setting. In particular, the average (standard deviation)

response time in the benign setting was 10.68 seconds (8.17 seconds)

while the response time in the attack setting was 13.98 seconds

(11.63 seconds). The WSRT test showed that the differences in the

response times in the benign and attack settings are statistically

significant (𝑝 = 0.006 when using notification for login approval,

and 𝑝 = 0.000 when using UI). Further, as expected, the partic-

ipants completed the authentication process in less time when

they responded using notification compared to when they used UI.

Specifically, we found the average response time of 9.31 seconds

(6.15 seconds) when using notification for login approval while we

obtained the average response time of 14.75 seconds (12.92 seconds)

when using UI. The WSRT test showed that the differences in the

response times when using notification and UI are statistically sig-

nificant (𝑝 = 0.001 for the benign setting and 𝑝 = 0.000 for the

attack setting). However, we did not find any statistical significant

difference (𝑝 = 0.529) on the response times between the Spoof-

Notif and Non-Spoof-Notif attack settings. This analysis confirms

that our participants were engaged in the study tasks and were

executing them as stipulated, and they were not rushing through

and accepting the attack trials without due diligence.

5.4 User Survey Results

Demographics: Appendix Table 2 shows the demographics infor-

mation of the participants in our study. A large majority (90%) of our

participants were 25 - 34 years old. 75% of the participants weremale

and 25% were female. Participants were from diverse educational

backgrounds, including engineering, health, physics, education,

and computer science. 30% of the participants had or were working

towards a Bachelor’s degree, and 70% were working towards their

graduate degree. 20% participants declared that they have “excel-

lent” computer skills while 25% had “fair”, 50% had “good”, and

5% “poor” computer skills. 15% of the participants had excellent,

35% had fair, 40% had good, and 10% had poor security skills. Thus

our participant sample is representative of young, educated and

technologically-aligned individuals. If such a sample of users could

not perform well against the HIENA threat (as our results show),

it is likely that older, less educated and less technologically-savvy

people will be more vulnerable.

2FA Related Questionnaire: We asked participants whether they

have used (or are using) any of the 2FA schemes. 85% of them

reported that they have used and are familiar with 2FA schemes.

76.5% of them have used SMS passcode based 2FA, 29.4% have used

mobile push-based 2FA scheme, i.e., Push-2FA, 23.5% have used

mobile passcode based 2FA, and none has used phone callback

based 2FA. These values do not sum to 100% because many of the

users have used multiple 2FA schemes. We also asked participants

about the services where they have used these 2FA schemes. 82.4%

participants mentioned that they use 2FA in banking services for

secure account access and transactions, 35.3% uses in social media

(e.g., Facebook, WhatsApp), 52.9% uses in Email, and 47.1% uses

in work (e.g., University and company accounts). These values

also do not sum to 100% because many of the users have used the

2FA scheme in multiple services. These numbers show that our

participants had prior exposure to 2FA and Push-2FA systems, and

hence they represented a good sample for our attack study.

We also asked the participants to rank the security of Push-2FA

on a scale of 1 to 5, 1 being weak security while 5 being strong

security. Participants ranked Push-2FA with an average score of

4.1. This shows that they feel highly secure when using Push-2FA

systems. This confirms that people do perceive that Push-2FA sys-

tems provide high security (as also reflected in the study of [8]),

one of the motivations of our study.

Study-Specific Questionnaire: We asked participants whether

they detected any suspicious activity during the study tasks (login

sessions). 50% reported that they detected suspicious activity. We

also asked whether they noticed multiple push notification. 95%

said that they noticed multiple notifications in a single login at-

tempt while 5% did not notice at all. Then, we asked the participants

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

456

about the potential reason behind receiving multiple push notifi-

cation when they had tried to login only once. Majority (42.1%)

of them said they had no idea, 36.8% reported that the Push-2FA

system had generated multiple push notifications while only 21.1%

thought multiple notifications were generated due to malicious

activity. Next, we asked participants explicitly about their prefer-

ences towards the way they respond to push notifications. 50% of

the participants reported that they prefer to respond to the push

notification from the notification itself, and 50% prefer by opening

the notification (this is well-aligned with our quantitative data in

the study). Finally, we asked how often they validated the login

information before providing response to the push notification. 15%

of the participants said they always validated the login information,

30% said they often validated, 40% said they validated sometime,

while 15% said they never validated.

These answers suggest that users were engaged in our study

tasks and may have sometimes noticed that there was something

wrong (which we attribute mainly to the Non-Spoof-Notif attack

where the login information was totally different from that of the

client machine’s). It seems most easily noticed that there were

sessions with multiple notifications, however, only a small frac-

tion considered those multiple notifications might be stemming

from malicious activity (even though they may have still accepted

the attacker’s notification with a high chance as shown in our

quantitative results). Many participants thought that the multiple

notifications were somehow generated by the 2FA system which

supports our hypothesis that such notifications may be attributed

to a system glitch (not a security issue). Also, only a small fraction

of users noted they truly verified the login information always.

6 POTENTIAL MITIGATIONS & CHALLENGES

Blocking Multiple Near-Concurrent Login Attempts: Block-

ing multiple login attempts to a web service could defeat our HIENA

attack. However, such an approach would significantly lower the

usability of Push-2FA as a whole. Users often have to make mul-

tiple login attempts because the user may forget the password,

the phone data connection may be fragile, and push notification

may get dropped or delayed to reach the designated phone. Fur-

ther, the user may also share his accounts with others, for instance,

with his spouse or colleague. They both may often access the ac-

count at a similar point of time. Moreover, many of the users own

multiple computing devices [41], and they can try to login near-

simultaneously from multiple devices, e.g., from the desktop PC

and the laptop. Therefore, we believe that blocking multiple login

attempts to defeat HIENA is not going to be a good idea as it would

have a significant detrimental effect on system usability. Blocking

such login attempts may frustrate users to the point they stop using

the service, which would defeat the founding motivation behind

Push-2FA schemes, i.e., improving usability and increasing 2FA

adoption.

The user can also be asked to deny any/all push notifications if

he notices multiple instances of such push notifications during a

login attempt, and report the incident to the service provider for

taking appropriate action. However, in HIENA with the Other-Notif

setting, the user would likely see only one push notification and

cannot detect the attack simply based on the presence of multiple

push notifications. Further, denying all push notifications would

lower the usability of the system as the user would not be able to

login to his service during that login attempt.

Blocking Third-Party Notifications During Login: Disabling

notifications from third-party apps during 2FAmay allow the user to

see multiple push notifications. This may make the user suspicious

about the ongoing attack as he has attempted to login only once

and was expecting only one push notification. In such a scenario,

the user can deny and/or report the incident to corresponding

service provider, thereby defeating the HIENA attack. However,

blocking notifications from other apps significantly lowers the

system usability, as it prevents the user from receiving important

notifications (e.g., text messages from his spouse, emails from the

work, etc.) during the login process. Perhaps even more seriously,

it could enable a major vulnerability that could allow a malicious

app to deliberately block notifications from other apps.

7 DISCUSSION AND FUTUREWORK

Study Limitations: In our study, we could not test all possible

designs and interface layouts of a push notification, but we tested

representative instances widely used by Push-2FA systems. Specifi-

cally, we tested Input-PopUp and Plain-PopUp design, and Left-UI

and Right-UI interface layout of the Push-2FA system. Majority

of widely deployed Push-2FA systems follow similar designs and

interface layout. We could not test HIENA in the real-world setting

where users login to their own online services, because doing such

a test, especially to create attack sessions, would not be ethically-

sound. In our study, users were subject to multiple login trials

within a short span of time. In real life, the users do not login in this

fashion. Multiple login trials in our study could have induced some,

short-term, habituation effects on our participants. However, our

study results show that the users were actually paying attention to

push notifications during the login trials. We achieved a relatively

low ASR of 68% in the Non-Spoof-Notif setting which suggests that

users were looking/analyzing at push notifications and succeeded

to block some of the Spoof-Notif login sessions. Further, the major-

ity (85%) of our participants reported that they either always, often,

or sometimes validated login information shown on the push noti-

fication. We deliberately selected young, educated and tech-savvy

participants since if they are susceptible to the attack, average users

will likely be more even susceptible. However, studies with average

samples of users should be conducted to further test the attack with

broader populations.

HIENA vs. Other Push-2FA Variants: HIENA can be applied to

other variants of Push-2FA. For instance, the attack would be indi-

rectly applicable to the Push-2FA scheme offered by Microsoft [12]

where a random code is shown on the push notification and the

same code is also shown on the browser (snapshot provided in

Appendix Figure 7). The user is supposed to compare the two codes

and accept the push notification only if the two codes match (snap-

shots appear in Appendix Figure 7). However, several studies in

other security applications such as device pairing [23, 37] show

that the users are ill-equipped to perform such simple looking

“CompareCode–Confirm” tasks. They often accept without dili-

gently comparing the codes as they are rushed and habituated to do

Thus, this Push-2FA variant would also be prone to HIENA. Future

work may test the effectiveness of HIENA against such variants.

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

457

The one-push notification approach is also gaining momentum

in the context of payment transaction verification. For instance,

Futurae [15], Secure TAC [4] and Secure2u [5] require the user

to approve the notification prompt generated on the phone for

approving a financial transaction. Our attack and study results

would also be applicable to breaking such applications. Here, the

attacker would have to make a fraudulent transaction on behalf of

the user while the user is making a legitimate transaction, which

will generate multiple approval notifications on the user’s phone.

Since the payment scenario is slightly different from a typical login

scenario, it would be interesting to evaluate the feasibility of HIENA

in the payment setting with a formal study in the future.

Attacker Login to a Different Service: The HIENA attack is

generally applicable even when the victim and the attacker login to

different services that support Push-2FA (i.e., the attacker trying to

hack into user’s account at service 𝐵 at the time the user logs into

service𝐴). The push notification does show the name of the service

but users may not pay attention and would still likely accept the

attacker’s notification with a high chance. More importantly, such

an attack cannot be prevented by simply looking at the presence of

multiple login attempts in a short timespan, since the login attempts

happen to different services. Such an attack seems ideal against

password management services that use Push-2FA (e.g., LastPass).

8 CONCLUDING REMARKS

We introduced and studied a vulnerability in the design of widely

deployed Push-2FA schemes (e.g., Duo Push or LastPass) that cru-

cially rely on the user to approve a login attempt with the tap of a

button on the smartphone. An attacker exploiting this vulnerability

attempts to log in to the user account around the same time (or just

after) the user attempts to log in thereby generating multiple login

notifications on the user’s phone. Since these Push-2FA schemes do

not explicitly show to the user the binding between the notification

and the browser’s login session, the multiple login notifications all

look the same to the user and there is a high likelihood that the user

would just accept the attacker-triggered notification. Our lab-based

study designed to test the feasibility of the attack indeed showed

that the users are fallible to this attack with a very high probability

(about 99%) especially when the attacker logs in from a machine

spoofing the user machine’s information. Even when logging in

from a totally different, unspoofed machine, the attack succeeds

with a reasonably high probability, which can be further increased

to above 90% by repeating the attack a couple of times. Moreover,

it is possible for the attacker to hide the notification corresponding

to the user’s login session by obfuscating the screen interface with

many third-party notifications issued to the user. Since users often

receive multiple notifications from the same service and attribute

them to minor glitches in communication channels or phone’s con-

nectivity, the attack activity may remain oblivious to the user or

the web service. We argued that defeating the HIENA attack with-

out disrupting the normal operation of the scheme, which usually

includes allowing multiple near-concurrent login attempts for the

user, may be a challenging task. Explicitly binding the notification

with the browser’s login session by asking the user to compare

the same random code shown on both the notification and the

browser is also very likely to fail since most users would just click-

through/approve without comparing (such effects have been seen

in previous device pairing research).

ACKNOWLEDGMENTS

This work is partially supported by National Science Foundation

(NSF) under the grants: CNS-1547350, CNS-1526524 and CNS-

1714807, and Jazan University. We thank the reviewers for their

helpful feedback.

REFERENCES
[1] Elizabeth Arens. 2019. Best times to post on social media for 2019. https:

//bit.ly/2J7cfLr. (2019). Last accessed Feb 28, 2020.
[2] Authy. 2019. Authy 2FA – OneTouch. https://www.twilio.com/authy/features/

push. (2019). Accessed: April 22, 2019.
[3] Ben Ku. 2018. Does HTTPS Protect Your Privacy? shorturl.at/efA26. (2018).

Accessed: Sep 2, 2019.
[4] CIMB Bank Berhad. 2019. Secure TAC | CIMB Clicks Malayasia. https://bit.ly/

2LCXroC. (2019). Last accessed May 13, 2019.
[5] Malayan Banking Berhad. 2019. Secure 2u | Digital Products and Services. https:

//bit.ly/2LCX51g. (2019). Last accessed May 13, 2019.
[6] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.

The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 553–567.

[7] Colin Lecher. 2019. Facebook app developers leaked millions of user records on
cloud servers, researchers say. https://bit.ly/2RlQBE7. (2019). Accessed: Sep 2,
2019.

[8] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse Swoopes, Lujo Bauer,
Lorrie Cranor, and Nicolas Christin. 2018. “It’s not actually that horrible”: Ex-
ploring Adoption of Two-Factor Authentication at a University. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 456.

[9] Dave Albaugh. 2019. Common tech support scams: How to identify and avoid
them. shorturl.at/pyQY2. (2019). Accessed: Sep 13, 2019.

[10] Davey Winder. 2019. Unsecured Facebook Databases Leak Data Of 419 Million
Users. https://bit.ly/2lR2nd5. (2019). Accessed: Sep 5, 2019.

[11] DUO. 2019. Duo Push: Duo Authentication. shorturl.at/pwE16. (2019). Accessed:
April 21, 2019.

[12] EwanD. 2017. Enabling 2FA for MSA. (2017). https://bit.ly/2HihL9p Accessed;
Last accessed 11 May, 2019.

[13] Facebook. 2019. Two-factor authentication for Facebook now easier to set up.
https://bit.ly/2MpF3vP. (2019). Accessed: May 10, 2019.

[14] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. 2012. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the eighth symposium on usable privacy and security.
ACM, 3.

[15] Futurae. 2019. One-Touch. (2019). https://futurae.com/platform/one-touch/
Accessed; Last accessed 11 May, 2019.

[16] Google Inc. 2017. Google 2-Step Verification. https://www.google.com/landing/
2step/. (2017). Accessed: May 13, 2017.

[17] Amber Gott. 2019. LastPass Authenticator Makes Two-Factor Easy. url-
https://bit.ly/2HsKbh5. (2019). Accessed; Last accessed 11 May, 2019.

[18] Matt Gutman. 2015. Snapchat hacked: 4.6 million user names, partial phone
numbers leaked - ABC15 Arizona. https://bit.ly/2vSSdKZ. (2015). Accessed: May
5, 2019.

[19] Identity Automation. 2018. Two-Factor Authentication (2FA) Explained: Push
Notifications. https://bit.ly/3hsxDpO. (2018). Accessed: Mar 01, 2020.

[20] Identity Automation. 2019. Push Authentication using RapidIdentity PingMe.
https://bit.ly/2KWvfNj. (2019). Accessed: April 22, 2019.

[21] International Association of Better Business Bureaus. 2019. BBB Tip: Tech
Support Scams. shorturl.at/dsuBJ. (2019). Accessed: Sep 13, 2019.

[22] Jason Dean Jessica E. Vascellaro and Siobhan Gorman. 2010. Google Warns of
China Exit Over Hacking. https://www.wsj.com/articles/SB126333757451026659.
(2010). Last accessed Mar 04, 2020.

[23] Ronald Kainda, Ivan Flechais, and AW Roscoe. 2009. Usability and security of
out-of-band channels in secure device pairing protocols. In Proceedings of the 5th
Symposium on Usable Privacy and Security. ACM, 11.

[24] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan Capkun.
2015. Sound-proof: usable two-factor authentication based on ambient sound. In
USENIX Security Symposium.

[25] Mohit Kumar. 2012. Anonymous leaks database from Israeli Musical ActMagazine
site #OpIsrael. https://bit.ly/2Y84yqo. (2012). Accessed: May 5, 2019.

[26] Mohit Kumar. 2012. Bulgarian torrent tracker forum hacked and accused of
collecting user IP. https://bit.ly/2VSqLvf. (2012). Accessed: May 5, 2019.

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

458

[27] LastPass. 2019. The only authenticator app you need. https://lastpass.com/auth/.
(2019). Accessed: Mar 3, 2020.

[28] Laura Hautala. 2019. Instagram website leaked phone numbers and emails for
months, researcher says. https://cnet.co/2WjilNz. (2019). Accessed: Sep 2, 2019.

[29] Pierpaolo Loreti, Lorenzo Bracciale, and Alberto Caponi. 2018. Push Attack:
Binding Virtual and Real Identities Using Mobile Push Notifications. Future
Internet 10, 2 (2018), 13.

[30] Microsoft. 2019. Enable passwordless sign-in with the Microsoft Authenticator
app. https://docs.microsoft.com/en-us/azure/active-directory/authentication/
howto-authentication-passwordless-phone. (2019). Accessed: Mar 01, 2020.

[31] ArianaMirian, Joe DeBlasio, Stefan Savage, GeoffreyMVoelker, and Kurt Thomas.
2019. Hack for hire: Exploring the emerging market for account hijacking. In
The World Wide Web Conference. 1279–1289.

[32] RCDevs. 2019. Multi-Factor with OTP and FIDO-U2F. https://www.rcdevs.com/
products/openotp/. (2019). Accessed: May 10, 2019.

[33] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan Armknecht, Jacob Cameron,
and Kent Seamons. 2019. A Usability Study of Five Two-Factor Authentication
Methods. In Fifteenth Symposium on Usable Privacy and Security ({SOUPS} 2019).

[34] RSA Security. 2019. Mobile Authentication | Push Notification. https://bit.ly/
2UA6wxC. (2019). Accessed: April 22, 2019.

[35] Muhammad Shahzad, Alex X Liu, and Arjmand Samuel. 2013. Secure unlocking
of mobile touch screen devices by simple gestures: you can see it but you can
not do it. In Proceedings of the 19th annual international conference on Mobile
computing & networking. ACM, 39–50.

[36] Maliheh Shirvanian, Stanislaw Jareckiy, Hugo Krawczykz, and Nitesh Saxena.
2017. SPHINX: A password store that perfectly hides passwords from itself.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 1094–1104.

[37] Maliheh Shirvanian and Nitesh Saxena. 2015. On the security and usability of
crypto phones. In Proceedings of the 31st Annual Computer Security Applications
Conference. ACM, 21–30.

[38] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust website fingerprinting through the
cache occupancy channel. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 639–656.

[39] Nikhil Sonnad. 2015. What’s in the AshleyMadison database that hackers released
online - Quartz. https://bit.ly/1WFcrP6. (2015). Accessed: May 5, 2019.

[40] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. 2009. Crying Wolf: An Empirical Study of SSL Warning Effectiveness..
In USENIX security symposium. 399–416.

[41] Viktoriya Trifonova. 2018. How Device Usage Changed in 2018 and What it
Means for 2019. shorturl.at/gmKV8. (2018). Accessed: May 5, 2019.

[42] Twilio. 2019. Authy: 2FA and Passwordless Login. https://www.twilio.com/docs/
authy. (2019). Accessed: Mar 01, 2020.

[43] Jordan Valinsky. 2019. Cyber Monday was the biggest shopping day in Amazon’s
history. shorturl.at/grLNZ. (2019). Last accessed Feb 28, 2020.

[44] Anthony Vance, Brock Kirwan, Daniel Bjornn, Jeffrey Jenkins, and Bonnie Brin-
ton Anderson. 2017. What do we really know about how habituation to warnings
occurs over time?: A longitudinal fMRI study of habituation and polymorphic

warnings. In Proceedings of the 2017 CHI Conference on Human Factors in Com-
puting Systems. ACM, 2215–2227.

APPENDIX

A. Login Time Analysis
Figure 5 shows an analysis of the login data from a large public university.

B. Study Sessions
Figure 6 shows the hierarchical flow of the various types of login sessions

in our study.

C. Demographics
Table 2 shows the demographics of the participants of our study.

D. Various Snapshots
Figures 7 , 8, and 9 show various snapshots of push-based 2FA and variants

of push-based approaches.

(a) January 13 Login (b) Normal Day Login

50 100 150 200 250 300 350
Days from 14 Aug 2019 to 13 Aug 2020

0

2000

4000

6000

8000

10000

12000
N

o.
 o

f l
og

in
s

Weekends

13
Janurary

(c) The Logins for One Year

Figure 5: Analysis of the login data

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

459

Figure 6: Hierarchy of different login (attack and benign) sessions used in our study.

Table 2: Demographics of our participants (N=20).

Gender Age Education General Computer Skills

Male 75% 18-24 10% Bachelor’s degree 30%
Poor 5%

Good 50%

Female 25% 25-34 90% Master’s degree 60%
Fair 25%

Excellent 20%

Doctorate degree 10%

(a) Microsoft Authenticator browser UI (b) Microsoft Authentica-
tor phone UI

Figure 7: Push-2FA implementation offered by Microsoft (ComapareCode-and-Tap) (some parts redacted for paper anonymity).

(a) Plain-PopUp (b) Input-PopUp (c) Left-UI (d) Right-UI (e) Login-Notif (f) Other-Notif

Figure 8: The interface and attack designs implemented and tested in our study (some parts redacted for paper anonymity).

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

460

(a) Duo Push phone UI (b) Duo Push browser UI (c) Duo Push watch UI

(d) Facebook phone UI (e) Facebook browser UI

(f) LastPass phone UI (g) LastPass browser UI (h) Authy OneTouch phone UI

Figure 9: Push-2FA applications that we tested and are vulnerable (some parts redacted for paper anonymity).

Session 5A: Network and Web Security (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

461

