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ABSTRACT
Protection Jamming Devices (PJD) are specialized tools designed
to sit on top of virtual assistant (VA) smart speakers and hinder
them from “hearing” nearby user speech. PJDs aim to protect you
from eavesdropping attacks by injecting a jamming signal directly
into the microphones of the smart speaker. However, current signal
processing routines can be used to reduce noise and enhance speech
contained in noisy audio samples. Therefore, we identify a potential
vulnerability for speech eavesdropping via smart speaker record-
ings, even when a PJD is being used. If an attacker can gain access to
or facilitate smart speaker recordings they may be able to compro-
mise a user’s speech with successful noise cancellation. Specifically,
we are interested in the potential for Gaussian white noise (GWN)
to be an effective jamming signal for a PJD. To our knowledge, the
effectiveness of white noise and PJDs to protect against eavesdrop-
ping attacks has yet to receive a systematic evaluation that includes
physical experiments with an actual PJD implementation.

In this work we construct our own PJD, specialized for consistent
experimentation, to simulate an attack scenario where recordings
from a smart speaker, in the presence of normal speech and the
PJDs jamming signal, are recovered. We perform substantial data
collection under different settings to build a repository of 1500
recovered audio samples.We applied post-processing on our dataset
and conducted an extensive signal/speech quality analysis including
both time and frequency domain inspection, and evaluation of
metrics including cross-correlation, SNR, and PESQ. Lastly, we
performed feature extraction (MFCC) and built machine learning
classifiers for tasks including speech (digit) recognition, speaker
identification, and gender recognition. We also attempted song
recognition using the Shazam app. For all speech recognition tasks
that we attempted, we were able to achieve classification accuracies
above that of random guessing (46% for digit recognition, 51% for
speaker identification, 80% for gender identification), as well as
demonstrate successful song recognition. These results highlight
the real potential for attackers to compromise user speech, to some
extent, using smart speaker recordings; even if the smart speaker
is protected by a PJD.
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1 INTRODUCTION
Voice Controllable Systems (VCS), and specifically smart speaker
devices, have gained significant popularity in home and business
environments throughout recent years. Today, at least 35% of the
U.S. population (18+) owns a smart speaker; and that number is
expected to increase to 75% by 2025 [30]. The study, conducted by
NPR and Edison Research, also found the average smart speaker
household had multiple (2.6) devices [7]. These smart speakers
can be fully interfaced via vocal commands which introduces a
new form of accessibility. This allows certain user groups to utilize
functions that otherwise may not be possible for them (i.e., due
to physical disability). Major companies like Amazon and Google
have released different versions of their own standalone VCS smart
speakers, many being relatively inexpensive. Models such as the
Amazon Echo Dot [3] and Google Home Mini [4] are becoming a
common commodity because of their low cost and their ability to
connect other smart devices (i.e., thermostats, locks, etc.).

Due to their amassed popularity, the security and privacy of user
data, particularly their speech, has become a major concern. Many
people believe that these smart speaker devices can be used by mali-
cious attackers, the government, or even the companies selling the
speakers to eavesdrop on their users at any point. These concerns
have led to significant news and media coverage describing the
potential for such attacks [5, 22, 23, 28, 31]. The implications of
smart speaker eavesdropping could be devastating if we consider
the sensitive environments they could be placed in (i.e., home, of-
fice, etc.). In these settings there may be a lot of confidential speech
from the user that should remain private. And at face value, the po-
tential for smart speaker eavesdropping may seem high because of
the “always on” nature of the microphones for detecting the wake
word. Although Google and Amazon report that their devices do
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not record user conversations [2, 6], many people are not convinced
and believe the threat is real.

In response, recent studies and projects have begun to explore
defensive techniques (namely microphone jamming) to mitigate
these eavesdropping attacks. These works implement microphone
jamming in what is called Protection Jamming Devices (PJD). PJDs
use tiny speakers housed in a mount, and are designed to rest on top
of the user’s smart speaker device. The jamming device will play
some type of noise (i.e., white noise, chatter, ultrasonic) through the
tiny speakers, directly into the microphones of the smart speaker, in
order to block any speech in the surrounding area. These devices are
always on and continue to jam the audio input of a smart speaker
until a wake word unique to the PJD is detected (using its own
inbuilt microphone). When the new wake word is detected the PJD
activates the smart speaker and stops jamming its microphones so
the user’s command can be processed.

In recent years we have seen new attention given to this type
of solution. New PJDs like Project Alias [14] and Paranoid’s Home
Wave [8] are currently on the market and available to the public. Ad-
ditionally, MicShield [41] is an academic paper that presents a PJD
solution using ultrasonic noise for jamming. These products and
research demonstrate a new defense against smart speaker eaves-
dropping. If this approach can be verified as completely effective at
stopping eavesdropping attacks, it could introduce a new sense of
security and protection for current and new smart speaker users.
Further, these devices are not expensive meaning they could easily
be adopted by existing users, or the jamming technology could po-
tentially be integrated in future models of the popular smart speaker
brands. However, this all depends on the PJD’s ability to produce a
jamming signal that can 1) interfere with the microphone’s ability
to detect nearby speech, and 2) does not bother or annoy the user
(e.g., transparent to them). Jamming using ultrasonic noise has the
benefit of being inherently undetectable by the human ear, and
it can mechanically hinder a microphone from recording. But in
the case of audible noise as the jamming signal (white or chatter),
finding an adequate loudness for the noise can be a delicate task.
Chatter noise in particular faces additional challenges because the
noise contains a more dynamic and recognizable combination of
sounds that would be more distracting than a static white noise.
Additionally, ultrasonic jamming does not stop the microphone
from recording, but rather obfuscates the speech that is recorded
beyond the point of recognition. Therefore, the potential for speech
recovery still exists because of signal processing techniques that
could potentially remove the injected jamming noise and reveal the
original speech. While chatter type noise has been successfully im-
plemented in the Project Alias PJD solution, we chose to investigate
white noise in this initial study because of its popularity in other
current speech masking solutions [1, 9, 11]. Further, to our knowl-
edge the effectiveness of white noise injected in the foreground of
audio recordings, for masking speech, has yet to be explored with
physical experiments ([41] only simulated white noise jamming).

In this work we study the efficacy of Protection Jamming Devices
that use audible Gaussian White noise for the jamming signal for
mitigating smart speaker eavesdropping attacks. We build our own
PJD implementation (designed for experimentation) and conduct
experiments that expose a smart speaker (Amazon Echo Dot) to
speech audio and the jamming noise. The recordings were saved

from the Alexa Voice History and processed using off-the-shelf
noise cancellation and speech enhancement routines. We extracted
different features from our samples and built classifiers to attempt
speech, speaker, and gender recognition. This attack model is de-
signed to simulate a less-sophisticated, real-world attacker in order
to observe a baseline for attack success. Also, using off-the-shelf
techniques makes the attack model more practical and accessible
to even low-capability attackers. Our results suggest that speech
contained in smart speaker recordings, during active GWN jam-
ming, can be compromised. Further, we believe attack success can
increase with more sophisticated and skilled attackers.

Contributions: The main contributions made in this work are
summarized below:

(1) We provide an overview of existing PJD implementations
and other related works (Section 2).

(2) We build our own PJD device modeled after existing im-
plementations and conduct experiments to build a dataset
of smart speaker recordings of speech in the presence of a
jamming signal (Section 4).

(3) We performed an extensive signal/speech quality analysis
including time and frequency domain inspection, and using
quality metrics such as cross-correlation, SNR, and PESQ
(Section 6).

(4) Lastly, we used machine learning to attempt speech (digit)
recognition, speaker and gender identification; as well as
attempt song recognition. We achieve classification accura-
cies better than random guessing (46% for digit recognition,
51% for speaker identification, 80% for gender identification);
and demonstrate successful song recognition. Our results
highlight a potential point of vulnerability in PJDs that use
acoustic jamming signals (Section 7).

The significance of this study is that it systematically confirms,
in an academic setting, that standard jamming noises such as white
noise are not effective at protecting user speech from even unso-
phisticated attackers that only use standard off-the-shelf signal
processing techniques. Existing PJDs such as Project Alias [14] and
Home Wave [8] do not use the standard white noise giving them
more success at masking user speech, and at the least they signifi-
cantly decrease the level at which speech can be compromised by
an attacker (increasing the difficulty of the attack). However, we
show that compromising user speech may be successful to some
extent with effective noise cancellation and speech enhancement
routines for processing the noisy audio. Therefore, as signal pro-
cessing techniques continue to improve, PJD devices must continue
to accommodate for an attacker’s increased ability in order to re-
main an effective defensive strategy. This work makes no claims
about the effectiveness of the existing PJD solutions that do not use
Gaussian white noise [8, 14, 41]. They are only used to inform the
design of our own jamming device (hardware and software).

2 BACKGROUND
Protection Jamming Device: Recent projects by researchers and
independent developers have produced a newmechanism to protect
against smart speaker eavesdropping, called Protection Jamming
Devices (PJD). They use tiny speakers housed in a mount, and
are designed to rest on top of the user’s smart speaker device.
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Figure 1: Depiction of how a PJD functions tomask sensitive user speech; and how a remote attacker could potentially eavesdrop
by removing the injected noise to recover the original speech.

The PJD will play some type of jamming signal, directly into the
smart speaker microphones, in order to block any speech in the
surrounding area. Figure 1 illustrates the basic function of a PJD,
as well as the potential threat faced if an attacker can compromise
the smart speaker’s recordings. These devices are always on and
continue to jam the audio input of a smart speaker until a wake
word unique to the PJD is detected. When it hears the new wake
word, the PJD activates the smart speaker and stops jamming so
the user’s command can be heard and processed.

In the market, we have seen a few PJD products become available
in recent years. Project Alias [14] is a device that was created in
an independent project by Bjorn Karmann, and made open-source
to the public. Home Wave [8] was created by the company Para-
noid Inc. and is available for purchase on their website. Both of
these devices have similar setups using tiny speakers attached to
a housing that rests on top of a smart speaker. The speakers play
an acoustic jamming signal (at a low loudness that remains unde-
tectable to the user). Additionally, both devices are equipped with
their own microphone for detecting a unique wake word. Project
Alias can be trained to respond to any word, and the Home Wave
device recognizes “Paranoid” as the wake word. These new devices
have already been featured many times in news and media (Project
Alias - [24, 36, 38], Home Wave - [12, 16, 20]) demonstrating the
popularity of devices that can offer increased privacy.

Acoustic vs. Ultrasonic Noise: Although jamming with ultra-
sonic noise can be very effective at blocking any snooping devices
from eavesdropping in a specific area, solutions using acoustic jam-
ming noises ([8, 14]) are more cost effective for the average user.
Additionally, research has shown that prolonged exposure to ultra-
sonic noise can have harmful effects on humans including noise
induced hearing loss [39] and loss of concentration [26]. Therefore,
smart speaker jamming devices that utilize ultrasonic noise may not
be viable as a long-term, in-home solution for many users. Because
of this, we feel it is still important to understand the limitations of
jamming solutions that use audible noise.

Additionally, in a more generalized study by Cheng et al. [19],
the authors evaluate the effectiveness of different jamming signals

and the effect of wake word and noise overlap on jamming suc-
cess. Their work demonstrated that Gaussian white noise can be
used for successful jamming under certain conditions (e.g., with a
strong audio signal (10dB SNR)). However, their evaluation used
programmatic signal injection to simulate a speech masking sce-
nario. Additionally, the normal speech and jamming signal were
combined into one signal before being fed to ASR in their exper-
iments. Our work differs because it looks to assess the masking
potential of GWN in a physical PJD implementation. This allows
us to observe the real-world limitations, if any, of injecting noise
into a smart speaker device for blocking nearby speech.

Noise Cancellation: In order to increase speech recognition po-
tential, current smart speakers will instantly process audio input to
try and enhance any contained speech. Specifically, intricate noise
cancellation may be applied to remove any unnecessary sounds
from the audio file, before running it through automatic speech
recognition. For example, when the Echo Dot 2 (used in our study)
receives audio input, it immediately transmits it to the Alexa Voice
Service (AVS) on the internet. Available research from the Amazon
Group reveal that processes such as adaptive linear filtering and
acoustical echo cancellation [47], adaptive beamforming [46], and
spacial localization [42] utilizing the multi-microphone array are
occurring during this time. Uniquely, the noise injection technique
of the PJD can introduce challenges for the existing noise cancel-
lation routines, reflecting their potential for success. The existing
signal processing techniques are not equipped to handle audio input
where the noise source is in the foreground, and the normal speech
is farther away. This is what allows PJD devices to be successful
at hindering the ASR function of a smart speaker. However, if we
consider the potential a human attacker could have with ample
time and access, and improved signal processing techniques, it is
unlikely a foreground injected jamming signal can remain effective.

Related Works: A device that similarly uses speakers at a close
distance to the smart speaker microphones, for jamming signal
injection, is MicShield [41] that was presented in an academic work
by Sub et al. This device differs from the first two in that it uses
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Figure 2: Diagram depicting an attack model that can be used to target our defined threat model.

ultrasonic sounds for the jamming signal which affects the opera-
tions of the microphone, as opposed to simply masking the recorded
audio in noise. The authors performed some preliminary testing
using white noise and found that a very low SNR (-15dB) can be
effective for the PJD setup. They determined speech at 75 dB could
be jammed with a white noise signal at 90 dB; which is not a viable
loudness for a PJD using an audible jamming noise (because of user
disturbance). Our work further develops this insight to assess the
effectiveness of white noise jamming at loudness levels acceptable
to a user, through a formal academic study.

The use of ultrasonic noise is also seen in other defenses such
as the Patronus system [34]. Patronus generates low-frequency
noise called a “scramble” that exploits the nonlinear effects of smart
speaker microphones to prevent unauthorized recordings and im-
prove the quality of authorized recordings. Another work by Chen
et al. [18] presents a wearable bracelet composed of ultrasonic
speakers that can disable microphones that are near the user wear-
ing it. Rather than targeting a specific VCS device, this bracelet is
intended to disrupt recording from all microphones close to the
user (i.e., smartphones, smartwatches, etc.). We have even seen an
artistic, non-technical defense approach similar to a physical barrier.
May Safwat designed and constructed a bust of the whistleblower
Edward Snowden that contains a hollow copper tube. The bust is
simply meant to sit over a smart speaker (completely covering the
top and all sides) in order to block any a audio orwireless signal com-
munication (i.e., internet) with the smart speaker. Clearly, this holds
the same level of protection as simply powering off/unplugging the
smart speaker device (e.g., cause complete DoS). But it still speaks
to the growing interest surrounding these type of devices.

Aside from smart speaker eavesdropping defenses, speech mask-
ing techniques for protecting live human speech have been explored
that still reveal new knowledge about the potential of speech mask-
ing/jamming. In a work by Phunruangsakao et al. [37], the authors
develop a scheme to ensure speech privacy by limiting the Speech
Transmission Index (STI). Instead of measuring the Room Impulse
Response (RIR), the authors estimate the STI and feed it to an RIR
model. Kim et al. [32] explores the potential of Active Noise Can-
cellation (ANC) for increasing speech privacy. Their work demon-
strates that ANC in a specific direction can decrease the need for a
masking signal, and the same masking affect can be achieved with
a lower masking signal volume (5 dB lower). The authors evaluate

speech intelligibility in their analysis using Speech Intelligibility
Index (SII) and Speech Reception Threshold (SRT). Lastly, research
conducted by Krasnov et al. [33] looks to mask an original speech
signal (with no user disturbance) by targeting key components of
the speech that carry information required for recognition. Both
amplitude and temporal smearing techniques are used to generate
a modified masking noise to negate some effects of reverberation
and increase speech privacy. Our work uniquely builds on these
existing works by performing the first evaluation of the presented
mechanisms, using a standard white noise jamming signal, against
a simple, but realistic eavesdropping attack.

3 THREAT MODEL
For our threat model we consider a user environment that contains
a VCS smart speaker device equipped with a PJD. This could be a
personal device placed in a user’s home, or a work tool used in their
place of business. In these scenarios, the smart speakers are exposed
to sensitive speech that the users need to keep confidential. The
attacker in our threat model seeks to compromise or eavesdrop a
victim user’s speech and are able to acquire (noisy) recordings from
the victim’s smart speaker device. For example, an employee of the
device’s shipping company could implant a component or inject
malicious code in the firmware that would allow them to acquire
user speech recordings. They can perform standard post-processing
techniques on the victim’s speech recordings including noise cancel-
lation and speech enhancement. Lastly, the attacker possesses the
machine learning knowledge needed to build a speech recognition
(or other related speech task) model. Specifically, the attacker in
our threat model looks to achieve speech (digit) recognition, speaker
identification, gender identification, and song recognition. Each of
these speech tasks can reveal sensitive information about a user
that an attacker can abuse or even sell to companies for things like
targeted advertising. Speech recognition can reveal actual speech
content, while the other tasks like song recognition may reveal a
user’s personal and private interests. Figure 2 depicts a model an
attacker may use, and we recreate experimentally in this study, to
eavesdrop on speech via compromised smart speaker recordings.

We consider digit recognition because it represents the potential
for PIN/password/account# leakage which would be very devastat-
ing if acquired by a malicious attacker. If we consider the scenario
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of making a purchase over the phone, which is becoming increas-
ingly more common during this pandemic as people are encouraged
to quarantine at home, we can see an instance where a user may
vocalize sensitive numerical information (i.e., credit card number
and security code) near their smart speaker. Additionally, speaker
identification could reveal to an attacker how many people live
in a home, as well as when particular people are using the smart
speaker and what they use it for. This information could be sold to
companies that will use it for targeted advertising, or for something
even more malicious such as a home robbery. Similarly, Gender
identification may also be used for targeted advertisements, or to
help the eavesdropper understand who lives in the home.

In a real-world scenario, there are a few potential attackers that
can attempt eavesdropping in this way. Mainly, the companies pro-
viding these smart speaker devices, and their employees, are in
a unique position to perform such an attack. The major compa-
nies like Amazon and Google could easily program these devices to
record and transmit user audio to company servers, or install a func-
tion to allow full access and control of the microphones equipped
on the device by an administrator at the company. Although the
companies claim this does not occur, many people are still highly
suspicious of this possibility [5, 28]. Aside from the companies that
sell the devices, this threat model is also applicable to any attacker
that can gain access to, or even force, recordings from a user’s smart
speaker. This could be a malicious person with IoT device hacking
skills, or even a military entity. Fear of the military exploiting these
VA devices is another concern of many people [13, 40, 43].

Similarly, there is growing potential for law enforcement to
obtain smart speaker recordings during their investigations for
evidence in legal cases [27]. In New Hampshire, a judge ordered
Amazon to turn over two days worth of Alexa recordings from
the personal smart speaker device in a murder victim’s home [45].
The prosecution looked to find evidence leading to the killer in
those recordings. Another example occurred in Hallandale Beach,
Florida where smart speaker recordings were subpoenaed to reveal
evidence of an argument between a murder victim and the prime
suspect [25]. Stories like these could be another motivator for some
users to invest in a PJD; wanting their conversations kept private.
However, as our work demonstrates, significant information can
still be recovered from audio samples masked by a PJD which
may interest law enforcement. Even simple data such as number of
speakers or the speakers’ gender could be useful in an investigation.

4 EXPERIMENTS & DATA COLLECTION
4.1 PJD Implementation
We built our own implementation of a Protection Jamming Device
(PJD) based on characteristics of existing PJDs available today. The
build instructions and necessary software for the Project Alias
device are open source and available online [15]; so we use these
materials as the building blocks for of our own device. Like Project
Alias, our device uses a Raspberry Pi3 equipped with an SD card
and the ReSpeaker 2-Mics Pi HAT expansion board. Additionally,
we used a JST 2.0 connector to connect a 16mm tiny speaker. For
our jamming signal, we chose to use a standard Gaussian white
noise (GWN) that has a flat spectral density and encompasses the
0-8 kHz frequency range. We chose GWN because it is a popular

choice for a masking noise and we believe it is a good option for
this first academic study in PJD effectiveness.

Unlike the Project Alias device, our implementation does not
utilize the 3D-printed shell to house all of the components. Also, we
position the tiny speaker directly on top of the center microphone
inspired by the design of Home Wave [8]. This will directly inject
the jamming noise as audio input into the smart speaker. For the
purposes of our experiments, we adapted the Project Alias source
the source code to use the GWN jamming signal and added the
ability to manually start and stop of the noise using a button on
the ReSpeaker expansion board. These modifications were made so
that our PJD could be used for controlled experiments. We are not
presenting our constructed device as a new or viable PJD implementa-
tion because the design choices we made, while useful for conducting
consistent and controlled experiments, add a requirement of user in-
teraction that an actual PJD solution would not have.

Determining Injected Noise Volume Before beginning our ex-
periments, we confirm that our implementation can function suc-
cessfully as a PJD. We manually adjust the volume of the noise
coming from our PJD until it is barely undetectable by a nearby
user (confirmed by lab members). In a real-world implementation,
the consistent noise played from a PJD cannot be so loud that it
disturbs a user in the same space. This is why we adjust the volume
level of our PJD jamming signal to a point that is barely detectable
by the human ear when they are sitting 0.5 meters from the device.
We reason that in a real-world implementation of the device that
uses a printed casing to house the speaker and other components,
the presence of this noise in the environment will be even lower
than what is accepted in our study. With this parameter set, we per-
form initial testing and confirm the noise injected in the foreground
can hinder a smart speaker from recognizing the wake word. This
is the key function of PJDs which operate under the assumption
that the injected noise will fully mask any nearby user speech.

4.2 Experimental Setup
To study how effective our PJD is at masking user speech, we de-
sign an experimental setting that exposes an Amazon Echo Dot to
both normal speech and the injected noise from our device. Specif-
ically, we attach the tiny speaker of our PJD on top of the center
microphone of the Echo Dot, with the Raspberry Pi components
sitting next to it. We use an SRS-XB2 Bluetooth speaker to play
the speech samples. The Bluetooth speaker is pointed towards and
placed approximately 0.5 meters away from the Echo Dot. We test
different SPL (dB) levels for the normal speech in our experiments
including speech in the normal range for human conversation (60
dB), slightly louder speech (65 dB), as well as very loud speech that
is similar to presentation style speaking (70 dB). The SPL for each
setting was measured at the smart speaker’s location using a digital
sound level meter. We test these different SPL levels to generalize
our investigation of the effectiveness of GWN, injected in the fore-
ground, to mask nearby speech. In terms of speaker distance, we
know that SPL decreases when the distance is doubled by -6 dB. So,
if we consider our loudest source speech (70 dB) at 0.5 meters from
the Echo Dot; the other SPL levels (65 and 60 dB) would represent
distances of about 1 meter and 2 meters, respectively, if we simply
moved the 70 dB speech source location.
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(a) 60 dB Speech (Noisy)

(b) 65 dB Speech (Noisy)

(c) 70 dB Speech (Noisy)

(d) 70 dB Speech (Clean)

Figure 3: Time domain graphs generated from post-processed,
Alexa recorded samples of speaker FAC saying the digit “One”, for
each speech SPL tested (60, 65, 70 dB); as well as the time domain
graph of a clean sample of the same speech from FAC.

4.3 Data Collection
We performed all of our data collection in a quiet office space
with only ambient noise in the environment. It is important in our
study that no additional background noise is present that could
compromise the recordings.

Speech Dataset: For our experiments, we utilized speech samples
from the TIDIGITS dataset [21]. This dataset contains audio samples
of single digits (0-9) spoken by 10 speakers (5 female, 5 male). We
utilize an audio sample of each digit, from each speaker, for a total
of 50 different speech samples. Five samples were collected for each
speaker (10), digit (10), and speech SPL (3) level resulting in a total
of 1500 audio recordings recovered from the Echo Dot.

Additionally, we collected data where the speech played was
a song (lyrics + music). Specifically, we used audio of the songs
“Smooth” by Santana and “Blinding Lights” by The Weeknd. For
each song, we cut out a 5 second portion of the beginning, middle,
and end to use in our experiments which resulted in 6 different

song clips. These samples will be used to attempt song recognition
with the Shazam application, which uses a novel and sophisticated
algorithm that can identify a song from a small snippet of audio.

Collection Steps: For each instance of data collection, we followed
the same set of steps to generate and retrieve the Echo Dot recorded
samples.We begin with the researcher manually activating the Echo
Dot by issuing the wake word, “Alexa”. Once the smart speaker has
been awakened and is actively listening for the user’s command
(indicated by light ring glowing blue), we press the button on our
PJD to manually start the noise injection. After the PJD has been
started, the normal speech sample is played from the nearby Blue-
tooth speaker. After the speech sample finishes playing, we allow
the injected noise to continue until the Echo Dot has finished its
recording (indicated by the light ring powering down). Only after
the recording has stopped do we manually stop our PJD from inject-
ing noise. Once the audio has been recorded by the Echo Dot, the
researcher accesses and saves the recordings from the Alexa Voice
History web interface. Each recording made during data collection
is saved as a .wav file and stored for later processing.

5 ATTACK DESIGN
5.1 Signal Processing of Recovered Audio
After data collection is complete, we amassed a set of 1500 recovered
audio samples from the Echo Dot. In the interest of speech recog-
nition tasks, we perform post-processing on the recovered audio
signals to obtain the greatest results. We began the post-processing
phase by manually trimming each recovered audio sample to about
1 second in length (enough to encompass the spoken digit).

Next, we attempt to improve the quality of the normal speech
in the recovered audio by applying a speech enhancement and
noise reduction routine. We consider four such routines from the
Matlab signal processing toolbox, VOICEBOX [17]. We performed
some initial tests using the specsub, spendred, ssubmmse, and ssub-
mmsev. Each of these routines performs speech enhancement via
some method including spectral subtraction, dereverberation, and
minimum-mean square error (MMSE) with and without voice ac-
tivity detection (VAD). Our initial tests found that the ssubmmse
routine performed best in terms of speech enhancement and white
noise reduction. Therefore, it was chosen as the noise filtering
routine for our signal processing phase of the work.

5.2 Feature Extraction
Once all audio samples in the dataset were processed, we perform
MFCC feature extraction on each sample. MFCC features were cho-
sen because they are widely used when attempting speech recog-
nition tasks, especially when identifying spoken digits. For each
audio sample we calculate the 13 MFCC coefficients which pro-
duces an Nx13 matrix where each column contains the values for
each coefficient. From these coefficients we also calculate a single
mean, minimum, maximum, and standard deviation value for each
of the 13 MFCC coefficients. Additionally, we generate the first and
second order differential coefficient values (e.g., Delta, log energy).
Combining all of these values results in a 144-feature vector.

In addition to the full set of extracted features, we also use an
attribute selection tool in Weka [10] to generate a filtered set of the
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most important (e.g., most highly correlated) features in an attempt
to achieve the greatest classification accuracies. We select the Clas-
sifierAttributeEval class of evaluator (selecting the RandomForest
classifier) and specify the BestFirst search algorithm. This produced
a small set of the 17 most significant features which we also test in
our classification models.

(a) 60 dB Speech

(b) 65 dB Speech

(c) 70 dB Speech

Figure 4: Cross-correlation graphs comparing post-processed, Alexa
recorded samples of speaker FAC saying the digit “One”, for each
speech SPL tested (60, 65, 70 dB), with the original raw audio file.
The peaks found at lag=0 in these graphs indicate a strong correla-
tion between our recovered signals and the original signal, further
demonstrating the potential for an eavesdropping attack.

5.3 Machine Learning Classification
We attempt different speech classification tasks using the dataset
of VA recordings that we collected. Specifically, we explore speech
(digit) recognition, speaker identification, and gender identification.
In this section we will describe the performance results of our learn-
ing models that were trained for these speech recognition tasks. In
our initial classification attempts we tested NaiveBayes, BayesNet,
Logistic, MultiClass, and RandomForest classifier models. And for
each of these classifiers we tested an 80:20 and 90:10 training/test
data split, as well as 10-fold cross validation. We observe that across
all classification tasks, the RandomForest classifier achieved the
highest accuracies. Therefore, we highlight and report on the accu-
racies of the RandomForest classifier in the following sections.

6 SIGNAL ANALYSIS
6.1 Time & Frequency Spectrum
As an initial look at the post-processed recovered samples, we
perform both time and frequency domain analysis which reveals

the clear presence of normal speech in the recovered audio samples.
Comparing the time domain graphs of samples from the different
speech SPL settings, we find that the normal speech signal is visible
in all of them. Figure 3 shows the time domain graphs generated
from samples of the speaker FAC saying the digit “One” in each of
the speech SPL settings. Although the success of noise cancellation
varied across the different loudness levels of speech, being most
successful when the normal speech was at its loudest, these time
domain graphs confirm that the speech signal is maintained. We
also find that the 70 dB speech sample collected with injected noise
(Figure 3c) achieves a similar quality and strength of speech signal,
after signal processing, to what we see in the clean sample collected
without any injected noise. This suggests louder speech signals
(70+ dB) may be too strong for even injected noise from a PJD to
fully mask and protect from an eavesdropping attack. And even
though the isolation of the speech signal is not as successful at lower
speech SPLs, more sophisticated signal processing techniques could
be used to obtain better results.

Our frequency spectrum analysis yielded similar observations
that support what was seen in the time domain. In the spectrum
graphs we can see the speech related frequencies are strong and
present in all SPL settings. Additionally, we also see the presence
of noise decrease as the source speech SPL was increased (e.g.,
noise cancellation improves). Figure 5 shows the spectrum graphs
generated for the same samples from speaker FAC. We notice that
in all cases the speech frequencies seem to be well identified and
maintained through the post-processing for noise removal. The
observations made in both the time and frequency domains are
positive indicators that PJDs using white noise can be ineffective in
the face of signal processing techniques, and therefore smart speak-
ers equipped with a PJD could still be vulnerable to eavesdropping
attacks. If we compare the 70 dB speech samples collected with
injected noise (noisy, Figure 5c) and without (clean, 5d), we see the
noisy sample can maintain almost all the same frequencies after
signal processing, and at the same strength, as the clean sample.

6.2 Cross-Correlation
Continuing our analysis of the recovered samples, we perform
normalized cross-correlation to compare post-processed samples
from each SPL setting to the original raw audio used in our exper-
iments. This allows us to gauge how much of the original signal
was recovered after the post-processing routines were applied. Be-
fore determining the cross-correlation value, the two signals were
aligned and a bandpass filter was applied to isolate frequencies be-
tween 150-1000 Hz (what appear to be the frequencies most related
to the original speech).

Because the signals are aligned, we should find a peak at lag=0 in
the cross-correlation graphs if the two signals are highly correlated.
Figure 4 shows the cross-correlation graphs generated from samples
of the speaker FAC saying the digit “One” in each of the speech SPL
settings. Looking at the absolute amplitude in the cross-correlation
graph, we find the normalized cross-correlation values for the 60,
65, and 70 dB samples are 0.63, 0.69, and 0.81 respectively. These
values confirm a decent level of correlation between the signals
(e.g., a significant amount of the original signal was recovered).
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(a) 60 dB Speech (Noisy) (b) 65 dB Speech (Noisy) (c) 70 dB Speech (Noisy) (d) 70 dB Speech (Clean)

Figure 5: Frequency spectrum graphs generated from post-processed, Alexa recorded samples (noisy) of speaker FAC saying the digit “One”,
for each speech SPL tested (60, 65, 70 dB); as well as a graph generated from a clean sample (no injected noise) with 70 dB speech.While normal
speech related frequencies are present, we can see noise cancellation becomes more successful as the speech volume increases.

Table 1: Averaged results from PESQ and SNR analysis for each individual speaker.

Speaker
ID

Alexa Recovered Audio Baseline60 dB 65 dB 70 dB
PESQ SNR PESQ SNR PESQ SNR PESQ SNR

FAC 1.2 8.8 dB 1.3 8.6 dB 1.7 7.7 dB 1.8 15.7 dB
FBH 1.2 9.8 dB 1.3 10.6 dB 1.3 10.2 dB 1.6 14.9 dB
FCA 1.2 10.2 dB 1.2 9.8 dB 1.3 9.2 dB 1.4 20.7 dB
FDC 1.2 7.1 dB 1.2 7.5 dB 1.2 6.7 dB 1.5 24.0 dB
FEA 1.2 8.6 dB 1.3 9.0 dB 1.5 9.3 dB 1.6 16.8 dB
MAE 1.2 8.2 dB 1.2 8.0 dB 1.5 6.5 dB 1.6 23.5 dB
MBD 1.2 8.8 dB 1.3 9.0 dB 1.4 7.1 dB 1.7 22.1 dB
MCB 1.3 8.0 dB 1.3 8.2 dB 1.3 7.5 dB 1.7 17.9 dB
MDL 1.3 8.7 dB 1.1 9.6 dB 1.5 7.9 dB 1.8 16.2 dB
MEH 1.2 9.3 dB 1.1 10.1 dB 1.4 6.6 dB 1.7 16.2 dB

Table 2: Averaged results from PESQ and SNR analysis for both speaker genders.

Alexa Recovered Audio
60 dB 65 dB 70 dB BaselineSpeaker

Gender PESQ SNR PESQ SNR PESQ SNR PESQ SNR
Male 1.2 8.8 dB 1.3 9.0 dB 1.4 7.9 dB 1.6 18.4 dB
Female 1.2 8.6 dB 1.2 9.0 dB 1.4 7.1 dB 1.7 19.2 dB

6.3 SNR & PESQ
Another way that we evaluated our recovered samples was using
metrics that describe speech presence and quality in noisy audio.
Specifically, we look at Signal-to-Noise Ratio (SNR) and Percep-
tual Evaluation of Speech Quality (PESQ) scores. SNR shows us
how successful the post-processing was at reducing the noise and
enhancing the speech frequencies. Further, the PESQ score rates
the quality of the speech in terms of how perceptible it is to hu-
man listening. We believe these two standard metrics are useful for
demonstrating the potential vulnerability of these audio samples
to eavesdropping attacks. To highlight the greatest potential for
speech to be recovered from noisy samples, we filtered our dataset
for the SNR and PESQ analysis to include the samples from each
experimental scenario that displayed the greatest speech leakage.
For each speaker, digit, and speech SPL that we tested, we collected
5 different samples to build our 1500 sample dataset. Therefore,

choosing the best sample out of 5 for each scenario resulted in a
filtered dataset of 300 samples that we used to generate average
SNR and PESQ scores for each speaker and gender. Table 1 and
Table 2 show these average scores summarized per speaker and
gender, respectively.
Signal-to-Noise Ratio:We calculated the SNR values of each in-
dividual audio sample using the equation:

SNR = 20 ∗ loд10(
std(siдnal)

std(noise)
)

The variable signal refers to the recovered signal from each sce-
nario, and the variable noise is the raw noise signal that was injected
during the scenarios. The values produced by this equation were
verified using the snr() function built into Matlab. We found the
average SNR values for all speakers, in each experimental scenario,
was positive. This was also seen when the values were averaged per
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Table 3: Summarized classification results (using Random Forest) observed for the different speech tasks, feature sets, and speech SPLs
considered in our experiments. Bold accuracies indicate the highest values observed for each speech task and feature set.

Classification Accuracy (%)Classification Task # Classes # Features Speech SPL
(dB) 80:20 90:10 10-Fold CV

60 30 22 29.8
65 40 34 37.2144 (ALL)
70 36 36 39.6
60 24 22 28.4
65 34 46 36.6

Speech
(Digit)
Recognition

10 (digits,
0-9)
Random
Guess: 10% 17 (filtered)

70 35 42 36
60 30 40 38.4
65 51 50 46.2144 (ALL)
70 39 38 39.4
60 32 36 40.2
65 49 50 43.4

Speaker
Identification

10 (speakers)
Random
Guess: 10% 17 (filtered)

70 37 42 40.6
60 76 69 75.6
65 80 80 76.8144 (ALL)
70 66 76 70
60 77 71 76.9
65 76 78 74.8

Gender
Identification

2 (Male,
Female)
Random
Guess: 50% 17 (filtered)

70 71 74 69.2

gender. Although the SNR scores do not reveal any particular pat-
tern or trend across the different SPL settings (i.e., similar amount
of noise can be removed at all speech levels), it is important to
recognize that all recovered and processed samples produced posi-
tive SNR values, with most scenarios averaging an SNR of 8 dB or
higher. These positive values indicate the recovered speech signal is
greater than the noise remaining in the sample post-processing. We
also collected baseline samples of the normal speech audio (without
any injected noise) which produced the highest SNR values. The
decrease in SNR of our recovered samples, compared to the baseline,
reflects noise that still remains even after signal processing.
Perceptual Evaluation of Speech Quality: PESQ is the metric
that is most related to human perceived intelligibility of the recov-
ered samples [29]. The results from our PESQ analysis support our
previous observations of speech leakage. To calculate PESQ scores
for individual audio samples, we used a python PESQ wrapper [35].
The provided function takes the recovered audio sample and the
original raw audio sample as input and compares them to deter-
mine the quality of speech contained in the sample. After averaging
the scores for both genders and for each speaker, we find positive
scores above 1.0 for all scenarios. Additionally, we observed a con-
sistent and expected pattern among the averaged values where the
PESQ scores increase (albeit slightly) as the original speech SPL
increases. Further, we also find that the PESQ scores calculated are
comparable to the scores of the baseline samples. This means that
the speech content we were able to recover has a similar intelli-
gibility, in terms of human perception, to the raw recordings we
collected without any injected noise. PESQ is a significant indicator
of potential speech leakage, and the results for our samples suggest
the quality of speech that can be acquired via our attack model (to
achieve speech recognition) is on par with an actual microphone.

7 CLASSIFICATION RESULTS
In this section we will discuss the accuracies we achieved for speech
(digit) recognition, speaker identification, and gender identification
tasks. We attempt each of these tasks under a few different pa-
rameter settings. Table 3 summarizes the classification accuracies
observed for each speech task, feature set, and speech loudness
(SPL) that we consider.

Digit Recognition: For digit recognition, 40% classification accu-
racy was achieved when the model was trained on the full set of
144 features and an 80:20 split. When the feature set was filtered to
the 17 most significant features, we observe an increased maximum
accuracy of 46% for the 90:10 split. Interestingly, both of these accu-
racies were observed for the 65 dB speech data. Although 46% may
not sound impressive, if we consider that random guessing has a
10% classification accuracy (for classifying the 10 digits), we see that
the accuracies observed in our experiments are an improvement.
The 10-fold Cross Validation results confirm that the classification
accuracy increases as the source speech loudness is increased past
60 dB. Interestingly, the results show that the 65 dB and 70 dB
source speech have similar classification results, with the 65 dB
speech achieving a slightly better classification accuracy with the
filtered feature set. This may suggest the Alexa noise cancellation
that is applied is similarly effective for both speech SPLs, and that
there is no significant benefit for the loudest speech level (70 dB).

Speaker Identification: The speaker identification accuracies that
we see are also an improvement on the 10% accuracy of random
guessing (for classifying the 10 speaker). When we trained our
model on the full set of features we see a maximum classification
accuracy of 51% for the 80:20 split. Similarly, we observed a maxi-
mum accuracy of 50% for the 90:10 split when the model was trained
on the filtered set of features. 10-fold Cross Validation revealed a
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different pattern of success for speaker identification compared to
what we observed for digit recognition. The results show that the 65
dB source speech had the best classification results for both feature
sets. This indicates that Alexa noise cancellation is able to preserve
more speech frequencies (e.g., those needed for speaker identifi-
cation) when the speech is around 65 dB. It’s possible that louder
volume speech may produce frequencies at power levels that can
be confused with that of noise, and are therefore removed during
noise cancellation (inline with observations from digit recognition).

Gender Identification:We observe decent classification accura-
cies for the gender recognition task for both feature sets. When we
trained on the full set of features, we achieved 80% classification ac-
curacy for both train/test data splits. And when we used the filtered
set of features, we observed a maximum accuracy of 78% for the
90:10 data split. This is a significant improvement to the 50% accu-
racy achieved through random guessing (classifying two genders),
indicating the clear potential for successful gender recognition by
an attacker. 10-fold Cross Validation for the gender identification
task revealed the best classification results were achieved when
speech was at the lower volumes (60, 65 dB). Similar to our previous
observations, these results suggest that gender-specific information
is better preserved at volumes lower than the maximum we tested
(70 dB). Again, at the louder volume level the power of the speech
frequencies may be confused with noise and get removed. And a
5%+ decrease in classification accuracy (for both feature sets) when
the speech was at 70 dB suggests important speech information
required for gender identification is lost at that volume.

Song Recognition: Lastly, we conducted a small evaluation of
song recognition potential using the recovered and processed sam-
ples from Alexa Voice History. We played two songs and isolated
short clips (5 seconds) from the beginning, middle, and end of each
song. These samples consisted of a mix of music with and without
spoken lyrics. To evaluate these samples we used the Shazam song
recognition app which employs an efficient, scalable, noise and
distortion resistant song identification algorithm [44]. We found
that all song samples that were prepared could be successfully iden-
tified. Each sample was tested five times and we observed 100%
song recognition accuracy for all samples. Song recognition can be
considered one of the easier tasks to accomplish that can still reveal
sensitive information. An attacker could use already available tools,
or even design their own customized song recognition algorithm.
The algorithm used for our work performs a combinatorially hashed
time-frequency analysis of the audio to recognize a song with very
small samples of the original audio. Further, songs can be easily
identified with snippets of either instrumental music or lyrics being
sung. In regards to privacy, song recognition can reveal the user’s
unique and personal interests.

8 DISCUSSION
Increased Potential for Compromising Speech: Through our
experiments, we determined that a RandomForest classifier can be
used to improve the potential for certain speech recognition tasks
(beyond the accuracies obtained from random guessing). Our results
demonstrate the clear potential for an attacker to compromise user
speech, to some extent, evenwhen under the protection of a PJD.We

found that full speech (digit) recognition and speaker identification
are more challenging, while successful gender recognition seems
more likely in a real-world attack scenario. Further, an attacker with
more extensive knowledge of signal processing, or with improved
techniques, could achieve even better classification accuracies.

Speech SPL Observation: The classification results we observed
for each speech task and feature set revealed an interesting pat-
tern. In all scenarios we find that the maximum accuracies were
achieved using source speech at 65 dB. This is unexpected as we
would think that the 70 dB source speech data would produce the
greatest results for speech classification tasks. Through the process
of collecting the Alexa voice history recordings we noticed that
some noise cancellation is already applied. However, the success of
this noise cancellation was not consistent and resulted in samples
recorded under the same settings having different levels of noise
still present. Therefore, we speculate that one reason for the im-
proved classification success of the 65 dB samples could be better
noise cancellation performance on user speech that is closer to 65
dB. So noise cancellation may be less effective on user speech that is
70 dB because it is furthest from the range of normal human speech.
Speech related features could be filtered because the increased SPL
(power) of the speech signal is mistaken as noise.

9 CONCLUSION
In this work we look to explore the effectiveness of Protection Jam-
ming Devices (PJD) that use GWN for masking user speech from
eavesdropping attacks. These devices are used to continuously in-
ject a masking sound into the microphones of VA smart speakers in
order to block the device from accepting the user’s commands. An
assumption is that this hinders any potential VA speaker eavesdrop-
ping attacks. However, with current signal processing techniques
(i.e., noise reduction, speech enhancement) there exists a potential
for the user’s speech to be compromised by an attacker that can
access smart speaker recordings. Through a process of data collec-
tion, post-processing, feature extraction, and model training, we
were able to demonstrate greater classification accuracies (than ran-
dom guessing) of 46%, 51%, and 80% for speech (digit) recognition,
speaker identification, and gender identification, respectively.

Future Work: As this work provides a first exploration of PJDs
(using GWN) effectiveness for masking speech recorded by a smart
speaker device, we could not feasibly test all possible experimental
parameters. Therefore, a few key directions remain that we can
explore in the future to further develop this work (and our overall
understanding of PJD device effectiveness). First, we decided on a
Gaussian white noise for our jamming signal for its popular use
in other speech masking solutions. Aside from GWN, there are
other jamming signal types that we would like to explore including
chatter noise and ultrasonic sound. These signal types can provide
more diversity in the jamming noise or even affect the performance
of the microphone mechanics. Next, we would like to test other
PJD configurations such as using 6 tiny speakers to inject noise
in the microphone array (like Home Wave), or encasing all of the
components in a housing shell (like Project Alias). Lastly, we would
like to explore new or more extensive signal processing techniques
to improve the noise cancellation and speech enhancement.
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