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ABSTRACT

Existing academic research on vibration-based speech attacks has
introduced interesting and intellectually appealing threat vectors with
proof-of-concept demonstrations in controlled environments. The
attacks presented in these studies exploit different types of sensors
such as MEMS motion sensors, laser-based sensors, and some other
sensors (camera, position error signal, piezo-disc) to measure the
vibrations induced on an object by nearby sensitive speech. Such
sensors are commonly found on mobile devices like smartphones
and tablets that can be exposed to sensitive speech, revealing the
significance of this potential threat. These studies have amassed
significant attention in news and media and introduced concern to
people about the safety of their day-to-day speech and around their
personal, wireless and IoT devices. However, we hypothesize that
the controlled experiments in the prior research maintain critical
parameter values that are favorable to attack success (deviating from
the limiting settings in a real-world scenario) and produce results
that suggest a greater real-life threat level than actually exists.

The contributions made in this paper are as follows; First, we
provide a detailed review of 10 existing academic research works
related to vibration-based eavesdropping attacks. Second, we iden-
tify key experimental parameters that can impact the success of
eavesdropping in the vibration domain. Third, we build a framework
to evaluate the existing literature based on the Percent Parameters
in Favored Settings (PPFS) Score metric that we define. Lastly, we
use our defined framework to evaluate the feasibility of the existing
vibration-based speech attacks to compromise live human speech
to the extent of full speech recognition. The results of our evalua-
tion suggest that none of the existing vibration-based eavesdropping
attacks have a high likelihood of successfully compromising live
human speech in a real-world scenario.
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1 INTRODUCTION

The threat of sensitive speech eavesdropping is becoming a great
concern for many people as news and media, covering academic
studies on the topic, report that these eavesdropping attacks can com-
promise speech in day-to-day scenarios (i.e., full speech recognition).
Specifically, recent works have explored the vibration domain side-
channel to attack sensitive speech. The attacks presented in the
existing literature exploit a multitude of different sensors for col-
lecting vibration data (MEMS motion sensors [13, 31, 41, 42, 68],
lidar sensor [54], electro-optical sensor [45], high speed camera [21],
position error signal [36], and piezo-electrical disks [40]). These
sensors can collect data from an object without physically interfering
with it (i.e., passively) and are ubiquitous on wireless devices such as
smartphones and tablets, which increases the severity of the potential
threat as the popularity of personal wireless and IoT devices (that
are exposed to sensitive user speech) grows. The majority of these
attacks attempt speech recognition and to achieve this goal attackers
will use signal processing techniques and can implement basic or so-
phisticated machine learning (i.e., deep learning). If truly successful,
these attacks could have devastating impacts in real-life situations
by allowing an attacker to compromise speech in situations where
speech privacy is otherwise protected in the audio domain. For ex-
ample, we assume speech privacy in situations such as; talking about
our medical history in a doctor’s office, discussing confidential infor-
mation in a business meeting, or even speaking sensitive information
to a voice assistant device in our homes. In these scenarios, many of
the limiting conditions that make eavesdropping in the audio domain
a difficult task do not apply to the alternative vibration domain attack.
Additionally, the constant presence of vibration sensors in devices
like our smartphones makes such vibration domain attacks more
likely, even in highly private situations.

In a vibration-based eavesdropping attack, the attacker exploits
the vibrations induced by the speech source as the sound waves
propagate through the space. When eavesdropping on live human
speech, an attacker can exploit the vibrations induced on objects that
are close to the speaker (i.e., a nearby cup, chip bag, etc.). For the
purposes of this study, and as it should be considered throughout
this paper, we define “live speech” as speech that is spoken by a live
human (e.g., sound waves that induce vibrations are produced by
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vocal chords). Conversely, we define “machine-rendered speech” as
any speech audio (whether a recording of live speech or synthetically
produced) that is generated by a mechanical speaker device. If the
speech audio is machine-rendered, an attacker can exploit the vibra-
tions of the speaker device itself (i.e., the vibrations of a smartphone
when it plays audio in speaker mode).

These attacks could reveal significant information and therefore
have the potential for some significant real-world applications. For
example, these speech tasks can be used for sensitive jobs includ-
ing national intelligence operations that look to spy on a person of
interest that may be hiding out. Further, compromising speech via
these attacks can be used in the commercial sector for modeling user
behavior and generating targeted advertisements. Although likely
intended for improving user experience, this potential of specialized
ads has actually made general users more concerned that apps on
their smartphones may be eavesdropping on all of their private con-
versations in order to learn what ads to target with [8, 18, 27, 43].
The idea that vibration-based eavesdropping is a real threat only en-
hances this concern as the permission-less motion sensors ubiquitous
on smartphones can be easily compromised by an attacker.

While the existing studies introduce very interesting and intellec-
tually appealing threat vectors, can these threats actually be deemed
concerning in real-life is what we seek to explore. Or, are these
threats merely “textbook threats”? This paper will examine a broad
gamut of previous works on speech leakage in the vibration domain
[13, 21, 31, 36, 40-42, 45, 54, 68]. The 10 works that we evaluate
were selected because they best encompass the basic elements of
vibration based speech attacks that we are interested in investigating.
Specifically, we looked for studies that report on the physical param-
eters of their experiments, claim to demonstrate a successful attack
against speech, or amassed significant attention in top academic
conferences or the media and influenced the popular belief that such
vibration-based attacks may be viable in a real-world situation.

We examine these works in part by identifying important exper-
imental parameters that can affect the success of vibration-based
speech leakage. If we consider a real-world situation where sensitive
speech may be targeted by an attacker, there are many factors of the
physical environment that can limit the potential success. The param-
eters we identify largely focus on these physical limitations so that
we can assess how the experimental setups of the existing research
compare to the real-world settings an attacker would encounter.
We hypothesize that each parameter in the controlled experiments
(of the existing academic research) that deviates from the limiting
settings of a real-world scenario will improve the observed success
of the attack. We believe inadequate representation of certain real-
world limiting factors may attribute to the positive results reported in
existing works. These studies have consequently introduced concern
that people’s day-to-day speech is vulnerable to such attacks.

The parameters we consider include: speech source (Live Human
speaker, Machine-rendered), speech loudness (Normal conversa-
tional loudness (40-60 dB), “Loud” speech (>70 dB)), the propaga-
tion medium by which speech signals travel (through the air (Aerial),
over a shared solid surface (Shared Surface), or via direct contact
(Touching)), the vibration sensor fidelity (Low-fidelity (0-5 kHz),
High-fidelity (>5 kHz)), the level of background noise in the attack
environment (High (noisy), Low (ambient)), the distance between
speech source and point of measurement (Very Close [0-0.5 m],
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Close (0.5 - 2 m], Far (>2 m)), and whether the attack attempted
Speech Recognition (Yes/No). We suspect that most attacks that
were previously perceived at a high threat level will show to be less
of a threat in real-world settings.

Contributions: The contributions made in this work are as follows:

(1) We provide a detailed review and systematization of 10 exist-
ing research works on vibration-based speech attacks includ-
ing experiment details and attack accuracies (Sec. 3).

We identify key experimental parameterizations that must be
understood in order to determine the viability of vibration-
based speech leakage in real-world scenarios (Sec. 4).

We define a simple framework for evaluating the existing
literature based on an evaluation metric, Percent Parameters
in Favored Settings (PPFS) Score, that we created; as well
as some experimental laser vibrometry data to reinforce our
qualitative framework (Sec. 5).

Lastly, we evaluate a set of current research works on vibration-
based eavesdropping, using the frameworks we defined, to
assess the feasibility for these prior studies to be successful
against live human speech (Sec. 6). This framework can be
used to evaluate other attacks as they are identified in future
works by other researchers.
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The current research works do explore some aspects of vibration-
based speech attacks; but we are missing a broad and comprehensive
review of the current literature that systematically identifies the areas
of this topic that need new or further understanding. While this study
is largely applied work, it uniquely builds on the basic elements of
security and privacy in speech environments and provides a compre-
hensive analysis of the realistic parameters that affect the success of
vibration-based speech attacks. The results of our evaluation suggest
that the existing attack methodologies are less likely to successfully
compromise live human speech than has previously been perceived.
This analysis could be invaluable, we believe, to the community as
it can inform future academic research on evaluating this threat in
the face of growing wireless device popularity.

2 BACKGROUND
2.1 Side-Channel Attacks

Side-channel attacks uniquely exploit data leakage that occurs natu-
rally (or that the attacker does not cause directly) in a system in order
to compromise user information. These attacks can be described as
“passive” attacks and therefore have a few defining characteristics
that potentially make them more dangerous [38]. Side-channel at-
tacks will not impact the system or environment because data is only
recorded, not changed. This also means that any resources of the
target system are not changed and the victim cannot be alerted to the
attack. Although many forms of side-channel attacks exist, we focus
on evaluating vibration-based side-channel attacks against speech
(i.e., eavesdropping). The “data leakage” that occurs is in the form
of acoustic sound waves or vibration emissions from the speech
source that allows the attacker to potentially learn the target speech.
Figure 5 in the Appendix shows the typical flow of a vibration-based,
side-channel speech attack.
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2.2 Vibration Domain

We often think of the audio and vibration domains as being sepa-
rate. However, these domains work closely with each other in many
common scenarios. The best example of this is human speech where
the vibrations of our vocal chords produce sound waves that we
formulate into speech. These sound waves travel through the air
and induce minute vibrations in our eardrums that cause us to hear
it. Similarly, microphone devices use an inbuilt diaphragm, that vi-
brates in response to sound waves, to record audio. In this process,
the vibrations are converted to an analog signal and output as au-
dio. Hence, the vibration domain is a viable avenue for exploiting
sensitive speech when high quality vibration data can be collected.

Some of the first studies that looked at side-channel attacks via
the vibration domain targeted the touchscreen inputs of smartphones
[17, 39, 48, 67]. These works exploited the vibration data recorded
by the inbuilt MEMS motion sensors when a user typed using the
soft keyboard on their smartphone. It was demonstrated that the
MEMS motion sensor data could be used to infer the touch input
(i.e., passwords) from the user. Exploiting the vibration side-channel
can also be applied to compromise sensitive (audible) speech. An
attacker must identify a target object that is subsequently affected by
the speech in the area (e.g., by vibrations induced from sound waves).
For example, an attacker executing a vibration-based speech attack
may target the vibrations induced on a cup sitting on someones desk
as they speak to another person or take a phone call. Additionally,
if the speech source is machine-rendered, an attacker may be able
to exploit the vibrations of the body of the speaker device as it
plays the target audio and the vibrations of the internal speakers are
propagated throughout the entire device.

2.3 Public Perception

There has been a lot of attention in news and media and among the
general public on the potential for attackers to use vibrations sensors
to eavesdrop on our speech. Many of the existing research works on
the subject have been individually recognized. A prior work claimed
to exploit the gyroscope on smartphones to eavesdrop speech and
it was featured in many online articles [25, 28, 30]; even leading to
a YouTube tutorial published by the authors [44]. Eavesdropping
via laser is another popular attack that has received online attention
[12], including at-home tutorials to build a laser microphone device
yourself [24, 59]. The authors of these tutorials claim that the devices
can be used to eavesdrop speech inside a target room or from across
the street, without providing sufficient scientific evidence.

Another work reported that even an HDD could be converted to
a microphone. This naturally sparked a lot of curiosity and fear (as
HDDs are widely used), and resulted in significant media coverage
[19, 22, 64]. Similarly, a more recent study reported that they could
eavesdrop speech by exploiting the vibrations of a light bulb in the
room. Within a short time, the claims made from this research were
published in multiple articles [29, 46, 66]. Often times the authors of
these articles will use verbiage to describe the conclusions from these
academic studies that unintentionally overstates the threat potential
actually realized in the work. And this can convince people that their
day-to-day speech is at a higher risk of being eavesdropped than it
likely is. Outside of controlled academic settings, an attacker must
overcome many limiting factors present in real-world environments.
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3 REVIEW OF EXISTING LITERATURE

In this section, we will discuss recent works that explore speech
recognition (or related task) via the vibration domain. Most of the pa-
pers we evaluate specifically present side-channel speech attacks us-
ing vibrations ([13, 21, 31, 36, 41, 42, 45, 54]). We also include two
studies ([40, 68]) in our evaluation that do not specifically present
their work as an attack, but have clear potential for similar speech
attack applications. Table 1 shows the experimental parameter values
for each existing work (collected from the literature). Certain param-
eter settings represent more limiting and realistic attack scenarios,
while others are favorable and will increase attack success.

3.1 Attacks using MEMS Motion Sensors

PitchIn: In the eavesdropping attack Pitchln [31], multiple non-
acoustic sensors (e.g., geophone, accelerometer, gyroscope) were
used to reconstruct nearby speech signals. The non-acoustic sensors
were networked and the fusion of their measurements was used
for speech reconstruction. The combination of sensors achieved a
sampling frequency of 1 kHz. In their experiments, the speech source
was a live human speaking at 85 dB loudness. To evaluate the quality
of the reconstructed speech samples, Han et al. conducted a live study
involving human listeners. The participants were asked to listen to
the reconstructed speech signals and attempt to transcribe what was
said. The results show that there was some word recognition among
the human listeners which hints at the potential threat of this attack.

Gyrophone: Gyrophone [42] is a study that explored the use of
an MEMS gyroscope sensor (200 Hz sampling frequency) on a
smartphone to measure acoustic signals that are nearby. In the ex-
perimental setup, the speech audio was played from a loudspeaker
device at 75 dB. Figure 3a in the Appendix depicts the experimental
setup used in their work. With the reconstructed audio from their
gyroscope data, Michalevsky et al. evaluated the intelligibility of
the speech using the Sphinx speech recognizer. They also trained
different machine learning models (SVM, GMM, DTW) for speaker
recognition. Lastly, they performed isolated word recognition with
leave-one-out cross validation. In general, the authors found that
the reconstructed speech audio was partially intelligible; but more
significantly they could successfully perform speaker recognition
with their reconstructed audio (compromising the speech to some
extent). However, inspection of their experimental design reveals
that the loudspeaker system and the smartphone were placed on the
same surface which can propagate stronger vibrations. Appendix
Figure 4a shows the actual experimental setup from the literature.

AccelEve: AccelEve [13] is an eavesdropping attack presented by
Ba et al. This attack exploits the speech reverberations (vibrations)
that are generated from a smartphone’s internal speakers and cap-
tured by the accelerometer motion sensor (200 Hz sampling fre-
quency). The authors use the accelerometer of the same smartphone
to measure the induced vibrations. Appendix Figure 3b is a general
depiction of the experimental setup. In this work the authors imple-
ment deep learning-based speech recognition. Further, the authors of
this work report greater sampling rates observed in the smartphones
that they used (up to 500 Hz). Specifically, the authors report 70%
speaker identification accuracy, 78% digit recognition accuracy, and
55% digit+letter recognition accuracy. A more recently published



WiSec '21, June 28-July 2, 2021, Abu Dhabi, UAE

Payton Walker and Nitesh Saxena

Table 1: Experimental parameters used in each existing work on exploiting speech via the vibration domain. Bold text in the Attack Goal column indicate prior works that specifically attempt the

highly thr speech r task. ““*”’: Previous works marked with an asterisk were not specifically presented as speech attacks, but still have clear applications for potential attackers.
-
q 2 - Sensor Speech | Speech | Propagation | Background | Speech
Previous Work e Attack Description Attack Goals . D > 2 g g' 'p
g Resolution | Source | Loudness | Medium Noise Distance
Eavesdrop speech via sensor . .
Live Ambient
Pitchin [30] fusion (geophone, gyroscope, Speech Recognition 1 kHz i 85 dB Aerial ! im
Human (~50 dB)
accelerometer)
2 Measure acoustic signals Speech Recognition, . .
Machine- Ambient
Gyrophone [41] 2 using MEMS motion sensors Speaker & Gender 200 Hz achine 75dB Same Surface molen 0.15m
S e rendered (~50 dB)
3 on a smartphone Identification
§ Accelerometer-based Word Recognition, Machine-
AccelEve [9] ° smartphone eavesdropping Speaker 500 Hz 70+ dB Same Surface 70+ dB <0.1m
s . N e rendered
b using speech reverberations Identification
. S| Music identification using audio . .
c Klne:‘:lc S?ng 20 E reverberations measured by Song Recognition 200 Hz Mazhlned 70+ dB Same Surface Aj;glzgt <0.1m
omprehension [ ] smartphone motion sensors rendere ( )
i i Machine-
AccelWord* [71] Hotword detection using Word Recognition 200 Hz achine 1 5070 ds Aerial 25dB 03m
accelerometer readings rendered
- Acoustic side-channel attack Word Recognition, Vi Aerial/
Lidarphone [55] jS using lidar sensors in robot Speaker & Gender 1.8 kHz 70, 75 dB 70, 75,77 dB 1.5m
5 P rendered Same Surface
vacuum cleaners Identification
o Recover sound from - Machine- . Ambient
Lamphone [44] § lightbulb vibrations via laser Speech Recognition 2 kHz rendered 70,90 dB Aerial (~50 dB) 0.01m
©
The Visual b} Speech recovery using video - Machine- . Ambient
Microphone [20] § recorded by a high speed camera Speech Recognition 2kHz rendered 80-110dB Aerial (~50 dB) 0.5-2m
Hard Dri f i iti Machine- 75, 85, . Ambient
ar L rive o Q Eavesdrop speech via Speech Recogrfl.tlon, 34.5 kHz achine: Aerial mbien 05m
Hearing [35] o PES signal of HDD Song Recognition rendered 90 dB (~50 dB)
o Reconstruct speech via nasal e
V-Speech* [39] ‘E vibrations measured using Speech Recognition 16 kHz H 40-60 dB Touching 80 dB om
o2 piezo-electrical discs DLl

work, Spearphone [11], similarly exploited smartphone speech re-
verberations and achieved even greater recognition accuracies while
using off-the-shelf classifiers. This work has similar implications as
our analysis of AccelEve demonstrates.

Kinetic Song Recognition: Another recent work by Matovu et al.
[41] presents an attack that identifies popular songs played from a
victim’s smartphone by exploiting vibration data collected by the
accelerometer of the smartphone. The model of this attack is very
similar to that of the AccelEve attack described previously, using
the same setup shown in Figure 3b in the Appendix. The attack
uses a malicious app installed on the victim’s phone that records
speech reverberations via the accelerometer. In their experiments,
the authors collect vibration data using this app while the phone
plays different songs from its internal speakers. The classifier built
by the authors using this data is able to achieve song recognition
accuracy >80%. Another part of their study was exploring different
surface materials that the phone is placed on during the experiments,
as well as the volume level of the phone’s speakers. The authors
report that the surface type that the phone is placed on had little to
no impact on the success of the attack.

Accelword: In an academic paper by Zhang et al., the authors
present AccelWord [68], a speech recognition framework that was
developed to detect when a user says a “hotword” by analyzing
the MEMS accelerometer data of a nearby smartphone. Although
Accelword is a benign application, its methodology could easily be
adapted for a speech attack. The experiments that were conducted
used a smartphone speaker to play the source audio at volumes of
20-70 dB. To evaluate their framework, the authors performed hot-
word detection using 10 live human speakers. They measure the true
positive (TP), false positive (FP), and accuracy of the hotword clas-
sifier. Lastly, they compared their AccelWord framework to Google
Now[65] and S Voice[55] for both hotword detection and energy

consumption. Training their model on known hotwords, the authors
found that AccelWord could successfully detect spoken hotwords
(achieving an accuracy of 86%) and can be used for speaker recogni-
tion. Although AccelWord did not perform quite as well as Google
Now and S Voice at hotword detection, it only consumes half as
much energy comparably.

3.2 Attacks using Other Low Fidelity Sensors

LidarPhone: LidarPhone is an acoustic side-channel attack pre-
sented by Sami et al. [54] that exploits vibration data collected by
the lidar sensors found on common wireless robot vacuum cleaners.
The lidar sensors are laser-based sensors with a sampling resolution
of 1.8 kHz that can be used to measure vibrations induced on ob-
jects that are near a target speech source. In this work, the authors
implement their attack using a Xiaomi Roborock vacuum cleaning
robot [53] to compromise speech (digits) and music played from
a victim’s computer speakers. In their setup, the victims computer
speakers were placed on a desk with a subwoofer placed on the
ground. A trash can was placed on the ground near the desk and
acted as the target object that was measured by the lidar sensor.
Figure 3c in Appendix shows the experimental setup used in their
work. Notably, in this setup we see that there is a shared surface
between the subwoofer (significant source of vibrations) and trash
can which would induce most of the vibrations measured by the
lidar sensor. Additionally, the target speech is played at volumes
>70 dB which will further strengthen the induced vibrations. With
their collected data, the authors built classifiers for gender, digit, and
music recognition and reported recognition accuracies over 90% for
all tasks, as well as 67.5% speaker recognition accuracy.

Lamphone: A recent study demonstrated how to exploit the vibra-
tions of a hanging light bulb inside a room to eavesdrop on speech
[45]. Nassi et al. utilized a Thorlabs PDA100A2 electro-optical

276



SoK: Assessing the Threat Potential of Vibration-based Attacks against Live Speech using Mobile Sensors

sensor [2] and a telescope to measure the light bulb from 75 me-
ters away. The experimental setup used in this study is depicted in
Appendix Figure 3d. In the target room the sensitive speech was
played from a loudspeaker device at 70 and 90 dBs, at a distance
of 1 cm from the light bulb. To evaluate the quality of the audio
recovered from their sensor data, the authors first listened to the
audio samples personally. Next, they tested the samples against an
ASR system (Google Speech-to-Text [26]) and the samples contain-
ing songs against Shazam [5] and SoundHound [58]. The results of
their evaluation revealed the reconstructed speech samples could be
understood by human listeners and ASR, and the reconstructed song
samples could be recognized by Shazam and SoundHound. Images
of their experiments are shown in Appendix Figure 4b.

The Visual Microphone: In the work titled The Visual Microphone
[21], Davis et al. utilized a Phantom V10 high speed camera and
image processing techniques to extract vibration data from an ob-
ject that they recorded. In their experiments the authors played the
source audio (samples from the TIMIT dataset [23]) from a loud
speaker at volumes of 80-110 dB. To evaluate the quality of the
reconstructed signals, the authors began by using segmental STNR
to measure accuracy. Additionally, they used a perceptually-based
metric for speech intelligibility from a separate academic publica-
tion [60]. Lastly, the authors investigated the similarity between the
spectral shapes of the reconstructed and original signals using the
Log Likelihood Ratio (LLR). The results of their evaluation revealed
that gender recognition could be achieved using the recovered audio,
some music in the reconstructed audio can be understood by human
listeners, and sound can be reproduced using the vibration data.

3.3 Prior Work using High Fidelity Sensors

Hard Drive of Hearing: In [36], Kwong et al. demonstrated an
eavesdropping attack that exploits the mechanical components of a
hard disk drive (HDD) to recover nearby speech. In their experiments,
speech was played from a loudspeaker device at volumes louder than
the range for normal human conversation. The Position Error Signal
(PES) data, measured by the HDD, was used to reconstruct the audio
signal. The HDD inadvertently acts as a microphone and can allow
an attacker to eavesdrop on nearby speech. To evaluate the quality
of the reconstructed samples, the authors performed a side-by-side
visual comparison of the time-domain graphs. They calculated the
similarity metric using discrete cross-correlation between the time
series data. The speech intelligibility was determined using STNR
and PESQ. Lastly, the Shazam[5] song identification tool was used
on the reconstructed samples that contained song audio. When the
source speech was 75 dB there was clear information leakage. At
85 dB intelligible speech was reconstructed. And at 90 dB, Shazam
correctly identified a song played near the HDD.

V-Speech: The research titled V-Speech [40] is an interesting work
by Maruri et al. that presented a novel speech sensing and process-
ing solution that allows for speech recognition and even human-to-
human communication in noisy settings. This work was not pre-
sented in the context of an attack, but we include it in our evaluation
to determine its potential for real-world attack application. This solu-
tion, implemented in a pair of sensor-equipped eyeglasses, measured
the vibrations of a user’s nasal bone as they spoke. As the vibrations
were captured by the piezoelectric discs (attached to the nose pads of
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the eyeglasses), a signal transformation was performed that utilizes
both machine learning and signal processing techniques. V-Speech
was tested in both quiet and noisy environments and the quality
of the reconstructed audio samples was evaluated using the PESQ
and Word Error Rate (WER) metrics. The authors also subjectively
listened to the audio files to gauge the speech quality and varying
STNR values were considered to maximize the intelligibility of the
reconstructed speech. Unique to most other academic studies on
vibration-based speech attacks, the experimental design to test V-
Speech used live human speakers that spoke within an appropriate
loudness range for human conversation (40-60 dB). The results of
their evaluation was positive as they were able to reconstruct intelli-
gible speech from the vibration data that was rated fair to good on
how natural it sounded. This work demonstrated the vulnerability of
speech when an attacker can acquire direct vibration data from the
speech source. Similar to the nasal bone, any loudspeaker device that
plays audio will incur vibrations proportional to the speech audio.

4 PARAMETERIZATIONS

Through our study of the existing literature on speech leakage in the
vibration domain, we identify some key physical parameters that can
affect the success of these attacks. Figure 1 depicts the experimental
parameters that we consider in our evaluation of the previous works.
Controlling these parameters and testing them in various experimen-
tal settings is crucial to understanding the feasibility of these attacks
against sensitive speech in real-world scenarios. Additionally, eval-
uating these parameters will best inform what defensive strategies
can work and should be explored in future research.

1. Speech Source: Speech source is a variable that can change be-
tween different attack settings. Often the source of sensitive speech
that an attacker may target will be from live human speakers. How-
ever, current speaker technology is capable of projecting very clear
audio which introduces new scenarios where sensitive speech may
be gleaned. If we consider a conference call during a business meet-
ing, the conference phone device will play the speech of the remote
participants that may contain confidential information. Through ex-
perimental analysis we can compare the vulnerability of live human
speech and machine rendered speech in vibration-based eavesdrop-
ping attacks to determine how speech source affects an attacker’s
ability to compromise the speech. If we consider the potential for
attacking live human speech vs machine-rendered speech, we find
certain properties that suggest machine-rendered speech may be
generally easier to attack. Speech played from a speaker system will
have consistent audible properties throughout, while live speech can
be variable. Also, machine-rendered speech produces highly directed
audio towards one direction, while live human speech emanates in a
broader area. Therefore, we consider machine-rendered speech to
be a favorable setting when evaluating an attack’s feasibility against
live human speech, like in this study.

2. Sound Pressure Level: Probably the most important parameter
to consider when researching speech attacks is the Sound Pressure
Level (SPL), or loudness, of the speech source. In regards to the
vibration-based attack, the SPL of the target speech is significant be-
cause it directly determines the strength of the vibrations induced by
the sound waves. It is reasonable to assume that there is a threshold
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Figure 1: Figure depicting the seven parameters relevant to a real-world vibration-based side-channel attack scenario that we consider for our evaluation. The “realistic”” parameter settings that an
attacker would likely encounter are: 1) Speech Source (Live Human), 2) Speech Loudness (Normal), 3) Propagation Medium (Aerial), 4) Sensor Fidelity (Low), 5) Background Noise (High), 6) Speech

Distance (Far), and 7) Speech Recognition (Yes).

of speech loudness that can ensure the success or failure of eaves-
dropping in the vibration domain. To evaluate the speech loudness
used in the prior research experiments, we define two categories
of speech loudness representing the Normal SPL range for human
conversations (40-60 dB), as well as Loud speech (=70 dB). In a
real-world scenario, sensitive speech that would be targeted by an
eavesdropping attack is not likely to be in the Loud SPL setting
(i.e., speaking in a doctor’s office or bank). Truly sensitive speech
is going to be spoken within the Normal loudness range for human
conversation, or possibly even quieter.

3. Propagation Medium: Propagation medium refers to the means
by which sound waves from audio travel to the destination. Live
human speech always travels aerially, simply traveling outward in
the open air space. However, since the speech source does not have to
be a live human, we also consider the possible propagation mediums
for speech originating from a speaker device. When a speaker device
plays some audio, sound waves are projected outward similar to live
human speech. However, a speaker device will also generate internal
vibrations that are proportional to the sound waves being played.
This means that audio from a speaker device can also propagate
through a shared surface when the vibrations from a speaker device
travel along that surface and affect a different object. Along those
lines, a specific scenario in which a speaker device is touching
another object allows the vibrations from the speaker to propagate
directly into the object it is touching. Understanding these different
mediums, and how they can be utilized in different attack scenarios,
is crucial for understanding the practicality of these attacks.

4. Vibration Sensor Fidelity: Exploiting the vibrations induced by
sound waves can be achieved using any equipment that is capable of
capturing vibration data. Existing research has demonstrated how to
achieve this using different types of sensors. Each method provides a
way to capture minute vibrations, and potentially speech information.
However, some of these sensors have greater sampling rates which
collect finer-grained vibration data. Low-fidelity sensors (<5 kHz
sampling frequency) such as MEMS motion sensors are cheap and
ubiquitous and are a viable and likely option for a real-world attacker.
However, the lower sampling rates of these sensors will result in
lower Signal-to-noise Ratio (SNR) because environmental noise will
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be more present in the reduced data sampling. Also, the Nyquist
Sampling Theorem says a sampling frequency of at least 5 kHz
is required to obtain intelligible speech [49]. On the other hand,
High-fidelity sensors (>5 kHz sampling frequency) such as the Laser
Doppler vibrometers are able to collect high quality measurements
of even the smallest vibrations and are more likely usable for full
speech recognition. Because these sensors have greater sampling
rates, they will achieve higher SNR for their recordings as additional
noise will have a lower impact. These complex devices are only
available to the public in a limited capacity and are significantly
more expensive (tens of thousands of dollars) than the low-fidelity
sensing equipment. Other high-fidelity sensors that we have seen
include piezoelectrical discs and the PES signal of HDDs. These
methods are not expensive to fund but are challenging to implement
in a real-world attack because they require direct contact (piezo) or
specialized firmware hacking (PES).

5. Background Noise: Another common factor that can influence
the success rate of speech-based attacks is the level of background
noise in the attack environment. If there are other audio signals
traveling through the air, it can affect the quality of the content of the
sound waves before they reach the sensing equipment. We consider
two levels of background noise in this study: Low and High. We say
there is Low background noise when the experimental setting only
contains ambient noise aside from the source speech. All works that
tested with this level of background noise were setup in an office (or
similar) space where the ambient noise is <60 dB. Additionally, we
say there is High background noise when the experimental setting
injects noise in the test space to mimic a more realistic setting
(i.e., work or public space with multiple speakers or music in the
background). Here, the background noise is >60 dB and has the
potential to compromise the source speech signals as they travel.

6. Speech Distance: We consider the distance between the speech
source and point of measurement as another important physical
parameter to consider when evaluating the attack’s real-world fea-
sibility. In some attacks, such as those that utilize MEMS motion
sensors, the distance between the speech source and the point of vi-
bration is equal to the distance between the speech source and sensor
device (vibrations induced on sensor). Conversely, some attacks can
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utilize long-range measurement devices such as the Laser Doppler
vibrometers (LDV) where the point of measurement is an object
near the target speech. Meanwhile, the actual LDV device can be a
further away so the speech distance is still fairly short. To evaluate
the existing work, we define three distance range classifications:
Very Close distance is [0 - 0.5] meters, Close distance is (0.5 - 2]
meters, and Far distance is >2 meters, between the speech source
and the point of vibration measurement. In a real-world attack, it is
far more likely that the point of measurement will be a Far distance
from the speech source.

7. Attempted Speech Recognition: The main concern about speech
privacy is the threat of full speech recognition by an attacker. Of
all speech tasks, full speech recognition is the most difficult, but
also the most severe because all speech information is compromised.
Aside from speech recognition, there are other less complex speech
tasks that are achievable with lower quality data. In the literature that
we evaluate, we find studies that explore Speaker/Gender Identifica-
tion, Word Recognition, and Song Recognition. To clarify, although
Song Recognition can essentially reveal the same information as full
speech recognition (e.g., lyrics of a song), we consider it a lower
complexity speech task because in terms of signal processing and
ML modeling, less information is required to achieve song recogni-
tion (i.e., short samples of the music, even without lyrics). Therefore,
to consider an eavesdropping attack feasible in a real-world scenario
against live human speech, the attack should be confirmed via exper-
imentation to achieve full speech recognition. We consider whether
the attacks in the previous literature achieved full speech recognition
in their experimentation (Yes/No). If an attack is confirmed experi-
mentally to achieve full speech recognition, it may be feasible that
the attack can achieve full speech recognition in a real world attack
scenario. But if an attack is not confirmed initially, the feasibility of
successful speech recognition in the real world decreases.

5 EVALUATION FRAMEWORK

Although the works described above do lend some knowledge about
passively eavesdropping speech via the vibration domain, there re-
mains a lack of understanding about how feasible executing these
attacks may be in real-world situations where certain parameters may
not be in the favored setting. We evaluate a set of previous works on
different parameters that determine how realistic their experimental
attack scenarios are. Our evaluation is summarized in Table 3. From
this evaluation we determine a potential risk level for each of the
prior works (i.e., how likely is it that the work presented in the lit-
erature can be applied to a real-world attack scenario against live
human speech). We estimate potential risk by weighing the positive
attack results from these prior works against their representations of
realistic, limiting parameter values in their experimental designs.
The seven parameters we consider are 1) the speech source, 2) the
speech loudness (SPL), 3) the propagation medium of the speech, 4)
the fidelity of vibration sensor used, 5) the amount of background
noise in the environment, 6) the distance between the speech source
and target object, and 7) if speech recognition was attempted. We
selected physical parameters (1-6) that represent the attack environ-
ment, and are commonly reported in published papers, because we
recognize in real-world scenarios there are certain physical factors
that can be very limiting to a vibration-based attack. Additionally,
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we found that these parameters have been controlled in unrealistic,
favorable settings in the experiments of existing works which claim
potential for real life attack success. Because of this, we also con-
sider whether the existing work attempted full speech recognition. In
order to best replicate a realistic scenario that an attacker would face,
the experimental setup would use Live Speech as the speech source,
at a Normal loudness for human conversations, at a Far distance
from the target object, where the speech travels Aerially in an envi-
ronment with High background noise, and some cheap, ubiquitous,
Low-fidelity sensor (i.e., MEMS) is used to record vibration data.
Additionally, the attacker would likely try to accomplish full speech
recognition. Table 2 lists the different parameters that we consider
in our evaluation and their potential values. The table also depicts
which parameter settings are most likely in a real-world scenario.
Table 2: List of experimental parameters that we consider in our evaluation and their

potential settings, as well as their value for calculating the PPFS Score. *Realistic,
non-favorable settings.

o s PPFS Value *Realistic
arameter ettings ble =1 N
E ( nla):lu-;:\:l;mi/e :)o ) | Scenario
Speech 1. Live Human 0 Live
Source 2. Machine-rendered 1 Human
Speech 1. Normal (40-60 dB) 0 Normal
Loudness 2. Loud (70+ dB) 1
Propagation L. Aerial 0
Mpedgium 2. Same Surface 1 Aerial
3. Touching 1
Sensor 1. Low (0-5 kHz) 0 Low
Fidelity 2. High (>5 kHz) 1
Background | 1. Low (~50dB) 1 High
Noise 2. High (60+ dB) 0 g
1. Very Close (0-0.5m) 1
Dsi‘;f:::e 2. Close [0.5-2m] 1 Far
3. Far(>2m) 0
Speech 1. Yes 0
Recognition | 2. No 1 Yes
Highly Somewhat Not
Likely Likely Likely
Real-world 1 1
Attack I I
Potential I 1
1 1
0.00 0.33 0.66 1.00

Percent Parameters in Favored Settings (PPFS) Score
Figure 2: We define three categories to describe the potential success of a real-world
vibration-based speech attack based on the Percent Parameters in Favored Setting
(PPFS) metric that we defined. PPFS scores of [0.00-0.33) are labeled as Highly Likely;
scores of [0.33-0.66] are labeled as Somewhat Likely; and scores of (0.66-1.00] are
labeled as Not Likely.
PPFS Score: To assess the potential risk of each of the previous
works (for use in a successful real-world attack), we define the metric
Percent Parameters in Favored Settings (PPFS) Score. This metric
expresses the portion of experimental parameters (from the set of
seven that we consider) that were tested in favorable settings. It is
important to note this observation because studies that maintain a lot
of these parameters in favorable settings during their experiments
may produce more positive speech leakage results than an attacker
would likely achieve in a real-world attack situation. We calculate
the PPFS Score as; f J
arams_favore
PPFES = ‘p—
params_total

where params_favored equals the number of parameters that were
maintained in favorable settings during experimentation and that
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could have attributed to the reported success. It can be calculated
using the equation;
k

params_favored = Zp_vali =
i=0

0, if nonfavorable setting

1, otherwise

where £ is the set of all parameters, and p_val is a value of 0 or 1
that is assigned to each parameter based on whether it represents a
favored or non-favored setting. Summing these values and dividing
by params_total, the total number of parameters (7 in our case),
results in a PPFS Score for each work. We consider one setting
of each parameter as “non-favorable”, and classify any remaining
settings as “favorable”. For example, Far distance is considered non-
favorable, so both the Close and Very Close distances are considered
favorable. We did not independently recreate each experiment, but
rather determined the value of each parameter from the information
provided in the literature of each work. We define three ranges for
PPFS score values to categorize the potential risk (i.e., potential for
success) of each prior work. PPFS scores of [0.00-0.33) are labeled
as Highly Likely; scores of [0.33-0.66] are labeled as Somewhat
Likely; and scores of (0.66-1.00] are labeled as Not Likely. Figure 2
depicts our defined PPFS value scale.

As this is an initial study to evaluate vibration-based speech
attacks, we use a simple model for comparing our evaluation param-
eters. In our PPFS score calculation, all 7 parameters are considered
equally valuable. Although certain parameters are likely more sig-
nificant for attack success (i.e., speech loudness), we reserve more
extensive evaluation of parameter correlations and adjusted weight-
ing for future research. Our work focuses on the major parameters
that will affect attack success, so we believe for an initial evaluation
metric, comparing each parameter equally is still very revealing and
speaks to the true feasibility of attacks presented in the prior liter-
ature. The attack potential classifications for each of the evaluated
works is shown in Table 3 (using Figure 2 icons).

6 EVALUATION AND CHARACTERIZATION
OF VIBRATION-BASED SPEECH ATTACKS

Here we will present our evaluation of the existing literature based
on the framework described in Section 5. We discuss the parameter-
izations present in each work and determine their PPES Scores to
categorize their potential for success in a real-world attack against
live human speech. We seek to learn the true feasibility of the current
“known” attack methodologies in order to validate or refute some
of the public confusion and paranoia around whether or not our
everyday speech is being eavesdropped, and how easy those type of
attacks could be. As a founding example, a recent work by Anand
et al. [9] evaluated a previously confirmed attack on speech using
MEMS motion sensors [42]. The authors determined the threat to be
lower than previously perceived because certain experimental param-
eters (i.e., sound wave propagation) had not been considered. They
concluded that the threat posed by the attack in a real-world scenario
was lower than originally suggested because of a certain limiting
factor that is required for the attack to be successful - propagating
the sound waves via a shared surface. Appendix Figure 6 depicts
frequency spectrum graphs presented in Speechless [9] that demon-
strate the significance of the Same Surface propagation medium, in
comparison to Aerial propagation, for inducing strong vibrations.
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Additionally, the work conducted in [10] explored a common mit-
igation technique for speech eavesdropping and demonstrated a
correlation between physical barriers around a space and the success
of eavesdropping attacks. Along a similar line, we consider a set of
parameters, like the propagation medium of sound waves, and their
representation in the experimental setups of the existing literature.
Table 3 summarizes our evaluation of each work including the PPFS
Score calculations and attack potential classifications.

6.1 Evaluating MEMS Motion Sensor Attacks

In our evaluation we looked at five different papers that explored
the use of MEMS motion sensors to eavesdrop speech via the vi-
bration side-channel. The AccelEve [13] and Kinetic Song Com-
prehension [41] attacks look to compromise speech audio played
from the onboard smartphone loudspeakers by capturing the speech
reverberations induced in the smartphone using the MEMS mo-
tion sensors (i.e., accelerometer, gyroscope, etc.). Although these
works are designed to compromise machine-rendered audio played
from a victim’s smartphone, we chose to evaluate their potential to
compromise live human speech because of the generalized fear of
eavesdropping that has resulted from coverage of these works in the
media [6, 20, 61], and the ever growing presence of wireless/mobile
devices that are equipped with these sensors. These articles claim
the research has shown user’s “calls” can be eavesdropped in attacks
when the research has actually only demonstrated eavesdropping on
audio output from the phone. We acknowledge that these attacks do
have merit in their own domains, but in terms of the threat to live
human speech, to the extent of full speech recognition, we need a
clearer understanding of their feasibility.

Looking at the experimental setups used in these papers we do
find that some of the parameters were kept in the more realistic
settings. Both works used Low-fidelity sensors in their attacks which
would produce the lower quality of data a real-world attacker would
likely have to work with. Additionally, the AccelEve attack was
tested in environments with High background noise. However, we
also observe that the majority of parameters in each of these studies
was maintained in favorable settings. Specifically, we see that these
attacks were tested with Machine-rendered speech, in the Loud SPL
range, propagated through a Shared Surface, and with a Very Close
distance between the speech source and point of measurement (all
contained within the same smartphone housing). Additionally, nei-
ther work actually attempted full speech recognition, and the Kinetic
Song Comprehension [41] attack was only tested in environments
with Low background noise. Considering all of these evaluation
parameters, we calculate the PPFS Scores 0.71 and 0.86 for the
AccelEve and Kinetic Song Recognition works, respectively, classi-
fying their potential for real-world attack success as Not Likely.

The other studies that use MEMS sensors look to compromise
speech that comes from a source separate from the vibration sensors.
The Pitchin [31] attack was tested with the realistic parameter set-
tings of Low sensor fidelity, Live Human speech, Aerial propagation
of the sound waves, and attempted full speech recognition. How-
ever, the experiments used speech in Loud SPL setting, at a Close
distance to the point of measurement, and in an environment with
Low background noise. The PPFS Score calculated for the Pitchin
attack is 0.43 and it receives an attack potential classification of
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Table 3: Evaluation summary of the existing literature detailing the experimental parameter settings that they tested. The cells shaded in green indicate non-favorable, realistic settings that receive
a value of 0. Cells shaded with red or yellow indicate favorable settings with a value of 1. “PPFS”: Percent Parameters in Favored Settings; “*: Previous works marked with an asterisk were not
specifically presented as speech attacks by the authors, but still have clear applications for potential attackers.

§ Sensor Speech Speech Speech Propagation | Background Speech PPFS Attack
‘§ Fidelity | Recognition Source Loudness Medium Noise Distance Potential
Expected Realisti
Apected Realistic Low Yes Live Human Normal Aerial High Far 0.00 @
Attack
Pitchin [30] Low Yes Live Human Loud Aerial Low Close 0.43
£ Machi
Gyrophone [41] g Low Yes achine Loud Same Surface Low Very Close 0.71 ®
S rendered
a
s Machine-
AccelEve [9] F=1 Low No Loud Same Surface Low, High Very Close 0.71 ®
° rendered
=
Kinetic Song g Machine- ®
Comprehension [40] E Low No rendered Loud Same Surface Low Very Close 0.86
AccelWord* [71] Low No DY etael) Aerial Low Very Close 0.57
rendered Loud
. I Machine- Aerial, ) ®
Lidarphone [55] = Low No rendered Loud Same Surface High Close 0.71
@ Machine- .
Lamphone [44] E Low Yes rendered Loud Aerial Low Very Close 0.57
T
The Visual b} Machine-
L Ye Le Aerial Le cl 0.57
Microphone [20] § ow es rendered ol ena ow ose
Hard Drive of %) Machine-
w High Ye Loud Aerial Le Very Cl 0.71
Hearing [35] o & es rendered ou era ow GnyelEs ®
o
V-Speech* [39] b} High Yes Live Human Normal Touching High Very Close 0.43
[

Somewhat Likely. The Gyrophone [42] attack also had the realistic
settings of attempted speech recognition and Low sensor fidelity,
but all other parameters were kept in favorable settings. The PPFS
Score of Gyrophone is calculated as 0.71 which indicates the major-
ity of parameters were in favorable settings, classifying the attack
as Not Likely for potential success against live speech. Lastly, the
AccelWord [68] application, which actually targets the live speech
of a user, uses the realistic parameter settings of Low sensor fidelity
and speech at a Normal loudness that propagates Aerially (repre-
senting most sensitive speech scenarios). However, other parameters
such as Low background noise and Very Close distance between the
speech source and vibration sensor can deviate the results from what
would be observed by a real-world attacker. We calculate the PPFS
Score for AccelWord and get 0.57 which classifies the application
as having Somewhat Likely potential for attack success.

6.2 Evaluating Other Low-fidelity Sensor Attacks

Aside from MEMS motion sensors, a few of the previous works
that we evaluated explored the use of other low-fidelity sensors for
capturing vibration data. First, the Lidarphone [54] attack uses the
low-fidelity lidar sensor (laser-based sensor) found on robot vacuum
cleaners to compromise speech. In terms of our evaluation, the
Lidarphone attack maintained three parameters in realistic settings.
Along with the Low fidelity sensor, speech was propagated in the
Aerial medium and in environments with High background noise. If
we look at the favorable parameter settings, we see that Lidarphone
used Machine-rendered speech in the Loud SPL setting, with a Close
distance between the speech source and target object, and did not
attempt speech recognition. This attack scenario involves speech
audio that was propagated both Aerially (through tweeter speakers)
and through a Same Surface (subwoofer placed on the ground).
Although we do not consider this parameter in the favored setting
(such that it affects the PPFS Score calculation), it is important
to note that without the portion of the sound waves that propagate
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through the Same Surface medium in their attack scenario, it is likely
the authors would have observed lower success rates. The final PPFS
Score calculation for Lidarphone is 0.71 which classifies this attack
as Not Likely for success against live human speech.

Next, in the Lamphone [45] experiments the parameters that were
maintained in realistic settings were Low sensor fidelity, Aerial prop-
agation of the sound waves, and attempted full speech recognition.
However, we see that the experiments used Machine-rendered speech
in the Loud SPL setting, in an environment with Low background
noise, and with a Very Close distance between the speech source
and light bulb. Considering these parameter values we calculate the
PPFS Score for Lamphone and get 0.57, classifying the attack as
Somewhat Likely to successfully compromise live speech spoken
by a human. Lastly, The Visual Microphone [21] study developed a
methodology to extract vibration data of an object from the video
recordings of a low-fidelity camera. Similar to Lamphone, the Visual
Microphone experiments also attempted speech recognition target-
ing Aerially propagated speech. However, this attack was also tested
with Machine-rendered speech at a Loud SPL setting, with Low
background noise, and Close distance between the speech source
and target object. The PPFS Score calculated for The Visual Micro-
phone attack is 0.57 so it is also classified as Somewhat Likely.

6.3 Evaluating High-fidelity Sensor Attacks

Among the previous research works that we evaluated, two of them
investigated the use of high-fidelity vibration sensors to reconstruct
speech. The Hard Drive of Hearing study [36] explored an attack that
exploits the high resolution Position Error Signal (PES) sensor that
is used to monitor the offset of the read/write head in HDDs. Even
though this sensor provides certain benefits such as finer quality
data, it is important to consider the challenges that are incurred
when an attacker chooses a high fidelity sensor. For example, the
PES methodology used in this study requires firmware hacking of
the target HDD which significantly increases the difficulty for the
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attacker. Through our evaluation of the experiments used to test
this attack, we find that only two parameters were kept in realistic
settings; speech was propagated Aerially and the attack attempted
full speech recognition. And aside from the High fidelity sensor, the
experiments in this study also maintained the favorable parameter
settings of Machine-rendered speech in the Loud SPL setting, Low
background noise, and Very Close distance between the speech
source and the HDD. The results of our PPFS Score calculation for
this attack is 0.71 which classifies the potential threat to live human
speech in real-world scenarios as Not Likely.

The last work that we evaluated is the benign application V-
Speech [40] which demonstrates the potential use of high-fidelity
piezo-electrical discs in speech reconstruction (from nasal bone vi-
brations). The clear limitation to using the piezo-disc methodology
in the attack domain is that physical contact between the discs and
the speech source is required to obtain the high resolution vibration
measurements needed for full speech reconstruction. In terms of
the parameters we consider in our evaluation, the V-Speech applica-
tion tested over half of our parameter set in realistic settings. This
includes using speech from Live Human speaker that is spoken at
a Normal loudness level, in environments with High background
noise, and successfully achieving full speech recognition. Weighing
these against the parameters that were tested in favorable conditions,
we calculate the PPFS Score to get 0.43. Therefore, V-Speech is
classified as Somewhat Likely to compromise live human speech
(e.g., not spoken by the user of V-Speech).

6.4 Data-Driven Evaluation using LDV

Existing Literature: A few research works have been released that
specifically explore the use of high-fidelity laser vibrometers for
eavesdropping speech in the vibration domain [37, 50, 56]. In con-
trolled experiments, the authors evaluate the potential for these vi-
brometer devices to record fine enough vibration data such that
quality speech can be recovered. These works report some success in
reconstructing speech from the vibrometer measurement, but further
inspection of the provided literature reveals unreported parameter
settings that could have significantly improved the success that they
observed. Specifically, the work by Shang et al. [56] did not report
the loudness of their speech source, the propagation medium of the
sound waves, or the amount of background noise in their experi-
ments. The work by Li et al. [37] did not report their speech source,
speech loudness, propagation medium, background noise level, or
speech distance parameter values. Without knowing the values of
these parameters in their experiment designs, there is little evidence
that such methods would work against live human speech in a real-
world scenario. Lastly, the work by Peng et al. [50] did report on
most of the parameters that we consider and we find that many were
in fact kept in favored settings which would improve the observed
success. In their experiments, the speech was machine-rendered,
played at a Loud volume (75 dB), and was located at a Very Close
distance to the target object (0.5 meters). Further, the authors used
two high-fidelity vibrometer sensors to obtain an unrealistic sam-
pling rate for the vibration data. Therefore, the results from these
laser-based evaluations further support that certain favored parameter
settings are required to fully recover speech from vibrations.
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7 SUMMARY

We have compiled a set of existing literature that explore vibration-
based side-channel attacks against speech [13, 21, 31, 36, 41, 42,
45, 54], and two other related studies [40, 68]. These works have
presented positive results on the potential success of their attacks in
the experimental scenarios that were tested. However, whether or
not these results adequately translate to feasibility in a real-world
setting was unknown. We evaluated the prior works across seven
experimental parameters that describe conditions of the attack envi-
ronment. We consider the vibration sensor fidelity, speech source,
speech loudness, speech distance, propagation medium, background
noise level, and whether speech recognition was attempted. In a
real-world situation, these parameters would have values that limit
the potential for attack success. However, in controlled experiments
these parameters can be set to more favored values that are less likely
to occur in the real-world and can improve attack success.

Along these lines, we reason that prior works with many favored
experimental settings are not likely to be successful in a real life
attack situation. On the other hand, if there is an attack that has
confirmed success with realistic and non-favorable experimental
parameter settings, then there is high likelihood of real-world success.
We defined the Percent Parameters in Favored Settings (PPFS) Score
metric to express how favored each of the prior experiments were
and defined a scale for the PPFS scores to classify the likelihood
for real-world attack success. We determined that half of the works
evaluated are Somewhat Likely to be successful in a real attack,
while the other works are Not likely. All works we evaluated had
over 1/3 of their parameters in favored settings, meaning none can
be classified as Highly Likely for real-life feasibility.

The research community has attempted to develop some defenses
to relevant attacks in both audio domains [7, 33, 34, 47, 51, 52]
and vibration domains [57, 62]. However, it seems certain physical
parameters can be exploited to easily thwart such attacks. In future
work we plan to establish a correlation between the evaluation param-
eters and attack success, and develop mitigation strategies focused
around the most significant parameters. Further, because these at-
tacks do not seem very effective in real-world settings, a determined
attacker might actually deploy traditional mechanisms of eavesdrop-
ping such as implanting insiders or “bugs” [1, 3, 4, 63], or exploiting
the always listening voice assistant devices [14-16, 32, 35].

8 CONCLUSION

In this work, we evaluated current studies on vibration-based speech
attacks. We explore these eavesdropping attacks in terms of their
potential for application in real-world situations against live human
speech. Our observations from the academic literature are summa-
rized in Table 3. We determined that much of the current research
does not precisely recreate the limiting parameter settings of a real-
world scenario. This has led to a misunderstanding among a lot
of people about the true feasibility of these attacks to compromise
our day-to-day speech. We do not believe, at the present time, that
the vibration-based speech attacks presented in the prior literature
are likely to be successful against sensitive, live human speech in
real-world situations. Moving forward, our evaluation framework
may become a useful tool in evaluating wireless and IoT device vul-
nerability to eavesdropping attacks via induced speech vibrations.
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SoK: Assessing the Threat Potential of Vibration-based Attacks against Live Speech using Mobile Sensors

A APPENDIX

Speaker system playing
sensitive audio

Vibrations propagate through
the table (shared surface) to
affect the smartphone

Induced vibrations are
recorded by smartphone’s
MEMS motion sensors

(a) Setup used in Gyrophone [42]

Sensitive audio played
through computer’s speaker
and subwoofer system

=7

< v,
v
Audio from tweeter
speakers travels aerially

Vibrations from subwoofer
propagate through the ground

A/‘f (shared surface)
2 =

- Robot vacuum equipped with

Vibrations induced on Lidar sensor measures
a nearby object vibrations of target object

(c) Setup used in Lidarphone [54]

MEMS motion sensor
recording vibration data

Onboard
Loudspeakers

’~

b
(b) Setup used in AccelEve [13] and Kinetic Song Recognition [41]

Sound waves induce
vibrations in the lightbulb

\

Speech audio played
from a speaker device
(very close to lightbulb)

Electro-optical sensor
measuring vibrations of
the lightbulb

(d) Setup used in Lamphone [45]

Figure 3: Figures depicting different experiment setups used in some of the prior works we evaluated. We can see favored conditions in the experimental setups
(e.g., shared surface propagation, close distance between speech source and target object) that would not occur in a real life attack against live human speech.
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(a) Sensing via MEMS in Gyrophone attack [42]

Target Objectf#Robot Vacuum

(c) Sensing via Lidar in Lidarphone attack [54]

Payton Walker and Nitesh Saxena

(b) Sensing via Electro-Optical Sensor in Lamphone attack [45]

Figure 4: Images of experiments conducted in three vibration-based side-channel attack papers that eavesdrop speech via different sensor methodologies.
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Figure 5: In a vibration-based speech attack the attacker discretely collects information from the system without affecting it. The attacker can use the data it
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collects, via some sensory equipment, to execute additional speech-based attacks.
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Figure 6: Frequency spectrum graphs generated from gyroscope and accelerometer data in the presence of speech pmpagatmg aerially vs over a shared surface
- from the work Speechless [9]. We can clearly see that speech leakage is significantly reduced when the pr )| from the (favored) same
surface setting to the (realistic) aerial propagation setting.
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